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ABSTRACT

Due to the effects of climate change and urbanization, the severity and frequency of hazard events is expected to
increase. The energy sector in the United States is ever more vulnerable to extreme climatic hazards. Hurricane
winds can damage electrical lines, causing hazard-induced power outages. Extreme heat and freezing temper-
atures can imbalance the supply and demand for energy resulting in managed power outages. Utility companies
reportedly prioritize the restoration of power systems based on the number of outages and the size of affected
populations. This approach fails to account for unequal impacts of hazard-induced and managed power outages.
Research in equitable infrastructure emphasizes that certain populations, such as lower income and racial-ethnic
minority households, are disproportionately impacted by disruptions in the power system. Moreover, the con-
nected network qualities of the power system suggests an element of spatial vulnerabilities. However, little
empirical evidence exists regarding the presence and extent of energy inequality. A main roadblock is the data
collection process, in that outage data is often perishable and not found at granular spatial scales to allow the
undertaking of a comprehensive analysis on impacts of power losses. Recognizing this important gap, this study
collected and analyzed observational data related to the managed power outages during Winter Storm Uri (2021)
and the hazard-induced outages during Hurricane Ida (2021). The research quantified the period of recovery at a
granular spatial scale using an equitable-focused analysis to detect social and spatial inequalities through an
exploratory lens. In extreme cases of power outage, census tracts of lower income and higher percentage of
Hispanic population had longer median durations of recovery during Winter Storm Uri. In the hazard-induced
outages of Hurricane Ida, non-coastal zip codes with lower income had a 1.00-day longer median duration of
recovery and higher percentage of Black population had a 2.00-day longer median duration of recovery while
coastal zip codes with higher percentage of Black population had a 1.00-day longer median of recovery. Non-
coastal regions had 63% greater spatial Gini values and 16% greater value in infrastructure inequality when
compared to coastal regions. The managed power outages resulted in a 3% to 19% greater value of infrastructure
inequality to the hazard-induced power outages. The findings provide evidence of pervasive social and spatial
inequality in power outages during climate hazards and highlight the importance of integrating equity into the
manner in which utility managers and emergency planners restore power outages.

1. Introduction

of critical infrastructure (Lee, 2020; de Almeida & Mostafavi, 2016).
Critical infrastructure systems are highly integrated into the standard

A combination of urbanization and climate change has contributed
to the increasing severity, duration, and frequency of climate hazard
events (Bompard et al., 2013; Ciscar & Dowling, 2014). Hazard events
have transformed from rare, intense occurrences to frequent, inevitable
disruptions which must be accounted for in the risk mitigation strategies
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way of life and provide essential services to residents and community at
large (Mitsova et al., 2019). Unfortunately, these systems are increas-
ingly susceptible to disruptions during hazard events (Choi et al., 2016;
O’Rourke, 2007; Salimi & Al-Ghamdi, 2020). The energy sector, in
particular, has been severely impacted by extreme weather conditions
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including intense wind, heat, and freezing events (Klinger et al., 2014).
Negative impacts on households are substantial as residents are deeply
dependent on the multiple energy services to heat and cool their homes,
cook and store fresh food, maintain a level of safety and security, power
household appliances, and charge electronic devices. In addition, power
systems are often interdependent with other critical infrastructure such
as communication, water, and health services, worsening the impacts at
a community scale (Chang et al., 2007; McDaniels et al., 2007). The
uncertainties surrounding power disruptions places significant stresses
on individual households and the extended community which must plan
and endure for these inevitable outages.

Large-scale power outages can be hazard-induced or managed.
Power systems are not only disrupted from direct physical damage but
also from the imbalance in supply and demand (Choi et al., 2016; Choi
et al., 2019). Hazard-induced outages can occur when hurricane winds
down electrical lines, evidenced by the disruption of power during
Hurricane Ida (2021) throughout the state of Louisiana (Beven et al.,
2022), although outages were concentrated on the Louisiana coast in
direct line of the hurricane path. In some affected areas, power was not
restored until several weeks after the hurricane. In contrast, managed
power outages are the protective measures taken when utility com-
panies intentionally throttle supply. This is due an anticipated demand
surge that would surpass supply. The process mitigates long-term
damage to the power system (Agarwal & Khandeparkar, 2021). At the
network scale, extreme heat and freezing events can directly disrupt the
transmission and supply lines, which are not ruggedized for operation in
temperature extremes (Li et al., 2022). Electrical power providers pre-
emptively shut down power to minimize electrical damages from
downed power lines. Meanwhile, at the household level, energy demand
remain high for heating and cooling systems to counteract extreme
temperatures. An already weakened power system may be overexerted
by the high demand of energy to the point of complete shutdown. Energy
officials followed this strategy during Winter Storm Uri (2021) in Texas
(Kemabonta, 2021). Rolling power blackouts cut power to neighbor-
hoods and businesses with the attempted exception of critical facilities
such as hospitals (Entergy 2021). Rolling blackouts allow a set of resi-
dents to use the power for certain periods of time and then temporarily
shut down their power to move power service to another set of residents
(Munce, 2022). Ideally, this practice allows all residents to evenly share
the burden of periodic power outages throughout the hazard event, but
this incorrectly assumes that residents will actually share the same en-
ergy burden.

Multiple knowledge gaps exist in the current research on energy
inequality and power restoration. First, utility companies often restore
power systems based on the extent of physical damage, number of
outages, or total population, a method that may overlook how affected
populations are differentially experiencing power losses (Center point
Energy 2021; CLECO 2021; Entergy 2021; SWEPCO 2021). Recent
policy and law discussions have brought attention to the universal
accessibility of energy, but this discussion has not been reflected in the
restoration of power outages (Franklin et al., 2017; Tong et al., 2021;
Wewerinke-Singh, 2022). Emerging research supports the equitable
restoration of infrastructure disruptions (Birkmann et al., 2016; Esma-
lian et al., 2021; Garschagen & Sandholz, 2018; Hendricks & Van Zandt,
2021), and by extension, restoration of the power system, for socially
vulnerable populations (Jasitinas et al., 2021; Lee et al., 2022; Roman
et al., 2019). Lower income and racial-ethnic minority populations, in
particular, have reported disproportionate hardships and a diminished
ability to mitigate power losses (Coleman et al., 2020; Coleman et al.,
2020). Additional studies on Hurricane Maria in Puerto Rico and the
wildfires in California highlighted that social vulnerability may
complicate the restoration of power systems (Mitsova et al., 2018;
Roman et al., 2019). The second knowledge gap is a failure to consider
spatial inequalities in the restoration process. Power systems, by nature,
are an interconnected and far-reaching network which could be sus-
ceptible to highly concentrated regions of impact (Rachunok & Nateghi,
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2020; Ravadanegh et al., 2022). Third, models and decision frameworks
for power outages primarily focus on the restoration of transmission
lines (Panteli et al., 2017), the creation of redundancy in links and nodes
(Winkler et al., 2010), and the perspectives from expert opinion (Cas-
tillo, 2014; Wang et al., 2016). Though more models and frameworks
have begun to include an equitable perspective (Jasiunas et al., 2021;
Karakoc et al., 2020), there still lacks an understanding to the social and
spatial vulnerabilities at a household perspective which can only be
mitigated by analyzing empirical evidence of the intensity and duration
of power outages.

