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ABSTRACT
In this paper, we propose S���P����, a human-in-the loop adversar-
ial audio attack on automated speech recognition (ASR) systems. Ex-
isting audio adversarial attacker assumes that the users cannot no-
tice the adversarial audios, and hence allows the successful delivery
of the crafted adversarial examples or perturbations. However, in a
practical attack scenario, the users of intelligent voice-controlled
systems (e.g., smartwatches, smart speakers, smartphones) have
constant vigilance for suspicious voice, especially when they are
delivering their voice commands. Once the user is alerted by a suspi-
cious audio, they intend to correct the falsely-recognized commands
by interrupting the adversarial audios and giving more powerful
voice commands to overshadow the malicious voice. This makes the
existing attacks ine�ective in the typical scenario when the user’s
interaction and the delivery of adversarial audio coincide. To truly
enable the imperceptible and robust adversarial attack and handle
the possible arrival of user interruption, we design S���P����, a
practical voice attack that uses a sub-second audio patch signal to
deliver an attack command and utilize periodical noises to break
down the communication between the user and ASR systems. We
analyze the CTC (Connectionist Temporal Classi�cation) loss for-
warding and backwarding process and exploit the weakness of CTC
to achieve our attack goal. Compared with the existing attacks, we
extend the attack impact length (i.e., the length of attack target
command) by 287%. Furthermore, we show that our attack achieves
100% success rate in both over-the-line and over-the-air scenarios
amid user intervention.
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1 INTRODUCTION
Speech is a major interface for human to communicate with an
intelligent agent. Voice communication is a human-computer in-
teraction approach that enables hands-free operation and o�ers
opportunities for visually impaired users. Recently, with the thriv-
ing development of Arti�cial Intelligence (AI) and deep learning
models, the performance of Automatic Speech Recognition (ASR)
has improved signi�cantly, resulting in a growing product market.
For example, tech companies developed their online ASR systems
and provided those services to the public, including Amazon Tran-
scribe [7], Google Cloud Speech-to-Text [21], IBM Watson Speech
to Text [25], and Microsoft Azure Speech Service [30]. Furthermore,
they also integrated their ASR APIs to the Intelligent Voice Control
(IVC) devices to o�er voice assistant services (e.g., Siri [39], Google
Assistant [19], or smart speaker systems such as Google Home [20]
and Amazon Echo [6]). Besides that, more and more companies de-
liver their customer service using intelligent voice systems, which
are empowered by ASR models to understand customers’ questions
and improve the e�ciency of the customer support.

With the increasing number of deployed ASR systems, their se-
curity issues are getting more and more attention from researchers.
Recent studies have demonstrated the vulnerabilities of modern
ASR systems through multiple attack vectors. For example, attack-
ers can launch an inaudible voice command injection attack through
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an ultrasound speaker [34, 49], PZT transducer [46], public charg-
ing cable [41] or laser source [36] by exploiting the non-linearity
e�ect of microphones. There are also signal processing attacks that
analyze the di�erences between the perceptual sound of a human
and an intelligent agent and then craft noisy-like commands via
signal processing techniques [3, 4].
Audio Adversarial Attacks: Di�erent from the aforementioned
side-channel attacks and signal processing attacks, the adversarial
attacks aim to fool the ASR models by introducing small perturba-
tions. The adversarial attack was �rst found and demonstrated in
image recognition tasks [18, 37]. Attackers exploit the vulnerabili-
ties of machine learning (ML) models by searching for unnoticeable
perturbations and then impose them on original images to mislead
the ML model and yield a false classi�cation. The vulnerabilities
of ML models are generally introduced by the linearity of the acti-
vation functions and operations at each layer [37]. Since the ASR
models are usually built by similar architectures and training pro-
cesses, they share the vulnerabilities of other ML models. The �rst
attempt at generating audio adversarial examples (AEs) demon-
strates that ASR systems are vulnerable to AEs [12, 17], which are
crafted while the attackers have the complete knowledge of the
victim model. Later, several studies [5, 38] proposed the black-box
attacks by utilizing genetic algorithms and gradient estimation
techniques. However, all of the aforementioned attacks fail to at-
tack over the air due to the fact that perturbation itself is fragile
and easy to deform through the real-world acoustic channel. To
circumvent this problem and enable the physical attack over the
air, Li et al. [27] and Yakura et al. [45] incorporate over-the-air
transformations to the process of AE generation (e.g., by adding
a band-pass �lter, applying the impulse response, etc.), thereby
ensuring the robustness of the AEs. Furthermore, researchers strive
to make the AE imperceptible by adding loudness constraints [33]
or mixing it with songs [16, 48, 50]. Alternatively, a recent attack
called AdvPulse [29] uses a short pulse to deliver malicious com-
mands, which has been regarded as a more dangerous and stealthy
attack technique.
Failure Cases of Existing Attacks: Despite the e�ort of exist-
ing over-the-air attacks [16, 27, 33, 45, 48, 50], all of them do not
seriously take the human user’s presence into account. Here, we
showcase three scenarios that could deter a successful delivery of
existing attacks, including, Case A: User Interference; Case B: User
Perception; Case C: User Interaction, as shown in Figure 1. We use
1 , 2 , 3 , and 4 to denote the sequence of events, red-colored
words to denote the targeted attack commands and the responses
from the ASR system. The blue-colored words denote benign com-
mands from the user and responses from the ASR system. For every
attack case, the adversary prepares the AEs in advance and then
plays them via a loudspeaker.
•Case A:As shown in Figure 1(a), while the adversary and the user
pronounce commands concurrently (e.g., the AE says, “call 911”,
and the user speaks, “set an alarm at 6 am” at stage 1 ), the ASR
system tends to accept the user’s command rather than the AEs; in
this case, it will respond with “Alarm has been set”. This is because:
on one hand, the user’s command has a higher sound pressure level
when he/she is close to the ASR system, so the ASR system takes
the stronger sound; on the other hand, the robustness of AEs is
not guaranteed during the crafting procedure, i.e., once the audio

(a) Case A: User Interference

(b) Case B: User Perception

(c) Case C: User Interaction

Figure 1: Failure cases of existing attacks in real human-in-
the-loop scenarios.

quality of AEs is degraded by the human-introduced interference,
the attack will no longer work.
• Case B: Figure 1(b) demonstrates the scenario when the user
notices the attack. While some previous attacks [16, 46, 48] stated
that the adversary could play the AEs repeatedly (e.g., “Call 911 ...
Call 911”) at stage 1 to ensure the successful delivery of the attack
audio, the repeated AEs could raise alert. Although the adversary
might craft imperceptible AEs by encoding the adversary command
into songs or di�erent speeches, the user is still able to locate the
source of skeptical sound because of the long duration and repeated
appearance of common audio adversarial attacks.
• Case C: In the scenario depicted in Figure 1(c), the adversary
launches the attack by playing the “read message” adversarial audio
at stage 1 , followed by the successful response from the ASR
system reading the message containing a personal veri�cation code
at stage 2 . However, when the user is present, he/she is conscious
of the abnormal behavior of the ASR device and tries to interact
with the ASR system by sending a halting command (such as “stop
reading”) at stage 3 to regain the control. Consequently, the ASR
system follows the user’s benign command and terminates the
reading process.

We summarize the existing adversarial attacks in Table 1 in
terms of Attack Model, Attack Type, Delivery Method, and Attack
Media. For the Attack Model, we use the acronym ASR to denote the
Automated Speech Recognition model, and use SR for the Speaker
Recognition model. The Attack Type indicates what type of attack
samples are crafted when the attackers are preparing for the attack.
In typical adversarial attacks, the attack type is either Adversarial
Example (AE) or Perturbations (PT). If it is labeled as AE, that
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Table 1: Comparison of S���P���� with other attacks.

