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ARTICLE INFO ABSTRACT

Dataset link: https://github.ncsu.edu/tphan4,/C In this paper, we perform concurrent atomistic—continuum (CAC) simulations to assess the contribution of
AC.git the internal stress induced by the microscale dislocation pileup at an atomically structured interface to the
atomic-scale phase transformations (PTs), reverse PTs, and twinning. The main novelty of this work is to unify

Keywords:

Dizllvgcations the atomistic description of the interface and the coarse-grained (CG) description of the lagging dislocations
Interface away from the interface within one single framework. Our major findings are: (a) the interface dynamically
Twinning responds to a pileup by forming steps/ledges, the height of which is proportional to the number of dislocations

Phase transformation
Atomistic and multiscale simulations

arriving at the interface; (b) the pileup-induced internal stress concentration profile follows neither the classical
Eshelby model nor the super-dislocation model alone, but a combination of them; (c¢) when the pre-sheared
sample is compressed, a direct square-to-hexagonal PT occurs ahead of the pileup tip and eventually grows
into a wedge shape. The two variants of the hexagonal phases form a twin with respect to each other; (d)
upon a further increase of the loading, part of the newly formed hexagonal phase transforms back to the
square phase. The square product phase resulting from this reverse PT forms a twin with respect to the initial
square phase. All phase boundaries (PBs) and twin boundaries (TBs) are stationary and correspond to zero
thermodynamic Eshelby driving forces; and (e) the microscale dislocation pileup-induced internal shear stress
and the structural change at the atomic-scale interface reduces the stress required for initiating a PT by a factor
of 5.5, comparing with that in the sample containing no dislocations. This work is the first characterization
of the behavior of PTs/twinning resulting from the reaction between a microscale dislocation slip and an
atomically structured interface. The gained knowledge will advance our understanding of how the multi-phase
material behaves in many complex physical processes, such as the synthesis of multi-phase high-entropy alloys
or superhard ceramics under high-pressure torsion, deep mantle earthquakes in geophysics, and so on, which
all involve dislocation slip, PTs, twinning, and their interactions across from the atomistic to the microscale
and beyond.

1. Introduction high-pressure physics, but also widely spread in nature, e.g., in geo-

physical processes.

Dislocations, phase transformations (PTs), and twinning are three
most common carriers of plastic flow and can be simultaneously
activated when deforming a crystalline media [1-11]. An understand-
ing of these mechanisms is not only relevant to a broad range of
applications, e.g., metal forming, thermomechanical treatments of
materials, shape memory alloy processing, elastocaloric applications,

Here, a focus is placed on materials in which the viscoplastic
deformation can be conditioned by the interplay between all three de-
formation modes: dislocation motion, martensitic PTs, and twinning. In
such scenarios, the coupling between these deformation modes will dic-
tate the material microstructure evolution, such as PTs accompanied by
the dislocation slip [12,13], and the PTs promoted by the dislocation-
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or twin-mediated plastic flow [8,14]. Several attempts on the study
of the complex interaction between the dislocation-, twinning-, or
PT-mediated plasticity include: (i) a simultaneous treatment of PTs, dis-
locations, and twinning within a continuum sharp interphase approach
from the theoretical point of view in [15-17] and the numerical point of
view in [18,19]; (ii) a smeared continuum description of the interaction
of plasticity and PTs under high pressure; [20-22] (iii) continuum-level
computational analysis of the effects of interfaces and twinning on the
PTs through crystal plasticity finite element (CPFE) simulations, where
twinning is found to promote the a to w PTs but suppress the reverse
PTs in zirconium [8]; (iv) phase field approach (PFA) consideration of
discrete dislocations and PTs at the nanoscale in [23-27] and also at
the microscale in [7,28]; and (v) atomistic simulations of interaction
between PTs and plasticity in [3,29-31]. For a more comprehensive
summary of the research progress in this field, a few representative
review articles on this topic can be found in [32-35] and in [11,36-38]
from the materials and mechanics point of view, respectively. It should
be noted that, in the above literature, twinning in martensite is often
considered as one part of the multi-variant martensitic PTs.

In this work, we aim to probe the mechanisms underlying the
interaction between dislocation slip, PTs, reverse PTs, and twinning. A
co-operation of these three deformation modes is pertinent to materials
subjected to extreme mechanical environments (e.g., high pressure,
high torsion, shock loads, etc.) [11,39-43]. Especially, the occurrence
of dislocations and twinning may have a potential to decrease the
critical pressure required for initiating PT. For example: (i) an irre-
versible PT from rhombohedral to superhard cubic boron nitride (BN)
was obtained in [44] at 5.6 GPa under plastic straining but at 55 GPa
under hydrostatic loading. A plastic strain-induced PT from hexagonal
to superhard wurtzitic BN can be induced under a pressure as low as 6.7
GPa in a rotational diamond anvil cell (RDAC) while under hydrostatic
loading it was not observed even at 52.8 GPa [45]; (ii) the plastic strain-
induced PTs from graphite to hexagonal and cubic diamonds were
observed in RDAC at 0.4 and 0.7 GPa, respectively, while under hy-
drostatic conditions they occurred at 20 GPa and 70 GPa, respectively
[46]. Thus, the PT pressure reduction induced by a plastic straining
may reach up to two orders of magnitude. Other than contributing to
the PT pressure reduction, one more surprising effect is that the plastic
straining under pressure may lead to new (hidden) phases that were not
or could not be reached under hydrostatic conditions [11,39-42,47,48].

In order to understand the dislocation-PT interaction under high
pressure, the fundamental difference between the plastic strain-induced
PTs and the pressure- or stress-induced PTs was introduced [37,49]. In
details, the stress-induced PT refers to the PT under stresses below the
yield strength. It starts at the pre-existing defects. In contrast, the strain-
induced PT occurs at the defects generated during the deformation.
Particularly, the dislocation pileup at the grain boundaries (GBs) is
considered as the strongest internal stress concentrator responsible
for the strain-induced PT [37,49]. As stated above, the plastic strain-
induced PTs can occur at pressures one to two orders of magnitude
lower than that under hydrostatic conditions. It thus requires a com-
pletely different thermodynamic/kinetic description and experimental
characterization. The analytical solutions in [37,49] derived from a
model by treating the dislocation pileup as a super-dislocation shows
that, because all the stress components at a pileup tip are proportional
to the number of the dislocations in a pileup, the PT pressure can be
reduced by a factor of 10 and more. This conclusion was elaborated
within a nanoscale PFA of coupling the evolution of discrete disloca-
tions with PTs in [25-27,50-52] and a microscale (or scale-free) PFA
simulating the simultaneous shear (dislocation or twinning) and PT in
a polycrystalline aggregate under compression and shear [7,28].

Despite their great success in providing explanation for the plas-
tic strain-induced PT promotion, the above analytical treatments and
nano-/micro-scale phase field simulations have a clear limitation: the
GBs at which the dislocations pile up are modeled as fixed (with
respect to material) lines, which cannot resolve the actual processes
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of interaction between dislocations and GBs. In order to capture more
details about the slip-interface reaction and the subsequent structure
changes, an atomistic resolution at the slip-interface intersection is
necessary. Otherwise, the dislocation pileup’s contribution to the subse-
quent PTs or twinning near the interface might be either under- or over-
estimated. For example, our previous molecular dynamics (MD) simu-
lations demonstrated that shuffle screw dislocations transmit through
tilt GBs in silicon (Si) [53]. They simply cannot pile up and thus may
not contribute much to a PT in Si. By contrast, 60° shuffle dislocations
pile up at GBs and significantly promote the amorphization [54]. Also,
quite often the dislocations are located in the high-pressure phase and
pile up against an immobile PB, causing PT within the remaining low-
pressure phase. Such a situation has not been resolved at the atomic
level yet due to difficulties of avoiding the interface motion.