Indeed, the availability of empirical data is quite limited. Power
outage data is typically perishable and not available at granular spatial
scales (Flores et al., 2022; Schweikert & Deinert, 2021; Sotolongo et al.,
2020). These limitations have hindered the ability to examine and un-
derstand the presence and extent of energy inequality in climate haz-
ards. Recognizing this gap, in this research, we have collected and
utilized observational data to calculate the percentage of outages at zip
code and census tract scales, respectively, for two recent major events:
the hazard-induced outages in the 2021 Hurricane Ida and the managed
outages in the 2021 Winter Storm Uri. We analyzed these empirical data
to quantify the extent of social and spatial inequalities and answer the
following research questions: (1) to what extent power outage durations
varied inequitably across different areas with different income and mi-
nority status?; (2) what was the extent of spatial inequality in the
duration of power outages for each event?; (3) to what extent managed
power outages led to greater spatial inequality compared with
hazard-induced outages? In the analysis, first, we quantified the dura-
tion of service restoration for the two hazard events. Second, we
determined the differential outage durations for low-income and mi-
nority populations within the two climate hazard events. Third, we
compared the extent of spatial inequality between the hazard-induced
and managed power outage events. The findings will bring attention
into the equity gaps of power restoration, spotlight the importance of
data transparency, and advance the understanding of mitigation stra-
tegies for energy inequality in climate hazard events.

2. Review on relevant literature

The literature review opens with the importance of researching and
developing equitable infrastructure for normal and disaster conditions.
It also discusses the role of decision makers and utility managers in
equitable infrastructure. The review then narrows the scope to focus on
disruptions in power systems. This includes the pervasive issue of energy
inequalities and disproportionate impacts for power outages caused by
disasters. The review closes with a discussion on the knowledge gaps in
the studying power outages.

2.1. Importance of equitable infrastructure

Infrastructure plays a vital role in the recovery of households after a
major disaster (McDaniels et al., 2007; O’Rourke, 2007). People depend
on infrastructure services like power, water, and transportation to return
to their daily routines and maintain their well-being (Chang, 2016;
Mitsova et al., 2019). However, not all community members have the
same relationship with infrastructure. Certain populations may have less
dependency, have greater accessibility, or can easily replace infra-
structure services during disaster events. To maximize the recovery ef-
forts of households after a disaster, there has been increasing interest in
developing and cultivating equitable infrastructure (Al-Humaiqani &
Al-Ghamdi, 2022; Castano-Rosa et al., 2022; Chen & Ji, 2021). For
instance, the National Academies of Science identified “equitable and
resilient infrastructure investments™ as a priority for hazard mitigation
research (National Academies of Sciences, E., and Medicine 2022).
Equitable infrastructure addresses the systemic inequalities in commu-
nities to ensure everyone has access to the same opportunity and
outcome of infrastructure services (Matin et al., 2018; National
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Academies of Sciences, E., and Medicine 2022). Concurrently, resilient
infrastructure ensures that infrastructure systems can recover to a level
of functionality within a specified timeframe after the disaster (Cutter
et al., 2012; National Academies of Sciences, E., and Medicine 2022).
These two components ensure that all members in the community are
able to recover after a disaster through accessibility and functionality of
infrastructure services.

Decision makers and utility managers are influential to the managing
equitable infrastructure since they play a key role in ensuring house-
holds receive adequate infrastructure services (Mitsova et al., 2019;
Rouhanizadeh & Kermanshachi, 2020). However, the literature on
equitable infrastructure reveals that equitable and social elements of
infrastructure have not been properly considered. In his discussion of
crises on the built-environment, Castano-Rosa et. al (Castano-Rosa et al.,
2022) argues for the importance of using social interventions to achieve
inclusive infrastructure management. Hendricks and Van Zandt (Hen-
dricks & Van Zandt, 2021) also state that the “built environment must be
explored with a progressive lens that views physical infrastructure as an
extension of social circumstances.” They specifically mention how
certain vulnerable communities such as low-income and racial-ethnic
minority households could be unequally managed and protected in
both daily and extreme events. Furthermore, Birkmann et. al (Birkmann
et al., 2016) emphasizes that greater systematic knowledge of gover-
nance and human vulnerability is needed in infrastructure planning.

2.2. Disproportionate impacts of power outages

Energy inequality is a significant issue in both normal and disaster
conditions, and it has been debated from a human rights approach and
within policy development (Franklin et al., 2017; Tong et al., 2021;
Wewerinke-Singh, 2022). Energy supply conditions, home energy effi-
ciency, and the income affordability can all contribute to energy
inequality (Dubois & Meier, 2016). Research in equitable infrastructure
has also captured instances of energy inequality given in the form of
disproportionate impacts of power disruptions. Through household
survey data, Coleman et. al found repeated instances of increased
hardship and longer disruption in low income and minority households
from power outages caused by Hurricane Harvey, Hurricane Michael,
and Hurricane Florence (Coleman et al., 2020; Coleman et al., 2020).
Mitsova et. al (Mitsova et al., 2018) examined the differences in electric
power outages and restoration rates in Hurricane Irma, and they showed
a spatial dependency gap for lower income and less employed counties.
In addition, Gargani (Gargani, 2022) captured recovery through the
energy production of the French territories impacted Hurricane Irma,
and the indicators found that wealthier territories had comparatively
quicker recovery rates.

