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ABSTRACT
In this paper, we propose PhantomSound, a query-e�cient black-
box attack toward voice assistants. Existing black-box adversar-
ial attacks on voice assistants either apply substitution models or
leverage the intermediate model output to estimate the gradients
for crafting adversarial audio samples. However, these attack ap-
proaches require a signi�cant amount of queries with a lengthy
training stage. PhantomSound leverages the decision-based attack
to produce e�ective adversarial audios, and reduces the number of
queries by optimizing the gradient estimation. In the experiments,
we perform our attack against 4 di�erent speech-to-text APIs under
3 real-world scenarios to demonstrate the real-time attack impact.
The results show that PhantomSound is practical and robust in at-
tacking 5 popular commercial voice controllable devices over the air,
and is able to bypass 3 liveness detection mechanisms with > 95%
success rate. The benchmark result shows that PhantomSound can
generate adversarial examples and launch the attack in a few min-
utes. We signi�cantly enhance the query e�ciency and reduce the
cost of a successful untargeted and targeted adversarial attack by
93.1% and 65.5% compared with the state-of-the-art black-box at-
tacks, using merely ⇠300 queries (⇠5 minutes) and ⇠1,500 queries
(⇠25 minutes), respectively.

CCS CONCEPTS
• Security and privacy; • Computing methodologies ! Ma-
chine learning;

KEYWORDS
Adversarial attack; voice assistant; black-box attack; query e�-
ciency.
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1 INTRODUCTION
Voice is the primarymethod for human-computer interaction. Driven
by the unprecedented amount of voice data and �ourishing devel-
opment of Arti�cial Intelligence (AI) technology, the modern deep-
learning based Automatic Speech Recognition (ASR) systems and
Intelligent Voice Control (IVC) devices have been integrated into
our daily lives. According to Voicebot’s 2019 consumer report [39],
it was reported that 26% of U.S. adults own a smart speaker. Nowa-
days, users can directly speak to their smartphones to interact with
the voice assistants such as Siri [56], Google Assistant [22], or smart
speaker systems such as Google Home [23], Amazon Echo [8].

The voice commands have been used to send and read text mes-
sages, make phone calls, set timers, check calendar entries, and even
order a drink from Starbucks or summon a Uber with “skills" [10].
More and more tech companies now provide ASR services, in-
cluding Amazon Transcribe [9], Google Cloud Speech-to-Text [24],
IBM Watson Speech to Text [36], and Microsoft Azure Speech Ser-
vice [46], all of which allow the developers to empower their apps
with intelligent audio functionalities.

However, with the increasing presence of ASR systems and IVC
devices in private spaces, users begin to worry about the security
and privacy of these systems. For example, a hacked device is now
capable of recording private conversations; collecting and sharing
private data; and controlling all the connected IoT devices in smart
homes [18, 53]. Researchers have demonstrated that ASR systems
could become vulnerable to a wide variety of attacks. For instance,
inaudible commands can be injected through ultrasound [49, 67],
even across di�erent transmissionmedia, such as object surface [62],
light [53], etc. Besides the physical attacks, recent studies also utilize
the discrepancies between the human ear and feature extraction
algorithms to launch signal processing attacks [3, 4].

Despite the aggravating threats, these new attacks could be
defeated by integrating additional hardware [66] or extra signal
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Figure 1: Attack scenario of PhantomSound

processing procedures (e.g., voice activity detection, guard sig-
nals) [3, 34]. Unlike the aforementioned attacks, the adversarial
attack aims to attack the deep neural networks (DNN), i.e., the
computational core of an ASR system, which poses a major threat
to modern ASR systems.

Adversarial Attack:Adversarial attackwas �rst proposed to attack
image recognition systems [21, 54]. The attack operates by impos-
ing unnoticeable perturbations onto the original image, thereby
misleading the DNN to yield false classi�cation. The inputs that
enable such an attack are commonly referred to as Adversarial Ex-
amples (AEs), which are composed of the original input with an
unnoticeable perturbation. The ASR system with DNN models also
inherits the susceptibility towards AEs.

Prior Studies: Prior studies [7, 14, 20] demonstrate that attackers
can generate adversarial audios to alter the DNN’s prediction result
with or without the prior knowledge of the DNN model. However,
most of these attacks have not been successfully realized against
real-world commercial devices, and their stealthiness is unveri�ed.
Recently, Chen et al. [15] successfully attack both open-source and
commercial speaker veri�cation systems over the air in a grey-box
setting. Yuan et al. [64] embed their generated AE within songs to
launch the attack, and they further adapt their attack in a black-box
setting to subvert the ASR of most IVC devices [18]. Nevertheless,
they fail to guarantee the attack success rate in the presence of user
interference; and cannot promise to craft AEs quickly due to the
training overhead of the substitution model. Meanwhile, two recent
studies [27, 43] inventively propose the sub-second perturbation
and spectrogram patch perturbation to attack open-source ASR sys-
tems, considering the victim user present during the attack. Even
though they demonstrate the robustness and feasibility of their
attack in the presence of environmental distortions, the proposed
attacks are established on the assumption of complete knowledge
of the target ASR system. More recently, Zheng et al. propose a
decision-based black-box attack by incorporating evolutionary al-
gorithms to generate adversarial audios [69]. However, they still
require to query the victim model extensively, which incurs sub-
stantial time and �nancial costs in a practical attack scenario.

Table 1 summarizes the existing adversarial attacks in terms of
victim systems’ tasks, attacker knowledge, ability to attack quickly,
and attack scenario. The check mark symbolizes a successful attack
under the given scenario, while the cross mark implies that the at-
tack could not function or lacks e�cacy in that particular scenario.
For the victim system’s task, SV indicates the speaker veri�cation
task while SR refers to the speech recognition task. We then taxon-
omize attacker knowledge into white-box, grey-box, and black-box,

Table 1: Comparison with other recent audio attacks.

Attacks
SV
SR

Grey
Box

Black
Box

Online
GENR

Over
Air

User
INT

Houdini [20] SR 3 7 7 7 7
C&W [14] SR 7 7 7 7 7
Adversarial [7] SR 3 7 7 7 7
Fakebob [15] SV 3 7 7 3 7
Comm. [64] SR 7 7 7 3 7
Devil’s [18] SR 3 3 7 3 7
AdvPulse [43] SR 7 7 7 3 3
OCCAM [69] SR 3 3 7 3 7
SpecPatch [27] SR 7 7 7 3 3

PhantomSound SR 3 3 3 3 3

where grey-box implies the attacker can get the logits layer out-
put [7, 15] or con�dence score of all possible classes, and black-box
indicates the attacker can only access the prediction label [18] of
the target model. A white-box attacker, on the other hand, has com-
plete knowledge (model architecture, weights of DNN parameters)
of the target system. Next, we use online AE generation (Online
GENR) to characterize whether the attacker can generate AEs or
perturbations swiftly and complete the attack procedure in an on-
line fashion. In fact, most existing studies assume the attacker has
su�cient time to produce AEs o�ine. The last two metrics, Over
Air and User Interference (User INT) suggest the attack scenario,
where the former indicates an over-the-air attack, while the latter
indicates whether the attack considers the user’s interference (e.g.,
voice commands) during the attacks. To the best of our knowledge,
no existing attacks can attack commercial, closed-source ASR systems
over-the-air with a limited time budget and user interference.

PhantomSound:We propose a query-e�cient black-box attack on
commercial closed-source ASR systems and IVC devices. Our attack,
called PhantomSound, can craft AEs and perturbations within a
limited time budget and restricted query cost. Di�erent from the
previous work, the key idea behind PhantomSound is to regard the
users’ voice input as the command “carrier", while the phoneme-
level perturbations are applied on the “carrier" to instantiate the
attack.

Figure 1 depicts the attack scenario. First, the adversary records
the user’s command (any keywords such as “open", “on", “down").
Next, the adversary uses PhantomSound to query the accessible
target models on the target IVC devices (e.g., the Google Cloud
Speech-to-Text API for Google Home). Then, PhantomSound re-
turns a perturbation that alters the prediction of the user’s com-
mand.

