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Abstract. We provide a unifying framework for L2-optimal reduced-order modeling for linear
time-invariant dynamical systems and stationary parametric problems. Using parameter-separable
forms of the reduced-model quantities, we derive the gradients of the L2 cost function with respect
to the reduced matrices, which then allows a nonintrusive, data-driven, gradient-based descent algo-
rithm to construct the optimal approximant using only output samples. By choosing an appropriate
measure, the framework covers both continuous (Lebesgue) and discrete cost functions. We show the
efficacy of the proposed algorithm via various numerical examples. Furthermore, we analyze under
what conditions the data-driven approximant can be obtained via projection.
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1. Introduction. Consider a parameter-to-output mapping
(11) y: P—>C"" ™, p=y(p),

where P C C™ denotes the parameter space, and np,ng,n, are positive integers,

representing the parameter, forcing (input), and output dimensions of the underlying

parametric model. We are interested in cases where evaluating y(p) for a given p is

expensive (thus causing a computational bottleneck in online computations) and we

only have access to (the output) y(p) without access to an internal representation.
Our goal is to construct a data-driven reduced-order model (DDROM)

(1.2a) A(p)z(p) = B(p),
(1.2b) 7(p) =C

whose output y(p) is significantly cheaper to evaluate compared to y(p), and y(p) is
close to y(p) for all p€ P. In (1.2) we have A(p) € C"™*", B(p) € C"*", C(p) € C™*",
z(p) € C™*™ and g(p) € C™ ™ where 7 is a modest integer so that evaluating
y(p) via (1.2) is trivial. The modeling structure in (1.2) is motivated by model order
reduction for stationary parametric partial differential equations (PDEs) and linear
time-invariant (LTT) dynamical systems, as we briefly explain next.
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First, consider a parameterized linear PDE in the weak form
(1.3a) a(§(p).G;p) = f(Gip) VCEX,
(1.3b) q(p) =1(&(P);p),

where p € P CR" is the parameter, X is a real Hilbert space, {(p) € X is the solution,
and ¢(p) € R is the quantity of interest. Furthermore, a(-,-;p): X x X — R is a
coercive and continuous bilinear form and f(-;p),I(-;p): X = R are bounded linear
functionals for all p € P. In the simple case with n, =1, a(§,{; p) = a1 (&, () +paz(§,C),
F(¢p) = f(€), and I(&;p) = 1(§), after a Galerkin projection onto an n-dimensional
subspace span{&1,&a,...,&,} C X (e.g., constructed by a finite element discretization),
we obtain a finite-dimensional model

(1.4a) (A1 + pA2)z(p) = B,
(1.4b) y(p) = Cz(p),

where z(p) € R" is the projected solution, y(p) € R is the output approximating ¢(p),
and Ay, Ay e R"*" and B,CT e R™*! are given componentwise by [Al]ij =a1(&5,&),
[A2];; = a2(&5,&), [Bl,, = f(&), and [C]y; = I(§). If, for example, A1 + pAs is
invertible for every p € P, then the parameter-to-output mapping in this case is given
by y(p) = C(A; + pAy) "' B. This problem corresponds to ng¢ =n, = 1. Note that ng
here represents the number of right-hand sides in (1.4a), i.e., the number of forcing
terms. If, in addition, the problem (1.3) is compliant, i.e., a(-, -;p) is symmetric and
I=f, then A; and Ay are symmetric and C = BT.
Now, consider an LTI dynamical system described in state space as

(1.5a) Ei(t) = Az(t) + Bu(t), =z(0)=0,

(1.5b) y(t) = Ca(t),

where ¢ € R is the time, u(t) € R™ is the input, z(t) € R™ is the state, y(t) € R"
is the output, £, A € R™", B € R™™ and C € R"™*". By applying the Laplace

transform to (1.5), we obtain Y (s) = H(s)U(s), where U and Y are, respectively, the
Laplace transforms of u and y. Furthermore, H(s) € C"*"f is given by

(1.6) H(s)=C(sE—A)"'B

and is called the transfer function, which is at the heart of systems-theoretic ap-
proaches to optimal approximation of LTT systems [3, 1]. We can rewrite H(s) as

(1.7a) (sE—A)X(s)=B,
(1.7b) H(s)=CX(s)
for any s € C such that sE — A is invertible and X (s) € C"*™.
Therefore, both mappings, namely p — ¢(p) in (1.3) and s — H(s) in (1.6), are
examples of parameter-to-output mappings (1.1) we consider in this paper. Both

models (1.4) (resulting from discretization of a stationary parametric PDE) and (1.7)
(frequency domain formulation of an LTI system) can be examined using the form

(1.8a) A(p)z(p) = B(p),
(1.8b) (p)=C(p)z(p),
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where p € P C C™ is the parameter, z(p) € C"*™ is the state, y(p) € C™ "™ is
the output, A(p) € C"*", B(p) € C"*™, and C(p) € C"*". Many applications
require solving the model (1.8) in real time or for many parameter values, which
incurs a computational bottleneck due to the large-scale dimension of the underlying
state-space. The goal of model order reduction for parametric PDEs and for LTI
systems is to replace (1.8) with a reduced-order model (ROM), which motivates us to
approximate the mapping (1.1) by the DDROM of the form (1.2).

Thus the framework we consider handles a wide range of problems (stationary or
dynamic), including those of the form in (1.8). We revisit both problems (1.4) and
(1.7) throughout the paper and illustrate how the theory applies in either case. Fur-
thermore, even though the motivation comes from full-order models (FOMs) of the
form in (1.8), the approximation framework we develop below only requires access to
the parameter-to-output mapping (1.1) and not to the full-order operators A, B, C
and state 2. Thus, we work with a nonintrusive parameter/output data-driven formu-
lation. Therefore, we refer to our methodology as “reduced-order modeling” instead
of “model order reduction.”

It is worth mentioning that a similar setting of a parameter-to-output mapping
appears in, e.g., active subspaces [13]. As [13] focuses on parameter reduction, we
believe it could be used in combination with the approach we propose here to develop
a combined parameter and state reduction method (such as in [24]).

There are different ways of measuring the distance between y and 7. For instance,
reduced basis (RB) methods [7] are based on the L., norm

ly —4llze. =sup [ly(p) —¥(p) g,
peP

where ||-||r is the Frobenius norm. For LTI systems, the corresponding measure is
the Ho norm and we refer the reader to recent optimization-based algorithms for
(structure-preserving) Hoo-optimal model order reduction [29, 40].

