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Abstract. We provide a unifying framework for \scrL 2-optimal reduced-order modeling for linear
time-invariant dynamical systems and stationary parametric problems. Using parameter-separable
forms of the reduced-model quantities, we derive the gradients of the \scrL 2 cost function with respect
to the reduced matrices, which then allows a nonintrusive, data-driven, gradient-based descent algo-
rithm to construct the optimal approximant using only output samples. By choosing an appropriate
measure, the framework covers both continuous (Lebesgue) and discrete cost functions. We show the
efficacy of the proposed algorithm via various numerical examples. Furthermore, we analyze under
what conditions the data-driven approximant can be obtained via projection.
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1. Introduction. Consider a parameter-to-output mapping

(1.1) y : \scrP \rightarrow Cn\mathrm{o}\times n\mathrm{f} , p \mapsto \rightarrow y(p),

where \scrP \subseteq Cn\mathrm{p} denotes the parameter space, and np, nf , no are positive integers,
representing the parameter, forcing (input), and output dimensions of the underlying
parametric model. We are interested in cases where evaluating y(p) for a given p is
expensive (thus causing a computational bottleneck in online computations) and we
only have access to (the output) y(p) without access to an internal representation.

Our goal is to construct a data-driven reduced-order model (DDROM)\widehat \scrA (p)\widehat x(p) = \widehat \scrB (p),(1.2a) \widehat y(p) = \widehat \scrC (p)\widehat x(p),(1.2b)

whose output \widehat y(p) is significantly cheaper to evaluate compared to y(p), and \widehat y(p) is
close to y(p) for all p\in \scrP . In (1.2) we have \widehat \scrA (p)\in Cr\times r, \widehat \scrB (p)\in Cr\times n\mathrm{f} , \widehat \scrC (p)\in Cn\mathrm{o}\times r,\widehat x(p) \in Cr\times n\mathrm{f} , and \widehat y(p) \in Cn\mathrm{o}\times n\mathrm{f} , where r is a modest integer so that evaluating\widehat y(p) via (1.2) is trivial. The modeling structure in (1.2) is motivated by model order
reduction for stationary parametric partial differential equations (PDEs) and linear
time-invariant (LTI) dynamical systems, as we briefly explain next.
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\scrL 2-OPTIMAL REDUCED-ORDER MODELING A555

First, consider a parameterized linear PDE in the weak form

a(\xi (p), \zeta ;p) = f(\zeta ;p) \forall \zeta \in \scrX ,(1.3a)

q(p) = l(\xi (p);p),(1.3b)

where p\in \scrP \subseteq Rn\mathrm{p} is the parameter, \scrX is a real Hilbert space, \xi (p)\in \scrX is the solution,
and q(p) \in R is the quantity of interest. Furthermore, a( \cdot , \cdot ;p) : \scrX \times \scrX \rightarrow R is a
coercive and continuous bilinear form and f( \cdot ;p), l( \cdot ;p) : \scrX \rightarrow R are bounded linear
functionals for all p\in \scrP . In the simple case with np = 1, a(\xi , \zeta ;p) = a1(\xi , \zeta )+pa2(\xi , \zeta ),
f(\zeta ;p) = f(\zeta ), and l(\xi ;p) = l(\xi ), after a Galerkin projection onto an n-dimensional
subspace span\{ \xi 1, \xi 2, . . . , \xi n\} \subset \scrX (e.g., constructed by a finite element discretization),
we obtain a finite-dimensional model

(A1 + pA2)x(p) =B,(1.4a)

y(p) =Cx(p),(1.4b)

where x(p)\in Rn is the projected solution, y(p)\in R is the output approximating q(p),
and A1,A2 \in Rn\times n and B,CT \in Rn\times 1 are given componentwise by [A1]ij = a1(\xi j , \xi i),
[A2]ij = a2(\xi j , \xi i), [B]i1 = f(\xi i), and [C]1j = l(\xi j). If, for example, A1 + pA2 is
invertible for every p\in \scrP , then the parameter-to-output mapping in this case is given
by y(p) = C(A1 + pA2)

 - 1
B. This problem corresponds to nf = no = 1. Note that nf

here represents the number of right-hand sides in (1.4a), i.e., the number of forcing
terms. If, in addition, the problem (1.3) is compliant, i.e., a( \cdot , \cdot ;p) is symmetric and
l= f , then A1 and A2 are symmetric and C =BT.

Now, consider an LTI dynamical system described in state space as

E \.x(t) =Ax(t) +Bu(t), x(0) = 0,(1.5a)

y(t) =Cx(t),(1.5b)

where t \in R is the time, u(t) \in Rn\mathrm{f} is the input, x(t) \in Rn is the state, y(t) \in Rn\mathrm{o}

is the output, E,A \in Rn\times n, B \in Rn\times n\mathrm{f} , and C \in Rn\mathrm{o}\times n. By applying the Laplace
transform to (1.5), we obtain Y (s) =H(s)U(s), where U and Y are, respectively, the
Laplace transforms of u and y. Furthermore, H(s)\in Cn\mathrm{o}\times n\mathrm{f} is given by

(1.6) H(s) =C(sE  - A)
 - 1

B

and is called the transfer function, which is at the heart of systems-theoretic ap-
proaches to optimal approximation of LTI systems [3, 1]. We can rewrite H(s) as

(sE  - A)X(s) =B,(1.7a)

H(s) =CX(s)(1.7b)

for any s\in C such that sE  - A is invertible and X(s)\in Cn\times n\mathrm{f} .
Therefore, both mappings, namely p \mapsto \rightarrow q(p) in (1.3) and s \mapsto \rightarrow H(s) in (1.6), are

examples of parameter-to-output mappings (1.1) we consider in this paper. Both
models (1.4) (resulting from discretization of a stationary parametric PDE) and (1.7)
(frequency domain formulation of an LTI system) can be examined using the form

\scrA (p)x(p) = \scrB (p),(1.8a)

(p) = \scrC (p)x(p),(1.8b)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A556 PETAR MLINARI\'C AND SERKAN GUGERCIN

where p \in \scrP \subseteq Cn\mathrm{p} is the parameter, x(p) \in Cn\times n\mathrm{f} is the state, y(p) \in Cn\mathrm{o}\times n\mathrm{f} is
the output, \scrA (p) \in Cn\times n, \scrB (p) \in Cn\times n\mathrm{f} , and \scrC (p) \in Cn\mathrm{o}\times n. Many applications
require solving the model (1.8) in real time or for many parameter values, which
incurs a computational bottleneck due to the large-scale dimension of the underlying
state-space. The goal of model order reduction for parametric PDEs and for LTI
systems is to replace (1.8) with a reduced-order model (ROM), which motivates us to
approximate the mapping (1.1) by the DDROM of the form (1.2).

Thus the framework we consider handles a wide range of problems (stationary or
dynamic), including those of the form in (1.8). We revisit both problems (1.4) and
(1.7) throughout the paper and illustrate how the theory applies in either case. Fur-
thermore, even though the motivation comes from full-order models (FOMs) of the
form in (1.8), the approximation framework we develop below only requires access to
the parameter-to-output mapping (1.1) and not to the full-order operators \scrA , \scrB , \scrC 
and state x. Thus, we work with a nonintrusive parameter/output data-driven formu-
lation. Therefore, we refer to our methodology as ``reduced-order modeling"" instead
of ``model order reduction.""

It is worth mentioning that a similar setting of a parameter-to-output mapping
appears in, e.g., active subspaces [13]. As [13] focuses on parameter reduction, we
believe it could be used in combination with the approach we propose here to develop
a combined parameter and state reduction method (such as in [24]).

There are different ways of measuring the distance between y and \widehat y. For instance,
reduced basis (RB) methods [7] are based on the \scrL \infty norm

\| y - \widehat y\| \scrL \infty = sup
p\in \scrP 

\| y(p) - \widehat y(p)\| F ,
where \| \cdot \| F is the Frobenius norm. For LTI systems, the corresponding measure is
the \scrH \infty norm and we refer the reader to recent optimization-based algorithms for
(structure-preserving) \scrH \infty -optimal model order reduction [29, 40].

In this paper, we focus on a different norm. Motivated by the work on \scrH 2-
optimal model order reduction [19, 18, 2] for nonparametric LTI systems, and exten-
sions to \scrH 2\otimes \scrL 2-optimal model order reduction [5, 36, 17, 26] for parametric LTI sys-
tems, we are interested in \scrL 2-optimal reduced-order modeling for parametric problems
(1.1). Specifically, we are interested in finding a DDROM (1.2) that minimizes the \scrL 2

error

\| y - \widehat y\| \scrL 2 =

\biggl( \int 
\scrP 
\| y(p) - \widehat y(p)\| 2F dp\biggr) 1/2

.

The goal is to develop the analysis (and the resulting computational tools) so that
the framework equally applies to parametric stationary problems as in (1.4) and to
dynamical systems as in (1.5) by the proper definition of the parameter space and
error measure. Additionally, we want the analysis to be applicable to more general
measures \mu over the parameter space \scrP , i.e., minimizing

(1.9) \| y - \widehat y\| \scrL 2(\scrP ,\mu ) =

\biggl( \int 
\scrP 
\| y(p) - \widehat y(p)\| 2F d\mu (p)\biggr) 1/2

.