Clearly, it remains a challenge using single-scale techniques/
methodologies to address the full complexity associated with the mi-
croscale dislocation pileup and the subsequent structure changes be-
cause: (a) a dislocation pileup may be tens of micrometer in length
and introduce a high internal stress field spanning tens of microns away
from the slip-interface intersection [55,56]; (b) the PT at the tip of a
dislocation pileup compete with slip transmission, twinning [8,57-59]1,
crack initiation [60-62], which all originate from the atomic scale and
need to be resolved at a high resolution. Here we present a concurrent
multiscale computational framework to address this challenge with a
focus on understanding how a microscale dislocation pileup interacts
with an atomically structured interface and how it contributes to the
subsequent direct PTs, reverse PTs, and then twinning. It bridges the
length scale gap between atomistic and continuum, and provides us
with a platform for understanding the interactions between dislocation
slip, PTs, and twinning from the bottom up.

2. Methodology

A concurrent atomistic-continuum (CAC) approach [63-76] built
upon a formulation [77-83] that unifies the atomistic and continuum
description of materials within one framework is deployed here. This
formulation [80-83] is a generalization of the Irving-Kirkwood pro-
cedure [84-87] in statistical mechanics. It views the solid material as
a collection of lattice cells continuously distributed in space, within
each of which a group of discrete atoms is embedded. The continuum-
level physical quantities, including mass density, linear momentum
density, energy density, momentum flux (also referred as stress in
continuum mechanics), and energy flux, are then defined in terms of
the atomic positions, velocities, and interatomic forces through Dirac
or Gaussian distribution functions [79,88]. An introduction of these
physical quantities into the classical Newtonian mechanics leads to
a series of equations, i.e., mass conservation, momentum balance,
and energy conservation equations, which can govern the behavior of
materials by considering them as a collection of atoms [80]. These
equations are partial differential equations in the same form as the
balance equations in classical continuum mechanics but with atomistic
information being built-in. Thus, those equations can be solved using
numerical techniques, such as finite-difference or finite element (FE),
which are commonly used for solving the equations in continuum
mechanics. The CAC simulation tool is an FE implementation [73,74]
of this formulation.

Unlike the FE model in classical continuum mechanics, which con-
siders the material as a collection of mass points without any internal
structures, the material body in CAC is discretized into finite number
of elements, each of which is a collection of the lattice cells with the
atomistic information (crystal structure, slip planes, cleavage planes,
interstitial sites, etc.) being embedded. Furnished with such atomistic
information, comparing with the other concurrent multiscale models,
CAC has several unique features: (i) it does not need additional con-
stitutive rules and can be directly driven by the traditional interatomic
potentials or the machine learning-based potentials to be trained from
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ab initio calculation data; (ii) it does not need any special treatments
to describe discontinuity, such as dislocations, PTs, or cracking, at the
continuum level but with their atomistic nature being retained; (iii) it
also does not need any sophisticated rules for passing the dislocation-
mediated plastic flow from the atomistic domain to the continuum
domain and vice versa [63-65]. At a fraction of the cost of full MD,
CAC simulations have been performed to study: (a) the dislocation
nucleation and growth in Cu, Al, Ni, and Si [66]; (b) the Si-I — Si-II PT
in Si [74]; and (c) the dislocation transmission across a twin boundary
(TB) in bi-crystalline metals [65]. It has a predictive capability at ap-
proximately the same level as that of MD but demands significantly less
computational resources. This thus provides us with an ideal platform
for understanding the interplay between the microscale dislocation
slip and the subsequent PTs/twinning nearby an atomically structured
interface.

Here, as a first demonstration of its applicability in solving such
problems, a two-dimensional (2D) two-phase material (the hexagonal
and square phases co-exist with an incoherent interface in between)
under compression and shear is selected as a model system because: (i)
the 2D set-up enables a direct comparison of the simulation results with
the analytical solutions under plane strain conditions for validation
purpose; (ii) if desired, the interface structure in such systems can
be manipulated to model the interfaces in a few recently developed
high-performance metallic composites, such as Ti/Al [89], Mg/Nb [90],
Cu/Nb [91], and among several others. (iii) the dislocation-induced
local stresses in many realistic 2D materials (crystalline solids consist-
ing of a single layer of atoms), such as one single layer of graphene
sheet, boron nitride [92-95], or colloidal crystals [96,97], may have
significantly contributed to the PTs in them but has not been fully
understood yet.

The rest of this paper is structured as follows. In Section 3, we
briefly introduce the interatomic potential, the crystal structure, the
PT variants, the boundary conditions, and also the loading strategies.
The atomistic together with the multiscale computational analysis on
the dislocation pileup formation process, the pileup-induced stress
accumulation, as well as its role in the subsequent PTs, reverse PTs, and
twinning are then presented in Section 4. Thereafter, we conclude this
paper with a summary of our major findings as well as a brief discussion
of future research in Section 5.

3. Simulation details
3.1. Interatomic potential and PT variants

For the chosen material system, the atomic interaction in both
square and hexagonal lattices is described using a modified Lennard—
Jones (L-J) potential by Lee [98] as shown in Eq. (1):

c H [_%]
Vips = =462 = (D)) - ——=e 1, 6y

r r op V2
which was originally proposed to study the bcc-to-hcp PT in iron.
The modified functional form of the L-J potential in Eq. (1) is the
combination of a traditional L-J (12-6) term and an inverse Gaussian
term. The 12-6 term leads to a stable hexagonal crystal structure at
zero stress. The addition of an inverse Gaussian into the L-J potential
gives rise to a square lattice. To satisfy the needs of simultaneously
modeling dislocations, PTs, and their interactions in square-hexagonal
lattice composites, here we start with the well-established L-J model
parameters for fcc solids together with a set of initially guessed values
for H, r,,;, and ¢, in Eq. (1). Then, an iterative procedure is utilized
to modify those initial guesses to stabilize: (i) an incoherent interface
between the square and the hexagonal phase, which acts as an obstacle
to the dislocation motion; and (ii) the core structure of a dislocation in
the hexagonal phase. The parameters satisfying these two conditions
are listed in Table 1.
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Table 1
The parameters of the modified L-J potential for the square and the hexagonal phases.
mass (g/mole) o (A) (V) H(@EVA r, R o, A cutoff (A)
63.546 2.277 0.415 —0.4964 3.6432 0.4772 5.0094
>
<
g -0.25
2
;. H 1
E -0.35} exagona
>
) 1 Square
5 !
8 -0.45¢ l
— NG/ —AY
i —
§ -0.55f
QO« 1 1 1 | i
0 0.5 1 1.5 2 2.5

Distance between two atoms 7 (A)

Fig. 1. The potential energy per atom in the material system under consideration here
is described by a modified Lennard-Jones potential in Eq. (1).