In this paper, we focus on a different norm. Motivated by the work on Hso-
optimal model order reduction [19, 18, 2| for nonparametric LTI systems, and exten-
sions to Ha ® Lo-optimal model order reduction [5, 36, 17, 26] for parametric LTT sys-
tems, we are interested in Lo-optimal reduced-order modeling for parametric problems
(1.1). Specifically, we are interested in finding a DDROM (1.2) that minimizes the Lo

error
1/2
lo=les= ([ 1)~ 5012 a0)

The goal is to develop the analysis (and the resulting computational tools) so that
the framework equally applies to parametric stationary problems as in (1.4) and to
dynamical systems as in (1.5) by the proper definition of the parameter space and
error measure. Additionally, we want the analysis to be applicable to more general
measures p over the parameter space P, i.e., minimizing

(1.9) o=l = ( [ 16 - HF¢4>)U5

For example, p could be a probability measure over P and the parameter p could be
treated as a random variable. Another example of a measure is a discrete measure
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pa =N, dp,, where d, is the Dirac measure (0,(A) = [{z} N A[) and py,py,...,Px
are some parameter values, which results in the error measure

N 1/2
~ ~ 2
1y = Ullcoppa) = (Z ly(p;) — y(pi)HF) :
=1

Therefore, we develop theoretical results that hold for both continuous and discrete
objective functions.

We note that the objective (1.9) is reminiscent of operator inference [35]. However,
the fundamental difference is that operator inference solves a linear least-squares
problem, while we solve a nonlinear optimization problem. This is due to the fact
that while operator inference minimizes the residual, our goal is to minimize the
output error. Furthermore, operator inference requires, in its original formulation, full
state snapshots, while our approach only needs output measurements. Additionally,
operator inference is usually posed in the time domain, unlike our £, measure, which
would be posed in the Laplace/frequency domain.

The main contributions of the paper are as follows:

e We develop a unifying formulation for £s-optimal data-driven reduced-order
modeling, which applies to a wide range of problems with an appropriate
definition of the measure space.

e We derive explicit formulae for gradients of the L5 approximation error with
respect to the matrices of the DDROM. These gradient computations require
access only to the model output without internal (state) samples.

e Based on the gradient formulae, we develop a data-driven, gradient-based
algorithm for Ls-optimal reduced-order modeling.

e We extend the framework to a discrete least-squares error function.

e We analyze and give conditions under which the L£o-optimal DDROM can be
obtained via projection.

The rest of the paper is organized as follows. In subsection 1.1 we briefly recall
projection-based model order reduction, the most common framework for intrusive
model order reduction. We state the structured Lo-optimal reduced-order modeling
problem in section 2 and derive the gradients of the squared Lo error with respect to
the matrices of the DDROM. Furthermore, there we discuss a generic optimization-
based algorithm for Ls-optimal reduced-order modeling. In section 3 we focus on
the continuous objective function and provide numerical examples. Then, we discuss
discrete objective function in section 4, where we demonstrate the generic algorithm on
further examples. In section 5 we return to projection-based model order reduction
and discuss whether Lo-optimal DDROMSs are projection-based. Finally, section 6
gives concluding remarks.

1.1. Projection-based model order reduction. Even though our framework
is data-driven and does not start with or need a FOM to reduce, in this section, we
briefly recall the basics of the projection-based model order reduction methods to help
motivate the structure enforced on the DDROM (1.2).

For a FOM (1.8), the Petrov—Galerkin projection framework is one of the most
common ways to construct the ROM (1.2). In this framework, given the FOM (1.8),
one chooses two r-dimensional subspaces of R™, spanned by the columns of V,W €
R™*" and constructs the ROM (1.2) by

(1.10) Ap)=WTAP)V, Blp)=WT'B(p), C(p)=C(p)V.

If V and W span the same subspace, this is called a Galerkin projection.
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Even though A(p) € C"*", B(p) € C"™*™, C(p) € C"*" in (1.10) have the reduced
row and/or column dimensions, evaluating them for a new parameter value p requires
operations in the full dimension n. Thus, for efficient computation of the ROM, it
is often assumed that the FOM matrices have a parameter-separable form (or that
it can be approximated by one, e.g., using the empirical interpolation method [4]),
ie.,

(1.11) Alp)=>_ai(p)Ai, B(p)=>_Bi(p)Bj, C(p)=>_ (p)Ch,
i—1 j=1 k=1

where ¢4, g5, qc are small positive integers, o, 35,7, : P — C are given functions that
are easy to evaluate, and 4; e R™*", B; e R"*" () € R™*" are constant matrices.
Then, one computes the ROM matrices

(1.12) A,=WTAV, B;=WTB;, Cp=C,V

only once, and the ROM (1.2) is constructed efficiently as
R 94 L a5 R R qc R
(1.13) Ap)=> ai(p)Ai, B(p)=>_Bi(p)Bj, C(p)=>_ (p)Ch.
i=1 j=1 k=1

Thus, the full-order operators A(p),B(p),C(p) are avoided when solving the ROM.
There are many projection-based model order reduction methods and thus many
different ways of computing V' and W; see, e.g., [8, 7, 1, 3, 9, 38, 23, 10]. We revisit
some of these methods in more detail in section 3.

2. Ls-optimal reduced-order modeling. In this section, we first establish
the setting of the optimal reduced-order modeling problem we consider and prove the
main theoretical result that forms the foundation of the proposed algorithm.

2.1. Setting. We are interested in approximating a parameter-to-output map-
ping (1.1) by a DDROM (1.2). Although the motivation comes from the form of
FOMs as in (1.8), the framework we develop here does not require the full-order oper-
ators A, B, and C or the full-order state z. Instead we only need (the samples of) the
output y. In other words, we develop an optimal data-driven approximation formula-
tion that only uses the parameter/output samples of the model under consideration.
More specifically, we consider the FOMs accessible only via a complex-valued output
function y: P — C™ ™ where P CC"™ and (P, X, ) is a measure space.

We make some technical assumptions on the FOM valid for the general setup we
consider here. Then by revisiting the specific FOMs in (1.4) and (1.7), we show that
these are common assumptions and they automatically hold in most cases.

Assumption 2.1 (FOM assumptions). Let (P,3,u) be a measure space and
y: P — C™*™ a measurable function.
e The set P C C" is closed under conjugation (p € P for all p € P).
e The o-algebra ¥ is closed under conjugation (S € X for all S € ¥).
e The measure y is closed under conjugation (u(S) = pu(S) for all S € ¥).
e The function y is square-integrable (||y||z,(p,.) < 00) and closed under con-

jugation (y(p) = y(p) for all p € P).
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Ezxample 2.2. We revisit the two basic examples from section 1 under the setting
of Assumption 2.1. First consider the FOM (1.4) resulting from the discretization of a
stationary parametric PDE. Let P = [a,b] C R and p be the Lebesgue measure. Then,
Assumption 2.1 holds if A; 4+ pAs is invertible for all p € P, a common assumption.

