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ARTICLE INFO ABSTRACT

Handling editor Madijd Tavana Medical infrastructure disruptions during disasters pose a major threat to critically ill patients with advanced
chronic kidney disease or end-stage renal disease. There is a need to assess the potential threat to critical care
facilities from hazardous events to improve patient access to dialysis treatment. We propose optimization models
for patient reallocation and temporary medical facility placement to equitably improve critical care system
resilience. We leverage human mobility data in Texas to assess patient access to critical care facilities and dialysis
centers under the simulated hazard impacts. The optimization model was formulated as an integer programming
and solved by COIN-OR Branch-and-Cut (CBC) solver. The results show (1) the capability of the optimization
model in efficient patient reallocation to alleviate disrupted access to dialysis facilities; (2) the importance of
large facilities in maintaining the system functionality. The critical care system, particularly the network of
dialysis centers, is heavily reliant on a few larger facilities, characteristic of scale-free networks, making it
susceptible to targeted disruption, such as capacity failures. (3) Considering equity in the optimization model
formulation reduces access loss for vulnerable populations in the simulated scenarios. (4) The proposed tem-
porary facilities placement could improve access for the vulnerable population, thereby improving the equity of
access to critical care facilities in disaster. The proposed patient reallocation optimization model and temporary
facilities placement offer a data-driven and analytics-based decision support tool tailored to the needs of
healthcare organizations across private and public sectors to proactively mitigate the potential loss of access to
critical care facilities during disasters.
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1. Introduction incidents, such as hurricanes, floods, or harsh cold conditions, when

widespread kidney failure can result from interrupted access to these

Healthcare systems have been under enormous pressure caused by
various types of disasters, including natural disasters and man-made
disasters [1]. Such disasters have triggered a surge in demands for
medical services and exacerbated the shortage of healthcare resources in
the affected regions. The objective of this study was to create an equi-
table optimization framework for patient reallocation and temporary
facility placement to maximize the resilience of critical care facilities
network, with a focus on dialysis centers. In this study, the term resil-
ience was used to refer to healthcare resilience, defined as the ability of
the healthcare system to reduce the potential impact of a disaster and
meet the needs of the population [2]. Critical healthcare facilities like
dialysis centers are crucial in safeguarding the wellbeing of patients with
heightened vulnerability. The disruption of these services due to di-
sasters can lead to perilous kidney failure in patients reliant on dialysis
treatments [3]. Patient risk is especially elevated during severe weather
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critical care facilities due to their forced closure [4]. Lempert & Kopp [5]
describe such a predicament as a “kidney failure disaster”, an event that
exposes a large number of patients, either on maintenance dialysis or
recently diagnosed with acute kidney injury (AKI), at serious risk due to
the unavailability of dialysis services. Historical data points to such
health disasters, for instance, during Hurricane Katrina in 2005 [6-8]
and Hurricane Gustav in 2008 [9]. For instance, the effects of Hurricane
Sandy in 2012 were the major cause of kidney failure issues in the New
York metropolitan area. Dialysis services were closed in anticipation of
the storm or due to flooding, power outages, and structural damage
caused by the storm [5]. The closure of dialysis services in some severely
flooded areas forced surrounding hospitals to house the evacuated pa-
tients, who were often admitted to emergency rooms with hyper-
kalemia. Despite the rapid response from renal communities, some
patients are at increased health risk, and some may have suffered
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Fig. 1. Conceptual framework of optimizing healthcare system resilience. The initial phase involves estimating the dialysis patient demand during the normal period
(i.e., pre-disaster period). The subsequent flood-hazard simulation section examines 30 random failure scenarios which consist of facility random failure and street
random failure, as well as 30 rank-ordering failure scenarios, which consist of facility rank-ordering failure and street random failure. Finally, the analysis includes
total travel time minimization for both random failure and rank-ordering scenarios, while the equity-focused model is specifically applied to the random fail-

ure scenarios.

significant health consequences from missed dialysis sessions. The un-
certainty and disruption caused by hazardous events may have resulted
in acute and long-term mental health implications for maintenance
dialysis patients.

