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Abstraci— Verifying the performance of safety-critical,
stochastic systems with complex noise distributions is
difficult. We introduce a general procedure for the finite
abstraction of nonlinear stochastic systems with non-
standard (e.g., non-affine, non-symmetric, non-unimodal)
noise distributions for verification purposes. The method
uses a finite partitioning of the noise domain to construct
an interval Markov chain (IMC) abstraction of the system via
transition probability intervals. Noise partitioning allows for
a general class of distributions and structures, including
multiplicative and mixture models, and admits both known
and data-driven systems. The partitions required for opti-
mal transition bounds are specified for systems that are
monotonic with respect to the noise, and explicit partitions
are provided for affine and multiplicative structures. By the
soundness of the abstraction procedure, verification on the
IMC provides guarantees on the stochastic system against
a temporal logic specification. In addition, we present a
novel refinement-free algorithm that improves the verifica-
tion results. Case studies on linear and nonlinear systems
with non-Gaussian noise, including a data-driven example,
demonstrate the generality and effectiveness of the method
without introducing excessive conservatism.

Index Terms— Autonomous systems, Markov processes,
stochastic systems

I. INTRODUCTION

HE deployment of autonomous systems for safety-critical

applications, such as medical robotics and self-driving
vehicles, requires diligent verification of their behavior. Such
systems are inherently stochastic due to uncertainty in physical
components (e.g., noise in sensors and actuators) or black-
box software components. Formal methods provides rigorous
techniques for verifying stochastic systems subject to temporal
logic specifications [1], [2]. In particular, powerful model
checking algorithms exist for finite-state Markov processes
that can scale to large systems [1]. However, to apply them to
continuous-space systems, finite abstractions with correctness
guarantees are required [2], [3], which is difficult in both
accuracy and scalability. For this reason, most existing work
focuses on specific classes of stochastic systems often with
strong assumptions on the dynamics or noise models [4]-[7],
which we aim to relax in this work.
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Uncertain Markov models, namely interval Markov chains
(IMCs [8]) have proven to be effective abstraction models
for stochastic systems [4]-[6], [9], [10]. Beyond capturing
stochasticity, they also provide a means to incorporate other
sources of uncertainty (e.g., discretization error), thereby
facilitating correctness. Yet, the difficulty remains for gen-
eral stochastic models due to the need to correctly com-
pute stochastic transition kernels. Existing techniques rely
on standard (unimodal, symmetric and zero-mean) or affine
noise distributions [6], [10]-[12], linear systems [7], [9].
Additionally, stochastic systems may possess multiple sources
of uncertainty, such as data-driven settings [5], [7], [10], [13],
[14]. Thus, IMC abstraction approaches for nonlinear systems
that admit a wider class of distributions and structures are
necessary to lift these limitations.

Another difficulty facing abstraction is the state-explosion
dilemma in higher dimensions. Common approaches to this
problem are focused on parallelizing computation [15] and
adaptive refinement [4], [16]. Despite these efforts, the state-
explosion problem remains, and new ideas are needed for
further mitigation. Specifically, using the continuous system in
tandem with the abstraction to improve the verification without
refinement is largely unexplored.

Contributions: We present an abstraction method for non-
linear stochastic systems with non-affine, non-standard noise
that admits known and data-driven systems. Our method
generalizes an approach for systems learned from data with
affine, sub-Gaussian noise [5]. It is based on partitioning the
noise domain to bound the transition kernel of the IMC, side-
stepping the need to evaluate it. We show optimality criteria
for the noise partitions for systems with noise monotonicity,
and provide explicit partitions for affine and multiplicative
structures. To help address the state-explosion problem, we
also propose a refinement-free method to improve the verifica-
tion results of an abstraction by using the continuous process.
Finally, we demonstrate the efficacy of the method by verifying
linear, nonlinear and data-driven systems without introducing
excessive conservatism.