Now, recall the transfer function (1.6) of an LTI system (1.5) formulated as a
parametric stationary problem (1.7). One commonly used system norm is the Hardy
Ho norm || - ||3,, which gives the output bound ||y||z.. < H|u|z,. The norm can be
formulated as ||H |2, = (5 [~ | H (w)|%dw)/?, assuming that E is invertible and
all the eigenvalues of E~'A have negative real parts, where 2 denotes the imaginary
unit. Therefore, to have ||H |3, = ||H| z,p,u), We can take p = s, P = 2R, and
W= ﬁ)\q/]R, where \,g is the Lebesgue measure over :R. A sufﬁcwnt condition for
Assumption 2.1 to hold is that E be invertible and E~!A have no eigenvalues on the
imaginary axis, which are weaker assumptions than those needed to define the H,
norm. These are also common assumptions in the systems-theoretic setting. One can
indeed allow E to be singular (i.e., allow systems of differential algebraic equations)
as has been done in many earlier works [27, 20]. However, to keep the notation and
discussion concise, we assume E to be invertible.

2.2. Optimization problem with parameter-separable forms. Given the
parameter-to-output mapping in (1.1), our goal is to find a DDROM (1.2) that min-
imizes the output Lo error (1.9). As discussed in subsection 1.1, many FOMs have
a parameter-separable form as in (1.11) and this form is preserved in the classi-
cal Petrov—Galerkin projection-based ROMs. Inspired by this formulation, in our
Lo-optimal DDROM setting, we search for a structured DDROM with parameter-
separable form

21 A =Y aA, BpE)=Y_Bi(eB;, Cp)=>_ pCk,
i=1 j=1 k=1

where ¢ A 4g 9c are posmve 1ntegers a“ﬁj,vk P — C are given measurable func-
tions, and A; € R™", B; € R"™*™ (), € R™*" are the (DDROM) matrices we want
to compute to minimize the Ly error (1.9). Note that even though the DDROM
structure is inspired by the parameter-separable structures appearing in many FOMs
and preserved in projection-based ROMs, here we make no assumptions on the form
of the FOM, but only on the form of the DDROM. The subtle notational difference
between (1.13) and (2.1), namely the “hatted” scalar functions, aims to highlight that
unlike in the projection-based ROM (1.13), where the scalar functions match those
of the FOM, in the DDROM (2.1), we have freedom in choosing them. We also note
that this parameter-separable structure appears in [6, 26] as well. R

We make the following assumptions on the scalar functions @;,;,7, appearing
in the DDROM (2.1). As we did for Assumption 2.1, later we discuss that these
assumptions indeed hold trivially in many cases.

Assumption 2.3 (scalar functions). Let P and p satisfy Assumption 2.1. The
functions @;, 85,7k : P — C are measurable, are closed under conjugation, and satisfy

(2.2) du(p) < oo.

[ 308 [Bi(p)| I [k )
P Z?;‘H |ai(p)]

Now based on Assumptions 2.1 and 2.3, we introduce the set of allowable DDROM
matrices.
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DEFINITION 2.4. Let P and p satisfy Assumption 2.1 and al,ﬁj,% P —-C
satisfy Assumption 2.3. Next, let R = (Rrxr)q*‘ X (]RTX"f)qB (IR’%XT)QC be the set of
all tuples of DDROM matrices (Aq, ... AqA,Bl, . BqB,Cl, ,ch) ::( i J,Ck)
Then, we define the set R of allowable DDROM matrices as

(2.3) R= {(Zi,éj,ék) € R:esssup
pEP

M) | <o, 1= 12,005

where A is as in (2.1).

Ezample 2.5. We want to illustrate that the conditions in (2.2) and (2.3) do indeed
hold trivially in many cases and thus are not restrictive. Continuing with Example 2.2,
we want to cover the analogous DDROMSs. Starting with the parametric stationary
problem, we consider

For this case, we have

q;=2, ai(p)=1, az2(p)=p; qg=1, fi(p)=1; and ¢z=1, Y1 (p)=1.

Therefore, the condition (2.2) becomes f 1+\p|)2 dp < oo, which holds true. The

condition in (2.3) states that p— A(p)~! and pe pA(p)~! are bounded over [a,b].
The necessary and sufficient condition is that A( ) be invertible for all p € P.
Next, we consider a reduced-order LTI system

(2.42) (sE - 2) X(s)= B,
(2.4b) H(s)=CX(s).

For this case, we have

q.A\:27 al(p):p7 aQ(p):_la QE:17 61<p):17 and Q5:1, %(p):L

with p=s=ww. The condition (2.2) becomes [~ de < 00, which also holds.

Finally, the condition in (2.3) states that s — (sE A) and s — s(sE A)
(E 1A) are bounded over :R. This is equivalent to the invertibility of E and
E-'A having no eigenvalues in 2R, similar to the FOM discussed in Example 2.2.
The choice of functions @;, Bj, Ak : P — C is flexible as long as they satisfy Assumption
2.3. In many cases, such as for LTI systems as above, physically inspired choices are
immediately available from the underlying physics.

For the analysis in subsection 2.3, it is important to establish that the set R (2.3)
is open and that it forms a set of feasible DDROMSs. This is what we do next.

LEMMA 2.6. The set R (2.3) in Definition 2.4 is open. Moreover, for all'y defined
by a DDROM (A;, Bj,Cy) € R, we have that § is square-integrable.

Proof. The proof of this result is given in Appendix A. ]

2.3. Computing the gradients. In this section, we derive one of the main
results of this paper, mainly the gradients of the Lo cost function (1.9) with respect
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to the DDROM matrices A\i, gj, 6k. These gradient formulae form the foundation of
the Lo-optimal reduced-order modeling algorithm we develop.

Given the FOM as a parameter-to-output mapping y (1.1), we want to construct a
DDROM (1.2) with the structured reduced-order matrices of the form (2.1). Further-
more, we look for a DDROM belonging to R from Definition 2.4, since this guarantees
that the squared Ly error is well-defined and differentiable over R (as shown in The-
orem 2.7) without substantial restrictions on the form of the DDROM. Thus, we
consider the structured Ls-optimization problem

winimize 7 (45,55, G) = Iy = 5l p
(Ai,B;,Cr)ER

In our analysis below, we also employ the reduced-order dual state Zq(p), satisfying

the reduced-order dual state equation A(p)*Z4(p) = C(p)* [16], where (-)* denotes

the conjugate transpose of a matrix.