During the attack, the adversary plays the perturbation via a
hidden speaker at the same time when the user utters a voice
command, which fools the smart speaker to operate improperly.

Challenges: Four major challenges arise during the design of
PhantomSound.

• Black-box Attack: It is di�cult to attack a model without
any prior knowledge. Existing grey-box/black-box attacks ei-
ther assume attackers have the probability score of the target
model [7, 20], or train a substitution model to approach the target
model [18]. The existing attacks require a substantial amount of
time to train a substitution model for the generation of AEs.
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• Speech Model: Di�erent from black-box attacks on image pro-
cessing [16, 19], ASR systems are known to have a more compli-
cated model structure consisting of signal processing, �ltering,
acoustic model, and language model. As a result, attacking speech
models requires di�erent attack strategies to bypass the various
components of the ASR models.

• Query E�ciency: A successful black-box attack relies exces-
sively on the e�ectiveness of queries. The adversary needs to
iteratively update the AEs such that the e�ectiveness of the
crafted AEs can be justi�ed through querying. However, querying
commercial ASR APIs is costly (e.g., $0.00001/second for Google
Cloud Speech-to-Text) and unable to bypass. Despite some ef-
forts [16, 19] to reduce the number of queries, it still falls short
of meeting the requirements for online generation of AEs.

• Perturbation Sync: To successfully launch our attack, the ad-
versary is expected to play the perturbation when he/she hears
the victim’s voice command. However, in a real-world scenario,
the timing of perturbation is hard to control. Therefore, we need
to tackle this problem by generating a near-synchronization-free
perturbation [43].

Contributions: The contributions of this work are highlighted as
follows.
• New Attack: To the best of our knowledge, we are the �rst to
achieve query-e�cient black-box attacks on commercial ASR
systems as well as IVC devices. We demonstrate the dangers
of our attack over-the-air on 4 di�erent commercial ASR APIs
(i.e., Google Cloud Speech-to-Text, IBM Watson Speech to Text,
Amazon Transcribe, and Microsoft Azure Speech Service) and 5
di�erent IVC devices (i.e., iPhone with Google Assistant, Google
Home, Microsoft device, Amazon Alexa, and IBM Wav-Air-API).

• New Finding: We discover and formulate the unique bound-
ary of commercial ASR systems for producing AEs. This non-
contiguous decision boundary hinders previously successful at-
tempts.

• New Techniques:We propose PhantomSound, a phoneme-level
searching method for e�ciently crafting AEs to launch adversar-
ial perturbation attack with the least number of required queries
in comparison with other methods.
The remainder of the paper is organized as follows. We introduce

the background and preliminary observations in §2, followed by the
system design of PhantomSound in §3. The implementation and
evaluation are further presented in §4. The discussion and limitation
of PhantomSound are entailed in §5. We present the related work
in §6 and conclude the paper in §7.

2 BACKGROUND AND PRELIMINARY STUDY
In this section, we present the threat model of PhantomSound, as
well as the assumptions and attack scenarios. Then, we introduce
the fundamentals behind the adversarial attack and present the
decision scheme of commercial ASR systems.

2.1 Threat Model
The adversary’s goal is to mislead the IVC devices or VCS systems
by injecting malicious commands. Prior to our work, there are two
types of attacks that can achieve the same goal. The �rst attack [18]

uses reverse-engineering models to imitate the commercial models
and craft the o�ine AE in a white-box manner. The second at-
tack [61] uses generative models to synthesize the victim’s speech.
However, the reverse-engineering attack necessitates a high volume
of queries (as per Table 10) to construct the substitute model. It also
demands updating the model in response to changes in the commer-
cial API. This renders it expensive and inadequate in meeting the
need for a real-time attack. Regarding the generative model driven
synthesized attack, we assume the adversary has access to su�-
cient recordings of the victim for training purposes. However, in
our speci�c situation, the attacker is expected to initiate the attack
upon their �rst encounter with the victim. Furthermore, playing
the synthesized speech outright is not a viable approach as the
victim can hear it and potentially halt the attack.
Adversary’s Capability:We assume that the adversaries can place
a hidden microphone to record the victim’s voice. We assume that
an adversary knows the targeted IVC devices and has access to
their respective ASR API services (e.g., Google Cloud Speech-to-
Text for Google Home or Google Assistant). Following other related
studies [7, 18, 43, 64, 69], we also assume that the adversary is able
to launch this attack via a hidden speaker or a compromised speaker
in the victim’s workspace/home.
Attack Scenarios: The adversary will �rst collect the victim’s
voice commands, and then generate the AEs and perturbations
swiftly only based on the transcription result of the target devices.
Once the perturbations are crafted, the adversary can wait for the
victim’s next command and play the perturbation manually or
automatically via existing keyword searching or voice detection
mechanisms [6, 55]. Alternatively, the adversary may also play the
perturbation repeatedly through hacked speakers, attempting to
fool the target IVC devices when the corresponding target voice
command was delivered.

In a real-world attack scenario, e.g., in a public space, an attacker
may not have access to a large collection of victims’ voices and may
not have su�cient time to generate the perturbation o�ine. In this
case, the attacker only has a very limited time window to subvert
the victims’ commands towards voice assistants. To successfully
instantiate such an opportunistic voice attack, an attack approach
with a timely and low complexity AE generation is highly desired.
User Interference:Most existing attacks assume that the users will
not perceive the AEs and will not interact with their voice assistants
during the attack. However, when the users are speaking during
the attack, most existing voice attacks will fail. In this research, we
leverage the users’ voice command as a carrier for the adversarial
audio to launch the attacksmore e�ectively and stealthily.Moreover,
as advanced liveness detection algorithms [5, 42] have been used to
di�erentiate between loudspeakers and humans with high accuracy,
most existing audio attacks launched by loudspeakers can be easily
detected. In our attack, however, since the human voice and the
perturbation arrive at the same time, the liveness detection module
of the voice assistant can be e�ectively bypassed.

2.2 Adversarial Attack
Adversarial attack aims to craft an AE G0 + X , in order to deceive
the model 5 (·) to make false prediction [54]. Take ~?A43 as the
output of model, if 5 (G0 +X) := ~?A43 < ~ (~ indicates the true label
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(a) A mixed image with cat and dog is rec-
ognized by Google Cloud Vision API [25]
with 89% cat and 11% dog.
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(b) Search decision boundary in black-box
CV attack.

(c) A mixed audio with “stop" and “back-
ward" is rejected by Google Speech-to-
Text API with no output
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Not classified
into any

command

(d) The decision boundary for every class
is non-contiguous for ASR system, every
input in the middle will be rejected due to
ambiguity.

Figure 2: Observations of CV and ASR systems.

of input G0), we suppose the attacker has launched an untargeted
attack. If the perturbation is crafted intentionally for a speci�c
target (denoted as ~C ), the attack formalized as 5 (G0 + X) = ~C <
~, is regarded as a targeted attack. The generation of AE can be
formulated as an optimization problem as follows:

<8=8<8I4 L(G0 + X) := D(5 (G0 + X),~C ) . (1)

The goal of Eq. (1) is to minimize L(G0 + X) under the constraint
that | |X | |2 < n , where L(·) denotes the loss function, which uses a
distance function D(·) to measure the disparity between 5 (G0 + X)
and ~C , | | · | |2 is the L2 norm, and n is used to control the amplitude
of perturbation. There are three main types of attacks depending
on the prior knowledge of the victim models, listed as follows:
White-box: If the adversaries learn architecture and the parameters
of the model, they can get the gradient of the loss function rL(G)
during the forward or backpropagation. The perturbation can be
subsequently estimated using the inverse gradient [21].
Grey-box: The model conceals its architecture and parameters
from the public and only exposes the prediction scores % = [?0, ?1,
· · · , ?=] for a given input. The adversaries can formulate a loss
function [13] D(%, %~) (%~ is the one-hot encoding of ~), and then
track the changes of distance when tuning X in multiple attempts.
The changes inL(G) are utilized to estimate the gradient which will
guide the attacker to update X . The gradient estimation algorithms
include Natural Evolution Strategy (NES) [37] and Zeroth Order
Optimization (ZOO) [17].
Black-box:Compared to white-box and grey-box attacks, the black-
box attack is the most challenging, in which the attacker only has
access to the prediction label of the model. In fact, most of the
commercial ASR systems and IVC devices are closed-source and
only o�er a �nal prediction. To successfully attack the black-box
model, existing work either trains a surrogate model and transforms
the problem into a white-box attack [47], or uses a signi�cant
amount of queries to search the decision boundary of the victim
model [12, 16, 19]. Here, we focus on the query-based boundary-
searching attack due to its �exibility and attack e�ciency.