In summary, our contributions are (1) a procedure for
constructing abstractions via noise partitioning (Theorem [I));
(2) optimal noise partition sizes and values for a general class
of distributions (Theorem ; (3) a procedure to improve the
verification of the abstraction without refinement (Algorithm
[I), and (4) evaluations and applications to nonlinear systems
with non-standard and multiplicative noise (Section [VI).



II. PROBLEM FORMULATION

We first introduce the stochastic process and its finite
abstraction, and then formulate two main problems.

A. Stochastic Process Model

Consider the following discrete-time stochastic process
x(k+1) = f(x(k), w(k)), (D

where x € R®, w € W C R™ is i.i.d. process noise sampled
from distribution p(w) with possibly bounded support, and f :
R™ x W — R"™ is a possibly nonlinear function. Distribution
p(w) is allowed to be non-standard, i.e., non-uniform and non-
symmetric. Let X C R" be a Borel measurable set. The one-
step transition kernel, which defines the probability of x(k +
1) € X given x(k) = xy, is

T(X | ax) = /X £ (@, w(k))p(w)dw. @)

The transition kernel T is the basis for probability measures
of paths of System [17], i.e., given an initial condition
x(0) = zg, Pr (x(0) € X | x9) = 1(xo € X) and Pr (x(k +
1) € X | x) = T(X | xx), where 1(-) is the indicator
function that returns 1 if the argument is true and O otherwise.

B. Interval Markov Chains

A finite abstraction of System is often an interval
Markov chain [2], which defines a space of Markov chains.

Definition 1 (IMC). An interval Markov chain is a tuple T =
(Q, P, ]5), where
o Q is a finite set of states;
« P:QxQ — [0, 1] is the transition interval lower-bound
function, where, ¥q,q'c€ Q, P(q,q) < Pr(q,q);
o P:QxQ — [0,1] is the transition interval upper-bound
function, where Vq,q'c Q, P(q,q') > Pr(q,¢);

It holds that, for every ¢ € @, >_.cq P(q,q) <1<
Zq’GQ P(q,q’). Define the adversary v : Q x Q — [0,1] as a

true transition probability function such that, for all ¢, ¢’ € Q,

v(¢,4') € [P(q.4'), P(q,¢')] and 3, cn7(q,q') = 1. The
set of all adversaries is denoted by I'. Under adversary ~, the
IMC reduces to a Markov chain with a well-defined probability
measure over its paths.

Consider a path property ¢. The probability that all paths
initiated at ¢ € @ satisfy ¢ is denoted by Pr(q = ¢). When
¢ is expressed in probabilistic computation tree logic (PCTL)
or linear temporal logic (LTL) [1], Pr(¢ & ¢) is equivalent to
the reachability probability on an IMC that composes Z with
¢. WL.O.G,, let Q4 C Q be the set of states, reaching which
satisfies ¢. While the exact value of Pr(¢ = ¢) cannot be
computed, it can be bounded, i.e., Pr(q = ¢) € [p(q),p(q)],
using dynamic programming [4]. For the lower bound,

p"(¢) = Lg € Qy), p*(q) = min > (g, ). 3
q'eQ
The upper bound p is computed by replacing the min with
max operator and p with p. The computation of the satisfaction
bounds p(q) and p(q) for all ¢ € @ is called the IMC
verification procedure.

C. Problem Statements

Verifying System against ¢ can be performed by dis-
cretizing the state space of to build an IMC abstraction
7 that soundly models (I), and then verifying Z against ¢.
Given a compact set X C R", we let Qx denote a finite
partitioning of X, with no preference on its inception. With
an abuse of notation, ¢ € (Qx is both one of these partitions
and an IMC state. The verification results can be extended to
(1), i.e., for every z € q, Pr(z E ¢) € [p(q),p(q)], if the
abstraction satisfies the soundness definition below as shown
in [5, Theorem 2].