Before establishing the gradients of the objective function J with respect to
the DDROM matrices, we recall some notation. For a Fréchet differentiable function
f: U —=R, defined on an open subset U of a Hilbert space H with inner product {-,-),
the gradient of f at x, denoted V f(z), is the unique element of H satisfying f(x+h) =
£() + (V1(&), h) + o(|kIl), where g(h) = o(|[h]}) denotes that limy,_o g(k)/[[h]] = 0.
For a multivariate function f(x1,22,...,2), partial gradients V, f(z1,z2,...,2x) are
defined in a similar way.

THEOREM 2.7. Let P, u, and y satisfy Assumption 2.1 and (;1\1, éj,ék) be a tuple
of DDROM matrices belonging to R (2.3). Then, the gradients of J with respect to
the DDROM matrices are

v@J;L@@ﬁamMmamﬁmwm@7 i=1,2,..,q5
V5,7 =2 | A7) ) - u(e)dur). i=12...q5
Vag7=§AﬁAMEﬂm—y@H§@Vm4m, F=12. 0

Proof. The expressions follow from using the definition of the gradient, Assump-
tions 2.1 and 2.3, Definition 2.4, and the result of Lemma 2.6 to show differentiability.
The full proof is given in Appendix B. ]

Note that these gradient computations do not require access to the full-order
matrices or the full-order state. They are computed directly from the evaluations of
the output y(p) of the FOM. This allows us to develop a nonintrusive, data-driven,
optimization-based, reduced-order modeling algorithm that only needs access to the
output y(p) of the FOM. With data-driven access to these gradient evaluations, we
can design a variety of optimization algorithms to construct an Lo-optimal DDROM
for different scenarios. We discuss these details in the next subsection.

Remark 2.8. The L5 norm in (1.9) recovers both the Hy norm for nonparametric
LTI systems (see Example 2.2) and the Hy ® L2 norm for parametric LTI systems
by the appropriate choice of the parameter space P and measure p. In particular,
Theorem 2.7 has implications for interpolatory optimal reduced-order modeling of
dynamical systems [3, 18, 26] and unifies optimal interpolation conditions for Ha-
optimal and Hs ® Lo-optimal model order reduction of (parametric) LTI systems.
These details together with interpolatory optimality conditions for approximating
parametric stationary problems as in (1.4) can be found in [31].
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Algorithm 2.1 £,-Opt-PSF.

Input: Parameter-to-output mapping y, initial guess for DDROM (/Ti, Ej, ék),
maximum number of iterations maxit, tolerance tol > 0.
Output: DDROM (A;, B;,C}).
1: Set 7(© as the output of the initial DDROM.
2: for iin 1,2,...,maxit do
3: Compute a new DDROM with output §*) using a step of a gradient-based
optimization method, with the squared Lo error (1.9) as the objective func-
tion and gradients based on Theorem 2.7.
if 500 — 50 Lo(P, )/ |59 1£2(P, 1) < tol then
: Exit the for loop.
: Return the last computed DDROM.

S g

2.4. Algorithmic details. In this section, we describe our proposed algorithm
for Lo-optimal reduced-order modeling using parameter-separable form (£2-Opt-PSF).
The pseudocode is given in Algorithm 2.1. As discussed earlier, from the FOM, we
only need output evaluations or samples, i.e., only y(p) is needed. L2-Opt-PSF does
not require access to the internal state variables or full-order operators.

Some comments on the pseudocode are in order. First, the choice of the initial
guess has an impact on the final result, as with any other nonconvex optimization
problem. Second, we do not specify the gradient-based optimization method used in
step 3. Third, the computations of the objective function and its gradient are not
explicitly specified since they depend on the problem at hand. We discuss these issues
in more detail in section 3. Next, in line 4, we use the relative change in the L5 output
error as the stopping criterion, as it only depends on the reduced quantities. However,
one can easily incorporate more sophisticated stopping criteria if desired. Finally, the
pseudocode does not check for the invertibility of A(p). In our experiments, the
obtained DDROMs are well-conditioned, which could be explained by the objective
function increasing when ||A(p)~!||r is large.

The computational complexity of the Algorithm 2.1 depends on the size of the
DDROM, more specifically on the number of unknowns, which is ¢ ﬁr2+q§rnf+q5n0r.
Note that this is linear in the number of terms in the parameter-separable forms, the
number of forcings, and the number of outputs, but quadratic in the reduced order.

3. Numerical examples for the continuous L2 norm. Here we present
numerical experiments demonstrating the performance of L£5-Opt-PSF (Algorithm
2.1) when p is the Lebesgue measure (thus, a continuous least-squares problem).

In particular, we focus on the case of a one-dimensional parameter, i.e., n, =1,
where we use quad and quad_vec from scipy.integrate (from SciPy [41]), methods
for numerical integration of scalar and vector-valued functions, respectively, to evalu-
ate J (1.9) and its gradients (see Theorem 2.7). For the gradient-based optimization
method in Algorithm 2.1, we chose the Broyden—Fletcher—Goldfarb—Shanno (BFGS)
[33] algorithm. In Algorithm 2.1 we set maxit = 1000 and tol = 10~° for all examples.
For evaluating L, errors, we use scipy.optimize.shgo (from SciPy [41]), a method
for global minimization.

We compare RB, proper orthogonal decomposition (POD), and L9-Opt-PSF.
Given a training set Piain € P and a FOM, RB constructs the ROM via Galerkin
projection, where the projection basis is built in a greedy manner to reduce the L,
error. In particular, we chose to use the strong greedy version given in Algorithm
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Algorithm 3.1 Strong greedy algorithm.
Input: FOM (A, B,C) (1.8) in parameter-separable form (1.11), finite training set
Pirain € P, maximum reduced order 7.y, tolerance tol > 0.
Output: ROM (A4, B,C).
1. V=]l
2: for i in 1,2,...,7max do
3 Find p,.x € Pirain that maximizes the error e(p) = |ly(p) — 7(p)|| r-
4 if e(pax) < tol then
o: Exit the for loop.
6
7
8:

Set V=[V 2(pnax)] and orthonormalize it.

Form a ROM (A, B,C) with &-,Ej,ék as in (1.12).
Return (A, B,C).

Algorithm 3.2 Proper orthogonal decomposition.

Input: FOM (A, B,C) (1.8) in parameter-separable form (1.11), finite training set
Pirain € P, reduced order 7.

Output: ROM (A4, B,C).

s X =z(py) a(py) - x(P|Ptram|)]~

: Compute the singular value decomposition X = ULWT.

: Set V as the first r columns of U.

: Form a ROM (A, B,C) with Ei,éj,ék as in (1.12).