In addition, the transportation network acts as the backbone of
healthcare, connecting individuals to critical care facilities. Ensuring
access to essential facilities becomes even more crucial during and post-
disasters, as it directly influences the community’s overall welfare [10].
However, this access is often hampered by disturbances from natural
hazards [11]. A prominent example is the extensive flooding caused by
Hurricane Harvey in 2017, which severed road connections to various
key facilities and posed significant threats to public safety, especially for
those already in vulnerable conditions [12]. Neglecting public access to
critical care services after disasters can hinder community recovery. To
build the resilience of the community of people with functional needs, it
is important to establish a predetermined communication system to
inform this population where they can receive dialysis treatment [13]. It
is important to recognize that the disruption to routine dialysis sessions
can have ripple effects, including an influx of patients to other dialysis
centers, an increased strain on facilities caring for more
dialysis-dependent patients, and more emergency department visits [14,
15]. Furthermore, redundant communication methods and transport
plans should be established to ensure uninterrupted access to critical
care facilities.

The examination of disaster-induced disruption to vital dialysis
centers remains an under-researched area within healthcare services
and medical center studies. One of the rare investigations in this field,
conducted by Kaiser et al. [16], evaluated the flooding impact on dial-
ysis centers in Harris County, Texas, during Hurricane Harvey, utilizing
the flood maps from that weather incident. This study made use of flood
zone categorizations provided by the Federal Emergency Management
Agency (FEMA) to measure and classify dialysis centers based on their
proximity to flood areas. However, focusing solely on the flood exposure
of dialysis centers does not provide a comprehensive view of the po-
tential threats to patients in the region arising from compromised access
to these centers. Flooding can lead to multifaceted disruptions in

accessing dialysis services, such as road inundation preventing patient
travel [17]; closures or malfunctions of dialysis centers due to facility
flooding [16]; and disturbances in the communities where
dialysis-dependent patients reside [18].

Two strategies in dealing with patients’ disrupted access to critical
care facilities, such as dialysis centers, include reallocation of patients
across the network of facilities in a region and setting up temporary
facilities to meet the demand [19]. Different optimization methods have
been proposed in the literature to solve patient and medical resource
allocation problems [20-27]. For the pandemic cases, Tsai et al. [24]
applied linear programming models to optimize the allocation of pa-
tients during the dengue fever epidemic. In the study, the objective
function was to minimize the total travel distance of all patients. Ma &
Demeulemeester [27] developed an integer linear programming (ILP)
model with the aim of efficiently allocating existing beds while opti-
mizing the hospital’s financial situation. The model takes various con-
straints into account, including bed capacity and occupancy. Sun et al.
[23] addressed patient and resource allocation between hospitals in a
healthcare network during the pandemic influenza pandemic. The
mathematical models take into account two objectives related to pa-
tients’ cost of accessing healthcare services: (1) minimizing the total
travel distance, and (2) minimizing the maximum distance a patient
travels to a hospital. Ye et al. [25] constructed a patient allocation model
during major epidemics that considered the severity of patients’ con-
ditions by applying a multi-objective planning method. Mosallanezhad
et al. [28] devised a multi-objective model to address personal protec-
tion during the COVID-19 pandemic. This multi-objective, multi--
product, and multi-period framework aims to satisfy the demand for
personal protection equipment while optimizing the objective of mini-
mizing total cost.

For the disaster response cases, Minciardi et al. [21] developed a
mathematical model to assist decision makers in optimal resource allo-
cation before and during a natural hazard emergency. Revelle & Snyder
[22] addressed emergency room location issues while respecting the
maximum demand met. Fiedrich et al. [20] investigated the allocation of
available resources to the operational area to minimize the total death
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toll during the initial search and rescue phase after a major earthquake.
Yi & Ozdamar [26] built an integrated location-distribution model to
study the selection of temporary emergency centers that would result in
maximum coverage of post-disaster medical needs in the affected area
and optimal distribution of medical staff across both the temporary and
permanent emergency response units. Gulzari & Tarakci [29] addressed
the problem of strategically locating temporary health facilities, allo-
cating health professionals to these facilities, and incorporating tele-
medicine into an earthquake response phase. The studied objective was
to develop an optimal solution that minimizes unmet healthcare demand
by efficiently allocating health professionals to the demand points.