In the absence of chemical heterogeneity, the atomic structure
of materials with certain crystallographic configuration, such as fec,
bee, hep, diamond, zinc blend, and so on, can be determined by one
single parameter: the potential energy per atom. The calculation of the
potential energy as a function of the interatomic separation, i.e., the
E — r relation, is often used to provide researchers with important
information, such as: (i) the r at which E becomes minimal is the
equilibrium distance, r), between atoms in the ground state; (ii) the
pressure-induced PT from one phase to another phase occurs along
the common tangent line of the E — r curves of those two phases.
According to the potential energy functional form in Eq. (1) and its
parameters in Table 1, the calculated E — r curve is presented in
Fig. 1. Three key observations from Fig. 1 are: (1) this potential energy
landscape has a minima at 0.595 A and 1.525 A for the hexagonal and
square phases, respectively; (2) the square phase should be the ground
state because it has a lower potential energy minimum than that of
the hexagonal phase; and (3) the potential energy difference between
hexagonal and square phases under zero stress is A¥ = 0.066 eV.
Although the square-to-hexagonal PT occurs under non-zero stresses,
our simulations confirm that the hexagonal phase itself is metastable
and can exist under zero stress. In this way, the chosen potential
indeed enables us to stabilize two different lattices within one model.
With a deployment of this potential, the unit cell configurations of the
hexagonal and square phases under consideration here together with
the transformation deformation gradient between those two phases can
be found in Appendix A.

3.2. The computer model setup

In order to determine the role of a dislocation pileup in the sub-
sequent structure changes near the interface, the CAC model for a
two-phase material system with square and hexagonal lattices co-
existing is constructed (Fig. 2a). Clearly, when this system is subjected
to loading, the deformation behavior near the square/hexagonal inter-
face is critical and may dictate the material’s overall microstructure
evolution. The material domain near the interface is thus resolved at a
fully atomistic resolution (Fig. 2b). In contrast, away from the interface,
a CG description of the hexagonal phase using FE is deployed (Fig. 2b),
which has much less degrees of freedom (DOF) than that of a fully
atomistic model. The periodic boundary condition (PBC) is applied
along the sample thickness direction. In this way, the dislocations,
which are initially built in the model can be considered as the line
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Fig. 2. The CAC model setup for simulating a dislocation slip-interface interaction in a 2D two-phase material: (a) the CG description of dislocations in the hexagonal phases away

from the interface and the atomistic resolution near the interface; and (b) a zoom-in display of the FE and the atomic configuration in the dashed box of (a).

defects with an infinite length. Correspondingly, this square-hexagonal
interface can be then considered as a plane defect. The sketch in Fig. 2
presents the such a model set-up in a 3D view, although the simulations
in this work are actually performed in a two-dimensional space. To
study the slip-interface reaction, similar to our previous work [63-65],
the FEs are carefully aligned with their boundaries being along the
dislocation slip planes in the hexagonal lattice. Each FE contains sixty-
four atoms and can slide with each other along the element boundaries,
which are shown as the vertical and horizontal lines in Fig. 2b. In this
way, the dislocation-mediated slip far away from the interface can be
accommodated in the CG domain. More importantly, since each FE in
Fig. 2b is a collection of lattice cells, the forces acting on the FE nodes
are calculated by converting the interatomic forces into the internal
force density using a Gauss quadrature scheme elucidated in [73,74].
As such, the constitutive rule for the atomistic and CG domains in
the CAC model is the same, i.e., the interatomic potential in Eq. (1).
This differs from other continuum approaches which accommodate
dislocations through the deployment of either a contact model in
[7,28], a Heaviside step function in [99], or an additional DOF in CPFE
[100,101].

Here we have carefully chosen the crystallographic orientation of
both the hexagonal and square lattices to construct the incoherent in-
terface (Fig. 2b) such that: (a) the initially introduced dislocation slip is
perpendicular to the interface, and (b) a dislocation transmission across
the interface is suppressed, which has been justified through a detailed
Schmid factor analysis and geometric compatibility factor analysis in
[102]. In this way, a large number of dislocations can be piled up at
the interface. A high internal stress is then generated ahead of the slip-
interface intersection. Their contributions to the subsequent PTs can be
in turn, well quantified without the need of considering transmission,
cross-slip, and among several other complexities. Although the inter-
face here satisfying the above two conditions may not be the one with
an energy minimum, in practice, the majority of interfaces found in
materials will not be at a minimum energy state anyway due to the
presence of defects.

A queue of dislocations with a uniform separation of 12 nm in
between are initially introduced into the hexagonal lattice, which is
now in a CG description (Fig. 2b) similar to that has been used in our
previous work [63-65]. An introduction of each dislocation into the CG
domain is realized here through displacing FE nodes according to the

analytical solution for the displacement field around an edge disloca-
tion derived from the theory of elasticity. Different from traditional FE
models in which the neighboring elements are connected by sharing the
FE nodes, the FEs in CAC models across the slip plane are disconnected
(See Fig. 2b). Thus, the displacement jump induced by a dislocation
along the slip plane will be allowed. It should be also noted that
the dislocation displacement fields, strain and stresses resulting from
present CAC simulations will deviate from the linear isotropic elasticity-
based solution. Instead, the actual atomic-level information, including
crystal anisotropy, finite strain, nonlinear elasticity, and the interface
structure heterogeneity will be all considered. The reason that we ini-
tially introduce dislocations through displacing the FE nodes according
to the elasticity-based solution is to accelerate the convergence of our
calculations by reducing the time required for equilibrating the system.
For the model size under consideration in this work, we find that, when
more than 18 dislocations are initially built into the sample, several
dislocations nearby the interface will cross slip. To eliminate the cross
slip-induced complexity, only 16 dislocations are initially built into the
model. Similarly, for the nano-sized MD models to be used for verifying
CAC simulation results, only eight dislocations are included. The left
and right ends of the sample along x direction are free. A homogeneous
shear within the xy plane is imposed until a desired shear stress is
achieved. Thereafter, the top and bottom ends of the sample along y
direction are fixed for equilibrating the dislocation configuration in the
pileup. When a PT needs to be activated, a displacement controlled
compressive loading along y direction will be then applied on the two
ends of the sample.

Due to the deployment of a CG description in the region away
from the interface, the hexagonal lattice dimension, noted as L,_,, in
Fig. 2a, in the CAC model can be at the micrometer level. It enables
us to initially introduce tens of dislocations into the model. This goes
beyond the reach of a traditional MD model because MD usually has
a limited length scale at nanometers, which can only accommodate
a few dislocations in the pileup [103]. On the other side of interface
ahead of the pileup tip, the crystal structure is in a square lattice
with a dimension of L, i, along x direction. The sample dimension
along y direction is chosen as L, = Mo apey = Nygdsq, Where my.,
and ng are the numbers of the hexagonal and square lattice cells
along y direction, respectively. In addition to microscale CAC models, a
series of nanoscale MD simulations are also performed using LAMMPS
[104]. In all these simulations, the displacement along z direction
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7

Fig. 3. The dislocation pileup configuration and the contour of the internal stresses (the applied stress, 7,,, is not included here) from (a) microscale CAC: 16 dislocations are

a

piled up against the interface under a shear 7, = 6 x 107 N/m; 6 of them arrive at the interface; (b) nanoscale MD: 8 dislocations are piled up at T =2 X 107 N/m; 5 of them

arrive at the interface.

Table 2
The dimensions and the number of the DOF in MD and CAC models.

Ly hex L, L, DOF Number of dislocations in a pileup
Microscale CAC 1.58 pm 120 nm 138 nm 315,528 FE nodes + 118,392 atoms 16
Nanoscale CAC 420 nm 70 nm 84 nm 55,416 FE nodes + 20,982 atom 8
Nanoscale MD 420 nm 70 nm 84 nm 1,355,284 atoms 8

(thickness direction) of the sample is constrained to achieve a plane
strain condition. The initial crystallographic orientations of square and
hexagonal lattices are indicated in Fig. 2b. The dimensions and the
number of the degree-of-freedom (DOF) in both nanoscale MD and
microscale CAC models are listed in Table 2.