Definition 2 (Abstraction Soundness). An IMC abs{raction T
is sound with respect to System (1) if, for all x € q, P(q,q’) <
T(¢ | z) < P(q,q") holds for all q,q' € Qx.

To satisfy this definition, we assume that one of the require-
ments of ¢ is to remain within a bounded (safe) set X C R"
and refer to R™ \ X as an unsafe set.

Existing methods for IMC abstraction of stochastic systems
are largely limited to simple dynamics — affine in noise with
unimodal or symmetric distributions, or linear dynamics. The
first problem considered here aims to establish a method that
jointly addresses these limitations.

Problem 1 (Abstraction Construction). Construct a sound
IMC abstraction for System with a nonlinear f and non-
affine and non-standard p(w).

In Section we propose a method that partitions the
domain of p(w) to construct the transition bounds of the
IMC which are valid for arbitrary distributions. Solving this
problem allows the application of IMC abstractions to a wider
class of systems, including data-driven systems.

The conventional approach to improving the satisfaction
intervals of an IMC is to refine the discretization () x, which
contributes to the state-explosion dilemma. The next problem
aims to improve the intervals on the same discretization @ x
by leveraging the model of ().

Problem 2 (Verification Improvement). Given abstraction T
of System (1), reduce the verification error p(q) — p(q) for all
q € Qx without refining Qx.

In Section [V, we propose an approach based on clustering

states in (Qx that uses the structure of the transition bounds
and to reduce the gap between p and p.

Remark 1. While we focus on IMC abstractions, the results
are trivially applied to interval Markov decision process
(IMDP) abstraction methods via concatenation of IMCs.

I1l. ABSTRACTION viA NOISE PARTITIONS

The IMC abstraction for System (1)) involves discretizing the
continuous state-space and computing transition probability
bounds between the resulting states.

A. State Discretization

Constructing a finite-state abstraction for System re-
quires a bounded subset X C R™. The abstraction is sound on



X, but not the entire state-space as discussed in Definition
X is partitioned into a finite set of bounded and convex regions
Q x, which implies, for every ¢, ¢’ € Q, gNg’ has zero measure
and quQX q = X. Let g_x represent the remainder (i.e.,
unsafe set) R™\ X. Then, the complete state set of the IMC is
Q = Qx U{g-x}. The next IMC abstraction step computes
the transition bounds between states.

B. Transition Bounds with Noise Partitioning

The definition and computation of the transition bound
functions P, P begins with states in ()x. The transitions to
g-x 1s a modified case. The connection between System
and the abstraction arises from the transition kernel 7' in
over IMC states. From a given x € ¢, the transition
kernel to ¢’ is T'(¢' | «). Finding bounds on the kernel
amounts to searching over all = € g, i.e., minge, T(¢' | x),
and max,e, T(¢' | x). To satisfy Definition 2} P(q,q’) and
I:’(q, ¢') must bound these extrema. For tractable evaluation
of T in with non-standard distributions, the probability
measure of w is evaluated over partitions of its domain W.

Definition 3 (Noise Partition). A noise partition set C is a
measure-preserving discretization of W, i.e., J,ccc = W
and Ve e C, Y o [.p(w)dw = [ p(w)dw = 1.

For brevity, ¢ is used in place of w(k) € ¢, and its
probability is Pr(c) = [ p(w)dw. For a given ¢ € C, the
posterior of region ¢ is Post(q,c) = {f(z,w) | x € ¢, w €
c¢}. The following theorem bounds the transition kernel.