2.3 Black-box Audio Adversarial Attack
Compared with the black-box adversarial attack in other domains,
the black-box audio adversarial attack has several unique features.
In this section, we conduct a preliminary study in quantifying the
behaviors of commercial ASR services.
Decision-based Attack: Used for classi�cation, a decision bound-
ary is a hypersurface that partitions the sample space into several
classes. Speci�cally, a well-trained DNN model uses the decision
boundary to classify the incoming inputs. The main goal of the
existing black-box attacks [12, 16, 19], or so-called decision-based
attacks, is to �nd the decision boundary of the target model. Gen-
erally, to approach the precise decision boundary, they gradually
perturb the input based on the query feedback, to �nd an AE on
the verge of the decision boundary.

However, one assumption made by existing decision-based at-
tacks is that the DNN classi�cation model guarantees to return a
prediction ~?A43 for any input G . As shown in Fig. 2(a), we merge a
cat and a dog into one image and feed it into Google Cloud Vision
API [25]. The classi�er labels the image as a cat with very high
con�dence (89%) while the human brain perceives it di�erently. As
shown in Fig. 2(b), the decision-based adversary [16] starts from a
dog (G0) and adds the proportion of a cat (X) gradually to approach
the boundary. The curves between classes in Fig. 2(b) indicate the
decision boundaries, where X 2 [0, 255]�⇥, denotes the perturbed
image with the same shape as G0. The contiguous decision bound-
ary allows the DNN models to always output a result, while the
result turns unreliable as it approaches the decision boundary.
Decision Boundary of ASR: At �rst sight, it appears that the ASR
systems would inherit the DNN’s susceptibility to decision-based
adversarial attacks. However, the unique characteristics of voice
systems and DNN models make traditional decision-based attacks
hard to succeed. Here, we conduct a preliminary experiment, in
which we mix two voice commands “stop" and “backward" together
(Fig. 2(c)) to imitate the mixture of cat and dog images. Then, we
submitted the mixed audio to Google Speech-to-Text API, which
was rejected without any returns. The failed attempts indicate
that the decision boundary of the ASR system is non-contiguous.
As shown in Fig. 2(d), every voice command is surrounded by an
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"backward"
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Continuous decision
boundary for adjacent

classes

Figure 3: Phoneme guided query

exclusive boundary, and the audios outside of the boundary ranges
will be rejected by the ASR systems.

This phenomenon implies that the perturbed voice queries may
fail to solicit valid feedback from the ASR systems. Without feed-
back, it is di�cult to determine the direction of the perturbation for
approaching a target decision boundary. Based on this observation,
we are motivated to design a new boundary-searching method to
enable the decision-based black-box attack toward ASR systems.

3 ATTACK DESIGN
In this section, we present the system design of PhantomSound. We
�rst introduce the phoneme-level boundary searching method to
minimize the possibility of rejection by the ASR systems. Then, we
formalize the attack as an optimization problem and illustrate the
generation of AEs. Finally, to enhance the robustness of PhantomSound
in real-world scenarios, we propose the weak synchronization
scheme and over-the-air speech enhancement.

3.1 Phoneme-level Boundary Searching
Fig. 2(d) shows the challenge in boundary searching to produce
a proper AE. If the adversary randomly adds noise to “stop", the
ASR remains the “stop" decision when the noise is low and gives
rejection while rising the noise power. However, if the adversary
directly applies target “backward" to the benign audio, it results
in audio (red start in Fig. 2(d)) in the middle between two decision
boundaries, hence giving no output.

Therefore, the reasons behind the rejection of queries can be
attributed to two factors: 1) the added random noise will elevate the
command’s noise level; 2) the boundary distance between two valid
commands is too long to allow for an unnoticeable perturbation. To
resolve these two problems, a novel idea is raised: “If we break the
target “backward" into small pieces, then craft AE with sub-targets
which directly connect to the benign decision boundary with small
pieces, and �nally, we can craft the �nal AE with the target." Fig. 3
depicts our attack design. Speci�cally, instead of directly adding
“backward" on the “stop", we break the target “backward" into a
series of phonemes. During crafting the AE, we randomly add the
phoneme on the benign audio and check the prediction. If the ASR
produces a word that is closer to our target, we keep the phoneme
on the benign audio and search for a closer prediction in the next
round. In our case, the “stop" adds perturbation phoneme X1 and
is recognized as “stopwhat", then changes to “stalk what", and
“back what", and �nally reaches the target “backward". In every
step, the AE achieves to sub-targets who is adjacent to the benign

decision boundary, and gradually, the perturbation can be crafted
by summing up all the small changes.

The basic idea of the proposed phoneme-level searching method
is to perturb the original command along the direction of the target
command while minimizing the distance between the original and
the target ones.

Algorithm 1 presents the initialization procedure for generating
the phoneme-level adversarial perturbation. Speci�cally, we �rst
set the counter B = 0, and the initial distance between benign and
target as n = CER(5 (G0),~C ). Next, we construct a phoneme set
⇡ = {?⌘1, ?⌘2, ..., ?⌘=} by breaking the target command, and then
generate a random noise E 2 [0, 0.1]; in line 4, where ; is the length
of original input G0. Next, together with the E , a phoneme from ⇡
is randomly picked and injected at its corresponding position of G0
in lines 5-6 to generate an AE G⇤. The purpose of E is to increase
the variance of the phoneme. For the targeted attack, if the G⇤ has
a smaller distance to the target (line 7), we put the perturbation
to the initial perturbation set %̃ , then update the n and G0. For an
untargeted attack, we can replace line 7 with “if 5 (G⇤)! = ~" to
assure the ASR gives an incorrect prediction. The searching loop
continues until it reaches a su�cient number of rounds  .

Algorithm 1: Phoneme-level Adversarial Perturbation Ini-
tialization
Input: The original audio G0, the target label ~C , the

phoneme clip samples ⇡ = {?⌘1, ?⌘2, ..., ?⌘=}, the
initial Character Error Rate(CER) n , the API service
of black-box ASR system 5 (·).

Result: The initial perturbations set %̃
1 s = 0;
2 n = CER(5 (G0),~C );
3 while B <  do
4 E = random [0, 0.1]; ;
5 X = E + A0=3 (⇡);
6 G⇤ = G0 + X ;
7 if CER(5 (G⇤),~C ) < n then
8 Put X into %̃ ;
9 n = CER(5 (G⇤),~C );

10 G0 = G0 + X ;
11 else
12 B = B + 1;
13 end
14 end
15 return %̃

3.2 Perturbation Optimization
Even though Algorithm 1 generates proper perturbations for any
voice commands, the amplitude of the perturbation may become
overwhelming. Revisiting Eq. (1), to acquire the minimal pertur-
bations, we need to gradually increase the perturbation power.
However, due to the black-box setting, the gradient is inaccessible.
As a result, we use Sign-Opt [19] to estimate the gradient, since
Sign-Opt has achieved superior performance with the least number
of queries, as written below:
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rL(G) ⇡
&’
@=1

B86=(L(G + f`@) � L(G))`@, (2)

B86=(L(G + f`) � L(G)) =
(
+1, 5 (G + f`) < ~C
�1 5 (G + f`) = ~C

(3)

where G is the general representation of G0 + X , @ and & denote the
noise index and the total number of noises respectively. f is the
search variance and ` is the noise. The key idea of Sign-Opt is to
search the gradient space using the natural evolution strategy. Since
L(G) is unknown, Sign-Opt queries 5 (·) in Eq. (3). The feedback of
the target model can be collected to measure the number of wrong
predictions. The result will be used to guide Eq. (2) in searching for
the gradient of L(G).
Query-E�cient Fine-tuning: The perturbation generation typ-
ically requires ⇠5k queries to craft an AE [16, 19]. To further re-
duce the cost of queries, we design a query-e�cient AE generation
scheme to greatly reduce the query number.