For example, \mu could be a probability measure over \scrP and the parameter p could be
treated as a random variable. Another example of a measure is a discrete measure

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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\scrL 2-OPTIMAL REDUCED-ORDER MODELING A557

\mu d =
\sum N

i=1 \delta pi , where \delta x is the Dirac measure (\delta x(A) = | \{ x\} \cap A| ) and p1,p2, . . . ,pN
are some parameter values, which results in the error measure

\| y - \widehat y\| \scrL 2(\scrP ,\mu \mathrm{d}) =

\Biggl( 
N\sum 
i=1

\| y(pi) - \widehat y(pi)\| 2F
\Biggr) 1/2

.

Therefore, we develop theoretical results that hold for both continuous and discrete
objective functions.

We note that the objective (1.9) is reminiscent of operator inference [35]. However,
the fundamental difference is that operator inference solves a linear least-squares
problem, while we solve a nonlinear optimization problem. This is due to the fact
that while operator inference minimizes the residual, our goal is to minimize the
output error. Furthermore, operator inference requires, in its original formulation, full
state snapshots, while our approach only needs output measurements. Additionally,
operator inference is usually posed in the time domain, unlike our \scrL 2 measure, which
would be posed in the Laplace/frequency domain.

The main contributions of the paper are as follows:
\bullet We develop a unifying formulation for \scrL 2-optimal data-driven reduced-order

modeling, which applies to a wide range of problems with an appropriate
definition of the measure space.

\bullet We derive explicit formulae for gradients of the \scrL 2 approximation error with
respect to the matrices of the DDROM. These gradient computations require
access only to the model output without internal (state) samples.

\bullet Based on the gradient formulae, we develop a data-driven, gradient-based
algorithm for \scrL 2-optimal reduced-order modeling.

\bullet We extend the framework to a discrete least-squares error function.
\bullet We analyze and give conditions under which the \scrL 2-optimal DDROM can be

obtained via projection.
The rest of the paper is organized as follows. In subsection 1.1 we briefly recall

projection-based model order reduction, the most common framework for intrusive
model order reduction. We state the structured \scrL 2-optimal reduced-order modeling
problem in section 2 and derive the gradients of the squared \scrL 2 error with respect to
the matrices of the DDROM. Furthermore, there we discuss a generic optimization-
based algorithm for \scrL 2-optimal reduced-order modeling. In section 3 we focus on
the continuous objective function and provide numerical examples. Then, we discuss
discrete objective function in section 4, where we demonstrate the generic algorithm on
further examples. In section 5 we return to projection-based model order reduction
and discuss whether \scrL 2-optimal DDROMs are projection-based. Finally, section 6
gives concluding remarks.

1.1. Projection-based model order reduction. Even though our framework
is data-driven and does not start with or need a FOM to reduce, in this section, we
briefly recall the basics of the projection-based model order reduction methods to help
motivate the structure enforced on the DDROM (1.2).

For a FOM (1.8), the Petrov--Galerkin projection framework is one of the most
common ways to construct the ROM (1.2). In this framework, given the FOM (1.8),
one chooses two r-dimensional subspaces of Rn, spanned by the columns of V,W \in 
Rn\times r, and constructs the ROM (1.2) by

(1.10) \widehat \scrA (p) =WT\scrA (p)V, \widehat \scrB (p) =WT\scrB (p), \widehat \scrC (p) = \scrC (p)V.

If V and W span the same subspace, this is called a Galerkin projection.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A558 PETAR MLINARI\'C AND SERKAN GUGERCIN

Even though \widehat \scrA (p)\in Cr\times r, \widehat \scrB (p)\in Cr\times n\mathrm{f} , \widehat \scrC (p)\in Cn\mathrm{o}\times r in (1.10) have the reduced
row and/or column dimensions, evaluating them for a new parameter value p requires
operations in the full dimension n. Thus, for efficient computation of the ROM, it
is often assumed that the FOM matrices have a parameter-separable form (or that
it can be approximated by one, e.g., using the empirical interpolation method [4]),
i.e.,

(1.11) \scrA (p) =

q\scrA \sum 
i=1

\alpha i(p)Ai, \scrB (p) =
q\scrB \sum 
j=1

\beta j(p)Bj , \scrC (p) =
q\scrC \sum 
k=1

\gamma k(p)Ck,

where q\scrA , q\scrB , q\scrC are small positive integers, \alpha i, \beta j , \gamma k : \scrP \rightarrow C are given functions that
are easy to evaluate, and Ai \in Rn\times n, Bj \in Rn\times n\mathrm{f} , Ck \in Rn\mathrm{o}\times n are constant matrices.
Then, one computes the ROM matrices

(1.12) \widehat Ai =WTAiV, \widehat Bj =WTBj , \widehat Ck =CkV

only once, and the ROM (1.2) is constructed efficiently as

(1.13) \widehat \scrA (p) =

q\scrA \sum 
i=1

\alpha i(p) \widehat Ai, \widehat \scrB (p) = q\scrB \sum 
j=1

\beta j(p) \widehat Bj , \widehat \scrC (p) = q\scrC \sum 
k=1

\gamma k(p) \widehat Ck.

Thus, the full-order operators \scrA (p),\scrB (p),\scrC (p) are avoided when solving the ROM.
There are many projection-based model order reduction methods and thus many
different ways of computing V and W ; see, e.g., [8, 7, 1, 3, 9, 38, 23, 10]. We revisit
some of these methods in more detail in section 3.

2. \bfscrL \bftwo -optimal reduced-order modeling. In this section, we first establish
the setting of the optimal reduced-order modeling problem we consider and prove the
main theoretical result that forms the foundation of the proposed algorithm.

2.1. Setting. We are interested in approximating a parameter-to-output map-
ping (1.1) by a DDROM (1.2). Although the motivation comes from the form of
FOMs as in (1.8), the framework we develop here does not require the full-order oper-
ators \scrA , \scrB , and \scrC or the full-order state x. Instead we only need (the samples of) the
output y. In other words, we develop an optimal data-driven approximation formula-
tion that only uses the parameter/output samples of the model under consideration.
More specifically, we consider the FOMs accessible only via a complex-valued output
function y : \scrP \rightarrow Cn\mathrm{o}\times n\mathrm{f} , where \scrP \subseteq Cn\mathrm{p} and (\scrP ,\Sigma , \mu ) is a measure space.

We make some technical assumptions on the FOM valid for the general setup we
consider here. Then by revisiting the specific FOMs in (1.4) and (1.7), we show that
these are common assumptions and they automatically hold in most cases.

Assumption 2.1 (FOM assumptions). Let (\scrP ,\Sigma , \mu ) be a measure space and
y : \scrP \rightarrow Cn\mathrm{o}\times n\mathrm{f} a measurable function.

\bullet The set \scrP \subseteq Cn\mathrm{p} is closed under conjugation (p\in \scrP for all p\in \scrP ).
\bullet The \sigma -algebra \Sigma is closed under conjugation (S \in \Sigma for all S \in \Sigma ).
\bullet The measure \mu is closed under conjugation (\mu (S) = \mu (S) for all S \in \Sigma ).
\bullet The function y is square-integrable (\| y\| \scrL 2(\scrP ,\mu ) < \infty ) and closed under con-

jugation (y(p) = y(p) for all p\in \scrP ).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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\scrL 2-OPTIMAL REDUCED-ORDER MODELING A559

Example 2.2. We revisit the two basic examples from section 1 under the setting
of Assumption 2.1. First consider the FOM (1.4) resulting from the discretization of a
stationary parametric PDE. Let \scrP = [a, b]\subset R and \mu be the Lebesgue measure. Then,
Assumption 2.1 holds if A1 + pA2 is invertible for all p\in \scrP , a common assumption.

Now, recall the transfer function (1.6) of an LTI system (1.5) formulated as a
parametric stationary problem (1.7). One commonly used system norm is the Hardy
\scrH 2 norm \| \cdot \| \scrH 2 , which gives the output bound \| y\| \scrL \infty \leqslant H\| u\| \scrL 2 . The norm can be
formulated as \| H\| \scrH 2 = ( 1

2\pi 

\int \infty 
 - \infty \| H(\imath \omega )\| 2Fd\omega )1/2, assuming that E is invertible and

all the eigenvalues of E - 1A have negative real parts, where \imath denotes the imaginary
unit. Therefore, to have \| H\| \scrH 2

= \| H\| \scrL 2(\scrP ,\mu ), we can take p = s, \scrP = \imath R, and
\mu = 1

2\pi \lambda \imath R, where \lambda \imath R is the Lebesgue measure over \imath R. A sufficient condition for
Assumption 2.1 to hold is that E be invertible and E - 1A have no eigenvalues on the
imaginary axis, which are weaker assumptions than those needed to define the \scrH 2

norm. These are also common assumptions in the systems-theoretic setting. One can
indeed allow E to be singular (i.e., allow systems of differential algebraic equations)
as has been done in many earlier works [27, 20]. However, to keep the notation and
discussion concise, we assume E to be invertible.