Although past studies have implemented mathematical models in
solving the problem of patient reallocation and resource allocation,
limited attention has been paid to healthcare network optimization
considering the possible infrastructure disruption in the aftermath of
hazard events. Conversely, most studies make the assumption that
existing facilities will not be affected by the disaster [30-32]. This
presumption, however, could be unrealistic, since the infrastructure,
such as transportation facilities and medical facilities, could be severely
damaged by a large-scale hazard event and remain inoperable for a
period of time. Very few studies in the literature consider possible
damage exclusively for the medical centers or the aid depots [33-35].

Recognizing the gap, we propose a framework for disaster pre-
paredness and response in healthcare networks considering infrastruc-
ture disruptions in the post-disaster period. Specifically, we focus on
addressing the following research questions. (1) To what extent is the
critical care facility network vulnerable to various infrastructure failure
scenarios? (2) What is the optimized patient reallocation plan for dial-
ysis patients whose access is disrupted due to hazardous events? and (3)
Where is a potential site for housing temporary medical facilities to
improve access for socially vulnerable patients in an equitable manner?
Accordingly, there are three objectives in the proposed model: the
highest allocation effectiveness, the lowest transportation distance, and
the equity of access to treatment for patients in each stricken area. The
remainder of this paper is organized as follows. In the next section, we
present the examined material and the formulation of the optimization
models. In Section 3, numerical results of the studied case are presented
to show how the model could help decision makers in determining pa-
tient allocation and the potential temporary facility placement in the
healthcare system. In Section 4, the analysis and discussion based on the
optimization results are presented. Section 5 contains concluding re-
marks. Fig. 1 presents the conceptual framework of this study.

2. Materials and methods
2.1. Population-facility visitation network and demand setting

This study uses the aggregated human mobility data to capture the
dynamic visiting pattern of dialysis patients in the Houston metropolitan
area. The human mobility dataset of stops at points-of-interest (dialysis
centers in this study) from mobile devices, was collected from a mobility
data provider. Each stay point (home location) has been aggregated at
the Census Block Group (CBG) level, thus forming the CBG-to-center
visit. Dialysis demand exists in 2010 CBGs out of a total of 2144 CBGs
in Harris County within which the Houston metro area is located. A total
of 142 dialysis centers were included in the study. We used the two-week
study period from August 1, 2017, to August 14, 2017, to estimate the
number of patients in each CBG. A total of 5308 visits were included in
the two-week time window. These visits represent a sample of the actual
number of visits. Since obtaining the actual number of visits is not
feasible, we assume that these visits represent a fraction of the total
visits. We discuss this assumption in the following section where we
present the characteristics of facilities and their capacity.
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Table 1
Notations used in the paper.

General subscripts and sets

ii Index of census block groups

j Index of medical centers

l Number of road segments

m Number of Census Block Groups

n Number of studied medical facility

g Street topology network

70 Flooded street topology network with flooding coefficient §

S, Set of road segments, S, = {1,...,1}

S1o0, Set of road segments intersects with 100- and 500-year floodplains

500 accordingly, S1°°,850° C s,

Se Set of Census Block Groups, S, = {1,..., m}

SL Set of socio-vulnerable Census Block Groups, S; CS.

Sf Set of medical facilities, Sy = {1,...,n + 1}

S}O", Set of dialysis cares intersect with 100- and 500-year floodplains

S50 accordingly, §{°°, 5% C S¢

Parameters

8 Flooding coefficient, & € [0,1]

1{_}_ Shortest travel time for trips from Census Block Group i to facility j, i € S,
jess

o Shortest travel time for trips from Census Block Group i to Census Block

Group i, i,i €8S,

T Threshold value for shortest travel time

Di Lost-access patient in Census Block Group i, i € S,

pit Lost-access patient after distance thresholding program in Census Block
Group i, i€ S,