By carefully examining the Eq. (2), we realize that the gradient
estimation step depletes most of the queries. Suppose & = 50, then
it uses 50 queries to catch the 5 (·) result and estimate gradient
according to Eq. (3). However, Sign-Opt [19] uses the estimated
gradient only once for updating G , with a small update learning
rate, while most of the gradient computations are wasted. In our
design, we estimate the gradient once, then apply the estimated
gradient multiple times to update the X until it does not satisfy our
attack goal, then do the gradient estimation again.

The work�ow of our proposed query e�cient phoneme-level
adversarial perturbation generation is shown in Fig. 4. There are
three major steps to generate AEs and perturbations: searching,
proposing, and �ne-tuning. In the searching and proposing phases,
unlike the prior study [19] which only searches for random noise
and keeps the shortest initial perturbation while discarding others,
we reserve all the perturbation candidates to increase the genera-
tion speed. In the �ne-tuning phase, we optimize all the proposed
perturbations through gradient estimation. Note that there are three
paths from the Query block: 2� is used to update the perturbation
consecutively until it cannot be further optimized. Then, we will
re-calculate the gradient ( 1�). Once the power of perturbation is
lower than n , we add it into the perturbation set % ( 3�).

3.3 Weak Synchronization Design
Considering the adversary needs reaction time to play the perturba-
tion, the generated perturbations are demanded to be robust against
the mismatch of insertion positions. To realize such an attack, we
seek to minimize the average loss instead of the instant loss. That is,
we take the impact of mismatch into consideration and expect the
comprehensive loss to be minimized. Mathematically, the average
loss can be expressed as follows:

L(G) = 1
#

#’
8=1

L8 (G), (4)

L8 (G) = L(G + 2g), (5)
where g represents the mismatch interval, 2 controls the length
of a mismatch period, 8 indicates the id of related losses, and #

is the number of involved L. To minimize the average loss, we
can refer to Eq. (2) and Eq. (3) to estimate rL(G) by computing
rL(G + 2g). The drawback of the average loss gradient estimation
is that it costs #⇥ more queries to perform the gradient estimation.
The length of phonemes in ⇡ varies from 50<B to 300<B , and one-
word duration is ranging from 281<B to 387<B according to the
report [57]. We expect that the phoneme-level perturbation can
be plugged within the duration of one word, otherwise, it will
be di�cult to maintain the minimal L especially when a delayed
perturbation arrives. In this paper, we set the # = 4 and g = 100<B .
Fig. 5 depicts the perturbation mismatch scenario: when crafting
the �rst red perturbation, we gather the other losses by the same
perturbation but with a di�erent time delay. In the �gure, L1, L2,
L3 correspond to 2 = 0, 2 = 1, and 2 = 2.

3.4 Over the Air Attack Robustness
Besides the weak synchronization feature, the attack robustness is
another important feature of PhantomSound. Existing work models
the acoustic signal propagation to compensate for the propagation
loss over the air [50]. But the heavy computation prevents them
from being adopted in real time attack. Also, the quality of perturba-
tion relies on the speaker’s ampli�er, and the additional distortion
on such small perturbation is hard to model. Inspired by the prior
work [43] who sets a frequency �lter to guarantee the generated
perturbation is ranging from 50-8,000 Hz. To guarantee the e�ec-
tiveness of PhantomSound over the air, we follow their approach on
con�guring a frequency �lter to mitigate the uneven frequency re-
sponse caused by the hardware imperfection of the speaker, thereby
enhancing the attack robustness.

4 EVALUATION
In this section, we �rst introduce our benchmark experimental
setting to generate AEs and perturbations. Then, we evaluate Phan-
tomSound thoroughly to validate its feasibility and robustness.
Moreover, we measure the impacts of di�erent parameters in tun-
ing a successful attack. Our attack is successfully launched on four
di�erent ASR service APIs, and the �ve popular commercial IVC
devices. We further conduct an user case study in section 4.8. This
section describes the results in detail.

4.1 Target Model Selection
Since we are developing a general approach to generate perturba-
tions to attack closed-source ASR systems and commercial devices,
we will examine the e�ectiveness of AEs and perturbations on the
most popular IVC devices available on the market. Speci�cally, we
select Google Home (G-H), Google Assistant (G-A), Amazon Echo,
Microsoft Cortana, and IBM WAA1 as target IVC devices. More-
over, we target their respective ASR APIs, namely, Google Cloud
Speech-to-Text API, Microsoft Azure API, Amazon Transcribe API,
and IBM Watson API. As for Apple Siri, since there is no online
speech-to-text API service available fromApple, we cannot perform
PhantomSound due to the lack of querying feedback from its ASR

1WAA represents “Wav-Air-API". As IBM does not own a commercial voice assistant
device, we record and replay our AEs over-the-air, and transcribe them with IBM
Watson API. This process, named as WAA, simulates an IVC device that is integrated
with an IBM Watson API [18].
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system. For all the target systems, we only receive the hard label of
the querying input from their APIs.

4.2 Metrics
We use the following metrics to quantify the e�ectiveness of our
attack: (1) Success Rate: this metric represents the ratio of successful
attacks and the total attempts. For an untargeted attack, as long as
the AEs and the perturbations alter the prediction of the original
input, we count it as successful. For a targeted attack, we report
success only when the prediction matches the targeted class. (2)
Average queries per command: we use the number of queries to
imply the cost and speed of AE generation. Speci�cally, we measure
how many queries it needs to craft a perturbation. This metric
is calculated by the total number of queries over the number of
crafted AEs/perturbations. (3) L2 Distortion: the L2 distortion | |X | |2
indicates the size of perturbations. Prior to the launch of a physical
attack, we can measure the distortion value by summarizing the
squared amplitude of the generated perturbations. Note that the
perturbation X 2 [0, 1]; and the initial phoneme-level distortion
ranges from 50 to 1,600 depending on di�erent phonemes, which
will be optimized after the perturbation �ne-tuning as shown in
Section 4.5. (4) False Accept Rate: the false accept rate is measuring
the probability of that the attacks can be false accepted by the
liveness detection methods. We use this metric to evaluate the
ability of our attacks to bypass the existing defense methods (e.g.
liveness detection) compares to the existing attacks. The higher

false accept rate we achieve, indicating themore dangerous of attack
is, to bypass the existing liveness detection methods.

4.3 Dataset
The dataset we choose as original input is speech commands v0.02 [60]
released by Google Brain. This dataset is designed to validate the
keyword detection capability of DNN models. It contains 105,829
utterances of 35 common one-word commands (e.g., “yes", “learn",
“stop"), which is recorded from 2,618 volunteers. To validate the
e�ectiveness of PhantomSound on a longer command, we record
10 longer commands (partially listed in Table 4) from a volunteer.

For the phoneme dataset, we expect to obtain all 44 pure Eng-
lish phonemes with �exible duration. Existing speech datasets (e.g.,
Arabic Speech Corpus [32], TIMIT [1]) include the annotations
of phonemes, but it requires extra e�orts to extract individual
phonemes with di�erent duration from the speech audio. Besides,
PCVC dataset [2] only involves 12 volunteers, and scikit phoneme
dataset [51] only contains 5 vowels. To construct a phoneme dataset
with a diverse set of speakers, we use 200 di�erent audios from
200 speakers in speech commands v0.02, remove the silence in the
recordings, and randomly cut audio clips with a duration between
50ms to 300ms. This phoneme processing step follows that of the
scikit phoneme dataset [51], which results in 453 audio clips in
total.