2.2. Optimization problem with parameter-separable forms. Given the
parameter-to-output mapping in (1.1), our goal is to find a DDROM (1.2) that min-
imizes the output \scrL 2 error (1.9). As discussed in subsection 1.1, many FOMs have
a parameter-separable form as in (1.11) and this form is preserved in the classi-
cal Petrov--Galerkin projection-based ROMs. Inspired by this formulation, in our
\scrL 2-optimal DDROM setting, we search for a structured DDROM with parameter-
separable form

(2.1) \widehat \scrA (p) =

q \widehat \scrA \sum 
i=1

\widehat \alpha i(p) \widehat Ai, \widehat \scrB (p) = q \widehat \scrB \sum 
j=1

\widehat \beta j(p) \widehat Bj , \widehat \scrC (p) = q \widehat \scrC \sum 
k=1

\widehat \gamma k(p) \widehat Ck,

where q \widehat \scrA , q \widehat \scrB , q\widehat \scrC are positive integers, \widehat \alpha i, \widehat \beta j ,\widehat \gamma k : \scrP \rightarrow C are given measurable func-

tions, and \widehat Ai \in Rr\times r, \widehat Bj \in Rr\times n\mathrm{f} , \widehat Ck \in Rn\mathrm{o}\times r are the (DDROM) matrices we want
to compute to minimize the \scrL 2 error (1.9). Note that even though the DDROM
structure is inspired by the parameter-separable structures appearing in many FOMs
and preserved in projection-based ROMs, here we make no assumptions on the form
of the FOM, but only on the form of the DDROM. The subtle notational difference
between (1.13) and (2.1), namely the ``hatted"" scalar functions, aims to highlight that
unlike in the projection-based ROM (1.13), where the scalar functions match those
of the FOM, in the DDROM (2.1), we have freedom in choosing them. We also note
that this parameter-separable structure appears in [6, 26] as well.

We make the following assumptions on the scalar functions \widehat \alpha i, \widehat \beta j ,\widehat \gamma k appearing
in the DDROM (2.1). As we did for Assumption 2.1, later we discuss that these
assumptions indeed hold trivially in many cases.

Assumption 2.3 (scalar functions). Let \scrP and \mu satisfy Assumption 2.1. The
functions \widehat \alpha i, \widehat \beta j ,\widehat \gamma k : \scrP \rightarrow C are measurable, are closed under conjugation, and satisfy

(2.2)

\int 
\scrP 

\left(  \sum q \widehat \scrB 
j=1

\bigm| \bigm| \bigm| \widehat \beta j(p)
\bigm| \bigm| \bigm| \sum q \widehat \scrC 

k=1 | \widehat \gamma k(p)| \sum q \widehat \scrA 
i=1 | \widehat \alpha i(p)| 

\right)  2

d\mu (p)<\infty .

Now based on Assumptions 2.1 and 2.3, we introduce the set of allowable DDROM
matrices.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A560 PETAR MLINARI\'C AND SERKAN GUGERCIN

Definition 2.4. Let \scrP and \mu satisfy Assumption 2.1 and \widehat \alpha i, \widehat \beta j ,\widehat \gamma k : \scrP \rightarrow C
satisfy Assumption 2.3. Next, let R= (Rr\times r)

q \widehat \scrA \times (Rr\times n\mathrm{f} )
q \widehat \scrB \times (Rn\mathrm{o}\times r)

q \widehat \scrC be the set of
all tuples of DDROM matrices ( \widehat A1, . . . , \widehat Aq \widehat \scrA , \widehat B1, . . . , \widehat Bq \widehat \scrB , \widehat C1, . . . , \widehat Cq \widehat \scrC ) =: ( \widehat Ai, \widehat Bj , \widehat Ck).
Then, we define the set \scrR of allowable DDROM matrices as

(2.3) \scrR =

\biggl\{ \Bigl( \widehat Ai, \widehat Bj , \widehat Ck

\Bigr) 
\in R : ess sup

p\in \scrP 

\bigm\| \bigm\| \bigm\| \widehat \alpha i(p) \widehat \scrA (p) - 1
\bigm\| \bigm\| \bigm\| 
F
<\infty , i= 1,2, . . . , q \widehat \scrA 

\biggr\} 
,

where \widehat \scrA is as in (2.1).

Example 2.5. We want to illustrate that the conditions in (2.2) and (2.3) do indeed
hold trivially in many cases and thus are not restrictive. Continuing with Example 2.2,
we want to cover the analogous DDROMs. Starting with the parametric stationary
problem, we consider \Bigl( \widehat A1 + p \widehat A2

\Bigr) \widehat x(p) = \widehat B,

\widehat y(p) = \widehat C\widehat x(p).
For this case, we have

q \widehat \scrA = 2, \widehat \alpha 1(p) = 1, \widehat \alpha 2(p) = p; q \widehat \scrB = 1, \widehat \beta 1(p) = 1; and q\widehat \scrC = 1, \widehat \gamma 1(p) = 1.

Therefore, the condition (2.2) becomes
\int b

a
1

(1+| p| )2 dp < \infty , which holds true. The

condition in (2.3) states that p \mapsto \rightarrow \widehat \scrA (p) - 1 and p \mapsto \rightarrow p \widehat \scrA (p) - 1 are bounded over [a, b].
The necessary and sufficient condition is that \widehat \scrA (p) be invertible for all p\in \scrP .

Next, we consider a reduced-order LTI system\Bigl( 
s \widehat E  - \widehat A\Bigr) \widehat X(s) = \widehat B,(2.4a) \widehat H(s) = \widehat C \widehat X(s).(2.4b)

For this case, we have

q \widehat \scrA = 2, \widehat \alpha 1(p) = p, \widehat \alpha 2(p) = - 1; q \widehat \scrB = 1, \widehat \beta 1(p) = 1; and q\widehat \scrC = 1, \widehat \gamma 1(p) = 1,

with p= s= \imath \omega . The condition (2.2) becomes
\int \infty 
 - \infty 

1
(| \omega | +1)2

d\omega <\infty , which also holds.

Finally, the condition in (2.3) states that s \mapsto \rightarrow (s \widehat E  - \widehat A) - 1 and s \mapsto \rightarrow s(s \widehat E  - \widehat A) - 1 =
( \widehat E  - 1

s
\widehat A) - 1 are bounded over \imath R. This is equivalent to the invertibility of \widehat E and\widehat E - 1 \widehat A having no eigenvalues in \imath R, similar to the FOM discussed in Example 2.2.

The choice of functions \widehat \alpha i, \widehat \beta j ,\widehat \gamma k : \scrP \rightarrow C is flexible as long as they satisfy Assumption
2.3. In many cases, such as for LTI systems as above, physically inspired choices are
immediately available from the underlying physics.

For the analysis in subsection 2.3, it is important to establish that the set \scrR (2.3)
is open and that it forms a set of feasible DDROMs. This is what we do next.

Lemma 2.6. The set \scrR (2.3) in Definition 2.4 is open. Moreover, for all \widehat y defined
by a DDROM ( \widehat Ai, \widehat Bj , \widehat Ck)\in \scrR , we have that \widehat y is square-integrable.

Proof. The proof of this result is given in Appendix A.

2.3. Computing the gradients. In this section, we derive one of the main
results of this paper, mainly the gradients of the \scrL 2 cost function (1.9) with respect
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\scrL 2-OPTIMAL REDUCED-ORDER MODELING A561

to the DDROM matrices \widehat Ai, \widehat Bj , \widehat Ck. These gradient formulae form the foundation of
the \scrL 2-optimal reduced-order modeling algorithm we develop.

Given the FOM as a parameter-to-output mapping y (1.1), we want to construct a
DDROM (1.2) with the structured reduced-order matrices of the form (2.1). Further-
more, we look for a DDROM belonging to \scrR from Definition 2.4, since this guarantees
that the squared \scrL 2 error is well-defined and differentiable over \scrR (as shown in The-
orem 2.7) without substantial restrictions on the form of the DDROM. Thus, we
consider the structured \scrL 2-optimization problem

minimize
( \widehat Ai, \widehat Bj , \widehat Ck)\in \scrR 

\scrJ 
\Bigl( \widehat Ai, \widehat Bj , \widehat Ck

\Bigr) 
= \| y - \widehat y\| 2\scrL 2(\scrP ,\mu ).

In our analysis below, we also employ the reduced-order dual state \widehat xd(p), satisfying
the reduced-order dual state equation \widehat \scrA (p)\ast \widehat xd(p) = \widehat \scrC (p)\ast [16], where ( \cdot )\ast denotes
the conjugate transpose of a matrix.

Before establishing the gradients of the objective function \scrJ with respect to
the DDROM matrices, we recall some notation. For a Fr\'echet differentiable function
f : U \rightarrow R, defined on an open subset U of a Hilbert space H with inner product \langle \cdot , \cdot \rangle ,
the gradient of f at x, denoted \nabla f(x), is the unique element of H satisfying f(x+h) =
f(x) + \langle \nabla f(x), h\rangle + o(\| h\| ), where g(h) = o(\| h\| ) denotes that limh\rightarrow 0 g(h)/\| h\| = 0.
For a multivariate function f(x1, x2, . . . , xk), partial gradients \nabla xif(x1, x2, . . . , xk) are
defined in a similar way.