Attacks
Attack
Model

Attack
Type

Delivery
Method

Over
Line

Over
Air

Houdini [17] ASR - - 3 7
C&W [12] ASR - - 3 7
Adversarial [5] ASR - - 3 7
Practical [27] SR AE Speech 3 3
Robust [45] ASR AE Song 3 3
Fakebob [13] SR AE Speech 3 3
Imper. [33] ASR AE Speech 3 3
Comm. [48] ASR AE Song 3 3
Metamorph [15] ASR AE Speech 3 3
Devil’s [16] ASR AE Song 3 3
AdvPulse [29] ASR PT Pulse 3 3
OCCAM [50] ASR AE Song 3 3

S���P���� ASR PT Patch 3 3

Benign: "Close the window and curtains"

SpecPatch

Adversarial: "Open the door"

Figure 2: SpecPatch purturbs an audio input with adversarial
spectrogram patch.

means the attackers will play the complete AE to launch their
attack; otherwise, the attackers use the perturbation to alter the
user’s original commands. For the Delivery Method (Deli. Method),
we describe how the attacker launches their attack (i.e., by playing
an adversarial speech, a song, or a pulse to deliver the adversarial
commands). Over Air and Over Line narrate the ability of listed
research to attack through di�erent media.

All of the existing attacks, except AdvPulse [29], will fail to
execute the attack in Case A and Case B due to their delivery
methods of AEs. AdvPulse, on the other hand, utilizes short pulses
to launch audio adversarial attacks that carry short commands.
However, they cannot avoid the user interaction scenario (i.e., Case
C) for two reasons: 1) the proposed universal pulse is only resilient
to a single-word distortion because it is trained on a small dataset,
and 2) the user’s input voice commands out of the time range
of a pulse will still be recognized by the ASR model. Therefore,
no existing attacks can launch imperceptible and stealthy physical
attacks successfully when human is in the loop, i.e., while the user is
presenting and intentionally disrupting the attack.
New Attack Idea: To make the audio adversarial attacks more
realistic in a human-in-the-loop scenario, we propose S���P����,
the adversarial audio spectrogram patch attack. Inspired by the
patch attack in Computer Vision (CV) [10], we aim to inject an
adversarial patch into a benign spectrogram. There are three main

bene�ts to leveraging adversarial patches for speech attacks: 1)
adversarial patch has a relatively small size compared to the entire
spectrogram, which makes it less noticeable; 2) adversarial patch
can a�ect the global interpretation of a long voice command; 3)
adversarial patch attack is text-independent, as the attackers can
play the adversarial patch sound in any speech context. Figure 2
depicts the attack scenario. The spectrogram corresponds to the
benign command: “close the window and curtains". Then, the attacker
injects an adversarial perturbation that is sensed by the IVC device.
The adversarial perturbation is processed to be an adversarial patch
in spectrogram scope, which deceives the ASR model to interpret
it as the target command (“open the door"). Although the idea is
promising, we still need to address the following four challenges.
• Limited Impact Length: It is challenging to encode long speech
commands into a short duration patch. Existing attack [29] demon-
strated that a 500ms perturbation could a�ect single word predic-
tion; even with an increased perturbation length, it can at most
impact 2-3 words.

• Bypassing user’s corrections: Unlike the image classi�cation
task that takes a single image as input and predicts a single label,
the speech recognition model usually takes many frames as in-
put and predicts the corresponding phonemes. While the later
input frames are una�ected by the adversarial patch, undesir-
ably the user’s correction commands will be fully understood
by the model. It is challenging to disregard the user’s followup
commands using only a slight modi�cation of benign speech.

• Universal to any speech context: Existing audio adversarial
attacks [16, 27, 28, 33, 45, 48, 50] rely on the successful delivery
of an integral AE constructed from a speci�c speech context, and
hence are fragile to distortions (e.g., noise, user interference).
To make S���P���� robust on any speech context, an intuitive
solution would be to train an adversarial patch on every speech
content, but it is prohibitively expensive.

• Perturbation Sync: To successfully launch our attack, the ad-
versary is expected to play the perturbation at the right timing to
assure the adversarial patch posed in the correct location. How-
ever, in a real-world scenario, the timing of perturbation is hard
to control, which would a�ect the attack success rate.

Contributions: In this paper, we make the following contributions.
• New Attack:We expose the de�ciency of existing audio adver-
sarial attacks in a human-in-the-loop scenario. To the best of
our knowledge, S���P���� is the �rst human-in-the-loop voice
adversarial attack that is robust against user interference, user
perception and user interaction.

• New Techniques: By exploring the internal mechanism of CTC
(Connectionist Temporal Classi�cation) loss, we �nd the root
causes that limit the impact length of an adversarial patch on
speech tasks. Then, we reconstruct an optimization function to
craft an adversarial patch with a longer impact length. Moreover,
we propose Mute adversarial samples by analyzing the principle
of speech sequence input. With the Mute samples, we allow
S���P���� to cancel out the user’s future interaction, thereby
making S���P���� more stealthy and dangerous.

• Comprehensive Experiments: We conduct physical attack ex-
periments in three di�erent places (i.e., indoor home, outdoor
street, public dining hall) for speech recognition models. We
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demonstrate the feasibility of launching our attack with a human-
in-the-loop scenario, and prove its stealthiness via two user stud-
ies. Our results show that S���P���� can achieve 100% attack
success rate through both the over-the-air and over-the-line at-
tacks with an adversarial patch.

2 BACKGROUND
2.1 Adversarial Patch
Compared to the traditional adversarial attacks, the adversarial
patch attack is more dangerous because the crafted patches can
be used to attack any scene in the CV domain [10]. The attack-
ers launch the attack by printing the crafted adversarial patches
as stickers and putting the stickers on any benign objects to fool
the ML models (e.g., object detection, object localization). To ob-
tain the patch ?̂ , they use Expectation over Transformation (EOT)
framework [9] to optimize the following objective function:

?̂ = 0A6<0G
?
EG⇠* ,C⇠) ,;⇠! [log Pr(~̂ |�(?, G, ;, C))] . (1)

Given an image G 2 R, ⇥�⇥⇠ (, , � , ⇠ are width, height and
channel), a patch ? , a patch location ; and patch transformation C ,
the function�works as an operator to apply the patch on the benign
image. E represents EOT. Then, it keeps optimizing ?̂ to reach high
log-probability on predicting the patched image as the target ~̂. The
construction of this objective function ensures the universal and
robustness of patch ?̂ , because it considers the expectation (E) over
any background image (G ⇠ * ), any transformations (C ⇠ ) ) of the
patch (e.g., scaling, rotating, degrading), and any location (; ⇠ !) of
the patch placement.

2.2 CTC in Speech Recognition
Unlike the image recognition task in which the model is only re-
quired to produce one label, the speech recognition model is more
complicated as it needs to merge the sequential letter predictions
and produce a sentence. To train a speech recognition model with
spectrograms and their transcriptions, one challenge is to align the
transcription letters to the input frames. CTC [22] is proposed to
resolve this problem. The idea of CTC computation can be sum-
marized as follows: given a sequential model, it takes ) frames
of spectrograms as input and produces ) probability arrays. For
example, the probability array at frame C can be represented as
PrC = [PrC,0, PrC,1 , ..., PrC ,n ], where PrC ,0 indicates the probability
of predicting the frame C as character “a", and so on and so forth.
Let C be the available character set, which records the appearance
probability of 28 characters (a-z, space, and n). For the |C| ⇥ )
probability matrix, CTC counts all paths (i.e., symbol sequences)
that can be merged to match the target phrase with two rules: 1)
remove all contiguous duplicated characters; 2) remove all n tokens.
For example, a path “hheelnlo" will be decoded as “hello". After
it gets all paths representing the target phrase, the probability of
predicting the spectrogram as the target phrase can be computed
by summarizing the probability of those paths. This process can be
formulated as follows:

Pr(. |- ) =
’

c2c- ,.