Table 2: Dataset description (“unique cmds" refers to the
number of unique target commands, and “total audios" refers
to the total number of (adversarial) audios that lead to the
target commands).

Phone. Cmd. Untargeted Targeted
Unique cmds - 45 1785 64
Total audios 453 300 6,219 216

Table 2 records the number of involved data including phonemes,
commands, untargeted perturbations, and targeted perturbations.
We use 35 one-word commands from the speech commands v0.02
dataset, along with 10 self-recorded long commands to build a com-
mand dataset with 45 di�erent commands, including 300 audios in
total. Then, we apply the proposed algorithm to randomly generate
AEs and perturbations for an untargeted attack, resulting in 1785
di�erent commands and 6,219 adversarial audios on 4 di�erent com-
mercial APIs. For the targeted attack, we attempt the perturbation
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of keywords, and generate 64 target commands with 216 adversarial
audios.

4.4 Experiment Setting
We conduct the experiments on a desktop with Intel i7-7700k CPUs,
32GB RAM, and 64-bit Ubuntu 18.04 LTS operating system. The
experiments are performed at three locations with di�erent noise
�oors. We use three loudspeakers, including LG monitor built-in
speaker (at the apartment), an SADA D6 home small speaker (at
the lab), and an Samsung S9 phone (at outdoor), to transmit AEs
(i.e., AE attack) and perturbations (i.e., perturbation attack) to the
victim devices. Figure 12(a) demonstrates the attack scenario: the
victim speaks commands into a smartphone or Google Home mini,
while the attacker plays the perturbation through a speaker.

4.5 Attack Performance
We �rst evaluate the functionality of AE generation in Phantom-
Sound. The purpose of this evaluation is 1) to demonstrate that the
perturbation amplitude is negligible compared with the input, and
2) to prove the query e�ciency of our phoneme-level searching
algorithm. Then, we conduct the physical attack and validate the
robustness of our attack over the air.
Attack Over-the-line: We �rst evaluate the attack by targeting
the ASR APIs. The adversarial audios are directly supplied to the
online APIs. We randomly select 20 adversarial audios from every
command, and then perform the untargeted attack by searching
for 100 epochs ( = 100 in Algorithm 1). Then, the generated
perturbations are optimized to suppress their power. In the end, we
obtain 148 AEs and perturbations from ⇠44k queries (& = 30 in
Eq. (2)), i.e., 301 queries per AE on average.

(a) One-word commands (b) Command phrases
Figure 6: Comparison of input and perturbation amplitudes.

To evaluate the perturbation amplitude, we randomly pick two
examples from the generated perturbation as shown in Fig. 6. We
can see that the crafted perturbations have a negligible power pro-
�le compared with the input regardless of the length of commands.
Moreover, the duration of perturbation is shorter than the input,
which makes it possible to conceal the presence of perturbation.
Table 3 summarizes the results of the untargeted attacks toward
4 types of commercial APIs. We observe that every command can
be altered into at least two false commands. While some of the
false predictions are harmless, the attack can almost certainly in-
validate the victim’s command. Moreover, in certain cases, some
perturbations can lead to a contrary response from voice assistants

(e.g., “right" to “wrong" in Amazon Transcribe API, “right" to “no"
in Microsoft Azure API). Considering the number of queries for
generating one perturbation, the Google Cloud Speech-to-Text is
reported to be the most resilient API under our attack, as it requires
the most queries.

Table 3: Untargeted attack results.

Cmds. Google
Cloud

MS
Azure

AMZ
Trans.

IBM
Watson

"down"
"damn" "town" "done" "Downer"
"done" "one" "dine" "Done"
"does" "south" "drive" "Drone"

"follow"
"fallout" "fallout" “no” "fallen"
"farm" "fall over" "for sure" "fall over"
"four" "learn" "phone" "fall"

"forward"
"forewarn" "work" "what" "for"
"for eyes" "for" "work" "four"
"for work" "ford" "for all"

"yes"
"yeah" "�le" "yeah" "yeah"
"yeah!" "4" "yes.." "yet"
"yet" "On" "right" "hi"

"right"
"Rite Aid" "no" "write" "run"
"write" "go" "run" "ray"
"read" "trade" "wrong" "left"

Queries 345 251 215 314

To further comprehend the query e�ectiveness, we conduct an
additional experiment to validate the sensitivity of di�erent APIs in
terms of request rejection rates. The result shows that Google API is
most sensitive as it refuses to respond to an unclear input, while the
Amazon transcribe always responds to any inputs. Table 4 records
the targeted attack results towards a longer input. The results show

Table 4: Targeted attack results

Command Query

Input Target Google
Cloud

MS
Azure

AMZ
Trans.

IBM
Wat.

"turn right" "turn left" 1,895 1,128 1,421 1,487
"kitchen
lights o�"

"kitchen
lights on" 1,754 857 933 1,377

"callmom" "call 911" - 1,421 1,125 -
"read
my
message"

"delete
my
message"

2,342 1,520 1,436 1,781

Average
Queries 1,997 1,232 1,229 1,548

that our phoneme-level searching method is capable of �nding the
speci�c perturbation that could mislead the APIs to return a target
result. Note that the average query amount increases dramatically
in the targeted attack case, which is anticipated because the tar-
get need to be achieved by multiple round perturbation searching
(line 7-10 in Algorithm 1). It is also noteworthy that our targeted
attack cannot guarantee �nding a successful perturbation under
any arbitrary inputs (e.g., Google Cloud fails to craft AEs for “call
911").
Query E�ciency Comparison on Known models: To validate
the bene�ts of introducing phonemes to guide the optimization
direction, we implement 3 di�erent attacks on two known models.
By attacking two ASR models (DeepSpeech 1/DS 1 [33] and Deep-
Speech 2/DS 2 [11]) with di�erent prior knowledge and method,
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Table 5: Comparison for Untargeted Attacks

Models# Ours white
box[14]

score
based[17]

brute
force[12]

DS 1 [33] 185 90 206 1
DS 2 [11] 226 75 197 1

we �nd that PhantomSound achieves comparable query e�ciency
with the grey box setting, with 100% attack success rate. The result
is summarized in Table 5. Given the same 10 benign commands,
we use the 4 attacks to generate untargeted AEs with the same
!2 distortion. We record the average number of queries for di�er-
ent prior knowledge of the victim model. Compares to the white
box attack, which can �ne-tune in <90 queries, PhantomSound re-
quests 200 queries to craft an AE, which is close to the queries of
a score-based attack. This result indicates that our strategy such
as 1) using phoneme to initialize perturbation 2) Query-e�cient
�ne-tuning is working well, and performing similar results with
less information (e.g., con�dence score). It is noteworthy that the
brute force decision boundary search method doesn’t work for at-
tacking the ASR model. Because this method initializes a random
noise and retrieves model gradients by altering the noise. However,
this noise can never be �ne-tuned while the victim model produces
an empty label to it, resulting in an in�nite number of queries.