Several studies have also investigated energy inequalities associated
by Hurricane Maria, a powerful storm that caused months of power
outages in Puerto Rico. Investigated by Garcia-Lopez (Garcia-Lopez,
2018), the impacts on critical infrastructure and resource systems
including water, food, and energy were magnified by poor planning of
federal institutions and decades of mismanagement. The wealthiest
neighborhood in San Juan also had the quickest restoration time. In a
related study, socially vulnerable populations were also less likely to be
prioritized during disaster relief efforts based on crew deployments to
restore power lines (Tormos-Aponte et al., 2021). Satellite-based data
revealed disproportionate duration of electricity outages in rural mu-
nicipalities and lower income households (Roman et al., 2019). Thus,
social vulnerabilities are associated with increased impacts of outage
which must be considered in the recovery process. Power restoration
models have already begun to include aspects of social vulnerability
(Batouli & Joshi, 2022; Karakoc et al., 2020), but further research is
needed to understand the nuances relationship between disaster impact,
infrastructure disruption, and social vulnerability.
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2.3. Research gaps in the energy inequality

Despite advances in acknowledging equitable infrastructure (Na-
tional Academies of Sciences, E., and Medicine 2022), collecting rele-
vant data through social media and satellite sources, (Karimiziarani
et al., 2022; Qiang et al., 2020; Roy et al., 2021; Zhai et al., 2020) and
integrating social vulnerabilities in power restoration models (Batouli &
Joshi, 2022; Karakoc et al., 2020; Najafi et al., 2018), there remain key
research gaps in studying energy inequality in disasters. First, greater
data transparency about the restoration of power is needed between
utility companies and resident customers. Late reporting and inadequate
information can lead to increased feelings of anxiety, worry, and
discomfort as affected communities are left wondering about an essen-
tial service (Moreno & Shaw, 2019). Second, power outage data is often
perishable which means there is a lack of empirical data to support and
inform decisions about power restoration (Sotolongo et al., 2020).
Third, although certain power outage events report data, there is a lack
of data at a granular spatial scale such as zip code or census tract
(Sotolongo et al., 2020). Because of this, it can be difficult to connect the
impacts of outages to the demographics of households or detect areas of
spatial inequalities. Coarser-scale analysis can also overlook social vul-
nerabilities prominent in inner-cities due to the law of averages (Ber-
rouet et al., 2019; Wilson, 2019). In essence, the research study
addresses these knowledge gaps by examining the outages during Hur-
ricane Ida and Winter Storm Uri using observational outage data at a
granular spatial scale. The study focuses on the potential disparities in
the period of recovery to hazard-induced and managed power outages
for low-income and racial-ethnic minority households. This research
study contributes to the field of equitable infrastructure by examining
the social and spatial impacts of an infrastructure system disruption. In
particular, managed power outages are directly influenced by decision
makers and utility managers, and thus, the research hopes the findings
will highlight the importance of an equitable perspective in the resto-
ration of power.

3. Background on hazard events

The research examined two recent weather events which signifi-
cantly impacted the United States. The researchers aimed to select a
weather event which represented managed power outages (Winter
Storm Uri) and hazard-induced outages (Hurricane Ida). This distinction
is important as managed power outages can have direct implications in
the decision-makers’ response to outages while hazard-induced outages
can reveal the restoration practices after extreme hazard exposure.

3.1. Managed power outage: Winter Storm Uri

Winter Storm Uri (WU) swept through a large swath of Central and
Eastern United States between February 13 through 17, 2021. As the
storm moved from the Pacific Northwest to the southern United States, it
brought freezing temperatures with some areas experiencing new tem-
perature lows and snowfall records (City of Austin and Travis County
2021). Texas, one of states most affected by the storm, suffered an
extended duration of power outages with certain areas reaching more
than 3 consecutive days of outages against winter temperatures (Bohra,
2021). The harsh cold temperatures brought on by Winter Storm Uri
resulted in a higher-than-normal energy demand by customers who
mostly required it for heating their homes along with other essential
services. Unable to sustain this unprecedented demand, power grids
started failing. To manage the strain, the Southwest Power Pool (SPP)
and the Electric Reliability Council of Texas (ERCOT) starting using
rolling blackouts (American Society for Civil Engineers 2022). At some
point, nearly 4.3 million customers were without power in Texas (Rice &
Aspegren, 2021). The use of rolling black outs, lasting power outages,
and ice accretion caused disruption of water systems and water line
ruptures with major affected areas, such as Harris County, being placed
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under boil-water advisories. This proved to be futile since, without
power, people were unable to boil water to get rid of water pathogens
and contaminants (American Society for Civil Engineers 2022). Winter
Storm Uri cost the state approximately between $195 to $295 billion
dollars in damage and the resulting increase in energy demand lead to
thousands of additional charges (City of Austin and Travis County 2021;
Ivanova, 2021). In the most extreme cases, the storm significantly
impacted the well-being and health of people and eventually led to a
number of fatalities. People reported cold stress symptoms including
shivering, muscle stiffness, and loss of consciousness (Li et al., 2022).
Reports placed the official death toll at 246 deaths in Texas, most which
were from hypothermia due to dropping temperatures in homes, and
several fatalities due to carbon monoxide poisoning in an attempt to
keep warm (Svitek, 2022). However, certain informal estimates place
the death toll closer to 700 people, which recognize vulnerable pop-
ulations with chronic conditions who were unable to withstand the
freezing temperatures or were reliant on power for their medical devices
(Aldhous et al., 2021). Ultimately, the storm demonstrated the unpre-
paredness of the operation and management of the power grid to handle
the severe shift in weather (American Society for Civil Engineers 2022).

3.2. Hazard-induced outages: Hurricane Ida

Hurricane Ida (HI) first made landfall on August 29, 2021 near Port
Fourchon, Louisiana, as a Category 4 hurricane coming in at a sustained
speed of 150 mph (Beven et al., 2022; Hammer, 2021). The Louisiana
coast suffered the brunt of the storm’s damage. Power supplier Entergy,
specifically, reported the greatest reports of outages as the energy
company powered the majority of the affected areas. After Hurricane Ida
passed through Louisiana, “more than 22,000 power poles, nearly 26,
000 spans of wire, and more than 5,000 transformers [were] knocked
over, broken or destroyed” (Hammer, 2021). As a result of the power
outages, even more problems emerged, such as lack of power for critical
facilities in hospitals and difficult living conditions in the summer heat
with no air conditioning. Hurricane Ida was one of the deadliest hurri-
canes to impact the United States, causing significant destruction and
greatly impacting many lives in its pathway. It caused an estimated $75
billion of damage, making it the fourth costliest Atlantic hurricane to
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make landfall in the United States (Smith, 2020). With its deadly storm
surges and intense rainfall and wind damage, weeks of power outages
ensued in the hurricane’s aftermath, and 91 human fatalities were
recorded in Louisiana (Hanchey et al., 2021). The structural levees held
yet failed to protect all suburban areas, highlighting the failure to ac-
count for the intensification of hazard events and the ultimate inevita-
bility of current and future hazard impacts (The Associated Press, 2021).