)÷
C=1

(PrC,0C |- ), (2)

where . is the target phrase, and - is the input spectrogram with
) frames. c is the path that includes ) characters: c = 0102 ...0) ,
and c- ,. refers to all the paths that can be reduced to . . If . is
“hi", and) = 3, then c- ,. includes “n⌘8 , ⌘n8 , ⌘8n , ⌘⌘8 , ⌘88". For every
path belonging to c- ,. , it computes the product probability of
consecutive characters that form c . Formally, consider 0C is the
CC⌘ character in path c , PrC,0C represents the probability of the
appearance of character 0C 2 C at time t. The product represents
the path appearance probability, and the sum operation deduces
the target phrase probability. To compute the loss, we use:

L⇠)⇠ (- ,. ) = � log Pr(. |- ), (3)

i.e., given an input spectrogram - and its target phrase . , the loss
can be retrieved by the negative log likelihood of Pr(. |- ).

2.3 Problem Formulation
The ASR system takes waveform E 2 [�1, 1]# as raw input and
produces its corresponding label . 2 A< , where A is a set that
contains all letters from 0 to I, and space, and< is the length of
transcription. When unpacking the ASR system, we use" (·) to de-
note the speech recognition model that empowers the ASR system.
Instead of using waveform as input, the" (·) takes the processed
data (e.g., spectrogram) as input because it is more representative
and has fewer data samples. The size of the spectrogram depends
on the duration of E , the STFT window length, STFT hop length,
and the number of FFT points. We use - 2 R)⇥� to denote the
user’s speech spectrogram, which includes � frequency bins and )
frames, represented as follows:

- (<,l) = |
#’
==0

E [=]F [= �<]4� 9l= |, (4)

where< is the frame index and l is the frequency bin index, F
represents the window function, and = denotes the sample index of
the waveform. After taking the spectrogram frame by frame, the
speech recognition model " (·) fabricates a probability matrix Pr
as logits output, which is shaped as |C| ⇥ ) . Then, based on the
probability matrix, it computes the probability of every possible
phrase with Eq. (2), selects the phrase which has the highest CTC
probability, and �nally gives the transcription as . = " (- ).

The attacker’s goal is to construct an audio perturbation X . When
it associates with a waveform E , the ASR system will produce a tar-
get transcription. . Unlike the prior audio perturbation, S���P����
is designed to target the most realistic scenarios (e.g., human-in-
the-loop) by leveraging an adversarial patch. As such, the following
issues need to be reconsidered.
Audio Adversarial Patch:While the prior audio perturbation usu-
ally has the same duration as the benign waveform, the adversarial
patch has a limited duration and frequency range. We denote our
adversarial audio patch as ? 2 R) 0⇥� 0 , where ) 0 ⌧ ) and � 0 ⌧ �
denote the small size of the adversarial patch compared to the user’s
speech spectrogram - .
Transcriptions: Instead of using a single-word label to tag the
input, the speech recognition model generates a sentence as output.
More speci�cally, the predicted sentence is the phrase that reaches
the highest CTC probabilities, namely, argmax

.
Pr (. |- ). In this
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case, the transcription . can be decoded from any paths c 2 c- ,. ,
and the length of . is less than the number of frames () ).
Universality: Most adversarial attacks assume that the attack-
ers know the users’ speech and can deliver the perturbation syn-
chronously at a speci�c time point. However, the assumption does
not always hold in a real-world scenario. S���P���� expects that
the attacker can “place" the audio patch at any time, and over any
speech context. Let function �(- , ?, C, 5 ) be the “place" operation
that puts an adversarial patch ? to CC⌘ spectrogram frame and 5C⌘
frequency index with any input spectrogram - . Then, our goal is
to attain .̂ = " (�(- , ?, C, 5 )) for all - in human speech and ? on
any place of - .

2.4 Threat Model
S���P���� entails the novel adversarial patch attack in the audio
domain. We circumvent all the three common failure cases men-
tioned in Figure 1 by introducing the universal adversarial patch
and mute signal. The generated adversarial patch is imperceptible
and inconspicuous due to the frequency and the time constraint of
the spectrogram patch, making S���P���� a more dangerous and
stealthy attack than existing ones.
Adversary’s Capability: Unlike the prior work [11–13, 35] that
requires the adversaries to know the victims’ benign commands
in advance to calculate the corresponding audio perturbation, we
assume the adversaries have no access to the victim’s benign audio
and have no knowledge about what the victim will say during their
attacks. We assume the adversaries can place a hidden loudspeaker
close to the target devices to launch the attack. For the S���P����
crafting process, we assume the attackers have prior knowledge
of the target ASR model. For example, the architecture and model
parameters can be found from a public resource. This setting is
widely used in most prior work [11, 12, 15, 27, 33], and can be
generalized to a black-box scenario [14].
Attack Scenarios: Unlike all the previous studies, we focus on
attacking the ASR system when the user is present. More specif-
ically, the adversary crafts adversarial patches o�ine, and then
uses a preset loudspeaker to deliver the adversarial patch, therefore
misleading the target ASR system to make wrong prediction/tran-
scription. For example, the adversary can send fake commands to
the voice assistants and request them to perform the wrong opera-
tion. Moreover, the adversary can fool the telephone voice system
by injecting falsi�ed personal information to trick the ASR-based
customer service; besides, the adversary can deny the service pro-
vided by the target model via simply broadcasting the spectrogram
patches. Due to the shortness and imperceptibility of S���P����,
the attack can be launched in public spaces (e.g., malls, streets, cafes)
with nearby loudspeakers (e.g., smartphone, in-ceiling speaker).

3 DESIGN OVERVIEW
Figure 3 illustrates the system �ow of S���P����. First, we will
craft an adversarial patch to generate the malicious command, i.e.,
using a short patch to a�ect a longer benign spectrogram. Second,
when the user makes a correction, we need to mute the users’ cor-
rection by denying the users’ followup commands. We achieve that
with a specially designed signal called “Mute" signal. Next, we
make S���P���� universal to any speech context. This step usually
requires the adversarial perturbation to traverse all images/audios

Generating
Adversarial

Patch

Muting User
Interaction

Generating
Universal

Patch

Generating Patch
for Over-The-Air

Scenario

Figure 3: S���P���� work�ow.

in a large dataset to validate the e�ect of the perturbation on all
possible contexts. However, the in�nite number of speech con-
texts makes it computationally infeasible to evaluate a universal
perturbation. Rather than optimizing the adversarial patch across
di�erent speech contents, we design a phoneme-level context free op-
timization method. We guarantee that S���P���� can work across
any user interference. The �nal step of our design is to enhance
the robustness of S���P���� in a real-world scenario. To achieve
that, we take the transmission loss of a physical attack into account
during the optimization of adversarial patches. More details can be
found in §7.

4 SPECPATCH DESIGN
This section �rst analyzes why short perturbations cannot impact
long input, and then we describe our strategy to reach our attack
goal, i.e., using short patches to attack long commands. After that,
we describe the design of theMute signal to deny user’s interfer-
ence. Then, we introduce our phoneme-level universal patch crafting
process. Finally, we present the techniques to robustify S���P����
in an over-the-air scenario.
Formulation:Our goal is to craft an adversarial spectrogram patch
?̂ 2 R) 0⇥� 0 that alters all benign spectrogram - and translates
them into the target phrase .̂ . To achieve this goal, the following
expectation needs to be optimized:

?̂ = 0A6<8=
?
E-⇠* ,C⇠) ,5 ⇠�L⇠)⇠ (�(- , ?, C, 5 ), .̂ ) . (5)

Here, we compute the CTC loss of patch ? when it is applied any-
where (t⇠T, f⇠F) of the benign spectrogram - , based on which we
derive the best adversarial patch ?̂ that reaches minimal expecta-
tions of losses.