: Return (ﬁ, E,(?)

T W N~

3.1, where the error ||y(p) — ¥(p)||r is used instead of an error estimator. There are
different error estimators proposed in the literature (see, e.g., [23, 38, 16, 12]), but our
focus here is on minimizing the error and less on an efficient implementation. POD [7]
is also based on a Galerkin projection and tries to find a subspace that approximates
the solution set {z(p):p € P} CC" in the Lo-optimal sense given a training set. The
pseudocode for POD is given in Algorithm 3.2.

We focus on stationary parametric PDEs as numerical examples. As mentioned
in Remark 2.8, the various implications of our approach for the dynamical systems
case, specifically for Ho and Ho ® Lo-optimal model order reduction of LTI systems,
are presented in detail in [31]. In section 4, where we consider a discrete Lo norm, we
include an LTI example.

In the following numerical examples, the parameter space P is a segment [a,b] C R
and we chose Pirain = Linspace(a,b,100) for RB and POD where linspace refers to
the NumPy [22] method numpy.linspace returning a vector of equidistant points
in [a,b] including the boundaries. Although we describe the FOMs we use in every
example, we note that Lo-Opt-PSF only needs access to the output of the FOM and
not its state or matrices. The FOM description is given since RB and POD are
projection-based and work with the full-order operators.

Code availability. The source code used to compute the presented results
can be obtained from [30]. The code was written in the Python programming
language using pyMOR [28].
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FiG. 2. Poisson example FOM output and pointwise output errors for ROMs of order 2.

3.1. Poisson equation. We consider the Poisson equation over the unit square
Q= (0, 1)2 with homogeneous Dirichlet boundary conditions:

(3.1a) =V (d(&p)Va(&,p) =1, £e,
(3.1b) z(&p) =0, £€09,

where d(&,p) =& +p(1—¢&;1) and P =10.1,10]. After a finite element discretization, we
obtain a FOM of the form (1.4) with n =1089 and ns = 1. For the output, we chose
C = BT (thus, n, = 1). Solutions for a few parameter values are given in Figure 1.
The output can be seen in the left plot in Figure 2.

For the ROMs, we consider a structure-preserving (physics-inspired) DDROM

) (41 +pd2)7(p) = B,

and an extended version
(21 + sz) z(p) = §1 + P§27

(EXT) g@):(él+péa)f@)
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Fic. 3. Poisson example errors for ROMs of different orders.

We include the extended version to highlight that the proposed approach offers flex-
ibility to include additional structures that are not necessarily present in the FOM
(further emphasizing that the FOM is not needed, but only the output samples). We
also note that (EXT) cannot be obtained via a state-independent linear projection.

We choose the reduced order r = 2. The right plot in Figure 2 shows the output
errors, resulting from RB, POD, £5-Opt-PSF with structure preservation (initialized
using POD), and L£5-Opt-PSF with extended form (initialized using the result of
structure-preserving Lo-Opt-PSF). The relative Lo errors are, respectively, 2.5577 x
1072, 8.2483 x 1073, 4.3826 x 1073, and 1.6468 x 1073, illustrating that L»-Opt-PSF
produces the smallest Lo error. The relative L., errors are, respectively, 9.6919 x
1073, 1.4639 x 1072, 1.4104 x 1072, and 5.8541 x 1073. We observe that RB and
POD produce ROMs with nonnegative output error. This is a general property of
Galerkin projection applied to systems with symmetric positive definite A(p) and
B(p) = C(p)T (see, e.g., Theorem 1.4 in [7]). We also observe that even though Lo-
Opt-PSF preserved the symmetry properties in the DDROMs, without enforcing it
explicitly, it did not give DDROMSs that have nonnegative output error. This implies
that Lo-Opt-PSF DDROMSs are not based on Galerkin projection. An explanation for
why symmetry is preserved in Lo-Opt-PSF without explicitly enforcing it is that the
gradients of the objective function (Theorem 2.7) have the same symmetry properties.

The relative £ and L, errors are shown in Figure 3 for a range of reduced orders.
We observe that L£2-Opt-PSF (SP) and L,-Opt-PSF (EXT) have consistently lower
Lo error compared to POD and RB. Moreover, £2-Opt-PSF (SP) and L2-Opt-PSF
(EXT) have comparable Lo, errors to (and for some r values even smaller than) RB
and POD even though not optimized for this error measure.

3.2. Nonseparable example. We modify the Poisson equation in (3.1) by using
a diffusion term that is not parameter-separable. Specifically, we take

9 _x )2 2
-1 ((&1-p)*+(£2-p)?)
d(&,p) 106
and set P =[0,1]. After a finite element discretization, the FOM is of the form

A(p)z(p) = B,
y(p) = Cz(p),
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Fic. 4. Poisson example FOM solutions for different parameter values.
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F1c. 5. Nonseparable example FOM output and pointwise output errors for ROMs of order 2.

with n = 1089 and nf = 1, and A(p) needs to be assembled for every new parameter
value p. For the output, we again chose C = BT (n, = 1). Solutions for a few
parameter values are given in Figure 4. The output can be seen in the left plot in
Figure 5.

Using RB or POD produces ROMs of the form

VEA(p)VE(p) =V B,
y(p) =CV(p).

Notably, an efficient computation of VTA(p)V requires a further approximation of
A(p) in a parameter-separable form, e.g., using the empirical interpolation method
[4] as mentioned in subsection 1.1; for details, see, e.g., [9]. However, in order not to
degrade the accuracy of RB and POD models, we skip that step. For the L£s-optimal
DDROMSs, we consider two forms,

(F1) (At (=) A2t (p—3)" ) 3(p) = B.
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TABLE 1
Relative errors for the nonseparable example.

Error measure RB POD L2-Opt-PSF 1 L2-Opt-PSF 2
Lo 1.0441 x 10~2 6.4925 x 103 3.8323 x 103 2.7439 x 10~4
Loo 1.4279 x 10~2 1.0146 x 10~2 1.3707 x 10~2 4.4095 x 104

08
08

06
06

04 04

02 02

00

oo

00 02 04 06 08 10

p=0

Fia. 6. Convection-diffusion example FOM solutions for different parameter values.

and
(A4 (o= 1) A+ (= 1) At (o= 1) 4a) 309
(F2) =Bi+(p— %) Bz+(P—-) Bs+(p —%)6
10)=(Ci+ (b~ 3Gt (- 1) Gt (p—3) 6) #(p).

which exploit the symmetry in y(p) around p = 1 . The right plot in Figure 5 shows
the output errors of ROMs of order 4, resulting from RB, POD, and both £5-Opt-
PSF models (both initialized with A1 I, Bl =1, C’l = 1T and A =0, B =0, and
C; =0 fori> > 2, where 1 is the vector of all ones). We observe that B and POD again
produce ROMs with nonnegative output error. The relative Lo and L, errors listed
in Table 1 show significant improvements in Lo error minimization via Lo-Opt-PSF,
especially for the second DDROM form.

