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A B S T R A C T   

Medical infrastructure disruptions during disasters pose a major threat to critically ill patients with advanced 
chronic kidney disease or end-stage renal disease. There is a need to assess the potential threat to critical care 
facilities from hazardous events to improve patient access to dialysis treatment. We propose optimization models 
for patient reallocation and temporary medical facility placement to equitably improve critical care system 
resilience. We leverage human mobility data in Texas to assess patient access to critical care facilities and dialysis 
centers under the simulated hazard impacts. The optimization model was formulated as an integer programming 
and solved by COIN-OR Branch-and-Cut (CBC) solver. The results show (1) the capability of the optimization 
model in efficient patient reallocation to alleviate disrupted access to dialysis facilities; (2) the importance of 
large facilities in maintaining the system functionality. The critical care system, particularly the network of 
dialysis centers, is heavily reliant on a few larger facilities, characteristic of scale-free networks, making it 
susceptible to targeted disruption, such as capacity failures. (3) Considering equity in the optimization model 
formulation reduces access loss for vulnerable populations in the simulated scenarios. (4) The proposed tem
porary facilities placement could improve access for the vulnerable population, thereby improving the equity of 
access to critical care facilities in disaster. The proposed patient reallocation optimization model and temporary 
facilities placement offer a data-driven and analytics-based decision support tool tailored to the needs of 
healthcare organizations across private and public sectors to proactively mitigate the potential loss of access to 
critical care facilities during disasters.   

1. Introduction 

Healthcare systems have been under enormous pressure caused by 
various types of disasters, including natural disasters and man-made 
disasters [1]. Such disasters have triggered a surge in demands for 
medical services and exacerbated the shortage of healthcare resources in 
the affected regions. The objective of this study was to create an equi
table optimization framework for patient reallocation and temporary 
facility placement to maximize the resilience of critical care facilities 
network, with a focus on dialysis centers. In this study, the term resil
ience was used to refer to healthcare resilience, defined as the ability of 
the healthcare system to reduce the potential impact of a disaster and 
meet the needs of the population [2]. Critical healthcare facilities like 
dialysis centers are crucial in safeguarding the wellbeing of patients with 
heightened vulnerability. The disruption of these services due to di
sasters can lead to perilous kidney failure in patients reliant on dialysis 
treatments [3]. Patient risk is especially elevated during severe weather 

incidents, such as hurricanes, floods, or harsh cold conditions, when 
widespread kidney failure can result from interrupted access to these 
critical care facilities due to their forced closure [4]. Lempert & Kopp [5] 
describe such a predicament as a “kidney failure disaster”, an event that 
exposes a large number of patients, either on maintenance dialysis or 
recently diagnosed with acute kidney injury (AKI), at serious risk due to 
the unavailability of dialysis services. Historical data points to such 
health disasters, for instance, during Hurricane Katrina in 2005 [6–8] 
and Hurricane Gustav in 2008 [9]. For instance, the effects of Hurricane 
Sandy in 2012 were the major cause of kidney failure issues in the New 
York metropolitan area. Dialysis services were closed in anticipation of 
the storm or due to flooding, power outages, and structural damage 
caused by the storm [5]. The closure of dialysis services in some severely 
flooded areas forced surrounding hospitals to house the evacuated pa
tients, who were often admitted to emergency rooms with hyper
kalemia. Despite the rapid response from renal communities, some 
patients are at increased health risk, and some may have suffered 
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significant health consequences from missed dialysis sessions. The un
certainty and disruption caused by hazardous events may have resulted 
in acute and long-term mental health implications for maintenance 
dialysis patients. 

In addition, the transportation network acts as the backbone of 
healthcare, connecting individuals to critical care facilities. Ensuring 
access to essential facilities becomes even more crucial during and post- 
disasters, as it directly influences the community’s overall welfare [10]. 
However, this access is often hampered by disturbances from natural 
hazards [11]. A prominent example is the extensive flooding caused by 
Hurricane Harvey in 2017, which severed road connections to various 
key facilities and posed significant threats to public safety, especially for 
those already in vulnerable conditions [12]. Neglecting public access to 
critical care services after disasters can hinder community recovery. To 
build the resilience of the community of people with functional needs, it 
is important to establish a predetermined communication system to 
inform this population where they can receive dialysis treatment [13]. It 
is important to recognize that the disruption to routine dialysis sessions 
can have ripple effects, including an influx of patients to other dialysis 
centers, an increased strain on facilities caring for more 
dialysis-dependent patients, and more emergency department visits [14, 
15]. Furthermore, redundant communication methods and transport 
plans should be established to ensure uninterrupted access to critical 
care facilities. 