4.1 Long Command Conversion
4.1.1 Adversarial Patch with CTC Loss. For most adversarial patch
attacks in the image domain, the patch will help ensure very high
con�dence in the target class. Furthermore, recent studies [42, 43]
prove that the e�ectiveness of adversarial patches on deep neural
networks (DNNs) is caused by the large receptive �elds of CNN lay-
ers. As the image classi�cation model maps one image to one label,
it connects multiple convolutional layers sequentially. The later
convolution layers will have a higher receptive �eld and will likely
include the adversarial patch. Therefore, even a small adversarial
patch can be sensed by a later CNN layer and hence a�ects the
global prediction of the image. However, most speech recognition
models [8, 24, 44, 51] use a recurrent structure, which usually takes
multiple frames as input, produces multiple phoneme predictions
for every frame, and then connects the phoneme predictions to form
the �nal sentence prediction. One critical challenge is in applying
an adversarial patch to the sequence model. As the adversarial patch
could only a�ect a couple of input frames, the remaining output is
barely altered. Therefore, it could be hard to achieve the alteration
into a long target sentence.
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Frame: 1

Pr1

2

Pr2

K

PrK

T-1

PrT-1

T

PrT
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K+1

PrK+1

Node:

Logits:

Figure 4: S���P���� �owchart.
Suppose the adversarial patch ?0 2 R) 0⇥� 0 overlaps with input

frames (where  is determined by the window size of the speech
recognition model). For ease of explanation, we assume the patch
is placed at the left corner of the benign spectrogram, which means
C = 0 and 5 = 0. While the benign speech has ) frames and ) > ) 0,
there will be a limited number of output probabilities a�ected by
the adversarial patch.

Figure 4 demonstrates the work�ow of S���P���� that uses an
adversarial patch to attack a sequence model. The bottom blocks
show the input frames, while the middle nodes are computational
cells of" (·), usually implemented by the LSTM or RNN cells. The
top row represents every node’s logits output (also known as the
probability array of 26 letters). We use red color to mark the frames,
nodes, and logits output directly a�ected by patch ? and let the
green color label the benign frames and nodes. To demonstrate the
data forwarding process of the sequence-to-sequence model, we use
red arrows to denote how frames a�ect the hidden state of nodes
and further alter the probabilities up to the  th frame. It can be
seen that Pr1, Pr2, ..., Pr are determined by the frames 1 to  , the
intermediate output of previous/next nodes, and the hidden state
of the current node. When crafting the adversarial patch, the model
" (·) parameters are �xed, so we can only control the value of ?0
to meet the target transcription. Let - 0 denote the spectrogram
after applying an adversarial patch ? . Our goal is to optimize the
following objective function:

?̂ = 0A6<8=
?

L⇠)⇠ (- 0, .̂ ),

- 0 = - + ? .
(6)

Insight 1: The restricted length of adversarial patch a�ects the con-
vergence of the objective function.
Observation 1:When optimizing the objective function above, it
requires the tuning of ? and Pr to match the target phrase. However,
limited by the short length of adversarial patch ? , the later input
frames are untouched during the optimization process, and there-
fore the values of Pr:+1 to Pr) remain the same. This will make it
hard for L⇠)⇠ to converge. To explain it in more details, we break
down the probability equation into two parts:

Pr(.̂ |- 0) =
’

c2c- 0,.̂

[
 ÷
C=1

(PrC,0C |- 0) ⇤
)÷

C= +1
(PrC ,0C |- )] . (7)

To minimize !⇠)⇠ (- 0, .̂ ), we aim to maximize Pr(.̂ ,- 0) as shown
in Eq. (3). The probability can be separated into two parts in Eq. (7).
The �rst term

Œ 
C=1 (PrC,0C |- 0) denotes the probability that is di-

rectly a�ected by the adversarial patch, which will be �ne-tuned
continuously by adapting the adversarial patch value. However, the
second term

Œ)
C= +1 (PrC ,0C |- ) takes the benign - as input, and

hence the later probability will remain in low value as it does not

match the target letter 0C and has a low chance to be a�ected by the
adversarial patch. This is due to the limited length  of the patch.
Therefore, the second term is barely a�ected as C >  +1. Therefore,
when we compute the gradient of !⇠)⇠ (- ,. ), we take the second
term into account, but after we update the adversarial patch accord-
ing to the gradient, we will still get a similar result of the second
product term. In short, no matter how to update - 0, we will have
the second term of the gradients remaining the same, which will
mislead the direction of optimization of - . In other words, we will
not be able to achieve our attack goal if you use the global gradient
to update local changes.
Insight 2: The mismatch length of the target phrase and benign
phrase a�ects CTC loss.
Observation 2: Besides the shape and value of the adversarial
patch, the other critical factor that a�ects the CTC optimization
process is the target phrase. Let us revisit Eq. (7): the probability
Pr(.̂ |- 0) is determined by all the paths c 2 c- ,. that can bemerged
to the target phrase. While replacing the benign target . with the
target phrase .̂ , the number of paths will change accordingly, which
will in�uence the computational cost for CTC loss. For example, if
the target phrase .̂ has a length of ;.̂ , and we assume the length of
- is ) , we will have total number of paths as follows:✓

) + ;.̂
) � ;.̂

◆
=

() + ;.̂ )!
() � ;.̂ )!(2;.̂ )!

. (8)

If we have long input and short target phrases, the number of paths
for the target phrases will exponentially grow. For example, when)
is 15 and ;.̂ is 5, the total number of paths would be

�20
10
�
= 184, 756.

Even though the loss computation can be e�ciently computed
with dynamic programming [22], it will still result in redundant
gradients due to the constrained adversarial length.

4.1.2 Extend the Adversarial Patch Impact. With the previous ob-
servations, we �nd that it is challenging to craft an adversarial patch
to alter the recognition of a complete spectrogram. To address the
challenges, we propose a novel method called partial matching. The
basic idea of partial matching is allowing the target label to include
a portion of the benign label, such that the optimization can focus
on the tunable variables. Formally, instead of assigning .̂ as the
target when crafting an adversarial patch, we use .C to concatenate
the target phrase and the benign phrase as: .C = .̂ | |.C08; , where
.C08; is the trailing benign phrase.

Figure 5 demonstrates the strategy of partial matching. Given
the benign spectrogram and the adversarial patch as input, the
attacker aims to mislead the transcription from “Close the window
and curtains" to “open the door." At the bottom of Figure 5, we have
a benign spectrogram that spans from left to right. Inside the benign
spectrogram, there is an adversarial patch (in red color). When we
feed the spectrogram to a model, it is divided into frames by a �xed
window and a preset hop size. In the middle layer, we use three
di�erent colors to denote the state of the nodes. Red represents
the nodes that have adversarial input; green depicts the nodes that
have benign input but are immediately a�ected by the previous
node’s output; Blue means the nodes have a very low possibility
of being impacted by the adversarial patch. Every node produces
a probability array that records the probabilities of every letter
and eventually generates the transcription based on the decoding
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Figure 5: Demonstration of patch’s impact length.