Theorem 1. Let q,¢' € Qx and C be a partition of W
according to Definition |3} Then, the transition kernel is lower-
and upper-bounded, respectively, by

min 7(q’ | 2y) > ; 1(Post(g,c) Cq')Pr(c)  (4a)
maxT(q' | 2x) < ; 1(Post(g,c) N g’ = 0)Pr(c) (4b)

Proof. We begin with finding the upper bound. Using 7" and
finding the maximizing point,

maxT(q | zx) = max/ 1(x(k+1) € ¢ |z, wg)p(w)dw
TREQ TrEq
3)

The integral is split according to the partitions in C,
—max Y [ 1k + 1) € ¢ | onwpw)w, ©
ored ceCc V¢

which maintains equality due to the linearity of the integral.
The indicator function is upper-bounded by the existence of a
point in the intersection of Post(q,c) with ¢/,

©) < Z 1(Post(q,c) N g’ # 0) Pr(c),
ceC

where the max operator is dropped, as xj is subsumed by g.
The lower-bound is similar, instead doing under-approximation
by checking if Post(g,c) C ¢'. O

The transition bounds found using Theorem [I] require two
components: Post(q,c) and Pr(c). Note that for the bounds

in (@a)-([b), an over-approximation of Post(q, c) can be used,
which can be obtained for nonlinear systems using local
linear bounds of f(x(k), w(k)) [18], [19], discretization with
Taylor model flowpipes [20], or mixed-monotone maps [21]
depending on the knowledge of System (I). Pr(c) can be
computed analytically for distribution-dependent soundness
guarantees, or statistically for sampling-based guarantees [7].
The next section discusses how partitions are selected to
optimize the bounds in Theorem

To complete the abstraction, transitions to the unsafe state
g-x are defined using the following corollary.

Corollary 1 (Unsafe State Transitions). For every state q €
Qx, the transition bounds to q-x are P(q,qﬁx) = 1-
maxy, eq T(X | zx) and P(q,q-x) = 1 — ming, ¢, T(X |
X ). Additionally, the transition bounds between q- x and itself
are P(q-x,q-x) = P(¢-x,¢-x) = L.

Remark 2. Theorem |I| can be applied to general (non-
probabilistic) uncertainty sets by interpreting Pr(c) as a
deterministic indicator function. For example, for the bounded
uncertainty set W, choose ¢ = W so Pr(c) = 1, and
Pr(c') = 0 for every other ¢ € C. Effectively, using Theorem
in this case results in a non-deterministic transition system.

IV. OPTIMAL PARTITIONS

The transition bounds in Theorem [ return valid bounds
for any choice of partition, and C' can differ between
and (@b). However, haphazard partitions can result in the
trivial transition probability interval [0, 1]. The optimal noise
partitions minimize the distance between the transition bounds,
i.e., given ¢,q' € Qx,

C* = argmax Z 1(Post(q,c) C ¢') Pr(c),
ceC

C" = argmin Z 1(Post(q,c) Nq' = 0)Pr(c), (7a)
ceC

Hence, noise partitions can be selected to optimize the transi-
tion bounds for each pair (¢, ¢’) independently. To begin the
analysis on these partitions, we assume component-wise noise
as defined below.

Definition 4 (Component-wise Noise). For i € {1,...,n},
let M* € {0,1}"*" be a matrix whose i,i element is one
and all the other elements are zeros. Then, noise w(k) €
W C R" is called component-wise if M*f(x(k),w(k)) =
FOc(k), M w(k)).

In other words, the noise vector shares the size of x(k),
and each component w'(k) only affects x’(k + 1), which
admits (but is not limited to) affine and multiplicative noise
(see Example [I] below). Definition [4] does not preclude the
noise from being correlated. Assuming the noise satisfies
Definition |4} the next step is to explore how Post(q,c)
changes with variations in c. If increasing wi, consistently
increases (or decreases) x'(k + 1), it can lead to partitions C
that induce non-empty intersections between Post(q,c) and
¢'. This occurs if the system is monotone with respect to the
noise, which is defined below.



Definition 5 (Noise Monotonicity). Monotonicity is the con-
dition that, for all scalars a,b € R, a > b implies f'(-,a) —
fi(-,b) has the same sign. System is monotonic with
respect to w (k) if each f' is monotonic with respect to w' (k).