¢ Remaining capacity in medical facility j, j € S¢

p Median household income poverty line

Variables

Xjj Relocated patient from Census Block Group i to facility j, i € S, j € Sf

P Total number of relocated patient

T Total travel time for all lost-access patients

2.2. Topological datasets

To model the accessibility of the transport network to patients, we
collect spatial data from OpenStreetMap, a collaborative mapping
project that provides a free and publicly editable map. We imported the
street network GIS data along with additional attributes (such as street
type, street length, and speed limit) and then created the Harris County
topological street network using the OSMnx package [36]. The road
network, denoted by ¢, characterizes intersections as nodes and road
segments as edges in Harris County. To propose a proactive patient
relocation plan considering the potential hazard event, we used the
National Flood Hazard Layer (NFHL) to simulate flood hazards. As part
of its National Flood Insurance Program, FEMA creates NFHL, consisting
of digitized information for delineating floodplains in large geographic
areas. The NFHL identifies not-at-risk zone as areas within the 500- or
100-year floodplains, as well as specially designated zones (e.g., coastal
hazard zones). We extract the detailed floodplain boundary for our study
case in Harris County.

2.3. Flood simulation

To simulate the impact of flooding on the Harris County dialysis
healthcare network, we design two failure scenarios. We first identify
the vulnerable zone based on the topological characteristics of the road
network and the location of the medical facility. We identify the road
segments overlaid with 100- and 500-year floodplains, denoted S'°° and
5200, respectively. In the same way, we identify the medical facility in
the 100- and 500-year floodplain, denoted as ${*° and $3°°. In the first
scenario, the random failure scenario, we perform random removal of
both road segments and medical facilities according to the flooding
coefficient, §, defined as the percentage of flooded road segments in S}%°
and the percentage of flooded facilities in S}*. For each setting of the

flooding coefficient, £, 6% road segments in $1%° and 0.2 x 5% road
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segments in S?°° would be randomly selected as flooded and thus
inaccessible. In the same way, 5% medical facilities in §}*° and 0.2x 6%
medical facilities in S)?OO are randomly selected as flooded and closed. In
the second scenario, the capacity rank-ordering failure scenario, we
perform the same random removal of the road segments but alternate
the medical facility failure to capacity rank-ordering removal, where the
medical facility on the floodplain, both §;% and 3%, with the highest
10% capacity will be identified as flooded and therefore closed.

2.4. Notations

All relevant notations used in the formulations are listed in Table 1.
2.5. Optimization formulation

2.5.1. Total travel time minimization model

In this study, we propose two optimization models to improve the
dialysis healthcare network in the face of natural disasters. The first is
the model of minimizing total travel time. The goal is to minimize the
travel time T for patients with lost access, which is expressed as follows

m  n+l

Min T=Y"> Tjex; )

=1 j=1

in flood scenarios, disruption to road segments and medical facilities
will result in some patients losing access while others may retain
accessibility without regard to travel time. We assume that patients who
still have access will continue their treatment at the same facility, while
patients who loses access will be transferred to the nearby facility based
on the shortest travel time. We calculate the patient’s shortest travel
time to the medical facility, T);., based on the flooded street graph, 55)(‘5),
in each simulated scenario. The travel time for the entire route was
calculated taking into account the free-flow travel speed and the travel
length of each road segment. In addition, the model uses a dummy fa-
cility n + 1 to receive the unsatisfied demand. Assigning patients to the
dummy facility results in a prohibitively long travel time, 7{(“ 1) to the
objective function. There are three constraints in the model of mini-
mizing total travel time. First, the patient demand constraints for each
CBG are

n+tl

D xj=pVieS. (2)
Jj=1

where, x; is the relocated number from CBG i to facility j and p; is the
number of lost-access patients in CBG i. Also, the number of relocated
patients should not exceed the remaining capacity of facility j. The fa-
cility capacity constraints are

Zx,‘/- <cVje sy 3
i1

where, ¢; is the remaining capacity in medical facility j. Finally, the
relocation number is a non-negative integer variable.

x; €Z'Vi€ S, Nj €S ©)]