method (e.g., greedy decoding [23], beam searching decoding [22]).
From the top layer, it shows the benign output is “Close the window
...". The target phrase is a concatenation of .̂ (“open the door") and
the partial benign label (“window ..."). We use the red region to
denote that part of the target can be achieved directly by tuning
adversarial patch. The green region of the target phrase can be
achieved by extending the impact of the adversarial patch via the
internal links between nodes. The blue region is the benign output
that ensures the optimization can converge despite of the limited
length of the adversarial patch.
Validation of Partial Matching: Next, we experimentally vali-
date the e�ectiveness of partial matching. The goal is to convert the
benign transcription “Close the window and curtains" to the mali-
cious command “open the door" by applying an adversarial patch
in the beginning of the audio. We follow the optimization function
in Eq. (6) to craft an adversarial patch in two di�erent scenarios, i.e.,
without the partial matching and with the partial matching. In the
�rst scenario, we set .̂ as “open the door". In the second scenario,
we use “open the door window and curtains" as our target phrase,
which contains a trailing (partial) benign command. Figure 6 shows
the optimization result up to 500 epochs. At the very beginning,
both cases start with the benign label at epoch 0. As the optimizing
step proceeds, the �rst approach (i.e., without partial matching)
only alters a single word (red color “open") to match the target. The
result remains the same after 400 epochs, which indicates that the
optimization converges but does not achieve the attacker’s goal
(i.e.„ delivering the target command “open the door"). In compar-
ison, the partial matching approach converges faster and meets
the target phrase within 300 epochs. This experiment shows that,
without modifying any parameters or optimization scheme, the
partial matching improves the convergence speech in crafting an
adversarial perturbation. Next, we visualize the adversarial patch
in Figure 7. For ease of explanation, we assume the adversarial
patch starts at the beginning of the benign input and spans all the
frequency ranges, i.e., the adversarial patch (the red portion) lasts
500 ms and has 8 kHz bandwidth. The benign label is shown in the
top blue �eld and the concatenated target phrase is in the middle
red �eld. We �nd that the length of the target command (“open the
door") exceeds the range of the adversarial patch, which indicates
that the partial matching helps achieve the attack goal in extending
the impact of adversarial patch and outputting the target command.

Epoch Transcript

50

0

100
150
200

winto win the curtains

close the window and
the curtains

en the curtains
en the curtains
open the curtains

250
300
350
400

open the curtains
en the curtains
en the curtains
open the curtains

450 open curtains
500 open curtains

Patch - wo/Match

Epoch Transcript

50

0

100
150
200

lon s ge window ...

close the window and
the curtains

250
300
350
400
450
500

Patch - w/Match

pen the gor window ...
pen the gor window ...
pen the gor window ...
pen the gor window ...
open the door window ...
open the door window ...
open the door window ...
open the door window ...
open the door window ...

Figure 6: Comparison between S���P���� with and without
partial matching.

Figure 7: The e�ect of patch towards a long command.

4.2 Patches to Deny User Input
The proposed partial matching mechanism successfully extends the
adversarial patch impact length beyond its own duration. However,
we still face two challenges to ful�ll our attack goal. First, we have
no knowledge of the benign phrases in advance, so it is impractical
to adjust the optimization of the target phrase for every possible
benign phrase. Second, the human factor (e.g., user interaction or
long user commands) cannot be resolved because the adversarial
patch cannot a�ect the speech transcription that is far away from
the patch position. To overcome the challenges, we propose Mute
Patches by exploiting the discrepancy of the ASR model’s input and
output mapping.
Design Mute Patches: The design goal of mute patches is to
disrupt the user’s commands without attracting their attention.
Speci�cally, we aim to inject a few adversarial samples with low
volume to mislead the ASR model to produce empty transcriptions.
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(a) Hearing Curve of Human

(b) Re�ection of Hearing Curve
Figure 8: Optimization of patch frequency based on the audi-
tory property of human.

To design such mute patches, we review the complete speech recog-
nition process and �nd the opportunity to meet our design goal. As
described in §2.3, the waveform serves as the raw input, which is
converted into spectrogram to be fed into the ASR models. Next,
every node of the ASR model takes a couple of spectrogram frames
and outputs a letter prediction. By reviewing the whole process, we
realize that every node of the ASR model perceives a large scope of
waveform samples. A similar phenomenon has been observed by
prior studies [42, 43] in image recognition models, and the authors
conclude that a large receptive �eld of the neural node is responsible
for the adversarial patch attack because a small patch in an image
can be perceived and misinterpreted by a neural node. Inspired
by their �ndings, we are motivated to inject sampled adversarial
audio signals into the neural nodes. To craft the mute signals, we
formulate the following problem:

?< = 0A6<8=
?

L⇠)⇠ (- 0,.1 ),

- 0 = - +)?,
(9)

where .1 is a phrase that only contains blank symbols, and ?<
is the mute patch that is composed of multiple patches such as
?< = [?1, ?2, ..., ?!]. For every patch that has 1  ;  !, we
have ?; 2 R1⇥� 0 . The size of the mute patch is 1 ⇥ � 0 because a
single adversarial sample can only a�ect one bin of the spectrogram.
We set the length of the mute patch as ) , and - 0 is the resulting
spectrogram. By optimizing Eq. (9), we can craft the mute signal
in the time domain with minimal loss value. The choice of ) is
determined by the hop length of STFT and the input size of the
ASR model. In practice, we can set the value of ) to be the same
as the,()�) , such that we can ensure every vertical spectrogram
bin contains adversarial information.

4.3 Imperceptible Patch
Almost all prior adversarial audio attacks (e.g., [12, 29, 33, 48])
aim to minimize the amplitude of the perturbation (i.e., minimize
3⌫(X)), e.g., by including the perturbation amplitude in the loss
function. However, we �nd that although these perturbations are
well-optimized, they are still audible when performing the physical
attacks.

In our attack scenario, we expect to launch an imperceptible
attack when the victim user is close to the adversary. Since this
goal is hard to achieve by the optimization method (i.e., penalizing
the amplitude of perturbation), we design a new approach to satisfy
the imperceptible attack goal. In a nutshell, the imperceptibility
of S���P���� is ensured by the short duration of the adversarial
spectrogram patch and further secured by the narrow frequency
band of S���P����.

In the prior optimization settings, the crafted perturbations are
audible because the victim microphone is sensitive to a certain
input amplitude. Here, we focus on yielding the perturbation in-
audible without dropping its amplitude. To achieve this goal, we
investigate the human hearing sensitivity curve and �nd that the
human ear has uneven sensitivity to di�erent frequencies. We de-
pict the hearing curve in Figure 8(a). Formally, the hearing curve
can be represented by a function with 5 , and we denote it as � (5 ).
The source data is measured by prior auditory research on equal
loudness contours [26]. In the �gure, the blue line indicates the re-
quired amplitude for pure continuous tones at a speci�c frequency
that can be heard by humans. Above the curve, we can feel the
sound at such loudness, while below the curve, the sound intensity
is insu�cient. For example, one can hear continuous audio with
frequency at 100 Hz as long as it has more than 203⌫(%! . Once
the volume is decreased to less than 203⌫(%! , the human can no
longer perceive it. From the shape of the curve, we �nd that the
human auditory system is more sensitive to a frequency between
1.6:�I and 4:�I. In comparison, we are unperceptive to sound
below 1.6:�I, as the lower frequency stimulates less attention from
human ears. Therefore, we can design low-frequency patches (e.g.,
< 1.6 �I) to diminish the perceptual level of human hearing. To
reach this goal, we add a frequency selective penalty term to the
objective function in Eq. (9). The updated function is presented
below:

?̂ = 0A6 <8=
5;<?<5⌘

L⇠)⇠ (- 0,.C ) + | |? ⇤ ù� (5 ) | |2,

ù� (5 ) = #>A<0;8I4 (�� (5 )) .
(10)

This new term | |? ⇤ ù� (5 ) | |2 is composed of the patch ? and a
frequency response function ù� (5 ), and we multiply them together
to compute the !2 norm result. 5; and 5⌘ indicate the low and high-
frequency boundaries of the learned patch. Compared with existing
attacks [12, 29] that assume a constant value in the penalty term,
we design a frequency response function as a adjustable coe�cient.
The goal of this term is to selectively penalize the human sensitive
frequency portion (e.g., 1.6:�I and 4:�I) and retain the insensitive
components (e.g., < 1.6:�I) in the adversarial patch. We design
the frequency response function ù� (5 ) based on the human hearing
curve shown in Figure 8(a). By performing a re�ection operation
and normalize the result in the range of 0 to 1, we can obtain the
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Figure 9: Universal perturbation.