3.3. Dislocation pileup process

The computational models containing the built-in dislocations are
firstly relaxed for a duration of 20 ps with a time step of 1 fs to achieve a
stable configuration. Thereafter, a shear stress, noted as 7,,, is imposed
on the whole samples to drive the dislocations towards the interface. A
certain level of 7,, is realized through applying a homogeneous shear
strain while monitoring the resulting shear stress on the fly. If the shear
stress does not match the desired 7,,, the shear stress is adjusted by
increasing or decreasing the applied shear strain. When z,, arrives at
the desired value, the top and bottom boundaries of the sample are
constrained and not allowed to move along both x and y directions
any more.

An internal stress concentration, noted as 7,,, ahead of the slip-
interface intersection is generated due to the large number of disloca-
tions’ arrival at the interface. Figs. 3a and 3b show the contour of the
internal stress field obtained from CAC and MD simulations of 16 and 8
dislocations piling up at the interface under a shear of 7, = 6x 107 N/m
and 7,, = 2X 107 N/m, respectively. It should be noted that the contour

here shows the magnitude of z,, —7,,, rather than the absolute value of

7yy- It is seen that the level of the internal stress concentration ahead
of a pileup tip in Fig. 3a is significantly higher than that in Figue
3b, because more dislocations have participated in the formation of a
pileup in CAC (Fig. 3a) than that in MD (Fig. 3b). The detailed analysis
of the dislocation pileup-induced internal stress profiles and their fitting
into the classical Eshelby model, the super-dislocation model, as well
as a combination of the Eshelby and the super-dislocation model can
be found in Appendix B.

With an atomistic resolution at the interface, CAC provides us with
an opportunity of examining the atomic-level structure evolution at
the slip-interface intersection. Fig. 4 presents the snapshots showing
the atomic structure configuration (red: square lattice; blue: hexagonal
lattice; green: defects) when different number of dislocations arrive at
the interface. It is seen that, when 7, is at a level of 1.3 x 107 N/m,
one dislocation is behind the pileup tip and two dislocations arrive at
the interface, a step with a height of 5.12 A, i.e., the magnitude of two
Burgers vector, 2b, is formed (Fig. 4a). This step can be approximately
considered as a single super-dislocation with a Burgers vector of N,b,
where N, is the number of the dislocations arriving at the interface.
Upon a further increase up to 7,, = 7.1 X 107 N/m, 9 dislocations arrive
at the interface and eventually, leading to the formation of a step with
a height of 9b (Fig. 4b). Under a shear stress of Tap = 10.6 X 107 N/m,
15 dislocations arrive at the interface, Fig. 4c show the corresponding
atomic arrangements. At this stage, approximately, the step at the
interface has a height of 15b.

As designed, the interface under consideration here indeed blocks
the motion of dislocations without allowing any transmission. Also, as
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Fig. 4. The atomic-scale structure evolution at the slip-interface intersection when
different number of dislocations arrive at the interface under different applied stresses,
7,,- The atoms are color coded through an atomic-level coordination number analysis.
The step formation at the slip-interface intersection is similar to a super-dislocation
acting as a strong stress concentrator.

shown in [102], the dislocation configuration behind the pileup tip in
Fig. 3 actually matches an analytical solution from Hirth and Lothe very
well. More importantly, the step-like super-dislocation with a complex
local structure is formed at the slip-interface intersection. Due to the
local atomic structure reconstruction, this super-dislocation carries a
sophisticated core structure rather than a simple additive of multiple
dislocation cores. Similar features were observed in our previous full
MD simulations of dislocation pileup against a tilt grain boundary in
silicon, in which the amorphization has been found ahead of a slip-
interface intersection [54]. It should be also noted that the presence of
a thermal bath would likely promote the re-arrangement of the atoms
at the interface and may promote a dislocation transmission. Without
including any thermal fluctuations, the present simulations should be
considered as extreme cases for the slip-interface reaction. A resolution
of the thermal-induced atomic structure reconfiguration during the slip-
interface reaction at finite temperature is beyond the scope here and
will be studied in our future work.
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4. Simulation results
4.1. Pileup-assisted PTs and twinning

4.1.1. The two-variant hexagonal phase formation

Through a displacement-controlled boundary condition, the pre-
sheared sample is compressed along y direction. During the compres-
sion, the pre-shear z,, is maintained. Under the applied pre-shear 7,
the top and bottom boundary layers of the sample are then held as rigid
and forced to move towards each other at 0.2 m/s. This allows us to
determine the role of a dislocation pileup in the subsequent structure
changes, such as PTs, reverse PTs, and twinning, if there would be any.

Firstly, the dislocation pileup-induced strain localization together
with the local atomic structure changes are analyzed by calculating
the atomic-level deformation gradient tensor, F, the Lagrangian strain
tensor E = 1/2(FT . F — I), and also the coordination number using
OVITO [105]. The time sequences of the snapshots showing the atomic
structure evolution during the PT process from CAC simulation (7
dislocations have arrived at the interface and another 9 of them are
behind the pileup tip) are displayed in Fig. 5. The atoms in the first
row of Fig. 5 are colored in a shear strain component of E,, and the
atoms in the second row are colored according to their coordination
number with a cutoff of 3.92 A. The coordination number analysis in
Fig. 5 clearly shows that, at an early stage of the compression (from
t =12 ps to t = 15 ps), there exists a direct PT, i.e., from square (red)
to hexagonal (blue), ahead of the dislocation pileup tip. During such
direct PTs (square-to-hexagonal), the PT occurs through simultaneously
activating two variants of the hexagonal phase as shown in Fig. 5.
When these two transformed domains are in contact with each other,
a twin boundary (TB) is formed. In details, at + = 12 ps, two atomic
layers ahead of the pileup tip in the square phase are sheared to form
a stacking fault, a precursor of the hexagonal phase. With a further
increase of the loading, the stacking faulted atomic layers transforms
to the hexagonal phase at r = 14 ps. The shear strain associated with the
newly formed hexagonal phase above the slip plane is in an opposite
sign (blue) comparing with that (orange) below this plane (see the
first row of Fig. 5 from ¢+ = 14 ps and r = 17 ps). This corresponds
to the two variants in the newly formed hexagonal phases, which are
twinned with respect to each other and separated by a TB in between.
Upon a further increase of the loading, the newly formed hexagonal
phase grows into a wedge shape. The interface between the prod-
uct (hexagonal) and the parent (square) phases contains many steps,
avoiding the high-energy irrational interfaces. As a cross validation,
the CAC simulation-predicted microstructure evolution during such a
dislocation pileup-induced PTs is also directly compared with that from
full MD simulations in Appendix C.