Theorem 2.7. Let \scrP , \mu , and y satisfy Assumption 2.1 and ( \widehat Ai, \widehat Bj , \widehat Ck) be a tuple
of DDROM matrices belonging to \scrR (2.3). Then, the gradients of \scrJ with respect to
the DDROM matrices are

\nabla \widehat Ai
\scrJ = 2

\int 
\scrP 
\widehat \alpha i(p)\widehat xd(p) [y(p) - \widehat y(p)] \widehat x(p)\ast d\mu (p), i= 1,2, . . . , q \widehat \scrA ,

\nabla \widehat Bj
\scrJ = 2

\int 
\scrP 

\widehat \beta j(p)\widehat xd(p) [\widehat y(p) - y(p)] d\mu (p), j = 1,2, . . . , q \widehat \scrB ,
\nabla \widehat Ck

\scrJ = 2

\int 
\scrP 
\widehat \gamma k(p) [\widehat y(p) - y(p)] \widehat x(p)\ast d\mu (p), k= 1,2, . . . , q\widehat \scrC .

Proof. The expressions follow from using the definition of the gradient, Assump-
tions 2.1 and 2.3, Definition 2.4, and the result of Lemma 2.6 to show differentiability.
The full proof is given in Appendix B.

Note that these gradient computations do not require access to the full-order
matrices or the full-order state. They are computed directly from the evaluations of
the output y(p) of the FOM. This allows us to develop a nonintrusive, data-driven,
optimization-based, reduced-order modeling algorithm that only needs access to the
output y(p) of the FOM. With data-driven access to these gradient evaluations, we
can design a variety of optimization algorithms to construct an \scrL 2-optimal DDROM
for different scenarios. We discuss these details in the next subsection.

Remark 2.8. The \scrL 2 norm in (1.9) recovers both the \scrH 2 norm for nonparametric
LTI systems (see Example 2.2) and the \scrH 2 \otimes \scrL 2 norm for parametric LTI systems
by the appropriate choice of the parameter space \scrP and measure \mu . In particular,
Theorem 2.7 has implications for interpolatory optimal reduced-order modeling of
dynamical systems [3, 18, 26] and unifies optimal interpolation conditions for \scrH 2-
optimal and \scrH 2 \otimes \scrL 2-optimal model order reduction of (parametric) LTI systems.
These details together with interpolatory optimality conditions for approximating
parametric stationary problems as in (1.4) can be found in [31].
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A562 PETAR MLINARI\'C AND SERKAN GUGERCIN

Algorithm 2.1 \scrL 2-Opt-PSF.

Input: Parameter-to-output mapping y, initial guess for DDROM ( \widehat A
i
, \widehat Bj , \widehat Ck),

maximum number of iterations maxit, tolerance tol> 0.

Output: DDROM ( \widehat Ai, \widehat Bj , \widehat Ck).
1: Set \widehat y(0) as the output of the initial DDROM.
2: for i in 1,2, . . . ,maxit do
3: Compute a new DDROM with output \widehat y(i) using a step of a gradient-based

optimization method, with the squared \scrL 2 error (1.9) as the objective func-
tion and gradients based on Theorem 2.7.

4: if \| \widehat y(i - 1)  - \widehat y(i)\| \scrL 2(\scrP , \mu )/\| \widehat y(i)\| \scrL 2(\scrP , \mu )\leq tol then
5: Exit the for loop.
6: Return the last computed DDROM.

2.4. Algorithmic details. In this section, we describe our proposed algorithm
for \scrL 2-optimal reduced-order modeling using parameter-separable form (\scrL 2-Opt-PSF).
The pseudocode is given in Algorithm 2.1. As discussed earlier, from the FOM, we
only need output evaluations or samples, i.e., only y(p) is needed. \scrL 2-Opt-PSF does
not require access to the internal state variables or full-order operators.

Some comments on the pseudocode are in order. First, the choice of the initial
guess has an impact on the final result, as with any other nonconvex optimization
problem. Second, we do not specify the gradient-based optimization method used in
step 3. Third, the computations of the objective function and its gradient are not
explicitly specified since they depend on the problem at hand. We discuss these issues
in more detail in section 3. Next, in line 4, we use the relative change in the \scrL 2 output
error as the stopping criterion, as it only depends on the reduced quantities. However,
one can easily incorporate more sophisticated stopping criteria if desired. Finally, the
pseudocode does not check for the invertibility of \widehat \scrA (p). In our experiments, the
obtained DDROMs are well-conditioned, which could be explained by the objective
function increasing when \| \widehat \scrA (p) - 1\| F is large.

The computational complexity of the Algorithm 2.1 depends on the size of the
DDROM, more specifically on the number of unknowns, which is q \widehat \scrA r2+q \widehat \scrB rnf+q\widehat \scrC nor.
Note that this is linear in the number of terms in the parameter-separable forms, the
number of forcings, and the number of outputs, but quadratic in the reduced order.

3. Numerical examples for the continuous \bfscrL \bftwo norm. Here we present
numerical experiments demonstrating the performance of \scrL 2-Opt-PSF (Algorithm
2.1) when \mu is the Lebesgue measure (thus, a continuous least-squares problem).

In particular, we focus on the case of a one-dimensional parameter, i.e., np = 1,
where we use quad and quad_vec from scipy.integrate (from SciPy [41]), methods
for numerical integration of scalar and vector-valued functions, respectively, to evalu-
ate \scrJ (1.9) and its gradients (see Theorem 2.7). For the gradient-based optimization
method in Algorithm 2.1, we chose the Broyden--Fletcher--Goldfarb--Shanno (BFGS)
[33] algorithm. In Algorithm 2.1 we set maxit= 1000 and tol= 10 - 6 for all examples.
For evaluating \scrL \infty errors, we use scipy.optimize.shgo (from SciPy [41]), a method
for global minimization.

We compare RB, proper orthogonal decomposition (POD), and \scrL 2-Opt-PSF.
Given a training set \scrP train \subseteq \scrP and a FOM, RB constructs the ROM via Galerkin
projection, where the projection basis is built in a greedy manner to reduce the \scrL \infty 
error. In particular, we chose to use the strong greedy version given in Algorithm
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\scrL 2-OPTIMAL REDUCED-ORDER MODELING A563

Algorithm 3.1 Strong greedy algorithm.
Input: FOM (\scrA ,\scrB ,\scrC ) (1.8) in parameter-separable form (1.11), finite training set

\scrP train \subseteq \scrP , maximum reduced order rmax, tolerance tol> 0.

Output: ROM ( \widehat \scrA , \widehat \scrB , \widehat \scrC ).
1: V = [ ].
2: for i in 1,2, . . . , rmax do
3: Find pmax \in \scrP train that maximizes the error e(p) = \| y(p) - \widehat y(p)\| F .
4: if e(pmax)\leq tol then
5: Exit the for loop.
6: Set V = [V x(pmax)] and orthonormalize it.

7: Form a ROM ( \widehat \scrA , \widehat \scrB , \widehat \scrC ) with \widehat Ai, \widehat Bj , \widehat Ck as in (1.12).

8: Return ( \widehat \scrA , \widehat \scrB , \widehat \scrC ).
Algorithm 3.2 Proper orthogonal decomposition.
Input: FOM (\scrA ,\scrB ,\scrC ) (1.8) in parameter-separable form (1.11), finite training set

\scrP train \subseteq \scrP , reduced order r.

Output: ROM ( \widehat \scrA , \widehat \scrB , \widehat \scrC ).
1: X = [x(p1) x(p2) \cdot \cdot \cdot x(p| \scrP \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n}| )].

2: Compute the singular value decomposition X =U\Sigma WT .
3: Set V as the first r columns of U .

4: Form a ROM ( \widehat \scrA , \widehat \scrB , \widehat \scrC ) with \widehat Ai, \widehat Bj , \widehat Ck as in (1.12).

5: Return ( \widehat \scrA , \widehat \scrB , \widehat \scrC ).
3.1, where the error \| y(p) - \widehat y(p)\| F is used instead of an error estimator. There are
different error estimators proposed in the literature (see, e.g., [23, 38, 16, 12]), but our
focus here is on minimizing the error and less on an efficient implementation. POD [7]
is also based on a Galerkin projection and tries to find a subspace that approximates
the solution set \{ x(p) : p\in \scrP \} \subseteq Cn in the \scrL 2-optimal sense given a training set. The
pseudocode for POD is given in Algorithm 3.2.

We focus on stationary parametric PDEs as numerical examples. As mentioned
in Remark 2.8, the various implications of our approach for the dynamical systems
case, specifically for \scrH 2 and \scrH 2 \otimes \scrL 2-optimal model order reduction of LTI systems,
are presented in detail in [31]. In section 4, where we consider a discrete \scrL 2 norm, we
include an LTI example.