2.5.2. Equity-focused model

The second model proposed in this study consists of two optimization
programs, the distance thresholding program and the temporary facility
program, which form an equity-focused model. The primary goal of the
equity-focused model is to prioritize socially vulnerable (e.g., low-
income and minority) patients. In large-scale disasters, the impact is
particularly severe for minority communities, the elderly, the econom-
ically disadvantaged, and those with chronic illnesses. This de-
mographic pattern is consistent with the population living with end-
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stage renal disease. Financial constraints and being in disaster-prone
areas make economically disadvantaged people more vulnerable to di-
sasters. Relocating dialysis treatment facilities places a significant
burden on these patients, particularly those who rely heavily on public
transport. To reduce this burden, when planning temporary post-
disaster medical facilities, it is important to prioritize locations that
are more accessible for these patients. This equity-focused model is
geared towards setting up temporary medical facilities close to socio-
vulnerable patients, thereby minimizing the need to travel long dis-
tances on public transport to travel to relocated facilities.

2.5.2.1. Distance thresholding program. We implement the equity-
focused model for the random failure scenario. In the first part of the
equity-focused model, we perform the distance thresholding program
that has the same objective function in the total travel time minimiza-
tion model as shown in Eq. (1). The program adds an additional
constraint along with Egs. (2)-(4) which is

x;=O0VT, > T* Vi € S,V € S\ {n+1} (5)

The additional constraint makes moving a socio-vulnerable patient

to a facility with a travel time, T., above the threshold, T*, an infeasible

l]’
solution. We have defined the socio-vulnerable population as patients
residing on the CBG with a median household income below the poverty
line, p. Therefore, following the relocation of the distance thresholding
program, most non-vulnerable patients will be reassigned to the avail-
able medical facility, while the majority of socio-vulnerable patients
who are far from the relocated facility will enter the second part of the

equity-based model.

2.5.2.2. Temporary facility program. In the second part of the equity-
focused model, select the locations for temporary medical facilities.
We specify the possible locations for temporary facilities at the centroid
of all CBGs. The program was designed as a multi-objective optimization
problem. The first objective is to maximize the number of relocated
patients, which is expressed as follows:

Max P:Zx[[f (6)
il
The second objective function is to minimize the total travel time

from the lost-access patients to the temporary facilities located in the
centroid of CBGs. The objective is defined by:

Min T= Xm: i TS o x; )

i=1 =1

i it

where, T}, is the shortest travel time for trips from Census Block Group i
to Census Block Group i. For each CBG, the relocated number should not
exceed the remaining patients with lost access after the distance
thresholding program indicated by p. The demand constraint is shown
in Eq. (8).

m
> xi<pivies, 8
Jj=1
Also, the non-negative integer constraint still applies to the relocat-
ing variables.

x; €Z7Vi,i €8, 9

in this study, we addressed the solution of ILP models by implementing
an open-source optimization solver called Coin-OR Branch and Cut
(CBQ). Developed by the Computational Infrastructure for Operations
Research (COIN-OR) community, this solver was applied in Python
using the PuLP package. The branch-and-cut technique, a tree-search
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Fig. 2. The distribution of estimated service capacity for the 142 dialysis
centers in Harris County, Texas.
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method, has been used to address (mixed) integer linear programs and
has found diverse applications ranging from solving hub location rout-
ing problems [37-39] and scheduling problems [40-42] to addressing
energy and environmental modeling [43-45]. This exact algorithm
combines elements of the branch-and-bound approach with a cutting
plane method. The methodology revolves around solving a sequence of
linear programming relaxations of the ILP problem. Branch-and-bound
algorithms solve the problem through a sophisticated
divide-and-conquer strategy while cutting plane methods improve the
relaxation of the problem to more closely approximate the integer pro-
gramming problem.

3. Results
3.1. Impacts of simulated flood hazard

To build the Harris County dialysis facility network and the demand
for facilities, we first estimate the capacity of each dialysis center based
on the assumption that the two-week demand accounts for 90% of each

facility’s total capacity. This assumption is mainly due to the infeasi-
bility of obtaining actual demand and capacity data. The distribution of

Road Segments intersect with 500-year Floodplain

(©)

Fig. 3. (a) 100-year and 500-year floodplains in Harris County, Texas. (b) The geographic topology of the road segments intersects with the 100-year floodplain. (c)
The geographic topology of the road segments intersects with the 500-year floodplain.
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Table 2
The average flooded road segment and flooded medical facility in random fail-
ure scenario under different § settings.