4.1.2. Twinning in square phase via a reverse PT

Interestingly, at a later stage of the deformation, the coordination
number analysis in the second row of Fig. 5 when ¢+ = 15 ps and
t = 17 ps shows that, at the slip-interface intersection, the newly formed
hexagonal phases ahead of the pileup tip transform back to the square
phases. This is referred as a reverse PT, i.e., hexagonal-to-square PT.
The finish of the square-to-hexagonal PT and then the onset of a reverse
PT are believed to be caused by the atomic structure reconfiguration
at the slip-interface intersection, which has largely released the local
internal stresses. The newly formed square phase resulting from such
a reverse PT together with the original square phases form a twinned
structure. Although the twinning formation through a direct PT was
reported in literature [106-109], our finding here is believed to be the
first demonstration of twinning formation during a monotonous loading
through a dislocation pileup-induced PT and then a reverse PT. In other
words, twinning does not occur directly in the square phase, but occurs
via a direct-to-reverse PT instead. Analytically, when the elastic strains
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Fig. 6. (a) The atomic configuration in the square phase resulting from the hexagonal-to-square PT (reverse PT). Here the atoms are colored in their deformation gradient

components, F,,, F,, F,, and F,, respectively. Only the atoms with F,, =14, F,, =038, F,. =02; and F,, = 0.6 are displayed; (b) One snapshot at # = 17 ps showing the atomic
configuration ahead of the pileup tip in CAC simulations with all the atoms being displayed and colored in F,,, F,,, F,,, and F,,, respectively; (c) an atomic-scale sketch showing
how the two variants in the hexagonal phases transform back to the square phase; and (d) a sketch elucidating the formation of the twinned structure in the square phases with

a TB (noted as pq) in between the original square phases and the newly formed square phase resulting from the reverse PT.

are neglected, the transformation deformation gradients, U; and U j»in from the hexagonal-to-square PT. Then Q; = U; = U; = I, and Eq. (2)

the two regions across a twin boundary (TB) satisfy is simplified as

0,-U,;,-0Q;-U, =ymn &) I-Q=ymn (3)

, where y, is the twinning shear, m is the twinning direction within
the twinning plane which has a unit normal of n. Eq. (2) is used here
to check whether the newly formed square phase resulting from the

which has at least two solutions as following:

reverse PT is indeed twinned with respect to the original square phase. yt =025; mt = {4/ \/g 2/ \/E )7
For the observed reverse PT, i represents an original square phase, and 14 -08
j is for the domain in which the material is in a square phase resulting nt = (2/V5-4/V5 0f = (0.2 0.6 > ; “)
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Atomic Strain E,

and (c) E,, showing the simultaneous occurrence of twinning and PTs ahead of the dislocation pileup

from CAC and MD simulations. This solution corresponds to the stationary state. The black lines correspond to the phase interface equilibrium condition of X = 0 with deformation
gradients being taken from the parent and product phases, while the white lines correspond to the twin interface in an equilibrium condition of X = 0 with the deformation

gradients being taken from the twinning variants across the TB.
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To compare our simulation results against the above analytical solu-
tions, the atomic-level deformation gradient components, F,,, Fyy, Fyy,
and F,, from CAC simulations at =17 ps are calculated using the
initially undeformed atomic configuration as a reference and shown in
Fig. 6a. It is seen that the simulation-based F in the region where the
reverse PT occurs agrees with the analytical solution of Q very well.
Therefore, the square phase resulting from such a reverse PT is indeed
twinned with respect to the original square phase. In more details,
for the region where the reverse PT occurs, the atomic configuration
at the dislocation pileup tip is shown in Fig. 6b. Here all the atoms
are displayed and colored by their deformation gradient, F,,, Fy,, F,,
and F,, respectively. Based on the detailed crystallographic orientation
analysis (Fig. 6¢), the TB formation process is also sketched in Fig. 6d
for clarifications.

4.1.3. Thermodynamic driving force at the interfaces

In addition to the atomic-level deformation gradient tensor as
shown in Fig. 6, for the snapshot at r = 17 ps in Fig. 5, three components
of the Lagrange strain tensor, E,,, E,, and E,,, associated with each
atom ahead of the slip-interface intersection are also extracted and
presented in Fig. 7. In order to quantify how the local stress contributes
to the subsequent PTs, an atomic-level local strain together with a local
stress-based thermodynamic driving force analysis (similar to that for
nanoscale [51,52] and scale-free [7,28,110] PFAs) are also performed
here. Based on the atomic-level local stresses, the thermodynamic
Eshelby-type driving force for PT and twinning, X is defined as:

X =P : (F,-F,)-A¥. (6)

Here, P = Jo - F~'T is the first Piola—Kirchhoff stress expressed
in terms of the Cauchy stress ¢ with J = detF. AY is potential
energy difference between the stress-free phases from both sides of
each interface (which is zero for twin boundaries). F,; and F,, are
the transformation deformation gradients in the two material domains
across an interface. In particular, for the TBs in the hexagonal phases,
they are F; and F; in Eq. (A.1), respectively. For the TBs in the square
phases ahead of the pileup tip, they are I and Q" or Q" in Egs. (4) and
(5). For the PBs between hexagonal and square phases, they are either
F/ or F; and the transformation deformation gradient in the square
phase, I, Q" or Q7, respectively. The condition of X = 0 corresponds

to the local thermodynamic equilibrium of the relevant interface under
consideration.

The black lines in Fig. 7c correspond to the phase interface equilib-
rium condition of X = 0 with the deformation gradients in it being
taken from the parent and product phases across the interface. By
contrast, the white lines correspond to the twin interface equilibrium
condition of X = 0 with the deformation gradients in it being taken
from the two twinning variants across the TB. Fig. 7c shows that, during
the processes of direct PTs, reverse PTs, and twinning, all interfaces
(including initial vertical phase interface) correspond to the continuum
phase equilibrium condition of X = 0. Thus, these interfaces are
stationary. Although this has been shown for cubic-tetragonal phase
interface in nanoscale [51,52] and scale-free [7,28,110] PFAs at the
continuum level, it is observed for the first time here at the atomic
scale with a variety of different twinning interfaces being included.

4.2. The role of the pileup-induced local stresses in the subsequent PTs

In order to quantify how the dislocation pileup-induced local stresses
contribute to the subsequent PT, we perform a series of analysis on
how the square phase responds to compression through plotting the
(o,- €,) curves (Figs. 8a-b). Here, ¢, is the Lagrangian strain along
y-direction. The stress, o, is an average of the true stresses along y-
direction acting on the atoms located in a domain (100 nm X 22 nm in
CAC and 60 nm x 15 nm in MD, respectively) ahead of the dislocation
pileup tip. Results in Figs. 8a-b show that: (i) prior to &, = 0.02, both
CAC and MD simulations predict a linear stress-strain relation with the
same modulus of E. At larger strains, the material behavior is highly
nonlinear though; (ii) thereafter, a plateau appears on all the stress—
strain curves; (iii) a square-to-hexagonal PT is found to start at £y where
the plateau appears. This corresponds well to the atomic configuration
evolution in Figs. C.1 and C.2; (iv) the critical compressive stress
required for the occurrence of PT can be thus identified as o, in
Figs. 8a-b; and (v) o, largely decreases when the pre-applied shear is
increased from z,, = 2x10” N/m to z,, = 8x 107 N/m. The considerable
reduction of o, with the increase of 7,,, i.e., from o, = 16 x 107 N/m
at r,, = 2x 10’ N/m to 6, = 4 x 10’ N/m at z,, = 8 x 107 N/m, can
be attributed to the large number of dislocations accumulated at the
interface, which has introduced a high local stress assisting the PT at
the pileup tip.