4. Methods

The conceptual figure (Fig. 1) outlines the research steps. Outage
data is collected and processed which is explained in detail in the
following paragraphs. The methodology consists of six major parts. First,
data processing of the telemetry-based data is a proxy measurement of
outage data for Winter Storm Uri. Second, data collecting and imputa-
tion of real-time outage data from power company website for Hurricane
Ida. Third, recovery of the outage data is calculated at a threshold of
10% disruption. Fourth, statistical methods analyze outage disruption in
different demographic groups . Fifth, spatial Gini is evaluated to deter-
mine instances of spatial disparity. Sixth, infrastructure inequality index
is calculated to understand the disparity of the power system. For Winter
Storm Uri, one temporal cluster represents daytime outages between
8:00am to 8:00pm in Harris County. For Hurricane Ida, two spatial
clusters, one cluster representing the coastal zip codes and one cluster
representing non-coastal zip codes of Louisiana, are analyzed to distin-
guish between coastal influence and hazard impacts.

4.1. Telemetry data collection and processing for Winter Storm Uri

Despite the concerted efforts of the research team, we were unable to
procure direct and real-time outage information of Winter Storm Uri.
Therefore, we quantified the power outage using telemetry-based pop-
ulation activity data through Mapbox. Mapbox, a business supplying
mapping and location datasets (Mapbox), collaborated with the research
team to provide aggregated raw cell phone information by time span and
geographic unit. Mapbox collects the cell phone location from applica-
tions that use the Mapbox Software Development Kit (SDK). Two ano-
nymization processes protected users’ privacy. First, counts of target

Disruption Metric
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Fig. 1. Methods framework for the analysis of power outages during Winter Storm Uri and Hurricane Ida. The research team collected and processed observational
data to quantify the duration of recovery. Analysis included descriptive and spatial statistics to determine energy inequality into inequality measures.
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geographic areas were dropped if the counts fell below the minimum
requirement. Second, slight random noise was applied to the existing
counts. The spatial resolution of the aggregated data is about 100 by 100
meters; the temporal resolution is 4 hours. Thus, this raw point data is
referred to as activity index. In essence, telemetry-based population
activity data is able to capture fluctuations in cell-phone usage. The
principle is that since power and communication services are often
interdependent systems, telemetry-based data provides a reliable proxy
measurement of outages (Lee et al., 2022). For instance, telemetry-based
population activity would decrease during blackouts which would pro-
vide a proxy of the extent and duration of power outages. Mapbox has
been previously used in other studies to measure, by proxy, other forms
of impact and disruption in disaster events which further supports its
validity in the usage of this research study (Farahmand et al., 2022; Gao
et al., 2021; Lee et al., 2022; Ramchandani et al., 2020; Yuan et al.,
2022). To obtain the proper outage information at the census tract, we
converted the raw data, or activity index, to activity density. As dis-
cussed by Lee et.al. (Lee et al., 2022) we calculated the activity density
within our desired geographic unit of census tracts for Harris County
from February 1 through 28, 2021 (Eq. (1)).

@

where Da(ct,t) is the activity density (Da) in census tract (ct) at time (t),
A, +is the activity index of the geographic unit (,,) at time (), and N is the
number of geographic units within the census tract.

To ensure appropriate activity density from each census tract, the
telemetry data spans from 8:00am to 8:00pm. In addition, the research
team had both direct power outage data (further explained in the section
below) and telemetry data for Hurricane Ida. Analysis between the
power outage data and telemetry data showed a strong correlation,
further supporting the proxy measurement of telemetry data for the
outages in Winter Storm Uri. The respective analysis and figures are
found in the Supplemental Information. Thus, moving forward, the
research will refer to disruptions in the telemetry data as outage data for
Winter Storm Uri.

4.2. Power outage collection and processing for Hurricane Ida

Second, power outage data were collected in real-time from Power-
Outage.US and the Entergy power websites during the storm event
(Entergy 2021; PowerOutage.US 2021) . The research focused on
Entergy outages because this company was the main power provider to
areas affected by Hurricane Ida in Louisiana. According to Power-
Outage.US, Entergy provides energy to 1,275,873 residents in the state.
To collect power outages data, we recorded the total number of affected
customers and the last updated time, August 29 through November 23,
2021. From August 29 through September 3, 2021, data were collected
each hour between 8:00 am till 12:00 am. From September 4 through
October 25, 2021, power outages were recorded at three-hour intervals.
From October 26 through November 23, 2021, power outages were only
taken at 10:00 am, 4:00 pm, and 9:00 pm. The schedule was changed
due to a noticeable decrease in the number of outages.

We determined the percentage of outages at each zip code by
dividing the number of affected customers, which was obtained from the
Entergy website, by the total population at each zip code. It is important
to note that Entergy makes no distinction on the outage website between
business and residential customers. Since the researchers were unable to
obtain the number of total customers per zip code, we normalized the
outage data by the total population. This was to ensure that a greater
population within a zip code was not erroneously inferred as a greater
number of outages.

In addition, we cross-validated the power data from the Entergy
website with the percentage of affected customers using county level
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data from PowerQOutage.US. The county-level data from PowerOutage.
US corroborated the Entergy data, so when one website showed a
change in customers affected, the other showed a similar pattern on the
same day. Note that in Louisiana, parishes are analogous to counties in
other states. Since Entergy reported zip codes with at least one affected
customer, we merged the Entergy data with all zip codes of parishes of
interest. We selected only parishes where Entergy supplied at least 90%
of total accounted customers, according to PowerOutage.US. To account
for differences in coastal influence and potential impacts of hazards, we
divided the affected regions into coastal and non-coastal zip codes based
on the new coastal shape boundaries zone established in the Louisiana
Revised Statutes Article 49 (Management., L.D.o.N.R.-O.0.C. 2010).
Coastal zip codes were drawn from the following parishes: Jefferson, St.
Charles, St. Bernard, Plaquemines, St. John the Baptist, Orleans,
Lafourche, Assumption, Terrebonne, Ascension, Iberville, Livingston,
and Tangipahoa Parishes. Non-coastal zip codes were from the following
counties: West Baton Rouge, East Baton Rouge, Pointe Coupee, East
Feliciana, West Feliciana, St. Helena Parishes along with Ascension,
Iberville, Livingston, Orleans, and Tangipahoa. Note that some counties
contained both coastal and non-coastal areas.