Flood coefficient () 0.05 0.1 0.15
Road segment 3328.6 6644 9942.8
Medical center 1 3 5

the estimated capacity for the dialysis center is shown in Fig. 2. The
capacities of the dialysis centers follow a long-tail distribution with a
small number of facilities having the largest capacity and greatest
demand.

Second, we perform geospatial processing on the road network and
the floodplain to classify the road segment. Of the 354,546 total road

Random Failure Scenario
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segments in Harris County, Texas, 54,084 segments denoted as S!%°, that
intersect with the 100-year floodplain, while 63,170 segments denoted
as §2% intersect with the 500-year floodplain. The geographic topology
of 1% and S3%° is shown in Fig. 3. In addition, of the 142 total Harris
County medical facilities examined, there are 25 medical facilities, S;°°,
at the 100-year floodplain and 27 facilities, S?*°, at the 500-year
floodplain.

In the random failure scenario, we generated flooded street topology
networks %9 by setting 6 equals 0.05, 0.1, and 0.15 to simulate both
road failure and medical facility failure. In this scenario, % of S} and
§;% are randomly selected as flooded and 0.2 x 6% of S?°° and S2°° are

randomly selected as flooded. We simulated 10 cases for each § setting.

Rank-Ordering Scenario

1650
o
1600 -
1550 - o
1500 -
1450 -
1400 - 5
o
1350 - %
6 = 0.05 6=0.1 6 =0.15

Fig. 4. The distribution of patients losing access to facilities in random failure and capacity rank-ordering failure scenario.
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Fig. 5. The distribution of average travel time with three flooding coefficients in random failure scenario and capacity rank-ordering capacity. The red dashed line
with a value of 420.19 (seconds) indicates the average travel time in the normal period.
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Fig. 6. The optimization result of the total travel time minimization model under random failure scenario and capacity rank-ordering scenarios. The green area
represents the patients who were reallocated to nearby dialysis centers. The red area represents patients who still did not have access according to the total travel

time minimization model.

The average flooded road segment and medical facility in each § setting
is shown in Table 2.

In the capacity rank-ordering failure scenario, the identification of
the flooded road segment follows the same procedure as in the random
failure scenario, resulting in an identical %) However, for the medical
facility failure, we select facilities in the floodplain with the largest 10%
capacity, which is 5 of 52 facilities to be flooded. The goal of the capacity
rank-ordering failure scenario is to stress test the system and assess the
level of dependency of the Harris County dialysis community on these
major dialysis centers. Similarly, to assess the potential impact on the
dialysis healthcare system in Harris County, we generate ten cases for
each flooded street network Z®), giving a total of 60 flooding cases.

We run the flooding simulations; the results show that in the random
failure scenario, the average access-lost patient under three flooding
coefficient settings is 95 (27(0‘05)), 324 (Z”(O'l)), and 480 (719,

\93

Frequency

0 50000 100000 150000 200000 250000

Median Household Income ($)

(a)

Meanwhile, in the capacity rank-ordering failure scenario, the average
loss of access for patients under three flooding coefficient settings is
1342 (£1999), 1396 (#*), and 1483 (£°*°)). The distributions of
lost-access distributions are shown in Fig. 4. Lost access means the pa-
tients would not be able to access any facility in the region since all
facilities are out of capacity or out of service. Disrupted access, on the
other hand, means patients need to take longer travel to access facilities.

In the random failure scenario, the average travel time (in seconds)
of patients still able to access their medical facility under the impact of
flooding is 435.27 (Z£°%)), 451.35 (Z2°V), and 471.26 (Z°1%).
Meanwhile, in the capacity rank-ordering failure scenario, the average
travel time of patients who still have access to their medical facility
despite the flood impact is 443.26 (2(095)) 459,53 (£®1), and 476.5

(Z919)), The distribution of the average travel time at different flooding
coefficients in each flood scenario is shown in Fig. 5.