Example 1. Consider the system x(k + 1) = f(z(k)) ®
w(k), where each w'(k) > 0 and © is the element-wise
product. Then the noise acts component-wise, and the system
is monotonic with respect to w(k).

Hitherto, we have made no assumptions about the convexity
of Post(q,c). Let the i component of a set in R™ refer to
its projection on the i-th unit axis. The following theorem
discusses non-convexity in terms of discontinuities (or holes)
in each component of Post(g,c). The theorem bounds the
sizes of C* and C~ for a system with monotonic noise.

Theorem 2 (Partition Size). Let q,q¢' C R™ be bounded and
convex, and d be the largest number of discontinuities in
each component of Post(q,c). If System (1)) is monotonic with
respect to component-wise, uncorrelated noise w(k), then |C" |
and |C*| are at most (3 + 2d)n.

Proof. The proof is provided for the upper-bound partition
(7a). The lower-bound is the same but uses Post(q,c) C ¢'.
C" is found my choosing the constraint set that satisfies to
(7a). As the noise is uncorrelated, it is sufficient to minimize
the area intersection of Post(g,c) with ¢’ to minimize (7a).
Let g, ¢’ be convex and bounded, let Post(q,c) contain at
most d discontinuities for any choice of ¢, and let System
be monotonic with respect to w(k).

First, consider d = 0, so Post(q, c) is convex for a given ¢
in all components. Then, Post(g,c) N ¢ must be convex. As
¢’ is bounded, Post(q,c)N¢’ is also bounded. For each 4, due
to the monotonicity of System (1), at most 3 partitions of W*
are needed to induce the minimum intersection with q/i due
to the convexity and boundedness of q/i. Thus, C~ consists of
3n partitions at most when d = 0.

Next, consider d > 0 for a component of Post(q,c) and
begin with C" as found above. The intersection Post(g, ¢)Nq’
is possibly non-convex due the projection of discontinuities
of Posti(q,c). For each discontinuity, only two additional
partitions are needed to induce the minimum intersection with
q'i due to the monotonicity of System (I). This is repeated
for each component in [1, 7] for the result [C" | < (3 + 2d)n.
Repeating this procedure for the lower bound yields the same
number of partitions in C*. O

Theorem shows that the sizes of C* and " are
bounded, but it leaves them unspecified. The following
corollaries specify the partitions for affine and multiplica-
tive noise in the case Post(q,c) is convex (hence d =
0). To facilitate this, let Posts(q) = {f(z) | = € ¢}
be the f-dependent posterior. The corollaries partition W*
into three intervals, C° = {[—00, €], €1, €], [e2,00]} and
C*{[~00, €3], [€3, €4], [€4, 0]}, according to Theorem [2}

Corollary 2 (Partitioning for Affine Noise). Assume Sys-
tem (1) satisfies the requirements of Theorem [2| and has affine
noise, i.e. f(x(k))+w(k). Let the i-th component endpoints of
the target region q' be ay ,by, and ag, b, for the f-dependent

€1

€2
Qg b ’
[ A — q Qq d by
Posts(q) Shadow es Posty(q) e
Fig. 1: Endpoints a4 ,bg,aq,b, and distances between a

component of ¢’ and Posts(q).

posterior, and let | = by — aq. Let C1 be | > by —ay, C2 be
by > by, and C3 be ag < ag. Then €1 = aq —by, €2 = by —ay
in all cases. For the lower-bound,

0 if C1 0 if C1
es=1qay —by+1 ifC2,e4=4¢by —1l—0a, if C3
Qg — Gg o.W. by — by o.W.