Table 6: Comparison for Targeted Attacks

Attacks Knowledge Queries SR
Carlini [14] Gradient ⇠1,000 100%
Houdini [20] Gradient ⇠1,000 100%
Devil’s [18] Conf. Score ⇠1,500 100%
OCCAM [69] Final decision ⇠30,000 100%
Ours Final decision ⇠1,500 68%

Query E�ciency Comparison for Targeted Attacks: We com-
pare the number of required queries with four existing attacks
in Table 6. The white-box attacks (Wb) [13, 20] require the least
amount of queries (⇠1,500). With the knowledge of con�dence
scores of API’s decoding results, the Devil’s Whisper [18] utilizes
a surrogate model trained with around 1,500 queries to attack the
APIs. In the scenario when an attacker can only access the �nal
decision of the query API, PhantomSound needs ⇠1,500 queries
(comparable with the white-box setting) to craft a targeted pertur-
bation. Compared with a recent black-box attack OCCAM [69], we
reduce the number of queries by 95%. However, due to the limita-
tion of phoneme length and diversity, we sacri�ce the success rate
to achieve high query e�ciency.
Weak synchronization: Before evaluating the physical attacks,
we investigate the e�ectiveness of the proposed weak synchro-
nization design. In this experiment, we manually add mismatch
delays between input G0 and the generated perturbation to craft
mismatched AEs. We then use the mismatched AEs to query the
APIs and measure the attack success rate. Fig. 7(a) displays the
result, from which we can see that, after using the average loss,
although we expect the weak-synchronization works within 400<B
(detailed in Section 3.3), this design is only partially e�ective, be-
cause the success rate drops steadily with the increasing mismatch
time. Moreover, we show the tendency of L2 distortion w.r.t. the

number of queries in Fig. 7(b). The baseline denotes an L2 distortion
of 10, which is proven unnoticeable by two volunteers when AEs
are played using an LG monitor with a medium volume.

(a) Weak synchronization (b) !2 Distortion vs. No. of queries

Figure 7: Evaluation of AE generation process.

Attack Over-the-air: The over-the-air attack evaluation aims to
prove the robustness of PhantomSound.

To attack commercial APIs, we play the valid AEs and pertur-
bations (which attack successfully in over-the-line scenarios) via a
SADA D6 speaker, and record it by iPhone 12 Pro, the recordings
are sent to the commercial API for evaluation. The attack distance
is set to 50cm. For each attack, we choose 5 AEs to play 5 times and
get the average success rate. We report the result in Table 7. From

Table 7: Over-the-air attack API baseline

APIs Google Cloud MS Azure AMZ Trans IBM Wat.

Targeted AE 76% 80% 80% 84%
Pert. 68% 72% 72% 76%

Untargeted AE 100% 100% 100% 100%
Pert. 72% 80% 80% 92%

our observations, it is apparent that in the context of a targeted
attack, our method attains approximately a ⇠ 80% success rate in
attacking over-the-air commercial ASR APIs by directly playing the
audio adversarial example (AE). When the attack is synchronized
with the victim’s speech, the perturbation attack exhibits around a
⇠ 72% success rate. On the other hand, when it comes to untargeted
attacks, our adversarial examples (AE) and perturbation methods
achieve impressively high success rates. They misdirect the victim’s
input with a 100% and approximately 81% success rate, respectively.
Next, we follow the same setting to attack commercial IVC devices.

The result in Fig. 8(a) uncovers the success rate of playing AEs
directly. Among all the tested IVC devices, Microsoft Cortana is
most vulnerable against the AE attack, while the Google series
products (e.g., Google Home, Google Assistant) show the most
resilience against the targeted AE attack. Overall, the success rate
of an untargeted attack is higher than that of a targeted one, i.e.,
the former reaches ⇠80% success rate and the latter stays around
⇠50%. With the perturbation attack, Fig. 8(b) reveals a relatively low
success rate. Similarly, compared to the targeted perturbation attack,
the untargeted attack has a higher success probability, achieving
around 45% success rate on average. Nevertheless, the success rate
can be further improved via multiple repeated attempts. We also
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(a) AE attack (b) Perturbation attack (c) Distance (d) Loudness

Figure 8: AE generation results.

Table 8: Comparison with other real-world attacks

Target Google
Cloud

MS
Azure

AMZ
Trans.

IBM
Wat.

Google
Home

Google
Assit.

MS
Cortana

AMZ
Echo

Devil’s [18] 10/10 10/10 4/10 10/10 9/10 10/10 10/10 10/10
Danger [68] - - - - 15/100 - - 69/100
Ours 19/25 20/25 20/25 21/25 11/25 12/25 16/25 16/25

summarize the success rate compared to prior black-box attacks in
Table 9.

Upon comparison with the Devil’s attack [18], it is evident that
our attack method yields a marginally lower success rate against
the APIs, with the exception of the Amazon Transcribe API. Consid-
ering the IVC devices, the Devil’s attack tends to be more e�ective
at similar SNR levels. For the Danger attack [68], we have displayed
their success rate derived from their "voice squatting" attack, where
the victim’s command is misinterpreted to initiate the attack skill.
A comparison reveals that our attack technique yields comparable
success rates when targeting Amazon Echo, and even demonstrates
superior performance when used to attack Google Home.

Table 9: Latency for perturbation generation

Time
Consumption

Google
Cloud

MS
Azure

AMZ
Trans.

IBM
Wat.

Latency (s) 0.29 0.58 26.31 1.35
Untargeted (min) 1.67 2.43 94.3 7.1
Targeted (min) 9.65 11.9 539 34.8

TimeCost:Di�erent from the prior works that require a substantial
amount of time to craft AEs o�ine, PhantomSound enables much
faster AE generation. Such a fast generation feature is essential in
practice, when the attackers only have a limited time budget to
instantiate the attack.

In the experiment, we record the latency for querying 4 di�erent
commercial APIs to get the results. The results are presented in
the �rst row of Table 9, which show that 3/4 of APIs could return
a result in seconds, except Amazon Transcribe API. The Amazon
API has to interact with Amazon Web Service and Storage bucket,
which spends a longer period for the results to return.

We then compute the total time needed for perturbation genera-
tion, by multiplying latency with the number of queries (shown in
Table 3, 4). Our result shows that PhantomSound can generate a

perturbation for both the targeted and untargeted attacks in min-
utes with the exception of Amazon API, while the targeted one
takes longer. Note that we take the !2 distortion into consideration
during the time cost computation, however, if the attacker ignores
the impact of the perturbation loudness and uses the intermediate
perturbation, the generation time can be further reduced.

Figure 9: Attacks vs. liveness detection defenses

4.6 Ability to Bypass Liveness detection
Compares to the existing physical adversarial attacks [18, 64, 69],
PhantomSound relies on the benign commands spoken by the user.
Although this attack setting requires extra e�ort to synchronize
the perturbation and the user’s benign speech, it brings potential
bene�ts to bypassing the defense mechanism. For example, recent
works [5, 28, 38, 40, 42, 45] proposed liveness detection approaches
can di�erentiate the source of sound (human or machine) with high
accuracy. Therefore, the conventional adversarial attacks that are
launched solely by loudspeaker [18, 64, 69] have a higher probability
to be defended by those liveness detection methods. In contrast,
our attack is designed to launch with the user’s speech, leading
to a more dangerous threat to the liveness detection defenses. To
validate the performance of PhantomSound over di�erent defense
mechanisms, we reproduce three liveness detection algorithms,
CQCC [38], STC [40], and Void [5]; For comparison, we implement
C&W attack [14] and Devil’s [18]to attack with liveness detection
algorithms. The detailed liveness detection methods can be found
in Appendix A. To conduct this experiment, we follow the settings
described as follows:
Ours:We play our perturbation when the user gives the command,
and record it with a smartphone. Then, we run three liveness de-
tection algorithms to detect the sound source.
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C&W [14]: We play the AEs that are generated by this attack, and
then record with the same smartphone and run liveness detection
algorithms to defend it.
Devil’s [18]:We play the AEs provided from the paper’s demon-
stration website, and then record it with the same smartphone,
followed by the same liveness detection procedure.

For our attack and the C&W attack, we use 20 di�erent perturba-
tions/AEs to attack the liveness detection model; As for the Devil’s
attack, since we can only collect 10 AEs from the demonstration
website, we use 10 AEs to attack the liveness detection model. We
present our result in Fig. 9. It is evident to show that our attack can
bypass the three liveness detection models, resulting 95% to 100%
false accept rate. In contrast, the other two attacks have a very low
chance to counter the Void [5] detection with less than 15% FAR.
Even for conventional liveness detection methods (e.g., CQCC and
STC), the existing attacks that use complete AEs also have a low
probability ( 40%) to attack successfully.