Q3

Freqpency

N

0‘ . 506 1000 1500 2000 5560
Travel Time (s) in Normal Period

3000

(b)

Fig. 7. (a) The distribution of dialysis patients’ median household income distribution. (b) The distribution of travel time of all patients during the normal period.
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Fig. 8. The geographic distribution of demand points for temporary medical facilities under three flooding coefficients with their ten-case aggregate demand.

3.2. Total travel time minimization model

In Fig. 6, we present the optimization result for minimizing the total
travel time under random failure and facility capacity rank-ordering
scenarios.

3.3. Equity-focused model

In this study, we set the poverty line, p, as the first quartile of the
median household income of all patients, which is $33,956.75. Patients
in the CBG with a median household income of less than p are classified
as a socio-vulnerable population. We also set the travel time threshold,
T*, for the socio-vulnerable population as the median travel time of all
patients in the normal period, which is 251.4 s. The relocation of socio-
vulnerable patients with a travel time greater than T is identified as an
infeasible solution under the distance thresholding program. Fig. 7
shows the distribution of median house income for CBGs in Harris
County and the distribution of travel time for all patients over the
normal period.

We aggregate the ten cases in each flooding coefficient setting to
represent the points of need for temporary facilities that could provide
the shortest travel time for the nearby patients losing access. In the
flooded road topology network %% there are 18 temporary facility
demand points with a total demand of 59. In addition, in the flooded

street topology network Z(®1)| there are 56 temporary facility demand

points with a total demand of 183. Finally, in flooded street topology

network Z(%19 there are 80 temporary facility demand points with a

total demand of 281. Fig. 8 shows the geographic distribution of the
aggregated temporary facility demand point with ten cases under
different flooding coefficients.

4. Analysis and discussion

In this study, we designed two failure scenarios to assess the extent to
which the examined healthcare network is dependent on large medical
facilities. As shown in Fig. 2, there are only 18 medical facilities with an
estimated capacity greater than 100, which means that 87.32% of
medical care has a capacity less than 100. The result shows that the
dialysis healthcare network relies heavily on a few medical centers with
large capacities. As shown in Fig. 9, the critical care facility capacity
rank-ordering results in a higher average travel time (green) than in the
random failure scenario (red). This shows that the accessibility of dial-
ysis is highly dependent on the operation of these large medical centers.
This means that once these large medical facilities are perturbed, pa-
tients will find it difficult to find an alternate facility nearby to continue
their maintenance dialysis. In other words, the critical care facility
network has a scale-free structure and is vulnerable to targeted attacks
on hub nodes (i.e., large facilities).
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Fig. 9. The average travel time with the travel minimization model (red and green) and the equity-based model (blue) under three flooding coefficients.

Although the capacity rank-ordering medical facility failure results
in many more patients losing access (red plus green area) as shown in the
second row of Fig. 6, the total travel time minimization model could
reallocate most of the patients (green) and achieve the same level of
performance, in terms of the number of remaining patients with lost
access (red), as in the random failure scenario.

In addition, as shown in Fig. 9, the model for minimizing total travel
time will reallocate the socio-vulnerable patient with a longer average
travel time, particularly with less variance in the rank-ordering failure
scenario (green) than in the random failure scenario (red). By formu-
lating the equity-focused model, we can greatly reduce the average
travel time (blue) of socially vulnerable patients in all flooding coeffi-
cient settings, thus improving the equity of accessibility of dialysis pa-
tients when the facility network is perturbed.

From Fig. 8 we can observe that in the central part of Harris County,
there is a strip of demand points in all three flooding coefficient settings,
regardless of its demand magnitude. This could be an indicator of high
patient demand and an alarm signal that the central-area road segment
is highly vulnerable to simulated flooding. In addition, although there
are some large demand points in the northern periphery, particularly
under Z°1% setting, it could be a false positive signal, in particular
considering we have excluded the possible medical center north of the
border of Harris County. The boundary of the study region is the limits of
Harris County. Patients living in the boundary regions of the county
might visit facilities in the neighboring county. Hence, demand points
identified in the periphery of the county should be further examined in
light of proximity of facilities in the neighboring county. Also, the fa-
cilities in neighboring counties are likely to be impacted by the flood
event as well. Hence, not considering the neighboring county’s facilities
does not undermine the results of the optimization model.