The examination of disaster-induced disruption to vital dialysis 
centers remains an under-researched area within healthcare services 
and medical center studies. One of the rare investigations in this field, 
conducted by Kaiser et al. [16], evaluated the flooding impact on dial
ysis centers in Harris County, Texas, during Hurricane Harvey, utilizing 
the flood maps from that weather incident. This study made use of flood 
zone categorizations provided by the Federal Emergency Management 
Agency (FEMA) to measure and classify dialysis centers based on their 
proximity to flood areas. However, focusing solely on the flood exposure 
of dialysis centers does not provide a comprehensive view of the po
tential threats to patients in the region arising from compromised access 
to these centers. Flooding can lead to multifaceted disruptions in 

accessing dialysis services, such as road inundation preventing patient 
travel [17]; closures or malfunctions of dialysis centers due to facility 
flooding [16]; and disturbances in the communities where 
dialysis-dependent patients reside [18]. 

Two strategies in dealing with patients’ disrupted access to critical 
care facilities, such as dialysis centers, include reallocation of patients 
across the network of facilities in a region and setting up temporary 
facilities to meet the demand [19]. Different optimization methods have 
been proposed in the literature to solve patient and medical resource 
allocation problems [20–27]. For the pandemic cases, Tsai et al. [24] 
applied linear programming models to optimize the allocation of pa
tients during the dengue fever epidemic. In the study, the objective 
function was to minimize the total travel distance of all patients. Ma & 
Demeulemeester [27] developed an integer linear programming (ILP) 
model with the aim of efficiently allocating existing beds while opti
mizing the hospital’s financial situation. The model takes various con
straints into account, including bed capacity and occupancy. Sun et al. 
[23] addressed patient and resource allocation between hospitals in a 
healthcare network during the pandemic influenza pandemic. The 
mathematical models take into account two objectives related to pa
tients’ cost of accessing healthcare services: (1) minimizing the total 
travel distance, and (2) minimizing the maximum distance a patient 
travels to a hospital. Ye et al. [25] constructed a patient allocation model 
during major epidemics that considered the severity of patients’ con
ditions by applying a multi-objective planning method. Mosallanezhad 
et al. [28] devised a multi-objective model to address personal protec
tion during the COVID-19 pandemic. This multi-objective, multi-
product, and multi-period framework aims to satisfy the demand for 
personal protection equipment while optimizing the objective of mini
mizing total cost. 

For the disaster response cases, Minciardi et al. [21] developed a 
mathematical model to assist decision makers in optimal resource allo
cation before and during a natural hazard emergency. Revelle & Snyder 
[22] addressed emergency room location issues while respecting the 
maximum demand met. Fiedrich et al. [20] investigated the allocation of 
available resources to the operational area to minimize the total death 

Fig. 1. Conceptual framework of optimizing healthcare system resilience. The initial phase involves estimating the dialysis patient demand during the normal period 
(i.e., pre-disaster period). The subsequent flood-hazard simulation section examines 30 random failure scenarios which consist of facility random failure and street 
random failure, as well as 30 rank-ordering failure scenarios, which consist of facility rank-ordering failure and street random failure. Finally, the analysis includes 
total travel time minimization for both random failure and rank-ordering scenarios, while the equity-focused model is specifically applied to the random fail
ure scenarios. 
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toll during the initial search and rescue phase after a major earthquake. 
Yi & Özdamar [26] built an integrated location-distribution model to 
study the selection of temporary emergency centers that would result in 
maximum coverage of post-disaster medical needs in the affected area 
and optimal distribution of medical staff across both the temporary and 
permanent emergency response units. Gulzari & Tarakci [29] addressed 
the problem of strategically locating temporary health facilities, allo
cating health professionals to these facilities, and incorporating tele
medicine into an earthquake response phase. The studied objective was 
to develop an optimal solution that minimizes unmet healthcare demand 
by efficiently allocating health professionals to the demand points. 

Although past studies have implemented mathematical models in 
solving the problem of patient reallocation and resource allocation, 
limited attention has been paid to healthcare network optimization 
considering the possible infrastructure disruption in the aftermath of 
hazard events. Conversely, most studies make the assumption that 
existing facilities will not be affected by the disaster [30–32]. This 
presumption, however, could be unrealistic, since the infrastructure, 
such as transportation facilities and medical facilities, could be severely 
damaged by a large-scale hazard event and remain inoperable for a 
period of time. Very few studies in the literature consider possible 
damage exclusively for the medical centers or the aid depots [33–35]. 

Recognizing the gap, we propose a framework for disaster pre
paredness and response in healthcare networks considering infrastruc
ture disruptions in the post-disaster period. Specifically, we focus on 
addressing the following research questions. (1) To what extent is the 
critical care facility network vulnerable to various infrastructure failure 
scenarios? (2) What is the optimized patient reallocation plan for dial
ysis patients whose access is disrupted due to hazardous events? and (3) 
Where is a potential site for housing temporary medical facilities to 
improve access for socially vulnerable patients in an equitable manner? 
Accordingly, there are three objectives in the proposed model: the 
highest allocation effectiveness, the lowest transportation distance, and 
the equity of access to treatment for patients in each stricken area. The 
remainder of this paper is organized as follows. In the next section, we 
present the examined material and the formulation of the optimization 
models. In Section 3, numerical results of the studied case are presented 
to show how the model could help decision makers in determining pa
tient allocation and the potential temporary facility placement in the 
healthcare system. In Section 4, the analysis and discussion based on the 
optimization results are presented. Section 5 contains concluding re
marks. Fig. 1 presents the conceptual framework of this study. 