Furthermore, Fig. 9 presents the data from both CAC and MD
simulations for quantitatively relating the critical stress, o,, at which
the PT starts, with the previously determined stress intensity factor K
(the stress intensity factor induced by the dislocations behind the pileup



Y. Peng et al.

01, =1x10'"N/m © 7,,=2x10"N/m
071,=3x10'N/'m © 7,=6x10"N/m
301|707, =7x10'"N/m @ 1,,=8%10"N/m

]
Z
=
< 20} o)
& OO
W L
3]
A
o 10f [0/0]00)
2 pOOOO0OO0O0
77}
L
=1 L
) O O O 0O O®
S ol CAC 1.7 pm X 138 nm
0 0.05 0.1 0.15
Compressive Strain, €,
(a)
) O 7, = 1X10"N/m
. e O 7,,=2x10"N/m
g | O 1,,=3x10"N/m
& 0 7, = 4x10'N/m
< 20t
i
‘n" L
s
n
g 17
w
b
E.- 3
g
SEEN MD 490 nm X 84 nm
0 0.05 0.1 0.15
Compressive Strain, €,
(b)

Fig. 8. The stress—strain curves from (a) CAC and (b) MD simulations of PTs in multi-
phase lattices under compression after the pileup of a certain number of dislocations
at the interface under different 7,,.

tip) and K, (the stress intensity factor induced by the dislocations at
the pileup tip). Detailed calculation of K, and K, can be found in
Appendix B). Fig. 9 clearly shows: (i) the ¢, required for initiating the
PTs can be as high as 22 x 10’ N/m if only one dislocation has been
initially introduced into the model, but can be reduced to 4 x 10’ N/m
when 16 dislocations are piled up at the interface. This corresponds to
PT pressure reduction by a factor of 5.5; and (ii) the relation between o,
and the internal stress intensity factor, K, and K,, can be divided into
to two stages . Upon an increase of K, and K,, o, in Stage-I reduces
considerably faster than it does in Stage-IL

The above results suggest that, for the material system under con-
sideration here, the stress, o,, applied along y direction, is not the only
stress component that contributes to the PT. Eq. (6) allows us to analyze
all the stress components’ contributions to the PT driving force, X, in
materials corresponding to different transformation strain components.
The larger the transformation reduction in volume is, the larger the
effect of the hydrostatic pressure is. The more pronounced the transfor-
mation shear is, the stronger the influence of the shear stresses. In the
present computational set-up, at the slip-interface intersection, there is
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Fig. 9. The relationship between the stress intensity factors (a) K, behind the pileup
tip, (b) K, ahead of the pileup tip and the critical compressive stress o, required for
activating the PT in both the nanoscale MD and microscale CAC simulations.

only a notable concentration of shear stress, Oy the normal stresses,
oy, 0y, as well as the hydrostatic pressure, —0.5 (o, +0,), are all orders
of magnitudes lower than o, . That is why the main contrition to the
driving force, X, is produced by shear stresses, and normal components
of the (F,,—F,;), as well as jump in volume are not important. However,
away from the interface, where the concentration of shear stresses
due to the dislocation pileup decays, the effect of normal stresses and
components of (F,, — F,;) is getting more pronounced.

5. Concluding remarks

To summarize, here we present an atomistic-to-microscale com-
putational analysis of the interplay between dislocation slip and PT/
twinning in two-phase materials under compression and shear. One
main novelty of the CAC approach deployed here is its capability in
bridging the relevant length scales by resolving the structure changes
near an interface at the atomic scale while the lagging dislocations
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away from the interface in a coarse-grained atomistic description. It
thus expands the MD-simulation-based predictive capability from the
nanoscale to the micrometer level. The main findings of this study are
summarized as below:

(1) The micron-sized CAC model can accommodate tens of dislo-
cations at a modest computational cost. These dislocations may be
blocked by the obstacles (an incoherent interface in this work) and
form a pileup spanning a range of several micrometers (1.2 pm in the
present model). By contrast, the nanoscale MD model using the same
computational resource can only accommodate up to 8 dislocations in
a pileup, the equilibrium configuration of which under certain shear
stress only spans tens of nanometers;

(2) A high internal stress concentration appears ahead of the tip of
a pileup containing a large number of dislocation, which surprisingly
follows neither the classical Eshelby model (assuming the interface
as a rigid obstacle to dislocations) nor the super-dislocation model
(assuming the formation of a perfect step at the interface upon the
arrival of all the dislocation) but a combination of them (Eq. (B.1));

(3) The dislocation pileup-induced internal stress intensity factor is
linearly proportional to the number (noted as N,) of dislocations at the
pileup tip if N, is less than 10, but can “upper bend” to a very high
level when then of dislocations arrive at the tip (Fig. B.2c). As such,
the dislocation pileup-induced internal stress concentration might have
been underestimated if one only relies on nanoscale MD simulations
which can only accommodate a few dislocations in the computational
cell;

(4) When the pre-sheared material sample is subjected to a compres-
sion, PTs and twinning occur ahead of the dislocation pileup through
a two-step process: (a) the square phase transforms to the hexagonal
phase. During such a square-to-hexagonal PT (also referred as the direct
PT), two variants of the hexagonal phase simultaneously nucleate,
grow, contact, and form a twin boundary in between; (b) at a later
stage, a portion of the newly formed hexagonal phase transforms back
to the square phases. The newly formed square phase resulting from
this reverse PT is found to be twinned with respect to the original
square lattices and relax the local internal stresses. This is the first di-
rect observation of twinning formation from a dislocation slip-assisted
PTs and reverse PTs during monotonous loading.

(5) The Eshelby driving forces at all the newly formed PBs or TBs are
zero, confirming that all of them are in the thermodynamic equilibrium.
Although such analysis was performed previously in the nano- and
microscale PFAs at the continuum level, it was demonstrated for the
first time at atomic level. This can be an evidence of the consistency
between the atomistic and continuum thermodynamic treatments in
our model.

(6) The direct PT largely relaxes the local stress concentration, and
the step at the slip-interface intersection is found to disassociate into
multiple mini-steps (See Fig. B.3). The reverse PT then starts and the
mini-steps eventually emerge as one step.

(7) The critical compressive stress, o,, required for initiating the
PT, largely decreases with the increase of the internal stress intensity
factor. Our simulations suggest a possibility of reducing o, for PT by
a factor of 5.5 and even higher through injecting a considerably large
number of dislocations into a micron-sized material sample, as observed
in experiments for various material systems.

These findings highlight: (a) the insufficiency of only using
nanoscale MD simulations to interpret the experimental observations
on the slip-interface reaction, which may have involved hundreds of
um-long dislocations participating in the formation of a pileup; and (b)
the possibility of using CAC to predict how the microscale dislocation-
mediated plastic flow reacts with the buried interfaces in a variety
of multi-phase materials, such as fcc/bee, fee/hep, beec/hep metallic
composites, Ti-/Zr-/high entropy alloys, among others, when sub-
jected to a severe deformation. In such scenarios, the CAC simulation
tool may provide researchers with suitable, if not the best, vehi-
cle for simultaneously considering the microscale plasticity together
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with the atomic-scale interface structure relaxation. Nevertheless, this
framework is considered to be still at a preliminary stage because:

(i) Comparing with MD, the length scale of the present CAC models
is indeed one step closer but is not the same level as that in experiments
yet. In particular, as far as the phase growth after the slip-interface
reactions are concerned, a further length scaling up to microns through
a CG description of the PTs in the material domain far away from the
interface is needed. Otherwise, the growth of new phases from CAC
simulations is confined at the nanoscale; (ii) In addition to the local
stress, another factor that plays a vital role in the PT process is the
thermal-induced atomic fluctuations. The implementation of a finite
temperature algorithm into CAC for capturing the finite-temperature
effects on dislocations, PTs, and their interactions is needed, especially
when the correlation between phonon instability and PTs becomes a
concern; (iii) The material system under consideration here is oversim-
plified in terms of crystal structure, chemistry, interatomic potential,
and microstructure. A transfer of the present model or the gained
knowledge for understanding the dislocations-interface reactions and
subsequent structural changes in realistic multi-phase materials is not
trivial. It demands: (1) the design of new finite elements for simulta-
neously accommodating dislocations and PTs; (2) the implementation
of more sophisticated or machine learning-based interatomic potential
to be trained from ab initio data for capturing more phase variants, as
well as (3) the incorporation of realistic structures and chemistry at
the GBs, PBs, and other interfaces in the materials. An expansion of
CAC along those three directions and its applications in predicting the
slip-interface reactions in real materials are being attempted and will
be reported in the future.
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Appendix A. PT variants

Figure A.1 shows the unit cell of the square (dash lines) and
the hexagonal (solid lines) phases with their lattice parameters being
noted as ay, and aj,,, respectively. In a 2D set-up, the transformation
deformation gradient tensor F,, the stress and strain tensors can be
all written as 2 x 2 matrices in a cartesian system with orthogonal
unit basis vectors. Clearly, there are two crystallographically equivalent
variants for the hexagonal phase due to the lattice symmetry. These two
variants are in a twinned configuration with respect to each other.

According to the lattice cell set-up of these two phases in Fig. A.1,
the transformation deformation gradient associated with those two
variants resulting from the square-to-hexagonal PTs are:

Ft— 0941  0.471Y\ F— 0.941 -0471
tTV 0 o815/ L0 0.815 /-
The transformation deformation gradient can be then decomposed into
orthogonal and symmetric parts through F, = R - U. The symmetric
part is: U, = (FIT . F,)]/ ®. Here the superscript 7 means transposi-

tion. As such, the symmetric (rotation-free) transformation deformation
gradient for these two variants can be calculated as

Ut = (0909 0244\ —0.244
© 7 \0.244 0909/ 0.909 /°

(A.1)

- 0.909
Ur= <—0.244

Appendix B. Pileup induced stress intensity factors and their evo-
lution during PT

(A.2)

To characterize the stress profile ahead of the pileup tip, we con-
struct a series of finite-sized volume elements ahead of the slip-interface
intersection (see the inset picture in Fig. B.1). Each volume element is
at a resolution of 5 A x 5 A. The stress associated with each volume el-
ement can be then calculated using the Virial formula. Fig. B.1 presents
the CAC- and MD simulation-predicted shear stress distributions ahead
of the dislocation pileup tip. Two major observations are: (a) both
CAC and MD simulations predict an obvious stress concentration at
the pileup tip and its rise upon an increase of the applied shear, 7,,;
(b) this stress concentration decays away from pileup tip but spans a
longer range (100 nm, Fig. B.1a) in CAC than that (60 nm, Fig. B.1b) in
MD because more dislocations have been piled up in the CAC model. It
suggests that, similar to what has been observed in experiments [55],
the participation of a large number of dislocations in a slip may produce
a long-range internal stress field, which can span tens of microns away
from the pileup tip if tens of dislocations are piled up.
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Fig. B.1. The local stress profile ahead of the slip-interface intersection under a variety
of z,, from (a) CAC and (b) MD simulations and their fits into Eq. (B.1).

The obtained stress profile ahead of the pileup tip can be then fit
into an equation as follows:

K, ZuN b

= + + 7.
Ty Gty | 20— 0+ %o

In this equation, the dislocation pileup-induced internal stresses is, for
the first time, decomposed into two parts. The first term on the right
side of Eq. (B.1) is based on the Eshelby model for the dislocations
behind the pileup tip which considers the interface as a rigid obstacle
to dislocation motion. The second term on the right side of Eq. (B.1)
is caused by the step, also noted as the super-dislocation at the pileup
tip. In Eq. (B.1), u = 35.4 x 107 N/m and is the shear modulus of the
materials (the hexagonal lattice in this work); b is the magnitude of
the Burgers vector 2.56 A; v = 0.3 and is the Poisson’s ratio; N, is the
number of dislocations that participate the step formation at the pileup
tip; 7, is a parameter for considering the uncertainty associated with the
reference stress state when no dislocation is introduced in the model,;
ry is the fitting parameter due to the structural change during the step
formation, the value of which suggests the location of the maximum

(B.1)
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Fig. B.2. The nanoscale MD and microscale CAC simulation-predicted relationship: (a) the number of dislocations behind the pileup tip N,, the number of dislocations at the
pileup tip N, versus the applied shear stress 7,,; (b) between the internal stress intensity factor, K, and the number of the dislocations, N,, behind a dislocation pileup tip; (c)
between the correction coefficient z and the number of the dislocations at the dislocation pileup tip N,; (d) between the location of the maximum internal stress, ry, and the

number of the dislocations, N,, at the dislocation pileup tip.

internal stress at the pileup tip; r is the distance between the pileup tip
and the stress measurement site; K, is the stress intensity factor induced
by the dislocations behind the pileup tip; z is the correction coefficient
due to finite strain, nonlinear anisotropic elasticity, finite step size, and
two-phase material.

A determination of those parameters is accomplished through fitting
Eq. (B.1) into the stress profiles from two sets of simulations: (i) in
simulation set-1, for a sample containing N dislocations, we apply a
stress until all dislocations arrive at the interface and form a step,
ie, N, = N and N, = 0. Here, N, stands for the number of the
dislocations behind the pileup tip (see inset picture of Fig. 6 for the
physical meaning of N, N,, and N,). When N, = N and N, = 0, the
first term on the right side of Eq. (B.1) simply goes to zero. A fitting of
simulation-based stress profile into Eq. (B.1) leads to a determination
of the value of z, 7, and r; (ii) in simulation set-2, a stress lower than
that in set-1 is imposed on the same sample containing N dislocations.
In this situation, N, # 0 and N, = N — N,. As such, the first term on the
right side of Eq. (B.1) is non-zero. The K, in it can be then determined
by fitting the stress profile from simulation set-2 into Eq. (B.1). It
should be noted that, at this step, the values of z, 7, and r, fitted
from simulation set-1 are used. In the fitting process, we only consider
the stress profile up to r = 67 nm where the internal stress does not

12

relax due to the presence of free surfaces. Two different sample sizes
are considered here. One is of a dimension of 490 nm X 84 nm and
contains 8 dislocations. The other is of a dimension of 1.7 pm x 138 nm
and contains 16 dislocations.

The 7,, — N, and 7,, — N, relations obtained from the MD together
with CAC simulation of the dislocation pileup process are presented in
Fig. B.2a. It is seen that, in all simulations, when a pileup happens upon
an increase of 7,,, N, increases and N, decreases. Fig. B.2b presents
the simulation-predicted relationship between K, and N,. Clearly, K,
linearly increases upon an increase of N,. In addition to K, another
parameter that we have introduced into Eq. (B.1) is the correction
coefficient z, which is needed here because: (1) the classical super-
dislocation model only considers the defect embedded in an isotropic
medium with a constant shear modulus of ; while we have considered
the super-dislocation at a PB in a two-phase anisotropic material; (2)
during the dislocation pileup process, both physical and geometric non-
linearities develop; (3) additivity of stress field from each dislocation is
violated. Especially, when more than 8 dislocations arrive at the PB, the
slope of z— N, relation is significantly larger than that when N, is less
than 8 (Fig. B.2¢). This in turn, implies that the stress intensity factor
upper bends to a very high level when tens of dislocations participate
the formation of a pileup at the microscale, comparing with that when
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Fig. B.3. The time evolution of the stress intensity factors, K, and K,, ahead of the
dislocation pileup tip with the inset pictures showing the snapshots of the local atomic
structure changes during the direct and then reverse PTs.

only several dislocations are involved in the formation of a pileup at
the nanoscale. Such a highly non-linear z — N, relation can be fit into
an equation as:

z =0.1656¢%2173Na 4 0.8777. (B.2)

It should be noted that the data in Fig. B.2c exhibits a trend of
deviating from Eq. (B.2) when N, is larger than 2, especially when
N =16, N, = 12, N, = 4 or when N = 16, N, = 10, N, = 6. We
believe this deviation is caused by a fundamental difference between
a super-dislocation model and the computer set-up for non-zero N,.