3.3. Convection-diffusion problem. Consider the convection-diffusion equa-
tion on the unit square Q = (0, 1)2 with homogeneous Dirichlet boundary conditions:

V- ((cosp,sinp)z(£,p)) — V- (dVz(§,p)) =1, £eq,
z(§,p) =0, £€0Q,
where d = 275 and P = [0,27]. For the outputs, we chose y,(p fQ (&, p)d¢,

£=1,2,3,4, where 912(07%)2,92:(%,1)X(O,%), Q3:( ) Q4 ( 72) ( 1)
After a finite element discretization, we obtain a FOM
(A1 + cos(p) Az +sin(p)As)z(p) = B,
y(p) = Cx(p),

with n =1089, ny =1, and n, = 4. Solutions for a few parameter values are given in
Figure 6.
The left plot in Figure 7 shows the output y.
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Fic. 7. Convection-diffusion example FOM output and pointwise output error norms for ROMs
of order 4.

As for the first example, for the DDROMs, we consider a structure-preserving
model

(P) (Xl + cos(p)gg + sin(p)ﬂg) z(p) = Ev

and an extended version

~ -~

(ﬁl + cos(p)ﬁg + sin(p)Ag) Z(p) = El + cos(p)éz + sin(p) Bs,

(EXT) R N .
7(p) = (Cu +cos(p)Ca +sin(p)Cs ) 2 (p).
The cos(p) and sin(p) terms are inspired by the periodicity of y(p). The right plot in
Figure 7 shows the output errors of ROMs of order 4, due to RB, POD, £5-Opt-PSF
with structure preservation (initialized using RB), and L5-Opt-PSF with extended
form (initialized using the structure-preserving Lo-Opt-PSF), illustrating that both
Lo-Opt-PSF models significantly outperform RB and POD. The relative L5 and Lo,
errors for a range of reduced orders are shown in Figure 8. We observe significant
improvements in both the £5 and L., errors in many cases.

4. Discrete least-squares norm. So far, we have considered continuous least-
squares problems where we could evaluate the parameter-to-output mapping y for
any parameter value p € P. However, in some cases, we are only given a finite set of
points without a chance to reevaluate y. Furthermore, adaptive quadrature used in
the previous section can be expensive for multidimensional parameter spaces. Thus,
it is important to consider the discrete setting.

In the discrete setting where we only have samples (py,ye), £ = 1,2,...,N, we
consider minimizing the mean square error (MSE)

N
1 ~ 2
(4.1) IMSE = 7 E lye =4 (Pe) I -
=1
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Fia. 8. Convection-diffusion ezample errors for ROMs of different orders.

Our Ls-optimal modeling framework recovers the discrete MSE (4.1) by choosing the
parameter space as P = {py,ps,...,Pn} and the measure as u = % Zé\;l p,- With
these choices, the £y error (1.9) becomes the MSE (4.1). Since the assumptions of
Theorem 2.7 are still satisfied for the discrete measure p, we can compute gradients,
which become finite sums in this setting, as we summarize in the next result.

_ CororLARY 4.1. Let (pgye), £ =1,2,...,N, be closed under conjugation and
(Ai,Bj,Cy) be a tuple of DDROM matrices from R (2.3). Then, the gradients of
Juse (4.1) with respect to the DDROM matrices are

N
2 NN - —~ " .
v&jMSE:NZai (Pe) Za (Pe) [ye — Y (P)]Z (Pe) ™ i=1,2,...,q%
=1
2 o~
vgijSE = N Zﬂ] (W) lx\d (pé) [@\(pé) - y@] ’ Jj=12,.. - dg,
(=1
9 N
Vakk71\/[SE = N Zﬁk (W) [@\(pf) - y@] 3"\(pﬂ) *7 k= 1a27 o aQ€

~
Il

1

Proof. The result follows directly from Theorem 2.7 by setting P = {py,...,pPn},
N

= % > o=10p,> and y(pg) = ye. O
For the discrete setting we still use Algorithm 2.1. The only difference from the
continuous setting is that we do not use adaptive quadrature, but directly evaluate
the sums. As before, gradient computations only use the output samples y(p,).

In the following we demonstrate the results on two examples; one related to LTT
systems and the other arising from a Poisson equation with multiple parameters.

4.1. Flexible aircraft frequency response data. Here we use the data from
[34, 37], containing samples of a transfer function H(s) of an LTI dynamical system
(as in (1.5)) describing the influence of wind gust on a flexible aircraft. In particular,
the underlying dynamical system has ny = 1 forcing (gust disturbance) and n, = 92
outputs (accelerations and moments at different coordinates of a flexible aircraft wings
and tail); thus in this problem H(s) € C?2%!. The output (transfer function) data
consists of N = 421 pairs (wy, Hy), £ = 1,2,..., N, where wy > 0 are the frequencies
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F1G. 9. Flexible aircraft example data and pointwise output errors for ROMs of order 100 (97).

and Hy, € C™*"™ are the frequency domain samples. The left plot in Figure 9 shows
the magnitudes (norms) of the frequency responses. AOuI goal in this setting is to
learn a DDROM of the form as in (2.4), i.e., H(s) = C(sE — A)~! B, that minimizes
the MSE distance from the given samples {H,}.

To fulfill the assumptions of Corollary 4.1, we set

{(Pesy) YN, = {(awoe, HO) Yol U { (—owe, Hp) ), -

Based on this setup, we run £2-Opt-PSF with L-BFGS to minimize the MSE (4.1)
using the optimization variables E,A € C"™*", B € C"™*™, and C € C™*". We ini-
tialize L£2-Opt-PSF using the ROM of order r = 100 from [37], which uses the same
data but employs the interpolatory Loewner framework [3]. We obtain a DDROM
of order » = 100 with 3 unstable poles. Then, we project the resulting DDROM
to its asymptotically stable part of order r = 97. Figure 9 shows the error result-
ing from the Loewner-based model from [37], the unstable DDROM of order 100,
and its asymptotically stable part of order 97. The respective relative £y errors are
4.82 x 1072, 1.3146 x 1073, and 2.5255 x 1073, These results illustrate that £,-Opt-
PSF has resulted in more than one order of magnitude improvement. Moreover, the
unstable part of the L£5-Opt-PSF model was small enough that projecting it onto the
asymptotically stable part did not significantly degrade the accuracy. Note that we
could impose a stability constraint directly in the optimization routine, similar to [26].
Here we skipped that step to illustrate that L,-Opt-PSF followed by projection to
the asymptotically stable part can still produce a DDROM with a small error.