2. Materials and methods 

2.1. Population-facility visitation network and demand setting 

This study uses the aggregated human mobility data to capture the 
dynamic visiting pattern of dialysis patients in the Houston metropolitan 
area. The human mobility dataset of stops at points-of-interest (dialysis 
centers in this study) from mobile devices, was collected from a mobility 
data provider. Each stay point (home location) has been aggregated at 
the Census Block Group (CBG) level, thus forming the CBG-to-center 
visit. Dialysis demand exists in 2010 CBGs out of a total of 2144 CBGs 
in Harris County within which the Houston metro area is located. A total 
of 142 dialysis centers were included in the study. We used the two-week 
study period from August 1, 2017, to August 14, 2017, to estimate the 
number of patients in each CBG. A total of 5308 visits were included in 
the two-week time window. These visits represent a sample of the actual 
number of visits. Since obtaining the actual number of visits is not 
feasible, we assume that these visits represent a fraction of the total 
visits. We discuss this assumption in the following section where we 
present the characteristics of facilities and their capacity. 

2.2. Topological datasets 

To model the accessibility of the transport network to patients, we 
collect spatial data from OpenStreetMap, a collaborative mapping 
project that provides a free and publicly editable map. We imported the 
street network GIS data along with additional attributes (such as street 
type, street length, and speed limit) and then created the Harris County 
topological street network using the OSMnx package [36]. The road 
network, denoted by G , characterizes intersections as nodes and road 
segments as edges in Harris County. To propose a proactive patient 
relocation plan considering the potential hazard event, we used the 
National Flood Hazard Layer (NFHL) to simulate flood hazards. As part 
of its National Flood Insurance Program, FEMA creates NFHL, consisting 
of digitized information for delineating floodplains in large geographic 
areas. The NFHL identifies not-at-risk zone as areas within the 500- or 
100-year floodplains, as well as specially designated zones (e.g., coastal 
hazard zones). We extract the detailed floodplain boundary for our study 
case in Harris County. 

2.3. Flood simulation 

To simulate the impact of flooding on the Harris County dialysis 
healthcare network, we design two failure scenarios. We first identify 
the vulnerable zone based on the topological characteristics of the road 
network and the location of the medical facility. We identify the road 
segments overlaid with 100- and 500-year floodplains, denoted S100

r and 
S500

r , respectively. In the same way, we identify the medical facility in 
the 100- and 500-year floodplain, denoted as S100

f and S500
f . In the first 

scenario, the random failure scenario, we perform random removal of 
both road segments and medical facilities according to the flooding 
coefficient, δ, defined as the percentage of flooded road segments in S100

r 
and the percentage of flooded facilities in S100

f . For each setting of the 

flooding coefficient, G (δ), δ% road segments in S100
r and 0.2 × δ% road 

Table 1 
Notations used in the paper.  

General subscripts and sets 

i, i′ Index of census block groups 
j Index of medical centers 
l Number of road segments 
m Number of Census Block Groups 
n Number of studied medical facility 
G Street topology network 
G

(δ) Flooded street topology network with flooding coefficient δ 
Sr Set of road segments, Sr = {1,…, l}
S100

r ,

S500
r 

Set of road segments intersects with 100- and 500-year floodplains 
accordingly, S100

r ,S500
r ⊆ Sr 

Sc Set of Census Block Groups, Sc = {1,…,m}

S′
c Set of socio-vulnerable Census Block Groups, S′

c ⊆ Sc 

Sf Set of medical facilities, Sf = {1,…,n + 1}
S100

f ,

S500
f 

Set of dialysis cares intersect with 100- and 500-year floodplains 
accordingly, S100

f ,S500
f ⊆ Sf 

Parameters 
δ Flooding coefficient, δ ∈ [0,1]
Tf

ij 
Shortest travel time for trips from Census Block Group i to facility j, i ∈ Sc, 
j ∈ Sf 

Tc
ii′ Shortest travel time for trips from Census Block Group i to Census Block 

Group i′, i, i′ ∈ Sc 

T∗ Threshold value for shortest travel time 
pi Lost-access patient in Census Block Group i, i ∈ Sc 

pdt
i Lost-access patient after distance thresholding program in Census Block 

Group i, i ∈ Sc 

cj Remaining capacity in medical facility j, j ∈ Sf 
ρ Median household income poverty line 
Variables 
xij Relocated patient from Census Block Group i to facility j, i ∈ Sc, j ∈ Sf 
P Total number of relocated patient 
T Total travel time for all lost-access patients  
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segments in S500
r would be randomly selected as flooded and thus 

inaccessible. In the same way, δ% medical facilities in S100
f and 0.2× δ% 

medical facilities in S500
f are randomly selected as flooded and closed. In 

the second scenario, the capacity rank-ordering failure scenario, we 
perform the same random removal of the road segments but alternate 
the medical facility failure to capacity rank-ordering removal, where the 
medical facility on the floodplain, both S100

f and S500
f , with the highest 

10% capacity will be identified as flooded and therefore closed. 