ù� (5 ) as shown in Figure 8(b). The rationale of such an operation is
to reduce the human-sensitive energy while retaining the inaudible
portion of the adversarial patch.

4.4 Universal Patch
The prior adversarial attacks either use AE or Perturbation to launch
the attack. As shown in Table 1, most prior work leverages AE to de-
liver the adversarial commands. However, there is a major concern
with this method, as the user’s intervention could disrupt the AE.
Because the AE needs to be crafted with known benign commands,
it requires the adversary to predict the incoming benign commands
in advance. In a real attack scenario, it is hard to predict incoming
commands. Therefore, such unpredictable user intervention could
disrupt the performance of AE. The only exception among the previ-
ous attacks is AdvPulse [29], which utilizes a universal perturbation
to launch the physical attack. They use the iterative greedy algo-
rithm [31] to generate a perturbation that works with any given
contexts. However, AdvPulse is proved e�ective on the single-word
commands. Compared with single-word commands, diverse speech
contents make it more di�cult to compute the universal patch.
Generally, a universal perturbation is crafted by iterating over all
the benign contexts [29, 31]. Formally, the perturbation can be
represented by the following formula:

?̂ = 0A6<8=
?
E-⇠*L((- + ?), .̂ ),

* = {- | - is speech with arbitrary contents},
(11)

where ?̂ is the universal perturbation, - is the benign context (e.g.,
background sound), and* is the set that includes all possible benign
samples. Due to the diverse speech contents,* will become a large
set, resulting in a substantial computational cost. To reduce the
cost, we propose phoneme-level universal optimization scheme, and
the logic of this approach is depicted in Figure 9. In short, the
proposed phoneme-level universal scheme reduces the size of *
by introducing clips. One clip contains one single phoneme, and
we added padding to ensure every clip has the same duration as
the patch as shown in Figure 9. Since there is a limited number
of phonemes (i.e., 44 phonemes in English) in the speech context,
the clip set is much smaller than the speech set. The clips can be
simply retrieved from the speech dataset.We formalize the proposed

phoneme-level universal optimization as follows:

?̂ = 0A6 <8=
5;<?<5⌘

E-⇠*L⇠)⇠ (- 0, .̂ ) + | |? ⇤ ù� (5 ) | |2,

* = {- | - is clip with �xed duration}.
(12)

4.5 Overall Physical Over-the-Air Attack
As mentioned above, we guarantee that S���P���� is able to de-
liver long commands over users’ intervention in any speech context.
Speci�cally, we �rst apply a universal mute signal to override the
entire original speech, which will result in a blank-transcription.
Partial matching then takes a part of blank transcription as in-
put to generate an imperceptible adversarial patch for the target
phrase. Note that, similar to the generation of adversarial patch,
the generation of mute signals also does not require knowledge
of original phrases. For example, suppose the benign command is
“open the door", the target is “close the door", we �rst apply the
mute patches to the benign audio to convert “open the door" into
a blank transcription (“—-...–"). Then, we generate the adversarial
patch based on the muted benign input. If the benign command is
longer than our target, after applying the mute patches, we will
set “close the door———" (with trailing blank symbols) as target to
generate patch.

However, to launch the attack in a real-world scenario, we need
to resolve the patch distortion during the over-the-air transmission.
We follow the design in [29, 45] due to its simplicity. In general,
three operations are considered during the crafting process: 1)
band-pass �ltering, 2) room impulse response, and 3) ambient noise
mitigation. The bandpass �lter is designed to cope with the uneven
frequency response of the speaker and microphone. The room im-
pulse response (RIR) is introduced to compensate for the absorption
and reverberation in the environment. Finally, the ambient noise is
considered to craft a robust perturbation that resists environmental
noise. In practice, we form the following �nal objective function to
include the operations mentioned above:

?̂ = 0A6 <8=
5;<?<5⌘

E-⇠*L⇠)⇠ (- 0, .̂ ) + | |? ⇤ ù� (5 ) | |2,

- 0 = - + ⌫%� (?) ⇤ '(5 ) +, .
(13)

The BPF refers to the band pass �lter, and we follow the setting
in [45] to con�gure the cut-o� frequency as 50 ⇠ 4, 000�I. The
'(5 ) represents the spectrum of the room impulse response. We use
the RWCP dataset [32] to enrich the RIR measurements and further
compute the spectrogram of the RIR audios. The noise spectrogram
, is chosen from another ambient noise dataset NOISEX-92 [40],
which contains various noises (babble noise, factory noise, HF radio
channel noise, pink noise, white noise, vehicle noise).

5 EVALUATION
5.1 Experiment settings
We implement S���P���� using the Tensor�ow [2] framework. We
craft adversarial patches following Eq. (13). The experiments are
conducted on a desktop with Intel i7-7700k CPUs, 64GB RAM, and
NVIDIA 1080Ti GPU, running 64-bit Ubuntu 18.04 LTS operating
system. In the evaluation, we launch our attack in two scenarios:
over-the-line and over-the-air. In the over-the-line attack, we pass
the S���P���� directly to the model as a Waveform Audio �le.
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Figure 10: Spectrogram and time-domain signals of S���P����.

In the over-the-air setting, we attack the victim’s phone using a
speech-to-text service. In our implementation, we set up a server
that runs our target ASR model and allows the victim’s phone to
request service through the local area network.
TargetModel Selection:As our attack target is the speech recogni-
tion model, we will examine the e�ectiveness of S���P���� on the
most popular ASR models. Speci�cally, we select DeepSpeech2 [8]
as the target ASR model. DeepSpeech2 leverages CTC loss and
recurrent cells to improve the recognition performance.
Metrics:We use the following metrics to quantify the e�ectiveness
of our attack: (1) Success Rate: this metric is the ratio of successful
attacks and the total attempts. We report success only when the
prediction matches the targeted command in a targeted attack. In
terms of the untargeted attack, we measure the success rate of
mis-transcribing the victim user’s benign commands. (2) Impact
Length: This metric is to identify how many characters/words can
be a�ected by our S���P����. Given a long benign spectrogram,
we inject an adversarial patch and measure the length of charac-
ters/words that are di�erent from the original transcription. (3)
L2 Distortion: the L2 distortion | |? | |2 indicates the amplitude of
adversarial patches. Prior to the launch of a physical attack, we can
measure the distortion value by summarizing the squared amplitude
of the generated perturbations.
Datasets: The dataset we choose as benign audio is TIMIT [1].
This dataset contains four types of corpora designed jointly by
the Massachusetts Institute of Technology (MIT), SRI International
(SRI), and Texas Instruments, Inc. (TI). It contains 6,300 audios
from 630 speakers. The duration of each audio is around 5 seconds
and contains approximately ten words. For our target commands,
we collect them from the website ok-google.io, which provides
commonly used commands on Google Assistant. We select ten
sentences as our attack goal, e.g., “�nd my phone" and “turn on the
lights." For the phoneme clip dataset, we construct it manually by
following the annotations in TIMIT [1]). In total, we obtain 50,487
phoneme clips that cover 44 phonemes.We added padding to ensure
every clip to have �xed length as 500 ms, which matches with the
length of the adversarial patch.