Proof. The proof uses the relative positions in Figure |1 to
find partitions that minimize and maximize the intersection
between the posterior and target region. For the upper bound
(b)), w(k) < ag —bg or w(k) > by —ayg is the largest interval
that ensures no intersection can occur with ¢’. For the lower
bound (@a), C1 occurs when the posterior is larger than the
target, so no partition of noise can cause intersection. For C2,
aq+1—by < w(k) < by —b, is the largest interval that ensures
an intersection. C3 is the same as C2 with mirrored positions.
When no cases are true, Postr(q) C ¢/, and ay — ag <
w(k) < by — b, ensures intersection. O

Corollary 3 (Partitioning for Multiplicative Noise). Assume
System satisfies the requirements of Theorem |2| and has
(w.l.o.g.) positive multiplicative noise, i.e., Example|l} Let the
component endpoints be the same as Corollary|2| and let them
all be positive. Then, €1 = aq /by, €2 = by [aq, €3 = ay /aq,
and €4 = by /b,

Proof. The proof is similar to that of Corollary [2] The lower
bound is maximized when both b,w(k) < by and a,w(k) >
aq, 80 ag /ag < W(k) < by /bg. Note that if ag /ag > by /by,
then the CDF evaluates to zero, so the partition set is trivial.
Likewise, the upper bound is minimized when a,w(k) > by
or byw(k) < ag, so w(k) < aq/bg or w(k) > by /ag. O

These corollaries can be extended in the non-convex case
(d > 0) if the f-dependent posterior is readily available. The
case studies in Section |VI| show that the partitioning approach
finds accurate abstractions for systems with non-standard noise
when compared to a specialized method.

V. STATE CLUSTERING

Improving the satisfaction intervals of the IMC directly
impacts the guarantees on System (I), but relying solely on
refining the space discretization can lead to an explosion in
the number of states. Here, we propose a novel method based
on clustering the states of the IMC to improve the satisfaction
intervals without refinement to solve Problem

Consider state ¢ € Qx and its set of successor states Q’.
By the structure of (@a), P(q,q’) increases with the size of
¢ as it depends on Post(q,c) C ¢ being true. Algorithm
is based on this principle. The sorting of Qx on Line
[I] makes the algorithm start with states with large p, as its
successor states have larger p, making improvement more
likely. Then, a subset of Q' is chosen to cluster into a



Algorithm 1 Clustering-based IMC improvement

Require: IMC Z, verification results p, p
I: Qx < sort by p(q) in descending order
2: for each ¢ € Qx do
3 q < cluster Q C @' into a single state
4 p(g) = ming, 5 p(q")
5: P(q,q),P(q, q) + Theoreml
6 Pnew(q) - min > (g, ¢ )p(d') +v(q, Dp(7)
7'EQ\Q
7: Prew(q) < similarly with

8: if Prew(q) > P(q) OF Prew(q) <D
9: Save these values to p, p

(¢) then

10: return Improved intervals p, p

single state ¢g. The transition interval to ¢ is computed using
Theorem and the satisfaction intervals are recalculated.
Clustering any states from ' improves the transition interval,
but it must be balanced with p(q’) for effective enhancement.
We leave the question of the optimal clustering choice for
future work. However, our application of Algorithm 1 to a
data-driven example reveals that even sub-optimal clustering
yields improvements to the verification results.

VI. EVALUATIONS

We evaluate the proposed methods on linear, non-linear, and
data-driven systems using the PCTL specification ¢ that states
“the probability of reaching goal G within £ steps (infinity
unless otherwise noted) while avoiding obstacles O is > 0.9.”
Figures show states satisfying (|= ¢) or violating (& ¢) the
specification, and possibly either (7¢).

1) Linear System Comparison: First, we compare our set-
based transition interval calculations against the direct point-
search method for specific noise proposed in [21] over the
same state discretization. The system is linear with additive
truncated Gaussian noise bounded on [—0.4,0.4] from [21].
As shown in Figure 2] the classification results are nearly
identical with average and maximum differences of 8 x 10~*
and 0.02, respectively, in the lower-bound satisfaction proba-
bility. Computation time for discretization, verification, and
refinement is approximately 90 seconds. In this example,
the set-based criteria of Theorem [I] with the optimality of
Corollary [2] are sufficient to provide an accurate abstraction.
In addition, we highlight the shortcomings of using Theorem
1 without Corollary [2] The hatching on Figure [2a]indicates the
verification results using fixed noise partitions [—0.1,0.1] to
construct C' for both components, which is a shadow compared
to using the optimal partitions.