2.4. Notations 

All relevant notations used in the formulations are listed in Table 1. 

2.5. Optimization formulation 

2.5.1. Total travel time minimization model 
In this study, we propose two optimization models to improve the 

dialysis healthcare network in the face of natural disasters. The first is 
the model of minimizing total travel time. The goal is to minimize the 
travel time T for patients with lost access, which is expressed as follows 

Min T =
∑m

i=1

∑n+1

j=1
Tf

ij • xij (1)  

in flood scenarios, disruption to road segments and medical facilities 
will result in some patients losing access while others may retain 
accessibility without regard to travel time. We assume that patients who 
still have access will continue their treatment at the same facility, while 
patients who loses access will be transferred to the nearby facility based 
on the shortest travel time. We calculate the patient’s shortest travel 
time to the medical facility, Tf

ij, based on the flooded street graph, G (δ), 
in each simulated scenario. The travel time for the entire route was 
calculated taking into account the free-flow travel speed and the travel 
length of each road segment. In addition, the model uses a dummy fa
cility n + 1 to receive the unsatisfied demand. Assigning patients to the 
dummy facility results in a prohibitively long travel time, Tf

i(n+1), to the 
objective function. There are three constraints in the model of mini
mizing total travel time. First, the patient demand constraints for each 
CBG are 

∑n+1

j=1
xij = pi∀i ∈ Sc (2)  

where, xij is the relocated number from CBG i to facility j and pi is the 
number of lost-access patients in CBG i. Also, the number of relocated 
patients should not exceed the remaining capacity of facility j. The fa
cility capacity constraints are 

∑n

i=1
xij ≤ cj∀j ∈ Sf (3)  

where, cj is the remaining capacity in medical facility j. Finally, the 
relocation number is a non-negative integer variable. 

xij ∈Z+∀i ∈ Sc,∀j ∈ Sf (4)  

2.5.2. Equity-focused model 
The second model proposed in this study consists of two optimization 

programs, the distance thresholding program and the temporary facility 
program, which form an equity-focused model. The primary goal of the 
equity-focused model is to prioritize socially vulnerable (e.g., low- 
income and minority) patients. In large-scale disasters, the impact is 
particularly severe for minority communities, the elderly, the econom
ically disadvantaged, and those with chronic illnesses. This de
mographic pattern is consistent with the population living with end- 

stage renal disease. Financial constraints and being in disaster-prone 
areas make economically disadvantaged people more vulnerable to di
sasters. Relocating dialysis treatment facilities places a significant 
burden on these patients, particularly those who rely heavily on public 
transport. To reduce this burden, when planning temporary post- 
disaster medical facilities, it is important to prioritize locations that 
are more accessible for these patients. This equity-focused model is 
geared towards setting up temporary medical facilities close to socio- 
vulnerable patients, thereby minimizing the need to travel long dis
tances on public transport to travel to relocated facilities. 

2.5.2.1. Distance thresholding program. We implement the equity- 
focused model for the random failure scenario. In the first part of the 
equity-focused model, we perform the distance thresholding program 
that has the same objective function in the total travel time minimiza
tion model as shown in Eq. (1). The program adds an additional 
constraint along with Eqs. (2)–(4) which is 

xij = 0∀Tf
ij > T∗,∀i ∈ S′

c, ∀j ∈ Sf \{n+ 1} (5) 

The additional constraint makes moving a socio-vulnerable patient 
to a facility with a travel time, Tf

ij, above the threshold, T∗, an infeasible 
solution. We have defined the socio-vulnerable population as patients 
residing on the CBG with a median household income below the poverty 
line, ρ. Therefore, following the relocation of the distance thresholding 
program, most non-vulnerable patients will be reassigned to the avail
able medical facility, while the majority of socio-vulnerable patients 
who are far from the relocated facility will enter the second part of the 
equity-based model. 

2.5.2.2. Temporary facility program. In the second part of the equity- 
focused model, select the locations for temporary medical facilities. 
We specify the possible locations for temporary facilities at the centroid 
of all CBGs. The program was designed as a multi-objective optimization 
problem. The first objective is to maximize the number of relocated 
patients, which is expressed as follows: 

Max P=
∑

i∕=i′
xii′ (6) 

The second objective function is to minimize the total travel time 
from the lost-access patients to the temporary facilities located in the 
centroid of CBGs. The objective is defined by: 

Min T =
∑m

i=1

i∕=i′

∑m

i′=1

i∕=i′

Tc
ii′ • xii′ (7)  

where, Tc
ii′ is the shortest travel time for trips from Census Block Group i 

to Census Block Group i′. For each CBG, the relocated number should not 
exceed the remaining patients with lost access after the distance 
thresholding program indicated by pdt

i . The demand constraint is shown 
in Eq. (8). 