Remark 4.2. In this example, the DDROM resulting from L5-Opt-PSF is a ratio-
nal function; thus our L£s-optimal modeling framework in this special case has solved
the rational least-squares problem via a gradient-based descent algorithm. Minimiz-
ing the MSE using a rational function (rational least-square fitting) is an important
problem in data-driven modeling of dynamical systems and various techniques exist;
see, e.g., [39, 21, 14, 15, 25, 32, 11] and the references therein. In a future work where
we specifically focus on dynamical systems and approximation of transfer functions
from data, we will provide more details in this direction.
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Fi1c. 10. Thermal block example FOM output and pointwise output errors for ROMs of order
4 on the equidistant grid linspace(0.1, 10,5)4 with 5% =625 points.

4.2. Thermal block example. We consider a 2 x 2 thermal block example over
the unit square Q= (0,1)?, i.e., we modify the Poisson equation in (3.1) by using the
diffusion term

d(§,p) = P1X<0,%>2(5) + PzX(%,l)X(oé)(f) P3X(%71)2(§) + P4X(o,%)x(%,1)(§)
and P = [0.1,10]4. Here, xs denotes the characteristic function of the set S, i.e.,
xs(§) =11if £ € S, otherwise xs(§) =0. Therefore, the parameters pq,...,p, represent
the diffusivity over each of the four blocks. After a finite element discretization, we
obtain the FOM of the form

(Ao +p A1 + pyAs + p3As + pyAs) z(p) = B,
y(p) =Cz(p),

with n = 1089 and n¢ = 1. For the output, we kept C' = BT. The left plot in Figure 10
shows the output of the FOM over the equidistant grid Piest = linspace(0.1, 10,5)4.
We look for structure-preserving DDROMSs of the same form:

~

(A\o + PlA\l + P2E2 + P3121\3 + P4A\4> z(p) =B,
7(p) = Ca(p).

We choose r = 4 as the reduced order. We construct two projection-based ROMs
using RB and POD trained on the grid Pgam = linspace(0.1, 10,4)4. Then, using
only the discrete output samples y(p,) from the same training grid, i.e., a total of
N = 4* =256 output samples y(p,), we run the discrete L£o-Opt-PSF (initialized with
the POD ROM) to minimize the MSE (4.1). Figure 10 shows the outputs and the
resulting errors over Pies;. The figure shows a significant reduction of the errors for the
L5 DDROM. We note that Pies; and Pipain overlap only on 24 = 16 points (corners)
out of 5% = 625 test parameter values. The relative L errors over Pies for RB, POD,
and L£5-Opt-PSF are, respectively, 6.037 x 1071, 4.8002 x 10~!, and 1.0266 x 102.

5. Lo-optimal DDROMs and projection-based ROMs. RB and POD, as
implemented in section 3, use Galerkin projection. In section 3, we found that Lo-
optimal DDROMSs obtained via Algorithm 2.1 are not based on Galerkin projection
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for the compliant Poisson examples. The question remains whether the Ls-optimal
DDROMs can be constructed by a (state-independent) Petrov—Galerkin projection.
The answer is clearly “no” when the FOM and DDROM are of different structure,
in particular, when the DDROM has an additional nonzero term as we have in our
extended L2-optimal DDROMs. Therefore, we consider the case when the two models
have the same parameter-separable forms as in (2.1). Let .A(p), B(p), and C(p) be
the DDROM quantities obtained via Algorithm 2.1. We want to see if there exist
V,W € R™™" of full rank such that

Alp)=WTAp)V, B(p)=WTB(p), C(p)=C(p)V.

Assuming that the sets of scalar functions {@;}i4,, {BJ }jil, and {7;.};¢ , are linearly
independent, this is equivalent to

(5.1a) A, =WwTAV, i=1,2,....q5,

(5.1b) B; =WTB;, i=1,2,....qz

(5.1c) Cr = CrV, k=1,2,...,q5

We observe that (5.1) is a system of nonlinear equations, generally difficult to analyze.
However, the equations containing B; and C}, are linear, which we exploit next.
By vertically stacking (5.1c), we obtain the linear system CV = C, where

(5.2) c=[cr ... c;faf and  C=[CF - ége]T
If C is of full row rank (in particular, gzn, < n), using its singular value decomposition
(5.3) C=Uc[Sc 0][Ve1 Ve,
we can write the solution to CV = C as
(5.4) V =Ve13c'Uc"C + Voo X
-

for some X € R("~9")X7 Gimilarly, we find that

(5.5) W =Ug 35 Ve "BT + U Y
N————
=:W;

for some Y € R("™98")X7 where

(5.6) B=[B1 - Byl B=[B - Bl
T
U] |X¥B| T
(5.7) B= |:UB,2:| [ . } Ve,

assuming that B is of full column rank. Then, from (5.1a), we obtain

(5.8) (Wi +UpoY)TAiVooX =4; — (Wi + U oY) AV, i=12,...,q;

Stacking all the quantities, we obtain
(W14 Us2Y) A1 Ve o Ay — (W + Us2Y)T A1V

: X= : ,

(Wh+Us2Y)" Ay Ve Ay — (Wi +UppY)T Ay Vi

which is a system of r2¢ 7 equations and r(n — ggn,) unknowns. Assuming that the
system matrix is of full row rank, there is at least one X that solves the system. Thus
we have just proved the following result.
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THEOREM 5.1. Let B in (5.6) be of full column rank and C in (5.2) of full row
rank. Let their singular value decompositions be given by (5.7) and (5.3). Also, let V}
and Wy be as in (5.4) and (5.5). If there exists Y € R"™I8")X" sych that

(W1 +Ug2Y)T A1 Ve 2

Rq ATX (n—qéno)

(W1 +Us2Y) Ay Vo,

is of full row rank, then there exist V,W € R™*" satisfying (5.1).

This result says that, in the generic case, all DDROMSs with the same parameter-
separable form as the FOM can be formed using Petrov—Galerkin projection, including
Lo-optimal ones. Note that a similar, dual result to Theorem 5.1 can be obtained by
fixing X and solving for Y in (5.8).