5.2 Over-The-Line Attack
Over-the-line S���P����: We �rst showcase the capability of
S���P���� in converting the benign audio into our target transcrip-
tion by injecting adversarial patches. As shown in Figure 10, the
�rst spectrogram represents the benign audio “close the window
and curtains". We �rst apply mute patches to translate it into con-
secutive blank symbols which results in an empty transcription.
The mute patches are crafted by Eq. (9). We use rectangle boxes to
mark those mute patches. It can be observed that each mute patch

only occupies a single frame and periodically appears as vertical
lines below 2:�I. After applying the mute patches, we can craft an
adversarial patch to meet our target goal by leveraging the partial
matching strategy (i.e., concatenating the target command with
trailing blank symbols). The third �gure depicts the adversarial
patch on the muted spectrogram. We use a red rectangle box to
highlight the position of the adversarial patch. We can see that the
adversarial patch occupies 0.5 second within 50�I ⇠ 2:�I and is
placed at the beginning of the spectrogram. The frequency band
of this patch is learned from Eq. (10) and further constrained by
Eq. (13). To investigate the amplitude of the benign audio, mute
signal, and adversarial patch, we visualize the waveform of the com-
plete AE in the rightmost �gure. Compared to the benign audio,
the adversarial and mute patches have a very low volume (⇠%5 of
the benign audio).

(a) Impact length in characters (b) Impact length in words
Figure 11: Comparison of impact length.

Evaluate the impact length: To evaluate the e�ectiveness of par-
tial matching strategy, we conduct experiments with three di�erent
strategies to attack a long command (⇠ 10 words) with di�erent
patch duration. The �rst strategy, perturbation-only (Pert-Only)
strategy searches for a short patch that delivers long commands
without considering the benign audio in crafting the AE; the second
strategy utilizes a long empty audio as the background sound to
increase the logits output-length, and then craft a patch based on
the benign audio. This approach is adopted by the prior work [29].
The third strategy leverages the partial matching strategy. Simi-
lar to the second strategy, this approach uses an empty audio as
background. However, it con�gures the target command to include
trailing blank symbols, as illustrated in Section 4.5.

We randomly select 20 sentences in TIMIT dataset as our target
and use three di�erent lengths of the patch (250<B , 500<B , 750<B)
to achieve the attack goal. Figure 11 presents the comparison of
impact lengths among the three strategies. The “Perturbation-Only"
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Figure 12: Universal mute patches.

label represents the �rst strategy as it does not consider any benign
audio. The “Baseline" label symbolizes the second strategy, and the
“Ours" represents the partial matching strategy. From Figure 11(a),
we �nd the �rst strategy failed to craft a short patch (impact length
is 0) that delivers a long command for all the three lengths of patch
con�gurations. This can be attributed to the lack of logits output
for a short variable (perturbation), leading to the error of “INVALID
ARGUMENT" caused by “not enough time for target transition se-
quence". In contrast, the baseline strategy can proceed with the
optimization process with a long benign input. However, it can
only a�ect a couple of characters (< 10) (see Figure 11(a)) and a
limited number of words (< 2) (see Figure 11(b)) even with the
longest patch con�guration. Using the proposed partial matching
strategy, we can use a patch with the same duration to attack longer
sentences, and the impact length reaches ⇠ 15 characters and ⇠ 4
words for 500<B patch, and this can be further extended to ⇠ 6
words with a longer patch (e.g., 750<B). In summary, using the same
length of patch, we extend the impact length by 200% in characters
and 287% in words, which proves the e�ectiveness of the partial
matching strategy.
Evaluate mute patches: Next, we evaluate the generation of mute
patches with di�erent speech contexts. Since we expect that the
mute patches could disrupt any user interference, we craft the
patches based on a variety of sentences. More speci�cally, we ran-
domly select multiple sentences from the benign audio dataset and
craft one series of mute patches that are applicable to all sentences.
We report the !2 distortion of the mute patches in Figure 12.

We use a variable “X Comm." to represent the situation that mute
patches can change the transcription to empty symbols for all “X"
number of selected commands. The X value ranges from 10 to 50.
The results show that the mute patches converge speedily for all the
situations and reach a steady value in 200 iterations. Moreover, we
notice that the more general mute patches we request, the higher
power of mute patches we will get. For example, to craft a series of
mute patches that are suitable for 50 commands, it triples the value
of !2 distortion after convergence compared to the solution with
10 commands.
Evaluate phoneme-level universal perturbation: After analyz-
ing the generality of mute patches, we then investigate the univer-
sality of adversarial patches on di�erent background audio contexts.
The adversarial command patch is obtained by optimizing the ob-
jective function in Eq. (12). In this evaluation, we craft adversarial

Figure 13: Universal attacks across di�erent phonemes.

patches over 50,487 phoneme clips and report the success rate when
using an adversarial patch on top of the speci�c phonemes. As de-
picted in Figure 13, the universal adversarial patch achieves 68%
success rate on all the �ve types of phoneme clips. Furthermore,
among the di�erent types of phonemes, we observe that vowels
and nasal are more compatible with the adversarial patch. In con-
trast, the fricatives and stops are more resilient against adversarial
patches. This is because our adversarial patches contain more low-
frequency energy due to Eq. (12), and the vowels and nasal present
rich low-frequency components. Therefore, these phonemes will
be a�ected much easier. In contrast, the fricative and stops contain
more high-frequency energy than that of the patch.
Evaluate patch with di�erent frequencies: One key bene�t of
using spectrogram patch rather than short pulses is that our patch
can be more imperceptible. Generally, a patch with a wider band-
width can be found much faster and can have a lower amplitude.
In comparison, a patch with a narrow bandwidth could raise less
attention in human auditory system, however, it will fail to deliver
certain commands because of the lack of some speci�c frequency en-
ergy. Therefore, there is a trade-o� between the frequency band, the
perceptual level, and the successful rate of the patch. To investigate
the best frequency band of the adversarial patch, we conduct the fol-
lowing experiment with four di�erent frequency settings as follows:
50�I ⇠ 1:�I, 50�I ⇠ 2:�I, 50�I ⇠ 3:�I, and 50�I ⇠ 4:�I.
We aim to retain the low-frequency components as they are more
likely neglected by human ears (see Figure 8(a)). Our goal is to �nd a
narrow frequency patch that has more low-frequency components
and with lower overall amplitude. We craft 10 adversarial patches
with every frequency setting, and record the average !2 distortion
and loss during the process. We present the results in Figure 14. As
shown in Figure 14(a), if the patch only includes 50 ⇠ 1 �I, it fails
to achieve the target goal as the !2 distortion keeps growing, and
the loss in Figure 14(b) implies that this setting leads to the highest
loss. For the 50 ⇠ 2 �I setting, the distortion rises at the �rst 400
iteration, and then it satis�es the target goal and starts dropping
the amplitude of patch by iterations. The rest two settings converge
faster. These results indicate that patch with a wider bandwidth
is more likely to meet the target. To summarize, the 50 ⇠ 2 �I is
the best choice, because it reaches the low amplitude after 1,000
iteration and has comparable !2 distortion with other cases, and it
also occupies less bandwidth. As a result, we use this setting for all
the rest experiments.
Evaluate overall performance: In this experiment, we train 10
universal patches along with a series of mute patches. Then, we
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(a) The distortion of S���P���� (b) The loss of S���P����

Figure 14: Comparison of di�erent frequency ranges

Target Success Rate Mis-Trans. Rate

"turn on the lights" 94.1% 100%
"�nd my phone" 96.5% 100%
"Turn o� the kids’ wi�" 87.1% 100%
"What is my password?" 86.5% 100%
"stop the music" 97.2% 100%
"open the door" 100% 100%
"lock the front door" 91.3% 100%
"Listen to the news" 92.5% 100%
"call 911 now" 98.5% 100%
"Cancel my alarm" 94.6% 100%

Table 2: Over-the-line attack performance

apply these S���P���� to all of the benign audios in TIMIT dataset
at random positions to validate the e�ectiveness of our attack.
Table 2 reports the success rate after adding 10 di�erent adversarial
patches to 6,300 benign audios, resulting in 63,000 AEs. We count
the success cases when the target command is the only output
in the transcription. Otherwise, if the benign label is transcribed
wrongly, we regard it as the mis-transcription case. We �nd that,
S���P���� could cause 100% mis-transcription rate for any audio.
This means S���P���� could almost surely deny the service of
users. In terms of the target success rate, we achieve > 90% success
rate for 8 out of 10 patches. The success rate for longer commands
that have 4 to 5 words is lower than those of shorter commands,
this is reasonable since longer target commands are hard to achieve
in a noisy background.