∑m

j=1
xii′ ≤ pdt

i ∀i ∈ Sc (8) 

Also, the non-negative integer constraint still applies to the relocat
ing variables. 

xii′ ∈Z+∀i, i′ ∈ Sc (9)  

in this study, we addressed the solution of ILP models by implementing 
an open-source optimization solver called Coin-OR Branch and Cut 
(CBC). Developed by the Computational Infrastructure for Operations 
Research (COIN-OR) community, this solver was applied in Python 
using the PuLP package. The branch-and-cut technique, a tree-search 
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method, has been used to address (mixed) integer linear programs and 
has found diverse applications ranging from solving hub location rout
ing problems [37–39] and scheduling problems [40–42] to addressing 
energy and environmental modeling [43–45]. This exact algorithm 
combines elements of the branch-and-bound approach with a cutting 
plane method. The methodology revolves around solving a sequence of 
linear programming relaxations of the ILP problem. Branch-and-bound 
algorithms solve the problem through a sophisticated 
divide-and-conquer strategy while cutting plane methods improve the 
relaxation of the problem to more closely approximate the integer pro
gramming problem. 

3. Results 

3.1. Impacts of simulated flood hazard 

To build the Harris County dialysis facility network and the demand 
for facilities, we first estimate the capacity of each dialysis center based 
on the assumption that the two-week demand accounts for 90% of each 
facility’s total capacity. This assumption is mainly due to the infeasi
bility of obtaining actual demand and capacity data. The distribution of 

Fig. 2. The distribution of estimated service capacity for the 142 dialysis 
centers in Harris County, Texas. 

Fig. 3. (a) 100-year and 500-year floodplains in Harris County, Texas. (b) The geographic topology of the road segments intersects with the 100-year floodplain. (c) 
The geographic topology of the road segments intersects with the 500-year floodplain. 
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the estimated capacity for the dialysis center is shown in Fig. 2. The 
capacities of the dialysis centers follow a long-tail distribution with a 
small number of facilities having the largest capacity and greatest 
demand. 

Second, we perform geospatial processing on the road network and 
the floodplain to classify the road segment. Of the 354,546 total road 

segments in Harris County, Texas, 54,084 segments denoted as S100
r , that 

intersect with the 100-year floodplain, while 63,170 segments denoted 
as S500

r intersect with the 500-year floodplain. The geographic topology 
of S100

r and S500
r is shown in Fig. 3. In addition, of the 142 total Harris 

County medical facilities examined, there are 25 medical facilities, S100
f , 

at the 100-year floodplain and 27 facilities, S500
f , at the 500-year 

floodplain. 
In the random failure scenario, we generated flooded street topology 

networks G (δ) by setting δ equals 0.05, 0.1, and 0.15 to simulate both 
road failure and medical facility failure. In this scenario, δ% of S100

r and 
S100

f are randomly selected as flooded and 0.2 × δ% of S500
r and S500

f are 
randomly selected as flooded. We simulated 10 cases for each δ setting. 

Table 2 
The average flooded road segment and flooded medical facility in random fail
ure scenario under different δ settings.  

Flood coefficient (δ) 0.05 0.1 0.15 

Road segment 3328.6 6644 9942.8 
Medical center 1 3 5  

Fig. 4. The distribution of patients losing access to facilities in random failure and capacity rank-ordering failure scenario.  

Fig. 5. The distribution of average travel time with three flooding coefficients in random failure scenario and capacity rank-ordering capacity. The red dashed line 
with a value of 420.19 (seconds) indicates the average travel time in the normal period. 
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The average flooded road segment and medical facility in each δ setting 
is shown in Table 2. 

In the capacity rank-ordering failure scenario, the identification of 
the flooded road segment follows the same procedure as in the random 
failure scenario, resulting in an identical G (δ). However, for the medical 
facility failure, we select facilities in the floodplain with the largest 10% 
capacity, which is 5 of 52 facilities to be flooded. The goal of the capacity 
rank-ordering failure scenario is to stress test the system and assess the 
level of dependency of the Harris County dialysis community on these 
major dialysis centers. Similarly, to assess the potential impact on the 
dialysis healthcare system in Harris County, we generate ten cases for 
each flooded street network G (δ), giving a total of 60 flooding cases. 

We run the flooding simulations; the results show that in the random 
failure scenario, the average access-lost patient under three flooding 
coefficient settings is 95 (G (0.05)), 324 (G (0.1)), and 480 (G (0.15)). 