For both datasets of Winter Storm Uri and Hurricane Ida, spatial
units with more than 80% of NaN values were removed because the data
could not confidently determine whether outages occurred. Missing data
was filled with outage percentage values from the previous day. The
time period for restoration analysis was February 14’ 2021 through
February 24, 2021 for Winter Storm Uri and August 29, 2021 through
September 23, 2021 for Hurricane Ida to best represent the period of
major impact (Beven et al., 2022; City of Austin and Travis County
2021).

4.3. Restoration of power services

Third, zip codes in Louisiana were considered to be “fully restored”
when only 10% of households remained without power. Similarly,
census tracts in Harris County were considered to “fully recovered”
when the activity index change was less than 10%. This also meant that
spatial units under the 10% threshold were not considered disruptive to
account; these thresholds had to be consistent for at least two days. It is
important for the research to acknowledge the ideal scenario that
companies follow to restore power. The recovery prioritization process
from energy providers begins with determining the areas with hazards
such as downed lines/wires used for electrical distribution and damaged
electrical equipment. Following this step, power companies initiate the
repair process for lines and equipment to assist areas affected by the
power outages. Then, energy providers restore power to critical facilities
or critical community services which consist of hospitals, nursing
homes, emergency response, utilities, and other significant services.
Afterwards, power is restored to areas with the most affected customers
in the shortest amount of time and later restore power to smaller affected
areas. Energy providers such as SWEPCO also claim that “Residential
customers are always given priority over business and industrial cus-
tomers” (SWEPCO 2021). As noted in the data collection and processing,
the outage data collected cannot distinguish between residential and
business outages; however, data was normalized by population. In
addition, the 10% threshold is not a static measurement of recovery by
power companies; however, the research determined this threshold
based on a sensitivity analysis. The sensitivity analysis tested the dura-
tion of power restoration for 5%, 10%, and 20% thresholds (Supple-
mental Information).

4.4. Detecting social disparities

Fourth, the intent of the research was to address the extent, if any, of
social disparities present during the outage events. The research will
account for vulnerable populations delineated by income, racial, ethnic,
and population differences. We collected sociodemographic
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information, including median household income, percentage of Black
population, percentage of Hispanic population, and the total population,
at the census tract and the zip code levels from the United States Census
Bureau (Farahmand et al., 2022; Lee et al., 2022; Ramchandani et al.,
2020). Data for the census tracts was collected from 2019 data while
data for the zip codes was collected from 2020 data. We examined the
distribution of the duration of recovery, differences of populations
impacted in descriptive statistics, and spatial representation of affected
regions. In addition, median values and mean values of outage durations
for the vulnerable populations, low-income and racial-ethnic minority
populations, were compared through statistical tests at significance of
p<0.05 which included correlations and ANOVA (Analysis of Variance).

4.5. Spatial Gini coefficient

Fifth, to further understand the spatial inequality in the duration of
recovery from outages, we first applied the spatial Gini coefficient (Rey
& Smith, 2013). The standard Gini index is traditionally used to
demonstrate the wealth inequality of a region through a comparison of
cumulative wealth, but the index can be used to measure the general
inequality distribution of variables. The modified version of the index
(Rey & Smith, 2013), called the spatial Gini decomposition (Eq. (2))
considers the spatial adjacency in a decomposition of the set of differ-
ences between “nearby” observations and the set of differences of
“distant” observations.

_ ZfZ,-Wu\xf - x/" i Z,-Z,-(l — wig) [xi — x5

G
2n2x 2n2x

(2)

where w;; is a value one when w; and w; are neighbors and is zero
otherwise.

The first term is the component among neighbors which describes
the distances between nearby observations and the second term is the
component among non-neighbors. According to Rey and Smith (Rey &
Smith, 2013), spatial Gini is the first component that describes the dif-
ferences between nearby neighbors. It tests whether the distribution of
the components are different from those randomly distributed across a
geographic space. In principle, inequality will be driven by disparities
between distant places. In this way, spatial Gini index is much more
sensitive to inequalities by considering pairwise relationships. Appli-
cation of the spatial Gini can also produce pseudo p-values through
assigned permutations which assumes a null hypothesis that values are
randomly distributed geographically (Eq. (2)).

4.6. Infrastructure inequality index

Sixth, we also applied the more recently proposed infrastructure
inequality index developed by Pandey et al. (2022). To use the equation
in our work for inequality of power outage durations, we normalized the
outage durations based on a maximum-minimum value normalization
for each event and then modified it as shown in Eq. (3a). As shown in Eq.
(3b), the formula can translate outage durations into inequality in
infrastructure provisions. In the equation from (Pandey et al., 2022), p is
the mean of the extent of outages in a spatial area, where the mean
should be a value between 0 and 1. In the equation, greater outage
inequality would be closer to 1, vice versa.

Ynew= (L) N

Ymax — Ymin
o
I= —(———— 0<pu<l (3b)
u(l —p)

where p is the mean of infrastructure provision values (y) obtained based
on power outage values and o is the standard deviation of infrastructure
provision values (y)
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5. Results

5.1. Statistical and spatial representation to the duration of recovery to
outages

The density of computed values for the duration of recovery to
outages are seen in Fig. 2 and Fig. 3 for Winter Storm Uri and Hurricane
Ida, respectively. In Fig. 2, the managed power outages were not nor-
mally distributed at statistically significant levels (p <0.05) which
suggests a degree of inequality. The majority of census tracts experi-
enced 0 days of recovery, meaning no period of power outages, followed
by 6 days of outage and 10 days of outage. The mean value of power
outages was 4.23 days during the 10-day analysis period. In Fig. 3, the
hazard-induced power outages were uniformly distributed for coastal
outages but was not uniformly distributed for non-coastal outages.
Given the analysis period for the storm, there is also a statistically sig-
nificant difference (p <0.05) in the mean values for coastal outages
(11.77 days) and the mean values for non-coastal outages (4.55 days).