4.7 Impact of Practical Factors
To investigate the critical factors that may a�ect the success rate of
PhantomSound, we evaluate the perturbation attack under di�erent
environments (e.g., apartment, lab, outdoor). The ambient noise
level for the aforementioned places are 39.8 3⌫(%! (apartment), 41.2
3⌫(%! (lab) and 58 3⌫(%! (outdoor), respectively.

In this experiment, we play a crafted perturbation of “turn right"
10 times, attempting to transform the prediction into “turn left",
and the volume of perturbation is 60 31(%! . We then record the
success rate under di�erent circumstances. Fig. 8(c) demonstrates
the impact of attack distances, i.e., the closer the adversary is, the
higher success rate he/she achieves, which is unsurprising given
that our attack relies on the successful delivery of the perturbation.
The relatively short attack distance is in fact a common limitation
reported by the existing work [18, 43, 64]. However, the attacker
can further extend the attack distance by increasing the speaker’s
volume (though it could make the perturbation more noticeable)
or utilizing a speaker array [49]. Next, we provide the results on
how the loudness factor could a�ect the attack performance in
Fig. 8(d). We can see that the success rate improves with the in-
creasing perturbation loudness. This result also coincides with the
prior work [43]. In an outdoor environment, it is suggested that the
adversary enhance the attack robustness by amplifying the pertur-
bations. Due to the higher noise level outdoors, the phoneme-like
perturbation can still be hard to perceive.

(a) Attack Angle iPhone 12Pro (b) Attack Angle Mi 8 Lite

Figure 10: Attack with di�erent angles

Impact of Attack Angles: Besides the attack environments and
the distance, the attack angle can also alter the attack performance.
We evaluate our attack by playing AEs to two smartphones in 12
di�erent directions (from 0 degrees to 360 degrees, with 30-degree
intervals). This experiment is conducted in Lab environment and
attacks the google assistant on the smartphone. We play 10 AEs
in every direction with 603⌫(%! , and record the success rate of
the untargeted attack. We report our result in Fig. 10. We �nd
that our attack has the best performance when the adversary is
facing or back to the smartphone. While attacking through the
side direction (e.g., 0 degrees when the adversary is parallel to the
victim), the success rate is impaired. We observe the same trend
on two smartphones. This result indicates that the microphone
arrangement and its direction will lead to audio information loss.
Unfortunately, the low power of our perturbation is hard to be
sensed with the audio loss, therefore causing a low success rate in
the side direction.
Impact of Di�erent victims: In the attack preparation period,
every perturbation is crafted based on a speci�c command from a
speci�c speaker. However, the adversary may use the crafted pertur-
bation on the previous victim to attack the current victim. Here, we
evaluate the capability of PhantomSound to attack di�erent speak-
ers. First, we obtain 4 perturbations from speaker #1 (male), which
convert the benign commands "stop", "right", "yes", and "down" into
4 target commands "backward", "left", "no" and "song" respectively.
Next, we randomly select 100 speakers (50 males and 50 females)
who are not speaker #1 from the speech commands v0.02 dataset,
and inject the perturbations into their benign audio samples. For
the targeted attack, if the benign commands are successfully inter-
preted as the target, we classify it as successful. For the untargeted
attack, any case where the benign commands are misinterpreted is
considered successful. The result is present in Fig. 11.

(a) Targeted attack (b) Untargeted attack

Figure 11: Attack cross di�erent victims
The result indicates that, for targeted attacks, the attack success

rate is dependent on the benign samples. The success rate exceeds
50% when the target is of the same gender, but it falls below 40%
when targeting di�erent genders. Regarding the untargeted attacks,
the perturbations demonstrate robust transferability for attacking
various speakers. The average success rate is notably high, reaching
98% for males and 74% for females.

4.8 User Study
To evaluate the stealthiness of perturbation in a real-world attack,
we conduct an online/in-person user study to investigate the users’
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perception level of PhantomSound. In our study, 20 volunteers are
involved, and they are requested to hear 6 crafted perturbations
across 4 di�erent distances. Two volunteers attend the in-person
experiment (see Fig. 12(a)) and the rest of them carry out the ex-
periment at their homes. We recruit 13 volunteers from Amazon
Mechanical Turk with complete experimental instructions. The
experiment setup detail can be found at Appendix B.

The volunteers are asked to pretend speaking to their voice assis-
tants while hearing the perturbation, after which they will answer
questions to depict their comprehension of the heard perturbations.
The options for perception levels include: Listened, Abnormal, and
Recognize. Listened indicates that the volunteer can hear a pertur-
bation but regard it as a normal noise; Abnormal implies that they
hear some strange sounds; and Recognize stipulates that they can
understand the meaning of the heard sound. We report the experi-
ment result in Fig. 12(b). It shows that most of the participants can
hear the perturbation within a short distance, but less than 50% of
them regard the perturbation as an abnormal sound. Such “abnor-
mality" feeling will gradually disappear with the increasing attack
range, which ends with 10% in 2 meters. Moreover, even though all
the perturbations are “meaningless" phonemes, some participants
claim to understand their meanings (though the understanding is
incorrect). To summarize, PhantomSound can be noticed by victims,
but would not vastly raise their attentions. Notably, the victims are
generally unaware of the meaning of perturbations.

Victim

Laptop

Smart

Phone

Speaker

Google

Home Mini

(a) Experiment setup (b) Users’ perception level of
PhantomSound

Figure 12: Real-world user study of PhantomSound.

5 DISCUSSION
5.1 Low-cost Attack
Table 10 lists the cost comparison between PhantomSound and the
existing work [18]. The �rst row records the pricing information of
the commercial APIs, which is measured by the duration of given
audios (in minutes). The recent black-box attack [18] is reported to
incur the cost of 1,500 queries for building the substitute models,
and every query uses an audio with 25 seconds long. In total, such
an attack requires 1500 ⇤ 25/60 = 625 minutes to train a surro-
gate model, and can only generate 10 pre-selected commands. To
generate extra commands, the attacker needs to submit additional
queries (⇠100) for the candidate AEs. Suppose the length of candi-
date AEs is 6 seconds, the total time cost for generating extra AEs
is 6 ⇤ 100/60 = 10 minutes. All together, the duration of queried
audio is 72.5 minutes for producing one single AE. In contrast,
PhantomSound does not require a substitute model, and as such, it

only takes ⇠300 queries and ⇠2,000 queries of one-second audios
to craft an untargeted AE (Ours-U) and a targeted AE (Ours-T)
respectively. We then present the cost to generate one AE based
on the pricing and the query audio length (shown in row 4 and 5).
In the end, PhantomSound saves 93.1% and 65.5% of the cost for
crafting an AE, a drastic improvement.

5.2 Limitations
The limitation of PhantomSound includes that: 1) the attack is
sensitive to ambient noise; 2) there is no guarantee to generate an
AE for any input and any target; 3) this attack could not substantially
modify very long sentences; 4) the attack distance is relatively
short as presented in Section 4.7. To address the �rst and the forth
limitation, the adversary can either amplify the perturbation power
or attack the victim in a relatively quiet place. The second and
third limitations are possibly addressed using multiple repeated
attempts of phoneme injections, which will increase the likelihood
of generating a successful perturbation with a potential caveat of
growing costs.