Meanwhile, in the capacity rank-ordering failure scenario, the average 
loss of access for patients under three flooding coefficient settings is 
1342 (G (0.05)), 1396 (G (0.01)), and 1483 (G (0.15)). The distributions of 
lost-access distributions are shown in Fig. 4. Lost access means the pa
tients would not be able to access any facility in the region since all 
facilities are out of capacity or out of service. Disrupted access, on the 
other hand, means patients need to take longer travel to access facilities. 

In the random failure scenario, the average travel time (in seconds) 
of patients still able to access their medical facility under the impact of 
flooding is 435.27 (G (0.05)), 451.35 (G (0.1)), and 471.26 (G (0.15)). 
Meanwhile, in the capacity rank-ordering failure scenario, the average 
travel time of patients who still have access to their medical facility 
despite the flood impact is 443.26 (G (0.05)), 459.53 (G (0.1)), and 476.5 
(G (0.15)). The distribution of the average travel time at different flooding 
coefficients in each flood scenario is shown in Fig. 5. 

Fig. 6. The optimization result of the total travel time minimization model under random failure scenario and capacity rank-ordering scenarios. The green area 
represents the patients who were reallocated to nearby dialysis centers. The red area represents patients who still did not have access according to the total travel 
time minimization model. 

Fig. 7. (a) The distribution of dialysis patients’ median household income distribution. (b) The distribution of travel time of all patients during the normal period.  
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3.2. Total travel time minimization model 

In Fig. 6, we present the optimization result for minimizing the total 
travel time under random failure and facility capacity rank-ordering 
scenarios. 

3.3. Equity-focused model 

In this study, we set the poverty line, ρ, as the first quartile of the 
median household income of all patients, which is $33,956.75. Patients 
in the CBG with a median household income of less than ρ are classified 
as a socio-vulnerable population. We also set the travel time threshold, 
T∗, for the socio-vulnerable population as the median travel time of all 
patients in the normal period, which is 251.4 s. The relocation of socio- 
vulnerable patients with a travel time greater than T∗ is identified as an 
infeasible solution under the distance thresholding program. Fig. 7 
shows the distribution of median house income for CBGs in Harris 
County and the distribution of travel time for all patients over the 
normal period. 

We aggregate the ten cases in each flooding coefficient setting to 
represent the points of need for temporary facilities that could provide 
the shortest travel time for the nearby patients losing access. In the 
flooded road topology network G (0.05), there are 18 temporary facility 
demand points with a total demand of 59. In addition, in the flooded 

street topology network G (0.1), there are 56 temporary facility demand 
points with a total demand of 183. Finally, in flooded street topology 
network G (0.15), there are 80 temporary facility demand points with a 
total demand of 281. Fig. 8 shows the geographic distribution of the 
aggregated temporary facility demand point with ten cases under 
different flooding coefficients. 

4. Analysis and discussion 

In this study, we designed two failure scenarios to assess the extent to 
which the examined healthcare network is dependent on large medical 
facilities. As shown in Fig. 2, there are only 18 medical facilities with an 
estimated capacity greater than 100, which means that 87.32% of 
medical care has a capacity less than 100. The result shows that the 
dialysis healthcare network relies heavily on a few medical centers with 
large capacities. As shown in Fig. 9, the critical care facility capacity 
rank-ordering results in a higher average travel time (green) than in the 
random failure scenario (red). This shows that the accessibility of dial
ysis is highly dependent on the operation of these large medical centers. 
This means that once these large medical facilities are perturbed, pa
tients will find it difficult to find an alternate facility nearby to continue 
their maintenance dialysis. In other words, the critical care facility 
network has a scale-free structure and is vulnerable to targeted attacks 
on hub nodes (i.e., large facilities). 

Fig. 8. The geographic distribution of demand points for temporary medical facilities under three flooding coefficients with their ten-case aggregate demand.  
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Although the capacity rank-ordering medical facility failure results 
in many more patients losing access (red plus green area) as shown in the 
second row of Fig. 6, the total travel time minimization model could 
reallocate most of the patients (green) and achieve the same level of 
performance, in terms of the number of remaining patients with lost 
access (red), as in the random failure scenario. 

In addition, as shown in Fig. 9, the model for minimizing total travel 
time will reallocate the socio-vulnerable patient with a longer average 
travel time, particularly with less variance in the rank-ordering failure 
scenario (green) than in the random failure scenario (red). By formu
lating the equity-focused model, we can greatly reduce the average 
travel time (blue) of socially vulnerable patients in all flooding coeffi
cient settings, thus improving the equity of accessibility of dialysis pa
tients when the facility network is perturbed. 

From Fig. 8 we can observe that in the central part of Harris County, 
there is a strip of demand points in all three flooding coefficient settings, 
regardless of its demand magnitude. This could be an indicator of high 
patient demand and an alarm signal that the central-area road segment 
is highly vulnerable to simulated flooding. In addition, although there 
are some large demand points in the northern periphery, particularly 
under G

(0.15) setting, it could be a false positive signal, in particular 
considering we have excluded the possible medical center north of the 
border of Harris County. The boundary of the study region is the limits of 
Harris County. Patients living in the boundary regions of the county 
might visit facilities in the neighboring county. Hence, demand points 
identified in the periphery of the county should be further examined in 
light of proximity of facilities in the neighboring county. Also, the fa
cilities in neighboring counties are likely to be impacted by the flood 
event as well. Hence, not considering the neighboring county’s facilities 
does not undermine the results of the optimization model. 