6. Conclusions. We presented a gradient-based descent algorithm to construct
data-driven Lq-optimal reduced-order models that only requires access to output sam-
ples. By appropriately defining the measure and parameter space, the framework we
developed covers both continuous (Lebesgue) and discrete cost functions, and station-
ary and dynamical systems. The various numerical examples illustrated the efficiency
of the proposed Ls-optimal modeling approach. Moreover, we have developed the
generic conditions for a DDROM to be projection-based. The gradients derived in
this paper have direct implications for and connections to interpolatory model reduc-
tion methods and these issues will be revisited in a separate work.

Appendix A. Proof of Lemma 2.6. First, we show that R is an open subset
of R. Let (Al, BJ,Ck) € R be arbitrary. The definition of R (2.3) yields

(A1) |ai(p)] H/T(p)*lHF <M forall i=1,2,...,q5 and for p-almost all p € P

for some M > 0. Then let AA; € R™" for i = 1,2, .. -4z, with Sia ||AE;||F < 357
be arbitrary. For p-almost all p € P, using (A.1) in the second inequality, we obtain

(A2) ) )
1A R o 14 R —~ 74 1
a(P)ALAP) | <Y @) [Ar) 7| . <5

=1 F =1

™
8
—
N
+
>
=)
N——
N—————
|
Il
2
VN
s
>
S
N———
|

F
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Using that [|(1 — X)~!||r <

< ﬁ for all X € C"™*" such that || X||g <1, from (A.2)
and (A.1) we get

-1
~ ~ 1
<Za1 ) (4: +AA)> <[ai(p)| |Alp) || = <2M <00
. Fl—3
for pi-almost every p € P. Therefore, we have (/L + A/L,Ej,ék) € R. Since Ej and
C}, are arbitrary, it follows that there is an open neighborhood of (A;, B;,Ci) in R.

Next we prove that ||ylz,p,.) < oo. Note that from (A.1), if @;(p) # 0, then
IA(P)~|r < \a'(p)l Furthermore, note that the set of parameter values p € P such

that a;(p) =0 for all i = 1,2,...,q; forms a set of y-measure zero (otherwise, this
would contradict (2.2)). Therefore,

~ M M
A3 HA p 71H < min < — for p-almost all p € P.
B3 AR e <M E S o]

Using submultiplicativity and the triangle inequality, we obtain

3. = [ [Cerde) 86 aut

aa) <[ [ew]; ﬁ(prlHFHE(p)Hqu(p)

</P<I§m<p>|uékHF> |aw | > [pie)

Using || B; |l < max; | B[ and [|Cyl|p < max;, [|Cy|r, we find

2
2], | autor

2 . 2
131, < ma| B max |G [ Z(@ (iwp)) | A aute)
k=1
Next, using (A.3), we obtain
A (50 [3,0)]) (S A o))
||?7||%2<M2m?‘XHBJ’H maXHC’CH / - s [ (o) dulp).

. ‘- 2 . . 3
Finally, using that max;—12. n,x; = /(> i:l x7)/n for nonnegative numbers z;,

s e (S [Ee)]) (S, me)’
FHCHF/p (S8, [@i(p)l)” ’

~

191, < a5°M?max | B,
s

p) < o0,

which completes the proof.

Appendix B. Proof of Theorem 2.7. Rewrite the objective function as

(B.1a) J= H?J||2£2(P,u)

(B.1b) =2 [t (y(p)*C(P)A(p) ' B(p) ) dpa(p)

(B.10) + [ e (Be) )" Clo) ClphAle) Bl ) d(p)
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where we used the fact that (y,¥)c,p.u) = (U, ¥) P,y € R (Assumption 2.1). The
part of 7 in (B.1a) does not depend on the reduced quantities, so it does not contribute
to the gradient. Let [J> denote the second term (B.1b) in the cost function 7, i.e.,

~

Fo==2 [ tr (u(p) Co)A(P) B ) di(p)

We start by computing V i, J>. To do so, we evaluate jg(;{i + A&) for a perturbation
A/Ali to obtain

Ta (& + A&») = —2/7)tr (y(p)*CA(p) (ﬁ(p) + &i(p)Aﬁi)fl 5(p)> dp(p)
= —2/7)tr <y(p)*5(p) (I + ai(p)ﬁ(p)‘lAﬁi) - ﬁ(p)‘lg(p)) dp(p).

Assuming small enough Agi, using the property in (2.3), and applying the Neumann
series formula yield

Jo (ﬁl + AEZ> = 72/ tr (y(p)*

P

(B.2) =2 [ e (upCo) (~ap)Alp) ' AL) " Alp) 1 B)) ).

First, we check that the candidate for the gradient, resulting from the second term in
the last equation, is indeed bounded:

~

/P 8,(3)A(p) ~C(p)y(p)B(p)" Alp)*du(p)

F

< [1aen|Ae |, Jewl, [ ae |, 5o, e e

<[acraey|, . [e®l, [ ae], )], ek ane) <.

where we used (2.2) and (2.3) (see (A.4) in the proof of Lemma 2.6). Second, we
check that the remaining terms in (B.2) are of lower order:

> [ e (s6C0) (~6(9)Ap) " AL) " Ap) 1 B)) i)
m=2""P

1~

a4)"AC) B

<LoPo) Yll 2o (Po) i Hg(') (—az‘(')ﬁ(')
m=2

Lo (P7#)

= m
1A 4]

<9leacr i\ & CAC) T IEOl A 1B, 0
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&A™, 1ad

2(Pop) 1 — ’

= Iwlleacean [ IC 1A ™ I IBON

& DA, AL,

~o(Iad,)-

Therefore,

-~

Vidh=2 /p &,(5)A(p)~C(p)*y(p)B(p)" Alp) ().

Next, we compute Vg Jo similarly by evaluating j?(gj + Aﬁj):

T2 (Bj + AB\]’) = —2/7)““ (y(p)*

= 22(B) =2 [ 1 (B, (p)ue) ClE)A(p) " AB, ) dup)
= By) -2 [ Bio)A0)Co) uo)n(o). A )

It follows from (2.2) and (2.3) that the mapping p — Bj(ﬁ)ﬁ(p)_*C(p)* is square-
integrable. Therefore

V5, 7= =2 | B®)A) o) up)ulr).

Similarly, one can obtain

Vo, 2= =2 | F)u(p)B) A) (o)

Finally, after differentiating the last part of J in (B.1c), we obtain

~ -~ ~

V. J =2 /P &) A(p) " C(p)" (w(p) — C(p)A(P) ' B(p) ) Blp)"Alp)"dp(p).

~ -~

Véjj=2/7ﬁj(p)ﬁ(p)‘* (p)* (C(p)ﬁ(p)‘lg(p) —y(p)) du(p), and
Ve, J =2 /p (B (Clp)A(p)*B(p) ~ () ) B(p)" Alp)*du(p),
which completes the proof.
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