2) Multiplicative Noise: Next, we consider a system with
multiplicative noise, which existing abstraction approaches
cannot explicitly handle, to the best of our knowledge. The
dynamics are x(k+1) = Ax(k)©w(k), where the Ist and 2nd
rows of A are (0.7,0.1) and (0.1, 0.8). Each noise component
is from a truncated Normal distribution with support [0.9, 1.1],
mean 1, and variance 0.1. Figure [3a] shows verification results
using Corollary 3] which took 2 min. to compute. Figure [3b]
shows the mean and 1-sigma bounds of 1000 sampled paths.
These validations are consistent with the classifications, as

¢
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(a) Our method (b) Method in [21]

Fig. 2: Comparison of verification results.
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Fig. 3: Verification of the system with multiplicative noise.

some pass too close to O to make a conclusion either way,
and others consistently reach G or O.

3) Data-driven Verification: The linear system from the com-
parison example with w’(k) ~ N(0,0.12) on each component
is learned via Gaussian process (GP) regression with 200 data
points. The transition bounds account for both the resulting
uncertainty from the learning procedure and the inherent
system noise, as the resulting noise distribution is a sum
of normals. The efficacy of Algorithm [I] is demonstrated on
the initial discretization by clustering the states that intersect
with the f-dependent posterior of ¢, which is found similar
to [5]. Figures Mal and {b] show additional satisfying and
violating states are identified without refinement. The lower-
bound satisfaction was improved in 8 states, with a 10%
(absolute) average increase in the lower bound. Figures [4c]and
[d| show the similarity of classifications between the known
and learned system after refining the abstraction. This shows
the efficacy of the method in the data-driven setting.

4) Duffing Oscillator: The nonlinear Duffing oscillator has
complex motion and chaotic behavior with continuous-time
dynamics i + di + ax + B3 = ~cos(wt), where, § = 0.3,
a=-10,  =1.0, v = 0.37, and w = 1.2. This system is
discretized over the time-span [0, 0.5], after which the forcing
function is reset and noise w’(k) ~ A(0.1,0.012) is drawn.
Taylor models were used to over-approximate the Post of
each discrete region [22]. The abstraction and verification for
k = 10, shown in Figure took 4.5 hours to compute.
The paths are the means of 1000 samples with 2-sigma
confidence bounds at each point and the initial classification.
The validating trajectories provide insight to why initial states
bear their classification.

5) Dubin’s Aircraft with Mixture: A 3D discrete-time Du-
bin’s car model [23] with a constant right-turn control in-
put is verified with additive mixture noise consisting of
UNIFORM(—0.05, —0.01) and UNIFORM(0.0, 0.04), each with
a 50% weighting, on each state component z, y, and heading
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Fig. 5: Verification of the noisy Duffing oscillator.

9. Figure|6| shows results in 3D and a 2D slice. Initial states are
identified that are guaranteed to make the turn safely, or fail to
meet the minimum safety threshold. This shows the efficacy
of the method in the verification of autonomous system with
non-standard distributions.

VII. CONCLUSIONS

We present an IMC abstraction method for nonlinear
stochastic systems by partitioning the noise domain, and a
refinement-free approach to improve IMC verification. This
procedure admits systems with non-affine and non-standard
noise distributions, and data-driven systems. Future work will
add measurement models, generalize the optimal partitioning
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Fig. 6: Verification of the constant-turn Dubin’s car system.

beyond component-wise noise and convex posteriors, and
improve the efficacy of the clustering procedure.
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