5. Concluding remarks 

This study proposed an equity-focused optimization framework to 
assess the critical care facility network resilience in disasters. The study 
and its outcomes have multiple important contributions. First, the pro
posed optimization framework is among the first efforts to characterize 
and improve the resilience of regional critical care facility networks in 
disasters. The framework proposed in this study can serve as a decision 

support tool to inform emergency managers and public health officials 
to better understand, prepare, and respond to the effects of disasters on 
dialysis centers by optimizing patient reallocation and temporary fa
cility placement. Second, this study incorporates equity in the optimi
zation model formulation which is mostly ignored in prior studies 
[20–22,26,29]. Disasters are known to disproportionately impact 
vulnerable populations [46,47]; if decision support models (such as the 
optimization model presented in this paper) do not consider equity as
pects, the impacts on vulnerable populations will be exacerbated. Third, 
this study developed the optimization model of population-facility 
network based on observational location-based data that would pro
vide a more realistic representation of patients’ dependence on different 
facilities. 

Specifically, we simulated the disruption of the road network and the 
closure of dialysis facilities based on different levels of flood severity. 
The results show that: (1) the critical care facility network is highly 
dependent on certain large dialysis centers, which means that the system 
has the characteristics of scale-free networks and is vulnerable to tar
geted disruption such as capacity rank-ordering failure. (2) In addition, 
by assessing the geographic distribution of temporary facility demand 
points, we also identified the areas of the dialysis patient community 
that are vulnerable to critical facility failures. A possible solution is to 
develop a distributed dialysis healthcare system in the study area. While 
a centralized healthcare system can leverage economies of scale to 
provide healthcare services more cost-efficiently, especially in areas 
with large populations, a distributed healthcare system could allow 
better access to patients. By providing dialysis care closer to where pa
tients live, a distributed healthcare system can reduce travel time and 
costs and make healthcare more accessible. In addition, a distributed 
critical care system can be more flexible and responsive to local needs 
and conditions, enabling providers to adapt to changing patient de
mands when facing hazardous events. Still, distributed facilities can be 
more complex to manage and may require greater investment in infra
structure. (3) Furthermore, this study identified potential sites for 
temporary medical facilities that could be deployed to enhance the 
healthcare system in the context of disaster resilience, with a particular 
focus on the socioeconomically vulnerable population. Given socio- 
economically vulnerable patients’ transportation barriers to reach 
their relocated dialysis treatment, the increased travel time caused by 

Fig. 9. The average travel time with the travel minimization model (red and green) and the equity-based model (blue) under three flooding coefficients.  
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relocation could pose a significant burden. Therefore, to promote an 
equitable healthcare network, when designing temporary medical fa
cilities, the dialysis community should consider prioritizing locations 
that are more accessible to these socioeconomically vulnerable patients. 

Incorporating data-driven methods into disaster risk management 
has transformative potential to mitigate the adverse impacts of hazards 
on communities, particularly the most vulnerable. This study represents 
a breakthrough approach by using location-based datasets, critical care 
facility information, road networks, and hazard exposure data to create 
and validate an optimization model. This model effectively redistributes 
dialysis patients during disruptive weather events, a challenge that re
quires for proactive solutions. Traditionally, responses to access dis
ruptions have been reactive and suboptimal, potentially compromising 
patient care. In contrast, our data-driven optimization model empowers 
public health officials and emergency managers to anticipate and 
strategize. They can assess different scenarios of road inundations and 
facility closures to pinpoint at-risk areas, optimize patient distribution, 
and increase the redundancy of care networks. Such insights could 
inform plans to reduce the impact of disrupted access by increasing the 
capacity of facilities in critical areas during extreme weather events and 
building new facilities in vulnerable zones. By integrating data-driven 
foresight, we are able to prevent catastrophic incidents of kidney fail
ure during extreme weather events. Furthermore, the method and 
dataset presented here have broader applicability, extending to the 
optimization of various critical care facilities beyond dialysis centers. 
The synergistic fusion of data-driven innovation, strategic forethought, 
and healthcare resilience heralds a paradigm shift in disaster pre
paredness and response. With this holistic approach, we can work to 
protect communities, save lives, and strengthen the integrity of critical 
healthcare systems. 
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[38] I. Espejo, A. Marín, J.M. Muñoz-Ocaña, A.M. Rodríguez-Chía, A new formulation 
and branch-and-cut method for single-allocation hub location problems, Comput. 
Oper. Res. 155 (2023), 106241, https://doi.org/10.1016/j.cor.2023.106241. 