In the following numerical examples, the parameter space \scrP is a segment [a, b]\subset R
and we chose \scrP train = linspace(a, b,100) for RB and POD where linspace refers to
the NumPy [22] method numpy.linspace returning a vector of equidistant points
in [a, b] including the boundaries. Although we describe the FOMs we use in every
example, we note that \scrL 2-Opt-PSF only needs access to the output of the FOM and
not its state or matrices. The FOM description is given since RB and POD are
projection-based and work with the full-order operators.

Code availability. The source code used to compute the presented results
can be obtained from [30]. The code was written in the Python programming
language using pyMOR [28].
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\sansp = 0.1 \sansp = 1 \sansp = 10

Fig. 1. Poisson example FOM solutions for different parameter values.

Fig. 2. Poisson example FOM output and pointwise output errors for ROMs of order 2.

3.1. Poisson equation. We consider the Poisson equation over the unit square
\Omega = (0,1)

2
with homogeneous Dirichlet boundary conditions:

 - \nabla \cdot (d(\xi ,p)\nabla x(\xi ,p)) = 1, \xi \in \Omega ,(3.1a)

x(\xi ,p) = 0, \xi \in \partial \Omega ,(3.1b)

where d(\xi ,p) = \xi 1+p(1 - \xi 1) and \scrP = [0.1,10]. After a finite element discretization, we
obtain a FOM of the form (1.4) with n= 1089 and nf = 1. For the output, we chose
C = BT (thus, no = 1). Solutions for a few parameter values are given in Figure 1.
The output can be seen in the left plot in Figure 2.

For the ROMs, we consider a structure-preserving (physics-inspired) DDROM

(SP)

\Bigl( \widehat A1 + p \widehat A2

\Bigr) \widehat x(p) = \widehat B,

\widehat y(p) = \widehat C\widehat x(p),
and an extended version

(EXT)

\Bigl( \widehat A1 + p \widehat A2

\Bigr) \widehat x(p) = \widehat B1 + p \widehat B2,

\widehat y(p) = \Bigl( \widehat C1 + p \widehat C2

\Bigr) \widehat x(p).
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\scrL 2-OPTIMAL REDUCED-ORDER MODELING A565

Fig. 3. Poisson example errors for ROMs of different orders.

We include the extended version to highlight that the proposed approach offers flex-
ibility to include additional structures that are not necessarily present in the FOM
(further emphasizing that the FOM is not needed, but only the output samples). We
also note that (EXT) cannot be obtained via a state-independent linear projection.

We choose the reduced order r = 2. The right plot in Figure 2 shows the output
errors, resulting from RB, POD, \scrL 2-Opt-PSF with structure preservation (initialized
using POD), and \scrL 2-Opt-PSF with extended form (initialized using the result of
structure-preserving \scrL 2-Opt-PSF). The relative \scrL 2 errors are, respectively, 2.5577\times 
10 - 2, 8.2483\times 10 - 3, 4.3826\times 10 - 3, and 1.6468\times 10 - 3, illustrating that \scrL 2-Opt-PSF
produces the smallest \scrL 2 error. The relative \scrL \infty errors are, respectively, 9.6919 \times 
10 - 3, 1.4639 \times 10 - 2, 1.4104 \times 10 - 2, and 5.8541 \times 10 - 3. We observe that RB and
POD produce ROMs with nonnegative output error. This is a general property of
Galerkin projection applied to systems with symmetric positive definite \scrA (p) and
\scrB (p) = \scrC (p)T (see, e.g., Theorem 1.4 in [7]). We also observe that even though \scrL 2-
Opt-PSF preserved the symmetry properties in the DDROMs, without enforcing it
explicitly, it did not give DDROMs that have nonnegative output error. This implies
that \scrL 2-Opt-PSF DDROMs are not based on Galerkin projection. An explanation for
why symmetry is preserved in \scrL 2-Opt-PSF without explicitly enforcing it is that the
gradients of the objective function (Theorem 2.7) have the same symmetry properties.

The relative \scrL 2 and \scrL \infty errors are shown in Figure 3 for a range of reduced orders.
We observe that \scrL 2-Opt-PSF (SP) and \scrL 2-Opt-PSF (EXT) have consistently lower
\scrL 2 error compared to POD and RB. Moreover, \scrL 2-Opt-PSF (SP) and \scrL 2-Opt-PSF
(EXT) have comparable \scrL \infty errors to (and for some r values even smaller than) RB
and POD even though not optimized for this error measure.

3.2. Nonseparable example. Wemodify the Poisson equation in (3.1) by using
a diffusion term that is not parameter-separable. Specifically, we take

d(\xi ,p) = 1 - 9

10
e - 5((\xi 1 - p)2+(\xi 2 - p)2)

and set \scrP = [0,1]. After a finite element discretization, the FOM is of the form

\scrA (p)x(p) =B,

y(p) =Cx(p),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/1

9/
24

 to
 4

5.
3.

12
6.

21
6 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



A566 PETAR MLINARI\'C AND SERKAN GUGERCIN

\sansp = 0.25 \sansp = 0.5 \sansp = 0.75

Fig. 4. Poisson example FOM solutions for different parameter values.

Fig. 5. Nonseparable example FOM output and pointwise output errors for ROMs of order 2.

with n= 1089 and nf = 1, and \scrA (p) needs to be assembled for every new parameter
value p. For the output, we again chose C = BT (no = 1). Solutions for a few
parameter values are given in Figure 4. The output can be seen in the left plot in
Figure 5.

Using RB or POD produces ROMs of the form

V T\scrA (p)V \widehat x(p) = V TB,\widehat y(p) =CV \widehat x(p).
Notably, an efficient computation of V T\scrA (p)V requires a further approximation of
\scrA (p) in a parameter-separable form, e.g., using the empirical interpolation method
[4] as mentioned in subsection 1.1; for details, see, e.g., [9]. However, in order not to
degrade the accuracy of RB and POD models, we skip that step. For the \scrL 2-optimal
DDROMs, we consider two forms,

(F1)

\Bigl( \widehat A1 +
\bigl( 
p - 1

2

\bigr) 2 \widehat A2 +
\bigl( 
p - 1

2

\bigr) 4 \widehat A3

\Bigr) \widehat x(p) = \widehat B,

\widehat y(p) = \widehat C\widehat x(p),
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Table 1
Relative errors for the nonseparable example.

Error measure RB POD \scrL 2-Opt-PSF 1 \scrL 2-Opt-PSF 2

\scrL 2 1.0441\times 10 - 2 6.4925\times 10 - 3 3.8323\times 10 - 3 2.7439\times 10 - 4

\scrL \infty 1.4279\times 10 - 2 1.0146\times 10 - 2 1.3707\times 10 - 2 4.4095\times 10 - 4

\sansp = 0 \sansp = \pi 
4

\sansp = \pi 
2

Fig. 6. Convection-diffusion example FOM solutions for different parameter values.

and

(F2)

\Bigl( \widehat A1 +
\bigl( 
p - 1

2

\bigr) 2 \widehat A2 +
\bigl( 
p - 1

2

\bigr) 4 \widehat A3 +
\bigl( 
p - 1

2

\bigr) 6 \widehat A4

\Bigr) \widehat x(p)
= \widehat B1 +

\bigl( 
p - 1

2

\bigr) 2 \widehat B2 +
\bigl( 
p - 1

2

\bigr) 4 \widehat B3 +
\bigl( 
p - 1

2

\bigr) 6 \widehat B4,\widehat y(p) = \Bigl( \widehat C1 +
\bigl( 
p - 1

2

\bigr) 2 \widehat C2 +
\bigl( 
p - 1

2

\bigr) 4 \widehat C3 +
\bigl( 
p - 1

2

\bigr) 6 \widehat C4

\Bigr) \widehat x(p),
which exploit the symmetry in y(p) around p = 1

2 . The right plot in Figure 5 shows
the output errors of ROMs of order 4, resulting from RB, POD, and both \scrL 2-Opt-
PSF models (both initialized with \widehat A1 = I, \widehat B1 = 1, \widehat C1 = 1T, and \widehat Ai = 0, \widehat Bi = 0, and\widehat Ci = 0 for i\geqslant 2, where 1 is the vector of all ones). We observe that B and POD again
produce ROMs with nonnegative output error. The relative \scrL 2 and \scrL \infty errors listed
in Table 1 show significant improvements in \scrL 2 error minimization via \scrL 2-Opt-PSF,
especially for the second DDROM form.

3.3. Convection-diffusion problem. Consider the convection-diffusion equa-
tion on the unit square \Omega = (0,1)

2
with homogeneous Dirichlet boundary conditions:

\nabla \cdot ((cosp, sinp)x(\xi ,p)) - \nabla \cdot (d\nabla x(\xi ,p)) = 1, \xi \in \Omega ,

x(\xi ,p) = 0, \xi \in \partial \Omega ,

where d = 2 - 5 and \scrP = [0,2\pi ]. For the outputs, we chose y\ell (p) =
\int 
\Omega \ell 

x(\xi ,p)d\xi ,

\ell = 1,2,3,4, where \Omega 1 = (0, 12 )
2, \Omega 2 = ( 12 ,1)\times (0, 12 ), \Omega 3 = ( 12 ,1)

2, \Omega 4 = (0, 12 )\times ( 12 ,1).
After a finite element discretization, we obtain a FOM

(A1 + cos(p)A2 + sin(p)A3)x(p) =B,

y(p) =Cx(p),

with n= 1089, nf = 1, and no = 4. Solutions for a few parameter values are given in
Figure 6.