Fig. 4 shows the spatial distribution of outage durations for the
Winter Storm Uri and Hurricane Ida. In the case of Winter Storm Uri, the
census tracts above the 75" percentile (greater than 7 days) of power
outage typically lay in the central-east of Harris County while census
tracts with 50™ percentile (less than 1 day) of power outage lay in the
outlying areas of the county. Regarding the coastal areas affected by
Hurricane Ida, zip codes in the coastal areas above the 75™ percentile
(greater than 16 days) of outages were located in the southern coastal
areas while zip codes below the 25 percentile (lesser than 8 days) were
located in the northern coastal areas. Regarding the non-coastal areas
affected by Hurricane Ida, zip codes above the 75" percentile (greater
than 7 days) of outages were located in the eastern non-coastal areas
while zip codes below the 25t percentile (at 0 days) were located in the
western areas.

5.2. Descriptive comparison of disparities in the duration of outages

We analyzed the power outage recovery duration for different de-
mographic subpopulations based on median income, percentage of
racial and ethnic minorities, and total population based on percentile
thresholds, as shown in Fig. 5 and Fig. 6. Overall, the linear correlations
between the demographics and the duration of recovery was of little to
no significance. Thus, we felt it appropriate to compare the two groups
of lower and higher income, racial and ethnic minorities, and total
population. The recovery duration to the managed power outages
showed no significant difference among the social subpopulations when
examining all the census tracts. However, we decided to examine
significantly impacted census tracts given the short duration but severe
and unexpected nature of the winter storm. The analysis filtered census
tracts with the highest percentage of outages. The percentage of extreme
outages is defined as having a maximum percentage of outages of at least
70%. In Fig. 5, the box-and-whisker plots showed longer duration of
recovery for census tracts with lower income and higher percentage of
Hispanic residents.

Extremely impacted census tracts of lower income below the 50
percentile, or less than $41,657, had a 1.0-day greater median difference
and 0.9-day greater mean difference (p<0.53) to the outage recovery
duration when compared to census tracts of higher income. In addition
to this comparison, we found that the lower income groups below the
25™ percentile ($30,807) had a statistically significant mean difference
in outage duration. There was a 2.00-day greater median difference and
a 2.96-day greater mean difference to the power outage recovery
duration (p < 0.05). Extremely impacted census tracts with higher
percentages of Hispanic populations starting from above 29% (50
percentile) had a longer recovery duration when compared to census
tracts of lower percentages with a 1.0-day median difference and a 1.56-
day mean difference (p<.26). Specifically, having a greater than 80%
percentage of Hispanic populations in the census tract led to a 2.50- day
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Duration of Recovery for WU Day Outages

duration

Fig. 2. Distribution of Managed Power Outages (in days) during the Day for Harris County. Duration of recovery was calculated at 10% threshold. The distribution
curve was not normally distributed at a statistically significant level (p<0.05) and has slight peaks at 0, 6, and 10 days.
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Fig. 3. Distribution of Hazard-Induced Power Outages (in days) for Coastal and Non-Coastal for Louisiana. Duration of recovery was calculated at 10% threshold.
The distribution curve was normally distributed for coastal outages and not normally distributed for non-coastal outages at a statistically significant level (p <0.05).
Coastal outages had slight peaks at 0, 10, and 25 days. Non-Coastal outages had slight peaks at 0 and 15 days.

greater median difference to the power outage recovery duration while
the 2.68-day greater mean difference was not statistically significant (p
<.11), it does reveal a potential disparity in racial-ethnic communities.
Of extremely impacted census tracts, lesser populated census tracts
under the 50™ percentile had a 1.00-day median longer recovery
duration and .67-day mean difference, (p <.50) which shows that more
populated census tracts had shorter duration of recovery.

The coastal and non-coastal outages exhibited different results in
terms of social inequalities. Even in cases where the results of the
ANOVA means testing were not statistically significant, it is important to
note the descriptive patterns of the demographic characteristics. As
shown in Fig. 6, power outages in coastal areas had longer power outage
recovery duration for zip codes for higher income (above 50 percentile
or $51,831) while outages in non-coastal areas had longer power outage
recovery duration for zip codes of lower income (below 50t percentile
or $54,219). Coastal zip codes had 1.00-day median difference and 1.00-
day mean difference (p <0.45) while non-coastal zip codes had a 1.00-
day median difference and .40 mean difference (p < 0.75). Outages in
both coastal and non-coastal areas had longer power outage recovery
duration for zip codes of greater than 50t percentile of Black pop-
ulations. Coastal zip codes had a 1.00-day median difference and .50
mean difference (p<.68) while non-coastal zip codes had a 2.00-day
median difference and a .60 mean difference (p<.61). Overall, the re-
sults suggest that population size may have played a larger role in the
duration of power outage recovery for coastal and non-coastal regions.
Less populated zip codes had a longer power outage recovery duration
for the coastal outage but more populated zip codes had a longer power
outage recovery duration for non-coastal outages. Coastal zip codes of
less population had a 4.00-day median difference and a 1.30-day mean
difference (p<.34) while non-coastal zip codes of more population had a
5.00-day median difference and a 3.50-day mean difference at statisti-
cally significant values (p<0.002).

5.3. Spatial inequality indices for spatial heterogeneity of duration
outages

We examined the spatial inequalities in the duration of outages. First,
we calculated the Spatial Gini coefficients and p-values as shown in
Table 1. The statistical significance of the pseudo p-values (p < 0.05)
indicates that spatial inequality between the neighboring pairs of the
spatial units is different from the inequality of the pairs of spatial units
which are not geographically proximate. In order, the greatest spatial
Gini coefficients were the Hurricane Ida non-coastal outages, Winter
Storm Uri day outages, and Hurricane Ida coastal outages. Though the
coastal areas of Louisiana experienced the longest period of recovery
from the power outages, these areas experienced the lowest spatial in-
equalities. This result means that the hazard exposure in conjunction
with spatial heterogeneity must be considered when understanding the
energy inequality for affected areas.