Table 10: Cost comparison
Google MS AMZ IBM

Pricing/min $0.024 $0.016 $0.024 $0.01
Build model [18] 625 min
Craft AE [18] 10 min
Total time/AE [18] 72.5 min
Total time/AE (Ours) 5 min - 25 min
Cost/AE [18] $1.74 $1.16 $1.74 $0.725
Cost/AE (Ours-U) $0.12 $0.08 $0.12 $0.05
Cost/AE (Ours-T) $0.6 $0.4 $0.6 $0.25
Saving/AE (Ours) 93.1%/65.5%

5.3 Defense
Prior studies [43, 63, 64] reveal that the audio adversarial attack can
be defended by signal processing techniques, since the adversarial
perturbations are delicately crafted and hence are deemed fragile.
The signal processing techniques, however, can reduce the �delity
of perturbations and hence protecting the ASR models. Typical
signal processing defense methods include 1) Down sampling (DS):
decreasing the sampling rate of AEs to disrupt the quality of AEs [43,
63, 64]; 2) Quantization: as the original AEs are encoded by 16-
bit values, the quantization technique rounds the 16-bit precise
value to its nearest integer multiple of & , where & represents the
quantization level. A higher & results in a lower precision of AEs,
which has been adopted to defend against the attacks [43, 63]. 3)
Low pass �ltering (LFP): the defense can use a Butterworth low-pass
�lter with di�erent cuto� frequencies to remove the high-frequency
components of the perturbations [43].

We reproduce the aforementioned three defense methods to
test their e�ectiveness against PhantomSound. Speci�cally, for DS
approach, we modify the sampling rate of AEs from 16k to 8k and
4k. In the quantization setting, we follow the existing work [43] to
set& as 256, 512, and 1,024. Then, we build a Butterworth low-pass
�lter with a cuto� frequency of 4kHz, and set the order of the �lter
as 6. To validate the defense performance comprehensively, we
generate 1,190 AEs from 20 clean audio samples and process them
with 6 di�erent defense settings.
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(a) Defense performance of down sam-
pling and low pass �lter

(b) Defense performance of quantization

Figure 13: Performance of PhantomSound against di�erent
defenses.

We use the processed AEs to attack 4 commercial ASR APIs, and
present the results in Fig. 13. Fig. 13(a) shows that LPF can barely
impact the attack success rate of AEs and APIs. For comparison, the
DS technique slightly changes the attack success rate from 100% to
92.4% (Microsoft), 71.4% (IBM), 87.5% (Amazon), and 63.3% (Google).
This method can further reduce the success rate by applying a lower
sampling rate (e.g., with 4k sampling rate, the IBM and Amazon
API can defend against ⇠60% attacks, while the Google API is not
supported for the audio input with such a low sampling rate. Di�er-
ent from the �ndings from previous work [43, 63] that quantization
is e�ective in defending against the adversarial attack, our results
show a converse performance. From Fig. 13(b), we observe that only
the IBM API can be a�ected by the quantization, which reduces
the success rate to 73%, 61%, and 47% for q=256, 512, and 1,024,
respectively. To summarize, our results demonstrate that the exist-
ing signal processing-based defense approaches cannot protect the
commercial APIs from PhantomSound. Future research on defense
mechanisms are needed to provide more secure speech-to-text and
voice assistance services.

5.4 Ethical Issues
The intention behind publishing this work is to enlighten the aca-
demic and tech community about the vulnerabilities of commercial
ASR APIs and smart speakers, it may also provide malicious ac-
tors with the knowledge and tools to exploit these vulnerabilities
for harmful purposes, such as privacy invasion, identity theft, or
unauthorized control of connected devices. If the �ndings of this
paper are misused, malicious actors could potentially manipulate
smart speakers into sharing sensitive information or performing
unauthorized actions, there may be potential �nancial and repu-
tational harm to individuals and corporations. To address these
ethical concerns, it would be advisable to collaborate with manu-
facturers of smart speakers to design e�ective countermeasures to
defend against this attack.

6 RELATEDWORK
The study of adversarial attacks starts from the discovery of in-
triguing properties of the neural networks around 2014 [21, 54].
Researchers manually or automatically add small perturbations to
the input and thereby misleading the neural network models.
Adversarial Attacks against ASR Systems: Existing work [7, 14,
20, 48] has proposed di�erent optimization algorithms to craft e�ec-
tive AEs towards ASR models with some knowledge of the victim’s

ASR model (e.g., prediction scores or logits output). However, the
robustness of their attack approaches in a real-world over-the-air
scenario is usually unveri�ed. The recent physical attacks such as
CommanderSong [64], Devil’s Whisper [18], and AdvPulse [43]
require a substantial cost (in time and money) for the attackers to
succeed in attacking the black-box voice assistants.
Signal Processing Attacks: Rather than exploiting the vulnera-
bilities of neural networks in ASR systems, the signal processing
attacks aim at attacking the signal pre-processing or feature ex-
traction modules. They usually exploit the discrepancies between
the human auditory system and the perceptual hearing system of
microphones to fool the ASR system. These attacks analyze the
input and output of the feature extraction procedure, and then they
modify the input of feature extraction and preserve the shape of
output to either hide their attack [3] or mislead the ASR system in
producing incorrect transcriptions [4]. Even though the existing
signal processing attacks demonstrate the e�ciency and e�ective-
ness against the black-box models, it is relatively straightforward
to defend against using frequency �lters.
AudioBackdoorAttacks:Di�erent from adversarial attackswhich
attack a trained model, backdoor attacks [26, 31, 44] inject backdoor
triggers during the training process. Recently, researchers demon-
strated that the backdoor attack [52, 65] can also be implemented in
the ASR model and Speaker Veri�cation models. To defend against
the backdoor attacks in the image domain, several countermeasures
are proposed [29, 30].
Other Related Works: Some attackers exploit the imperfection of
hardware (e.g., microphone) to deliver inaudible attacks through
di�erent media [41, 53, 62, 67]. Besides, Danger [68] uses homo-
phones (i.e., di�erent words with similar sounds) to attack ASR
skills. Researchers also develop side-channel attack [59] by inject-
ing voice commands through a power line. Speech synthesis attack
produces victim’s fake speech by generative models [61]. To protect
the victim’s original speech, researchers add perturbations( [35, 58])
to prevent the generating of deep fake speech.

7 CONCLUSION
In this work, we proposed PhantomSound, a practical, black-box,
and query e�cient audio attack against commercial ASR systems
and IVC devices in a real-world scenario. As opposed to the exist-
ing attacks that require prior knowledge of the target model, we
propose a phoneme-level searching method to generate AEs and
perturbations rapidly and e�ectively in a black-box setting. In the
real-world experiments, PhantomSound is shown to be practical
and robust in attacking 5 popular commercial voice controllable
devices over the air, which could potentially cause hazard to the
smart home.
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APPENDIX
A LIVENESS DETECTION METHODS
The �rst liveness detection model [38] (CQCC) is the baseline model
of the ASVSpoof challenge, which uses constant-Q cepstral coef-
�cients (CQCC) features and Gaussian Mixture Model (GMM) to
separate the natural and replayed human speech. The second detec-
tion, STC [40] won the ASVSpoof 2017 challenge, which exploits a
Light Convolutional Neural Network (LCNN) to perform detection.
The third model called Void [5] is a fast and high e�cient detection
algorithm proposed recently. It considers novel spectrogram fea-
tures such as spectrogram delay patterns, peak patterns, and Linear
Prediction Cepstrum coe�cient (LPCC) to achieve state-of-the-art
detection accuracy 2.

2We skip some more advanced liveness detection approaches such as [28, 42, 45]
because they require extra hardware to facilitate the detection.

B USER STUDY SETUP
We recruit 7 volunteers from our institute and 13 volunteers from
Amazon Mechanical Turk. Before the experiment, we informed
them that their name, voice, and other personal information would
not be recorded. We would only release the statistical data about
reactions to our attack. For 2 in-person volunteers, we played 6
crafted perturbations at 4 di�erent distances while they were speak-
ing to the smart speaker. For the 5 volunteers from our institute and
the 13 volunteers from the MTurk, we asked them to complete the
hearing screening before the experiment. Then, we sent them the 6
perturbations and asked them to play the perturbation toward their
smart speakers at 4 di�erent distances. To ensure that all the results
are valid, we veri�ed that there were no random responses (e.g.,
“listened" at a far distance but not at a close distance; “recognized"
but not “listened"). Every experiment took ⇠10 minutes because
some subjects reported that they would need to play perturbations
multiple times before determining an answer.
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