MD 490 nm x 84 nm 7., = 2x10"N/m

-

Interface

60 nm
CAC 490 nm x 84 nm 7, = 4x107N/m

-

Interface

I 100 nm
CAC 1.7 pm % 138 nm 7, = 6x10” N/m

-
Interface
41 nm

100 nm '
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A super-dislocation model, i.e., the second term on the right side of
Eq. (B.1), is only exact when N, = 0, i.e, all the dislocations arriving
at the interface participate the formation of a step. When N, is larger
than 2, one cannot rely on the super-dislocation model to estimate
the internal stresses ahead of a slip-interface intersection any more.
To confirm this assertion, we perform two additional CAC simulations.
In one simulation, N = 12, N, 12, and N, 0. By contrast,
in another simulation, N = 10, N, = 10, and N, = 0. Comparing
with the data from simulations with N = 16, N, = 12, and N, = 4
or N = 16, N, = 10, and N, = 6, the results (pink circles) from
these two new sets of simulations with N, = 0 obviously fits into the
Eq. (B.2) with a significantly less error. Other than z and K,, another
key parameter in Eq. (B.1) is ry, which indicates the location of the
maximum stress concentration. This location obviously changes during
the pileup process. ry is thus introduced in Eq. (B.1) to capture the such
local structure evolution at the pileup tip. As expected, the values of r
obtained from fitting simulation data into Eq. (B.1) are found to be
linearly proportional to the number of the dislocations arriving at the
interface (Fig. B.2d) with the slope equals to b/2, b as the length of the
Burgers vector. This means that r, is located in the middle of a step
produced by dislocations at the interface.

During compression, accompanied by the direct and reverse PTs, the
local stresses ahead of the dislocation pileup evolves. To characterize
the full complexity of such a complex internal stress evolution, we
measure the local stresses and again decompose it into two parts:

Kb
Txy =
Vo)

in which K, and K, are noted as the intensity factors based on the
Eshelby and super-dislocation model, respectively. During the process
of the direct and reverse PT, a series of stress profiles ahead of the
pileup tip are produced. A fitting of each stress profile into the above
equation leads to a determination of the instantaneous K, and K,.
A time evolution of K, and K, together with the snapshots of the
atomic structure at the pileup tip are presented in Fig. B.3. Obviously,
before the occurrence of PT, both K, and K, are at a relatively high

rro + 70, (B.3)
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Fig. C.1. The snapshots of the atomic-scale structure evolution ahead of a slip-interface intersection showing the process of a square-to-hexagonal PT and then a reverse PT, i.e., the
hexagonal-to-square PT, in a two-phase materials under a combined compression and shear through the coordination number analysis of the results from (a) MD simulations with
7,p = 2% 10" N/m; (b) CAC simulations with r,, =4 x 10’ N/m; and (c) CAC simulations with z,, = 6 x 107 N/m.
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Fig. C.2. The snapshots of the atomic-scale structure evolution ahead of a slip-interface intersection showing the process of a square-to-hexagonal PT near a pileup tip in two-phase
materials under a combined compression and shear through a potential energy analysis of the results from MD simulations with 7, = 2x 10’ N/m; (b) CAC simulations with

7, = 4% 10" N/m; and () CAC simulations with z,, = 6 x 107 N/m.

level. And the stress intensity, K,, induced by the dislocation at the
pileup tip is larger than that, K,, induced by the dislocations behind
the pileup tip. Both K, and K, decrease when PTs occur. In details,
at t+ = 13 ps, with the growth of the hexagonal phase, K, decreases
from 165 to 80 while K, decreases from 100 to 75 (all in a unit of
107 N/m'/2). Tt suggests that a direct PT largely relaxes the local stress
concentration. Thereafter, the step at the slip-interface intersection is
found to disassociate into multiple mini-steps. At this stage, the reverse
PT starts and those mini-steps eventually emerge as a single step at
t = 15 ps. Up to this moment, the stress intensity becomes low. At
t = 14 ps, there is a cross-over of the stress intensity induced by the
dislocations behind the pileup tip: K, becomes larger than that, K,
induced by the dislocations at the pileup tip.

Appendix C. Atomic-scale structure evolution during phase trans-
formation

Here the CAC simulation results, especially the material microstruc-
ture evolution ahead of the dislocation pileup, are also compared with
that from MD simulations. In details, Fig. C.1a shows the snapshots
of atomic structure evolution from MD simulations of the deformation
behavior in a sample under a pre-shear of 7,, = 2 x 107 N/m together
with a compressive strain of ¢, being increased from 0.054 to 0.080.
In parallel, Fig. C.1b presents the results from a coordinate number
analysis of the CAC simulations under 7,, = 4 x 10’ N/m together
with ¢, increasing from 0.042 to 0.063. Fig. C.1c shows the results

from Cf'\C simulations of the dislocation pileup-assisted PT in a micron-
sized sample under 7,, = 6 x 107 N/m with ¢, being increased from
0.028 to 0.039. In Fig. C.la—c, the atoms in hexagonal and square
phases are colored in blue and red, respectively. The atoms in any other
configuration different from hexagonal and square lattice are colored
in green. They represent either the PBs that separate the hexagonal
and square phase, or the stacking faults/defects in the hexagonal
phases. Similar atomic structure evolution in the same region from
MD (Fig. C.1a) and CAC (Fig. C.1b and c) simulations is also analyzed
in terms of atomic potential energy (PE) as shown in Fig. C.2, where
the atoms in hexagonal and square phases are colored in blue and
orange, respectively, while those atoms with PE values deviating from
the hexagonal or square lattice are in green.

Our major observations from Figs. C.1 and C.2 are: (1) the square-
to-hexagonal PT occurs at ¢, = 0.028 when 7, = 6 X 107 N/m is applied

p
on a micron-sized CAC model where tens of dislocations participate

the pileup, while e, = 0.054 when 7,, = 2 x 107 N/m is applied
on nanoscale MD models where only a few dislocations participate the
pileup; (2) in both CAC and MD simulations, the PT starts at the dislo-
cation pileup tip. The newly nucleated hexagonal phase then grows into
a wedge shape. Such a wedge-shape in the product phase resulting from
a dislocation-assisted PT has also been observed in experiments [111],
although in a different material; (3) the width of the interface between
the parent and the product phases can be approximately estimated to
be about 1 nm in both CAC and MD simulations; This value can be
used for calibrating the PFA models in [50-52]; (4) the stacking fault
in the product hexagonal phase only appears in the microscale CAC
simulations at 7,, = 6x 107 N/m, suggesting an increased microstructure
complexity when more dislocations are piled up.
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