The left plot in Figure 7 shows the output y.
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A568 PETAR MLINARI\'C AND SERKAN GUGERCIN

Fig. 7. Convection-diffusion example FOM output and pointwise output error norms for ROMs
of order 4.

As for the first example, for the DDROMs, we consider a structure-preserving
model

(SP)

\Bigl( \widehat A1 + cos(p) \widehat A2 + sin(p) \widehat A3

\Bigr) \widehat x(p) = \widehat B,

\widehat y(p) = \widehat C\widehat x(p),
and an extended version

(EXT)

\Bigl( \widehat A1 + cos(p) \widehat A2 + sin(p) \widehat A3

\Bigr) \widehat x(p) = \widehat B1 + cos(p) \widehat B2 + sin(p) \widehat B3,

\widehat y(p) = \Bigl( \widehat C1 + cos(p) \widehat C2 + sin(p) \widehat C3

\Bigr) \widehat x(p).
The cos(p) and sin(p) terms are inspired by the periodicity of y(p). The right plot in
Figure 7 shows the output errors of ROMs of order 4, due to RB, POD, \scrL 2-Opt-PSF
with structure preservation (initialized using RB), and \scrL 2-Opt-PSF with extended
form (initialized using the structure-preserving \scrL 2-Opt-PSF), illustrating that both
\scrL 2-Opt-PSF models significantly outperform RB and POD. The relative \scrL 2 and \scrL \infty 
errors for a range of reduced orders are shown in Figure 8. We observe significant
improvements in both the \scrL 2 and \scrL \infty errors in many cases.

4. Discrete least-squares norm. So far, we have considered continuous least-
squares problems where we could evaluate the parameter-to-output mapping y for
any parameter value p \in \scrP . However, in some cases, we are only given a finite set of
points without a chance to reevaluate y. Furthermore, adaptive quadrature used in
the previous section can be expensive for multidimensional parameter spaces. Thus,
it is important to consider the discrete setting.

In the discrete setting where we only have samples (p\ell , y\ell ), \ell = 1,2, . . . ,N , we
consider minimizing the mean square error (MSE)

(4.1) \scrJ MSE =
1

N

N\sum 
\ell =1

\| y\ell  - \widehat y (p\ell )\| 2F .
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\scrL 2-OPTIMAL REDUCED-ORDER MODELING A569

Fig. 8. Convection-diffusion example errors for ROMs of different orders.

Our \scrL 2-optimal modeling framework recovers the discrete MSE (4.1) by choosing the
parameter space as \scrP = \{ p1,p2, . . . ,pN\} and the measure as \mu = 1

N

\sum N
\ell =1 \delta p\ell . With

these choices, the \scrL 2 error (1.9) becomes the MSE (4.1). Since the assumptions of
Theorem 2.7 are still satisfied for the discrete measure \mu , we can compute gradients,
which become finite sums in this setting, as we summarize in the next result.

Corollary 4.1. Let (p\ell , y\ell ), \ell = 1,2, . . . ,N , be closed under conjugation and
( \widehat Ai, \widehat Bj , \widehat Ck) be a tuple of DDROM matrices from \scrR (2.3). Then, the gradients of
\scrJ MSE (4.1) with respect to the DDROM matrices are

\nabla \widehat Ai
\scrJ MSE =

2

N

N\sum 
\ell =1

\widehat \alpha i (p\ell ) \widehat xd (p\ell ) [y\ell  - \widehat y (p\ell )] \widehat x (p\ell ) \ast , i= 1,2, . . . , q \widehat \scrA ,

\nabla \widehat Bj
\scrJ MSE =

2

N

N\sum 
\ell =1

\widehat \beta j (p\ell ) \widehat xd (p\ell ) [\widehat y (p\ell ) - y\ell ] , j = 1,2, . . . , q \widehat \scrB ,

\nabla \widehat Ck
\scrJ MSE =

2

N

N\sum 
\ell =1

\widehat \gamma k (p\ell ) [\widehat y (p\ell ) - y\ell ] \widehat x (p\ell ) \ast , k= 1,2, . . . , q\widehat \scrC .
Proof. The result follows directly from Theorem 2.7 by setting \scrP = \{ p1, . . . ,pN\} ,

\mu = 1
N

\sum N
\ell =1 \delta p\ell , and y(p\ell ) = y\ell .

For the discrete setting we still use Algorithm 2.1. The only difference from the
continuous setting is that we do not use adaptive quadrature, but directly evaluate
the sums. As before, gradient computations only use the output samples y(p\ell ).

In the following we demonstrate the results on two examples; one related to LTI
systems and the other arising from a Poisson equation with multiple parameters.

4.1. Flexible aircraft frequency response data. Here we use the data from
[34, 37], containing samples of a transfer function H(s) of an LTI dynamical system
(as in (1.5)) describing the influence of wind gust on a flexible aircraft. In particular,
the underlying dynamical system has nf = 1 forcing (gust disturbance) and no = 92
outputs (accelerations and moments at different coordinates of a flexible aircraft wings
and tail); thus in this problem H(s) \in C92\times 1. The output (transfer function) data
consists of N = 421 pairs (\omega \ell ,H\ell ), \ell = 1,2, . . . ,N , where \omega \ell > 0 are the frequencies
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A570 PETAR MLINARI\'C AND SERKAN GUGERCIN

Fig. 9. Flexible aircraft example data and pointwise output errors for ROMs of order 100 (97).

and H\ell \in Cn\mathrm{o}\times n\mathrm{f} are the frequency domain samples. The left plot in Figure 9 shows
the magnitudes (norms) of the frequency responses. Our goal in this setting is to
learn a DDROM of the form as in (2.4), i.e., \widehat H(s) = \widehat C(s \widehat E  - \widehat A) - 1 \widehat B, that minimizes
the MSE distance from the given samples \{ H\ell \} .

To fulfill the assumptions of Corollary 4.1, we set

\{ (p\ell , y\ell )\} 
2N
\ell =1 = \{ (\imath \omega \ell ,H\ell )\} N\ell =1 \cup 

\bigl\{ \bigl( 
 - \imath \omega \ell ,H\ell 

\bigr) \bigr\} N

\ell =1
.

Based on this setup, we run \scrL 2-Opt-PSF with L-BFGS to minimize the MSE (4.1)
using the optimization variables \widehat E, \widehat A \in Cr\times r, \widehat B \in Cr\times n\mathrm{f} , and \widehat C \in Cn\mathrm{o}\times r. We ini-
tialize \scrL 2-Opt-PSF using the ROM of order r = 100 from [37], which uses the same
data but employs the interpolatory Loewner framework [3]. We obtain a DDROM
of order r = 100 with 3 unstable poles. Then, we project the resulting DDROM
to its asymptotically stable part of order r = 97. Figure 9 shows the error result-
ing from the Loewner-based model from [37], the unstable DDROM of order 100,
and its asymptotically stable part of order 97. The respective relative \scrL 2 errors are
4.82\times 10 - 2, 1.3146\times 10 - 3, and 2.5255\times 10 - 3. These results illustrate that \scrL 2-Opt-
PSF has resulted in more than one order of magnitude improvement. Moreover, the
unstable part of the \scrL 2-Opt-PSF model was small enough that projecting it onto the
asymptotically stable part did not significantly degrade the accuracy. Note that we
could impose a stability constraint directly in the optimization routine, similar to [26].
Here we skipped that step to illustrate that \scrL 2-Opt-PSF followed by projection to
the asymptotically stable part can still produce a DDROM with a small error.

Remark 4.2. In this example, the DDROM resulting from \scrL 2-Opt-PSF is a ratio-
nal function; thus our \scrL 2-optimal modeling framework in this special case has solved
the rational least-squares problem via a gradient-based descent algorithm. Minimiz-
ing the MSE using a rational function (rational least-square fitting) is an important
problem in data-driven modeling of dynamical systems and various techniques exist;
see, e.g., [39, 21, 14, 15, 25, 32, 11] and the references therein. In a future work where
we specifically focus on dynamical systems and approximation of transfer functions
from data, we will provide more details in this direction.
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\scrL 2-OPTIMAL REDUCED-ORDER MODELING A571

Fig. 10. Thermal block example FOM output and pointwise output errors for ROMs of order
4 on the equidistant grid linspace(0.1,10,5)4 with 54 = 625 points.