To further compare the extent of spatial inequality between the
managed outages and hazard-induced outages, we implemented the
infrastructure inequality index (Pandey et al., 2022). Similar to the
spatial Gini results, the coastal outages caused by Hurricane Ida, which
experienced the most direct impact of the hurricane with the longest
period of recovery, actually had the lowest infrastructure inequality.
Specifically, the managed power outages caused by Winter Storm Uri
had a 3.5% and 19.78% percent more spatial inequality to the
hazard-induced outages in Louisiana. This result is significant in that it
reveals, for the first time, that managed outages could be associated with
greater inequality than hazard-induced outages. In other words, in the
absence of equitable criteria for managed outage, such outages could
cause a greater inequality in the extent of outages across a region
compared with outages caused by hazards (such as wind damages to
power transmission lines). The summary of the social and spatial vul-
nerabilities can be found in Table 3. We discuss the implications of these
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HI Non coastal outages

Fig. 4. Distribution the hazard-induced power outages in coastal (upper left) and non-coastal (upper right) zip codes in Louisiana and the managed power outages for
day outages in census tracts of Harris County. Zip codes above the 75" percentile were in the southern coastal areas and eastern non-coastal areas of Louisiana.
Census tracts above the 75" percentile were mostly concentrated in the central-east center of Harris County.

results in the next section.
6. Discussion of significant findings

Recent climate hazard events have revealed the rising vulnerability
of power systems, and the increasing intensity and duration of climate
hazards will lead to even more disruptive power outage events. In facing
future climate hazards, it is essential to examine the extent of inequality
in outage durations to improve existing power restoration and equitably
managing power outage schedules. This knowledge is limited; however,
due in part to the perishable and hard-to-access nature of outage data.
We addressed this important knowledge gap by using observational data
at granular spatial scales from two major climate hazard events in the U.
S. In doing so, our investigation uncovered the presence and extent of
energy inequality during managed and hazard-induced power outages.

First, the results demonstrated the ability to quantify the duration of
recovery for power systems using real-time observational data from
direct power outage and telemetry-based data at a granular spatial unit.
Research in telemetry-based data has captured aspects of community
recovery including flood monitoring, return of evacuees, and business
dependency, among others (Deng et al., 2021; Hong et al., 2021; Yuan
et al., 2022; Yuan et al., 2022) . However, to the best of the authors’
knowledge, few studies have captured this fine resolution data to un-
derstand the impacts of energy inequality during climate hazard events.

The research found that the effects of both managed and hazard-induced
outages can last days beyond the initial impact point (climate hazard
event). The median values of most affected zip codes of Hurricane Ida
had 25 plus days of outage while the most affected census tracts of
Winter Storm Uri had 10 plus days of outage. As shown in Fig. 4, census
tracts in the 750 percentile of outages (greater than 7 days) lays in the
central-east of Harris County. Coastal census tracts in the 75% percentile
of outages (greater than 16 days) lay in the southern coastal areas and
non-coastal census tracts in the 75 percentile of outages (greater than 7
days) were located in the eastern non-coastal areas. As shown in Fig. 2
and Fig. 3 for the Winter Storm Uri and Hurricane Ida, distribution
curves also suggest potential inequality in the affected zip codes as
trends were not normally distributed; instead, some had multiple peaks
and heavy skewness. This finding showed the significant vulnerability of
power infrastructure to climate hazards and the significant extent of
outages experienced which surpass the capacity of power infrastructure
owners, operators, and utilities to cope with the impacts. The standard
practice prioritizes the restoration of areas with more outages and often
more population. In contrast to standard practice, total population
showed conflicting results in the duration of recovery to the power
outages. As expected, more populated zip codes had a shorter duration
of outage recovery in the most impacted areas of Harris County (Fig. 5)
and coastal areas of Louisiana (Fig. 6) which shows that more populated
areas could have been prioritized in the power restoration; however,
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Fig. 5. Descriptive statistics comparing the duration of recovery of the
managed power outages in Harris County among different demographic char-
acteristics. The analysis focused on census tracts with an extreme percentage of
outages (70%). The box-and-whisker plots implies social disparities for census
tracts with lower income at 50 percentile, higher percentage of Hispanic
population at 50th percentile, and lesser populated at 50 percentile.

more populated zip codes actually had a longer duration of outage re-
covery in the non-coastal areas of Louisiana (Fig. 6).

Second, the findings showed disparity in the outage durations for
vulnerable social populations in both the managed and hazard-induced
power outages. For Hurricane Ida in Louisiana, coastal zip codes with
higher percentage of Black populations along with non-coastal zip codes
with lower income and higher percentage of Black populations had a
longer duration of outage recovery (Fig. 6). Regarding the day outages
caused by Winter Storm Uri in Harris County, these social disparities
were apparent for census tracts which were already experiencing high
levels of impact. In these extreme cases, census tracts with lower income
and higher percentage of Hispanic populations had longer duration of
recovery (Fig. 5), which can further exacerbate systemic inequalities
these social populations face during hazard events. Equitable infra-
structure research has found that socially vulnerable populations can
start with less capabilities to withstand power outages (Coleman et al.,
2020; Coleman et al., 2020; Dargin & Mostafavi, 2022; Mitsova et al.,
2019). This inherent inequity could be due to living in mobile homes and
apartments, which are less structurally sound and capable of withstand
the rigors of a storm, or not being able to afford power generators, which
are too expensive for lower income families (Esmalian et al., 2021). .
Given the intense dependence that people have for energy, even a single
day of difference could significantly impact households. Even in the
instance of equal durations of outages, vulnerable populations may
experience a disproportionate level of impact. Longer duration of out-
ages for vulnerable populations compounds these disparities in impacts
even further. Hence, it is essential for power infrastructure owners,
operators, and utilities to establish transparent policies and criteria to
integrate social equality into power restoration plans and actions.
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Third, vulnerability can extend beyond the demographic make-up of
the community and into the spatial components of the communities.
Power systems, by nature of their network design, could be susceptible
to spatial inequalities (Rachunok & Nateghi, 2020). Statistically signif-
icant Gini indices indicated a layer of spatial heterogeneity in outage
durations for both managed and hazard-induced outages. For
hazard-induced outages, we found significant differences between the
spatial inequalities of coastal and non-coastal zip codes. Though the
coastal region had a longer duration of outage recovery, the non-coastal
region had a 63% greater spatial Gini values (Table 2) and 16% greater
values in the infrastructure inequality index when compared to coastal
region (Table 3). Thus, spatial inequality cannot be completely
explained based on coastal influences and direct impact to hazards. The
infrastructure inequality index also revealed a significant difference
between managed and hazard-induced outages. Managed power outage
in Harris County impacted by Winter Storm Uri resulted in a 3% to 19%
greater disparity in the infrastructure inequality index when compared
to the hazard-induced outages in Hurricane Ida (Table 3). This finding is
particularly noteworthy, since managed power outages are imple-
mented based on assessment of power infrastructure managers and op-
erators. Thus, the findings reveal both the limitations and potential
improvement surrounding the current practices managed power out-
ages. For instance, the standard practice is to address areas of larger
population, the severity of impact, and the critical infrastructure and
facilities of the community which all may unintentionally favor
concentrated areas of the community over an equitable distribution.
With the impacts of climate change (such as extreme heat and wildfires),
more managed power outages are expected. The research underscores
the importance of transparent communication and fair practices for
implementing power outages. Power infrastructure managers, owners
and operators should use proper metrics and criteria (such as those used
in this study) to communicate to the public that their process for
implementing managed outages was fair.