5. Concluding remarks

This study proposed an equity-focused optimization framework to
assess the critical care facility network resilience in disasters. The study
and its outcomes have multiple important contributions. First, the pro-
posed optimization framework is among the first efforts to characterize
and improve the resilience of regional critical care facility networks in
disasters. The framework proposed in this study can serve as a decision

support tool to inform emergency managers and public health officials
to better understand, prepare, and respond to the effects of disasters on
dialysis centers by optimizing patient reallocation and temporary fa-
cility placement. Second, this study incorporates equity in the optimi-
zation model formulation which is mostly ignored in prior studies
[20-22,26,29]. Disasters are known to disproportionately impact
vulnerable populations [46,47]1; if decision support models (such as the
optimization model presented in this paper) do not consider equity as-
pects, the impacts on vulnerable populations will be exacerbated. Third,
this study developed the optimization model of population-facility
network based on observational location-based data that would pro-
vide a more realistic representation of patients’ dependence on different
facilities.

Specifically, we simulated the disruption of the road network and the
closure of dialysis facilities based on different levels of flood severity.
The results show that: (1) the critical care facility network is highly
dependent on certain large dialysis centers, which means that the system
has the characteristics of scale-free networks and is vulnerable to tar-
geted disruption such as capacity rank-ordering failure. (2) In addition,
by assessing the geographic distribution of temporary facility demand
points, we also identified the areas of the dialysis patient community
that are vulnerable to critical facility failures. A possible solution is to
develop a distributed dialysis healthcare system in the study area. While
a centralized healthcare system can leverage economies of scale to
provide healthcare services more cost-efficiently, especially in areas
with large populations, a distributed healthcare system could allow
better access to patients. By providing dialysis care closer to where pa-
tients live, a distributed healthcare system can reduce travel time and
costs and make healthcare more accessible. In addition, a distributed
critical care system can be more flexible and responsive to local needs
and conditions, enabling providers to adapt to changing patient de-
mands when facing hazardous events. Still, distributed facilities can be
more complex to manage and may require greater investment in infra-
structure. (3) Furthermore, this study identified potential sites for
temporary medical facilities that could be deployed to enhance the
healthcare system in the context of disaster resilience, with a particular
focus on the socioeconomically vulnerable population. Given socio-
economically vulnerable patients’ transportation barriers to reach
their relocated dialysis treatment, the increased travel time caused by
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relocation could pose a significant burden. Therefore, to promote an
equitable healthcare network, when designing temporary medical fa-
cilities, the dialysis community should consider prioritizing locations
that are more accessible to these socioeconomically vulnerable patients.

Incorporating data-driven methods into disaster risk management
has transformative potential to mitigate the adverse impacts of hazards
on communities, particularly the most vulnerable. This study represents
a breakthrough approach by using location-based datasets, critical care
facility information, road networks, and hazard exposure data to create
and validate an optimization model. This model effectively redistributes
dialysis patients during disruptive weather events, a challenge that re-
quires for proactive solutions. Traditionally, responses to access dis-
ruptions have been reactive and suboptimal, potentially compromising
patient care. In contrast, our data-driven optimization model empowers
public health officials and emergency managers to anticipate and
strategize. They can assess different scenarios of road inundations and
facility closures to pinpoint at-risk areas, optimize patient distribution,
and increase the redundancy of care networks. Such insights could
inform plans to reduce the impact of disrupted access by increasing the
capacity of facilities in critical areas during extreme weather events and
building new facilities in vulnerable zones. By integrating data-driven
foresight, we are able to prevent catastrophic incidents of kidney fail-
ure during extreme weather events. Furthermore, the method and
dataset presented here have broader applicability, extending to the
optimization of various critical care facilities beyond dialysis centers.
The synergistic fusion of data-driven innovation, strategic forethought,
and healthcare resilience heralds a paradigm shift in disaster pre-
paredness and response. With this holistic approach, we can work to
protect communities, save lives, and strengthen the integrity of critical
healthcare systems.
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