4.2. Thermal block example. We consider a 2\times 2 thermal block example over
the unit square \Omega = (0,1)

2
, i.e., we modify the Poisson equation in (3.1) by using the

diffusion term

d(\xi ,p) = p1\chi (0, 12 )
2(\xi ) + p2\chi ( 1

2 ,1)\times (0,
1
2 )
(\xi ) + p3\chi ( 1

2 ,1)
2(\xi ) + p4\chi (0, 12 )\times (

1
2 ,1)

(\xi )

and \scrP = [0.1,10]
4
. Here, \chi S denotes the characteristic function of the set S, i.e.,

\chi S(\xi ) = 1 if \xi \in S, otherwise \chi S(\xi ) = 0. Therefore, the parameters p1, . . . ,p4 represent
the diffusivity over each of the four blocks. After a finite element discretization, we
obtain the FOM of the form

(A0 + p1A1 + p2A2 + p3A3 + p4A4)x(p) =B,

y(p) =Cx(p),

with n= 1089 and nf = 1. For the output, we kept C =BT. The left plot in Figure 10
shows the output of the FOM over the equidistant grid \scrP test = linspace(0.1,10,5)

4
.

We look for structure-preserving DDROMs of the same form:\Bigl( \widehat A0 + p1 \widehat A1 + p2 \widehat A2 + p3 \widehat A3 + p4 \widehat A4

\Bigr) \widehat x(p) = \widehat B,

\widehat y(p) = \widehat C\widehat x(p).
We choose r = 4 as the reduced order. We construct two projection-based ROMs
using RB and POD trained on the grid \scrP train = linspace(0.1,10,4)

4
. Then, using

only the discrete output samples y(p\ell ) from the same training grid, i.e., a total of
N = 44 = 256 output samples y(p\ell ), we run the discrete \scrL 2-Opt-PSF (initialized with
the POD ROM) to minimize the MSE (4.1). Figure 10 shows the outputs and the
resulting errors over \scrP test. The figure shows a significant reduction of the errors for the
\scrL 2 DDROM. We note that \scrP test and \scrP train overlap only on 24 = 16 points (corners)
out of 54 = 625 test parameter values. The relative \scrL 2 errors over \scrP test for RB, POD,
and \scrL 2-Opt-PSF are, respectively, 6.037\times 10 - 1, 4.8002\times 10 - 1, and 1.0266\times 10 - 2.

5. \bfscrL \bftwo -optimal DDROMs and projection-based ROMs. RB and POD, as
implemented in section 3, use Galerkin projection. In section 3, we found that \scrL 2-
optimal DDROMs obtained via Algorithm 2.1 are not based on Galerkin projection
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A572 PETAR MLINARI\'C AND SERKAN GUGERCIN

for the compliant Poisson examples. The question remains whether the \scrL 2-optimal
DDROMs can be constructed by a (state-independent) Petrov--Galerkin projection.
The answer is clearly ``no"" when the FOM and DDROM are of different structure,
in particular, when the DDROM has an additional nonzero term as we have in our
extended \scrL 2-optimal DDROMs. Therefore, we consider the case when the two models
have the same parameter-separable forms as in (2.1). Let \widehat \scrA (p), \widehat \scrB (p), and \widehat \scrC (p) be
the DDROM quantities obtained via Algorithm 2.1. We want to see if there exist
V,W \in Rn\times r of full rank such that

\widehat \scrA (p) =WT\scrA (p)V, \widehat \scrB (p) =WT\scrB (p), \widehat \scrC (p) = \scrC (p)V.

Assuming that the sets of scalar functions \{ \widehat \alpha i\} 
q \widehat \scrA 
i=1, \{ \widehat \beta j\} 

q \widehat \scrB 
j=1, and \{ \widehat \gamma k\} q \widehat \scrC 

k=1 are linearly
independent, this is equivalent to\widehat Ai =WTAiV, i= 1,2, . . . , q \widehat \scrA ,(5.1a) \widehat Bj =WTBj , j = 1,2, . . . , q \widehat \scrB ,(5.1b) \widehat Ck =CkV, k= 1,2, . . . , q\widehat \scrC .(5.1c)

We observe that (5.1) is a system of nonlinear equations, generally difficult to analyze.
However, the equations containing Bj and Ck are linear, which we exploit next.

By vertically stacking (5.1c), we obtain the linear system CV = \widehat C, where

(5.2) C=
\Bigl[ 
CT

1 \cdot \cdot \cdot CT
q \widehat \scrC 
\Bigr] T

and \widehat C=
\Bigl[ \widehat CT

1 \cdot \cdot \cdot \widehat CT
q \widehat \scrC 
\Bigr] T

.

If C is of full row rank (in particular, q\widehat \scrC no \leqslant n), using its singular value decomposition

(5.3) C=U\bfC 

\bigl[ 
\Sigma \bfC 0

\bigr] \bigl[ 
V\bfC ,1 V\bfC ,2

\bigr] 
T,

we can write the solution to CV = \widehat C as

(5.4) V = V\bfC ,1\Sigma 
 - 1
\bfC U\bfC 

T \widehat C\underbrace{}  \underbrace{}  
=:V1

+ V\bfC ,2X

for some X \in R(n - q \widehat \scrC n\mathrm{o})\times r. Similarly, we find that

(5.5) W =U\bfB ,1\Sigma 
 - 1
\bfB V\bfB 

T \widehat BT\underbrace{}  \underbrace{}  
=:W1

+U\bfB ,2Y

for some Y \in R(n - q \widehat \scrB n\mathrm{f} )\times r, where

B=
\bigl[ 
B1 \cdot \cdot \cdot Bq \widehat \scrB 

\bigr] 
, \widehat B=

\Bigl[ \widehat B1 \cdot \cdot \cdot \widehat Bq \widehat \scrB 
\Bigr] 
,(5.6)

B=

\biggl[ 
U\bfB ,1

U\bfB ,2

\biggr] T \biggl[ 
\Sigma \bfB 

0

\biggr] 
V T
\bfB ,(5.7)

assuming that B is of full column rank. Then, from (5.1a), we obtain

(5.8) (W1 +U\bfB ,2Y )TAiV\bfC ,2X = \widehat Ai  - (W1 +U\bfB ,2Y )TAiV1, i= 1,2, . . . , q \widehat \scrA .
Stacking all the quantities, we obtain\left[   (W1 +U\bfB ,2Y )TA1V\bfC ,2

...
(W1 +U\bfB ,2Y )TAq \widehat \scrA V\bfC ,2

\right]   X =

\left[   
\widehat A1  - (W1 +U\bfB ,2Y )TA1V1

...\widehat Aq \widehat \scrA  - (W1 +U\bfB ,2Y )TAq \widehat \scrA V1

\right]   ,
which is a system of r2q \widehat \scrA equations and r(n - q\widehat \scrC no) unknowns. Assuming that the
system matrix is of full row rank, there is at least one X that solves the system. Thus
we have just proved the following result.
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\scrL 2-OPTIMAL REDUCED-ORDER MODELING A573

Theorem 5.1. Let B in (5.6) be of full column rank and C in (5.2) of full row
rank. Let their singular value decompositions be given by (5.7) and (5.3). Also, let V1

and W2 be as in (5.4) and (5.5). If there exists Y \in R(n - q \widehat \scrB n\mathrm{f} )\times r such that\left[   (W1 +U\bfB ,2Y )TA1V\bfC ,2

...
(W1 +U\bfB ,2Y )TAq \widehat \scrA V\bfC ,2

\right]   \in Rq \widehat \scrA r\times (n - q \widehat \scrC n\mathrm{o})

is of full row rank, then there exist V,W \in Rn\times r satisfying (5.1).

This result says that, in the generic case, all DDROMs with the same parameter-
separable form as the FOM can be formed using Petrov--Galerkin projection, including
\scrL 2-optimal ones. Note that a similar, dual result to Theorem 5.1 can be obtained by
fixing X and solving for Y in (5.8).

6. Conclusions. We presented a gradient-based descent algorithm to construct
data-driven \scrL 2-optimal reduced-order models that only requires access to output sam-
ples. By appropriately defining the measure and parameter space, the framework we
developed covers both continuous (Lebesgue) and discrete cost functions, and station-
ary and dynamical systems. The various numerical examples illustrated the efficiency
of the proposed \scrL 2-optimal modeling approach. Moreover, we have developed the
generic conditions for a DDROM to be projection-based. The gradients derived in
this paper have direct implications for and connections to interpolatory model reduc-
tion methods and these issues will be revisited in a separate work.

Appendix A. Proof of Lemma 2.6. First, we show that \scrR is an open subset
of R. Let ( \widehat Ai, \widehat Bj , \widehat Ck)\in \scrR be arbitrary. The definition of \scrR (2.3) yields

(A.1) | \widehat \alpha i(p)| 
\bigm\| \bigm\| \bigm\| \widehat \scrA (p) - 1

\bigm\| \bigm\| \bigm\| 
F
\leqslant M for all i= 1,2, . . . , q \widehat \scrA and for \mu -almost all p\in \scrP 

for some M > 0. Then let \Delta \widehat Ai \in Rr\times r for i= 1,2, . . . , q \widehat \scrA , with \sum q \widehat \scrA 
\=\imath =1 \| \Delta \widehat A\=\imath \| F \leqslant 1

2M ,
be arbitrary. For \mu -almost all p\in \scrP , using (A.1) in the second inequality, we obtain
(A.2)\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

q \widehat \scrA \sum 
\=\imath =1

\widehat \alpha \=\imath (p)\Delta \widehat A\=\imath 
\widehat \scrA (p) - 1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
F

\leqslant 

q \widehat \scrA \sum 
\=\imath =1

| \widehat \alpha \=\imath (p)| 
\bigm\| \bigm\| \bigm\| \widehat \scrA (p) - 1

\bigm\| \bigm\| \bigm\| 
F

\bigm\| \bigm\| \bigm\| \Delta \widehat A\=\imath 

\bigm\| \bigm\| \bigm\| 
F
\leqslant M

q \widehat \scrA \sum 
\=\imath =1

\bigm\| \bigm\| \bigm\| \Delta \widehat A\=\imath 

\bigm\| \bigm\| \bigm\| 
F
\leqslant 

1

2
.