[39] Y. Wu, A.G. Qureshi, T. Yamada, S. Yu, Branch-and-price-and-cut algorithm for the 
capacitated single allocation hub location routeing problem, J. Oper. Res. Soc. 
0 (0) (2023) 1–13, https://doi.org/10.1080/01605682.2023.2197933. 

[40] M. Avci, M.G. Avci, A. Hamzadayı, A branch-and-cut approach for the distributed 
no-wait flowshop scheduling problem, Comput. Oper. Res. 148 (2022), 106009, 
https://doi.org/10.1016/j.cor.2022.106009. 

[41] N. Bianchessi, On optimally solving sub-tree scheduling for wireless sensor 
networks with partial coverage: a branch-and-cut algorithm, Networks 81 (4) 
(2023) 499–513, https://doi.org/10.1002/net.22145. 

[42] A.V. Mittal, A. Sharanappa, K. Bagchi, S.P. Ramalingam, P.K. Shanmugam, Electric 
vehicle charging scheduling using branch and cut algorithm, in: International 
Conference on Advanced Research in Computing, ICARC), 2023, pp. 166–171, 
https://doi.org/10.1109/ICARC57651.2023.10145685. 

[43] B. Yan, M. Di Somma, G. Graditi, P.B. Luh, Markovian-based stochastic operation 
optimization of multiple distributed energy systems with renewables in a local 
energy community, Electr. Power Syst. Res. 186 (2020), 106364, https://doi.org/ 
10.1016/j.epsr.2020.106364. 

[44] Y. Yu, Y. Chen, J. Jiang, Y. Li, Low-carbon scheduling of integrated hydrogen 
transport and energy system, Int. J. Hydrog. Energy, Apr. (2023), https://doi.org/ 
10.1016/j.ijhydene.2023.04.064. 

[45] P. Zhao, H. Guan, P. Wang, H. Yan, Evaluation of environmental benefits caused by 
reservation-based shared parking: a case study of Beijing, China, IEEE Access 9 
(2021) 3744–3751, https://doi.org/10.1109/ACCESS.2020.3039437. 

[46] O.E. Adepoju, et al., Health disparities and climate change: the intersection of three 
disaster events on vulnerable communities in Houston, Texas, Int. J. Environ. Res. 
Publ. Health 19 (1) (2022), https://doi.org/10.3390/ijerph19010035. Art. no. 1. 

[47] G.S. Smith, E. Anjum, C. Francis, L. Deanes, C. Acey, Climate change, 
environmental disasters, and health inequities: the underlying role of structural 
inequalities, Curr. Environ. Health Rep. 9 (1) (2022) 80–89, https://doi.org/ 
10.1007/s40572-022-00336-w. 

C.-F. Liu and A. Mostafavi                                                                                                                                                                                                                    

https://doi.org/10.1016/j.ijdrr.2021.102100
https://doi.org/10.1016/j.ijpe.2009.10.004
https://doi.org/10.1016/j.apm.2015.10.022
https://doi.org/10.1016/j.apm.2015.10.022
https://doi.org/10.1016/j.ssci.2015.12.025
https://doi.org/10.1016/j.seps.2012.11.002
https://doi.org/10.1007/s10479-010-0736-8
https://doi.org/10.1007/s10479-010-0736-8
https://doi.org/10.1016/j.ejor.2015.10.028
https://doi.org/10.1016/j.compenvurbsys.2017.05.004
https://doi.org/10.1016/j.cor.2023.106353
https://doi.org/10.1016/j.cor.2023.106241
https://doi.org/10.1080/01605682.2023.2197933
https://doi.org/10.1016/j.cor.2022.106009
https://doi.org/10.1002/net.22145
https://doi.org/10.1109/ICARC57651.2023.10145685
https://doi.org/10.1016/j.epsr.2020.106364
https://doi.org/10.1016/j.epsr.2020.106364
https://doi.org/10.1016/j.ijhydene.2023.04.064
https://doi.org/10.1016/j.ijhydene.2023.04.064
https://doi.org/10.1109/ACCESS.2020.3039437
https://doi.org/10.3390/ijerph19010035
https://doi.org/10.1007/s40572-022-00336-w
https://doi.org/10.1007/s40572-022-00336-w

	An equitable patient reallocation optimization and temporary facility placement model for maximizing critical care system r ...
	1 Introduction
	2 Materials and methods
	2.1 Population-facility visitation network and demand setting
	2.2 Topological datasets
	2.3 Flood simulation
	2.4 Notations
	2.5 Optimization formulation
	2.5.1 Total travel time minimization model
	2.5.2 Equity-focused model
	2.5.2.1 Distance thresholding program
	2.5.2.2 Temporary facility program



	3 Results
	3.1 Impacts of simulated flood hazard
	3.2 Total travel time minimization model
	3.3 Equity-focused model

	4 Analysis and discussion
	5 Concluding remarks
	Code availability
	Author contributions
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