5.3 Over-The-Air Attack
Attack Scenario: Figure 15(a) depicts the attack scenario. The
victim is using the speech-to-text service while the adversary uses
a smartphone to play S���P���� to deceive the ASR model. Note
that the adversary can play the attack audio at anytime, and once
he/she launches the attack, the victim’s commands will be denied
by the consecutive mute signals. In our experiment, the adversary is
1 meter away from the victim, and S���P���� is played at di�erent
volumes.Wemeasure the loudness of the user’s interference and the
S���P���� audios by a decibel meter. We conduct the experiments
in three places: indoor room, outdoor street, and public dining hall.

(a) Real world attack scenario (b) User study results
Figure 15: Over-the-air S���P���� attack.

Attack Performance: In this experiment, we play a crafted patch
of “open the door" 10 times for each volume, attempting to deliver
this command to victim’s phone. The victim is holding their smart-
phone and speaking at the volume of 553⌫(%! . The ambient noise
levels of the three places are 43.53⌫(%! , 523⌫(%! , 553⌫(%! for in-
door room, outdoor street, and dining hall, respectively. We present
the success rate of targeted attack and the mis-transcription attack
in Figure 16. The grey dot line indicates the ambient noise level.
As can be seen from the Figure 16(a), when the perceived patch
volume is lower than the ambient noise level, there are 8 out of
10 attempts failed in the targeted attack scenario. Once the victim
device perceives a comparable power (e.g., 45dB) from the patch au-
dio, the success rate increases to 40% for the targeted attack. When
the volume is 103⌫ greater than the ambient noise, we can achieve
80% success rate, and 100% in denying the user’s input. We observe
the similar results in Figure 16(b) and Figure 16(c). These results
indicate that S���P���� can successfully attack the ASR system
with a limited power pro�le. Typically, S���P���� achieves suc-
cessful attacks when there is < 53⌫(%! power di�erence between
the patch and the ambient noise. If we raise the attack power, the
success rate can be assured to 100%.

To better understand the relationship between user’s volume and
the loudness of patch, we conduct another experiment to control
those two factors. We play the same patch 10 times at 7 volumes
(from 403⌫(%! to 703⌫(%! with 53⌫ increments). For every volume,
we use another speaker to play a benign audio with increasing
volumes. This experiment is conducted in the same indoor place,
and the result is present in Figure 16(d). We �nd that when the patch
has same volume of the benign audio, it achieves 100% success rate.
If the patch is 203⌫ less than the benign audio, S���P���� no longer
works. In general, a louder patch can achieve a higher success rate.
Noticeably, when both the patch and the benign audio have high
power, the success rate reduces to 40%.

5.4 User Study
To evaluate the stealthiness of S���P���� in a real-world attack,
we conduct two online user studies that involve ten volunteers to
investigate the users’ perception level of S���P����.
Study 1: In this study, the users are requested to hear four AEs
that include the crafted patches. Then, we ask the volunteers about
the contents they heard. The benign and adversarial transcriptions
are described in Table 3. For the same benign sample, we add three
di�erent patches to achieve three goals (one of them is an empty
transcription). The result shows that 10 out of 10 volunteers are
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(a) Indoor scenario (b) Outdoor scenario (c) Public dining hall scenario (d) User’s speech volume vs. patch loud-
ness

Figure 16: Attack success rate across four di�erent scenarios.

deceived by our attack, as all of them consider the benign label as
their heard content. Surprisingly, we can inject the patch to a silent
benign audio, and this implies the possibility of a hidden attack.
Similarly, none of the volunteer can perceive the hidden patch, as
10 out of 10 considered the malicious “turn on the wi�" patch as a
silent audio.
Study 2: To further validate S���P����, we conduct the second
user study. The volunteers are asked to pretend to speak to their voice
assistants while hearing the six di�erent patches, these patches are
played through their smartphones with a medium volume. The dis-
tance between the volunteer and the their smartphones is 0.5 meter.
After that, they will answer questions to describe their comprehen-
sion of the heard patch. The options of perception levels include:
Unnoticed, Noticed, and Unrecognized. Unnoticed indicates that the
volunteer cannot hear a patch; Noticed implies that the volunteer
can hear a patch but regard it as a normal noise; and Unrecognized
stipulates that they cannot understand the meaning of the heard
sound. We report the experimental result in Figure 15(b). The labels
in x-axis represent di�erent patches, namely, (M1 and M2 are two
mute patches, P1-P3 are short patches, while L1 is a long patch that
is composed of 3 short patches). It shows that most of participants
(> 70%) cannot even notice our short patch attack (P1-P3). For the
consecutive mute patches, there are around 50% of volunteers can
perceive it. For the long patch, 9 out of 10 participants can clearly
feel it. It is noteworthy that none of the patches can be understood
by volunteers.

Benign Adversarial Deceive
"turn on the lights" "open the door" 10/10
"turn on the lights" "" 10/10
"turn on the lights" "open the window" 10/10
"" "turn on the wi�" 10/10

Table 3: User case study

6 DISCUSSION
Limitations: S���P���� has the following limitations: 1) the attack
is model dependent; 2) the attack could not successfully attack very
long sentences; 3) the attack distance is relatively short. For the �rst
limitation, this attack can only attack the recurrent neural network,
since our attack is established by exploiting the vulnerability of

inter-connection between each cells. The second limitation can be
addressed by introducing a longer patch, however, it might raise the
alert of the victims. The third limitation can be possibly addressed
by amplifying the power of the patch, but the adversary needs to
handle both the distortion from the ampli�er and the long-distance
induced attenuation.
Defense: Prior studies [29, 47, 48] reveal that signal processing tech-
niques can defend the adversarial audio attack since the adversarial
perturbations are delicately crafted and hence are deemed fragile.
The signal processing techniques, however, can reduce the �delity
of perturbations and protect the ASR models. Typical signal pro-
cessing defense methods include 1) Down sampling (DS): decreasing
the sampling rate of AEs to degrade the quality of AEs [29, 47, 48];
2) Quantization: this approach rounds the 16-bit precise value to
its nearest integer multiple of constant & , which has been adopted
to defend against the attacks [29, 47]. 3) Low pass �ltering (LFP):
this defense can use a Butterworth low-pass �lter with di�erent
cuto� frequencies to remove the high-frequency components of the
perturbations [29]. We will evaluate di�erent defense approaches
against S���P���� in our future work.

7 CONCLUSION
In this work, we proposed S���P����, a human-in-the-loop ad-
versarial patch attack on ASR systems. S���P���� considers the
scenarios when the users are presenting or intentionally disrupt-
ing the adversarial audio attacks against ASR systems. S���P����
optimizes the adversarial patch to increase the length of the target
commands. S���P���� also includes Mute adversarial samples that
can ensure the user interference does not a�ect the adversarial
perturbation. Moreover, we further enhance S���P���� to make
it imperceptible and robust in both over-the-line and over-the-air
attack scenarios. Our extensive real-world experiments show that
S���P���� can unnoticeably deliver the malicious commands in a
noisy environment amid user’s interference.
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