7. Conclusions and future research

In the discussion of energy inequality, multiple dimensions work in
tandem to achieve equitable access to energy which are inclusive of all
customers, show full transparency of data, and protection of human
rights (Franklin et al., 2017; Wewerinke-Singh, 2022). Ostensibly, the
current restoration practices fail to account for these dimensions.
Despite the assumption that disasters are “natural” and thus equally
affect a community, disaster research has continuously demonstrated
that human decisions can lead to either the mitigation or exacerbation of
disaster impacts. Systemic and inherent biases found in current resto-
ration strategies burden certain populations and regions of a commu-
nity. The findings of this study reveal the extent of social and spatial
inequalities in power outage durations that must be carefully considered
by energy policy makers and infrastructure managers in planning and
implementing future power restoration actions.

Standard practices in restoration management may unintentionally
isolate certain areas and populations of the community. Especially in
managed-power outages, decision-makers can create equitable practices
to ensure all members of the community recover. The research calls for
more thoughtful consideration of the protection and management of
power systems, those which consider not only the physical durability
and the hazard exposure of the system but also the social and spatial
structure receiving these vital services. As exhibited by the analysis,
extremely impacted census tracts of lower income and higher Hispanic
population had longer median duration of recovery during Winter Storm
Uri. Coastal zip codes and non-coastal zip codes had longer median
duration of recovery for those with higher Black populations. Another
example is the moderate to high values of Spatial Gini and infrastructure
inequality index of all the affected areas. Thus, the research provides
evidence of social and spatial disparities which must be considered in
both hazard-induced and managed power outages. In addition, future
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Fig. 6. Descriptive statistics comparing the duration of recovery of the hazard-induced power outages in Louisiana among different demographic characteristics. The
analysis focused on all impacted census tracts. The box-and-whisker plots implies social disparities for coastal zip codes with higher percentage of Black population at
the 50th percentile and non-coastal zip codes with lower income and higher percentage of Black population at the 50 percentile.

Table 1 Table 3
Spatial Gini co-efficient values, p-values, and percent differences for duration of Summary of the social and spatial vulnerabilities for the managed and hazard-
recovery of the managed and hazard-induced power outages. induced power outages.
Spatial % diff. to WU %diff. to HI %diff. to HI Non- WU Day Outages  HI Coastal HI Non-Coastal
Gini Day Outages Coastal Coastal Outages Outages Outages
Outages Duration of Outages (Days) for Vulnerable Populations
Median Mean Median Mean  Median Mean
WU Day 0.4214* 42.14 -21.61
Outages <50 percentile of 6.00 6.11 10.00 11.49  5.00 5.03
HI Coastal 0.2727* -42.85 -63.00 median income
Outages >50™ percentile of 5.00 5.22 11.00 12.49  4.00 4.71
HI Non- 0.5235* 21.61 63.00 median income
Coastal <50 percentile of 11.00 11.50  2.00 4.10
Outages Black residents
- . . >50™ percentile of 12.00 12.04  4.00 4.88
Pseudo p-values are statistically significant at p< 0.01. Black residents
<50 percentile of 5.00 4.88
Hispanic residents
Table 2 >50™ percentile of 6.00 6.44
Infrastructure inequality index and percent difference calculations for duration HiShPanic residents
of recovery of the managed and hazard-induced power outages. <50™ percentile of 6.00 6.00 14.00 12.41  1.00 2.82
total population
Infrastructure % diff. to % diff. to HI % diff. to HI >50" percentile of 5.00 5.33 10.00 11.14  6.00 6.32
Inequality Index WU Day Coastal Non-Coastal total population
Outages Outages Outages Values of Spatial Inequalities
WU Day 0.638 19.78 3.49 Spatial Gini 0.42 0.30 0.54
Outages Infrastructure Index 0.64 0.52 0.62
HI Coastal 0.523 -19.78 -16.31
Outages
HI Non- 0.616 3.49 16.31 be made in collecting data at the business and household level. To
Coastal properly quantify the disproportionate impacts of power losses, we must
Outages consider that businesses and households are often not affected equally.

The impacts of power outages on residential customers are often com-
plex as power can have direct and indirect disturbances on the physical,
mental, and emotional state of residents (Morrissey et al., 2018). In
particular, small businesses in the food industry may be especially
vulnerable to economic losses during power outage events (Miles et al.,
2014). By bringing attention to the potential social and spatial dispar-
ities, we anticipate that future studies can build upon these findings
through the perspectives of businesses and households.

research could explore the morphology of the power grids across
different cities along with extreme concentrations of critical facilities.
This evaluation will uncover the role of grid morphology related to the
spatial disparities of power outages across different cities and extreme
events.

The current state of the outage data is not able to distinguish between
business and residential losses; thus, more concentrated efforts should

10
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Future research in energy inequality could also consider the differ-
ential impacts of socially vulnerable populations in coastal and non-
coastal areas. In summary, coastal areas with higher percentage of
Black populations, higher income, and less populated had longer dura-
tion of recovery to the power outages while non-coastal areas with
higher percentage of Black populations, lower income, and more
populated had longer duration of recovery to the power outages. These
differences in behavior were also found in inequality measures as non-
coastal regions had 63% greater spatial Gini values and 16% greater
value in infrastructure inequality when compared to coastal regions.
Science-based research categorized coastal areas which were more
susceptible to the impacts of coastal hazards (Management., L.D.o.N.
R.-0.0.C. 2010). This has direct implications in the distribution of
limited resources and the development of local policies to protect,
manage and restore coastal boundaries; however, there is little consid-
erations of the different impacts on sociodemographic groups based on
their place of residence. Thus, future research could further investigate
the impacts of power outages on vulnerable populations between coastal
and non-coastal areas.

Ultimately, these research avenues cannot be accomplished without
the increased interest and investment in quantitative data of power
outages. Decision-makers and researchers should work in tangent to
collect, process, and examine fine-grained power outage data. Method-
ological frameworks and metrics, such as those in the paper, will bridge
the gap between the theoretical understanding of outages to the prac-
tical application of real-time information.
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