In the following, our goal is to show that ( \widehat Ai +\Delta \widehat Ai, \widehat Bj , \widehat Ck)\in \scrR . To start, we have

| \widehat \alpha i(p)| 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\Biggl( q \widehat \scrA \sum 

\=\imath =1

\widehat \alpha \=\imath (p)
\Bigl( \widehat A\=\imath +\Delta \widehat A\=\imath 

\Bigr) \Biggr)  - 1
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
F

= | \widehat \alpha i(p)| 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\Biggl( \widehat \scrA (p) +

q \widehat \scrA \sum 
\=\imath =1

\widehat \alpha \=\imath (p)\Delta \widehat A\=\imath 

\Biggr)  - 1
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
F

= | \widehat \alpha i(p)| 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \widehat \scrA (p) - 1

\Biggl( 
I +

q \widehat \scrA \sum 
\=\imath =1

\widehat \alpha \=\imath (p)\Delta \widehat A\=\imath 
\widehat \scrA (p) - 1

\Biggr)  - 1
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
F

\leqslant | \widehat \alpha i(p)| 
\bigm\| \bigm\| \bigm\| \widehat \scrA (p) - 1

\bigm\| \bigm\| \bigm\| 
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\Biggl( 
I +

q \widehat \scrA \sum 
\=\imath =1

\widehat \alpha \=\imath (p)\Delta \widehat A\=\imath 
\widehat \scrA (p) - 1

\Biggr)  - 1
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
F

.
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Using that \| (I  - X) - 1\| F \leqslant 1
1 - \| X\| \mathrm{F}

for all X \in Cr\times r such that \| X\| F < 1, from (A.2)

and (A.1) we get

| \widehat \alpha i(p)| 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\Biggl( q \widehat \scrA \sum 

\=\imath =1

\widehat \alpha \=\imath (p)
\Bigl( \widehat A\=\imath +\Delta \widehat A\=\imath 

\Bigr) \Biggr)  - 1
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
F

\leqslant | \widehat \alpha i(p)| 
\bigm\| \bigm\| \bigm\| \widehat \scrA (p) - 1

\bigm\| \bigm\| \bigm\| 
F

1

1 - 1
2

\leqslant 2M <\infty 

for \mu -almost every p \in \scrP . Therefore, we have ( \widehat Ai +\Delta \widehat Ai, \widehat Bj , \widehat Ck) \in \scrR . Since \widehat Bj and\widehat Ck are arbitrary, it follows that there is an open neighborhood of ( \widehat Ai, \widehat Bj , \widehat \scrC k) in \scrR .
Next we prove that \| \widehat y\| \scrL 2(\scrP ,\mu ) < \infty . Note that from (A.1), if \widehat \alpha i(p) \not = 0, then

\| \widehat \scrA (p) - 1\| F \leqslant M
| \widehat \alpha i(p)| . Furthermore, note that the set of parameter values p \in \scrP such

that \widehat \alpha i(p) = 0 for all i = 1,2, . . . , q \widehat \scrA forms a set of \mu -measure zero (otherwise, this
would contradict (2.2)). Therefore,

(A.3)
\bigm\| \bigm\| \bigm\| \widehat \scrA (p) - 1

\bigm\| \bigm\| \bigm\| 
F
\leqslant min

i

M

| \widehat \alpha i(p)| 
\leqslant 

M

maxi | \widehat \alpha i(p)| 
for \mu -almost all p\in \scrP .

Using submultiplicativity and the triangle inequality, we obtain

\| \widehat y\| 2\scrL 2
=

\int 
\scrP 

\bigm\| \bigm\| \bigm\| \widehat \scrC (p) \widehat \scrA (p) - 1 \widehat \scrB (p)\bigm\| \bigm\| \bigm\| 2

F
d\mu (p)

\leqslant 
\int 
\scrP 

\bigm\| \bigm\| \bigm\| \widehat \scrC (p)\bigm\| \bigm\| \bigm\| 2

F

\bigm\| \bigm\| \bigm\| \widehat \scrA (p) - 1
\bigm\| \bigm\| \bigm\| 2

F

\bigm\| \bigm\| \bigm\| \widehat \scrB (p)\bigm\| \bigm\| \bigm\| 2

F
d\mu (p)(A.4)

\leqslant 
\int 
\scrP 

\Biggl( q \widehat \scrC \sum 
k=1

| \widehat \gamma k(p)| \bigm\| \bigm\| \bigm\| \widehat Ck

\bigm\| \bigm\| \bigm\| 
F

\Biggr) 2 \bigm\| \bigm\| \bigm\| \widehat \scrA (p) - 1
\bigm\| \bigm\| \bigm\| 2

F

\left(  q \widehat \scrB \sum 
j=1

\bigm| \bigm| \bigm| \widehat \beta j(p)
\bigm| \bigm| \bigm| \bigm\| \bigm\| \bigm\| \widehat Bj

\bigm\| \bigm\| \bigm\| 
F

\right)  2

d\mu (p).

Using \| \widehat Bj\| F \leqslant max\=\jmath \| \widehat B\=\jmath \| F and \| \widehat Ck\| F \leqslant max\=k \| \widehat C\=k\| F, we find

\| \widehat y\| 2\scrL 2
\leqslant max

\=\jmath 

\bigm\| \bigm\| \bigm\| \widehat B\=\jmath 

\bigm\| \bigm\| \bigm\| 2

F
max

\=k

\bigm\| \bigm\| \bigm\| \widehat C\=k

\bigm\| \bigm\| \bigm\| 2

F

\int 
\scrP 

\left(  q \widehat \scrB \sum 
j=1

\bigm| \bigm| \bigm| \widehat \beta j(p)
\bigm| \bigm| \bigm| 
\right)  2\Biggl( q \widehat \scrC \sum 

k=1

| \widehat \gamma k(p)| \Biggr) 2 \bigm\| \bigm\| \bigm\| \widehat \scrA (p) - 1
\bigm\| \bigm\| \bigm\| 2

F
d\mu (p).

Next, using (A.3), we obtain

\| \widehat y\| 2\scrL 2
\leqslant M2max

\=\jmath 

\bigm\| \bigm\| \bigm\| \widehat B\=\jmath 

\bigm\| \bigm\| \bigm\| 2

F
max

\=k

\bigm\| \bigm\| \bigm\| \widehat C\=k

\bigm\| \bigm\| \bigm\| 2

F

\int 
\scrP 

\Bigl( \sum q \widehat \scrB 
j=1

\bigm| \bigm| \bigm| \widehat \beta j(p)
\bigm| \bigm| \bigm| \Bigr) 2 \bigl( \sum q \widehat \scrC 

k=1 | \widehat \gamma k(p)| \bigr) 2
maxi | \widehat \alpha i(p)| 2

d\mu (p).

Finally, using that maxi=1,2,...,n xi \geqslant 
\sqrt{} 
(
\sum n

i=1 x
2
i )/n for nonnegative numbers xi,

\| \widehat y\| 2\scrL 2
\leqslant q \widehat \scrA 2M2max

\=\jmath ,\=k

\bigm\| \bigm\| \bigm\| \widehat B\=\jmath 

\bigm\| \bigm\| \bigm\| 2

F

\bigm\| \bigm\| \bigm\| \widehat C\=k

\bigm\| \bigm\| \bigm\| 2

F

\int 
\scrP 

\Bigl( \sum q \widehat \scrB 
j=1

\bigm| \bigm| \bigm| \widehat \beta j(p)
\bigm| \bigm| \bigm| \Bigr) 2 \bigl( \sum q \widehat \scrC 

k=1 | \widehat \gamma k(p)| \bigr) 2\bigl( \sum q \widehat \scrA 
i=1 | \widehat \alpha i(p)| 

\bigr) 2 d\mu (p)<\infty ,

which completes the proof.

Appendix B. Proof of Theorem 2.7. Rewrite the objective function as

\scrJ = \| y\| 2\scrL 2(\scrP ,\mu )(B.1a)

 - 2

\int 
\scrP 
tr

\Bigl( 
y(p)\ast \widehat \scrC (p) \widehat \scrA (p) - 1 \widehat \scrB (p)\Bigr) d\mu (p)(B.1b)

+

\int 
\scrP 
tr

\Bigl( \widehat \scrB (p)\ast \widehat \scrA (p) - \ast \widehat \scrC (p)\ast \widehat \scrC (p) \widehat \scrA (p) - 1 \widehat \scrB (p)\Bigr) d\mu (p),(B.1c)
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where we used the fact that \langle y, \widehat y\rangle \scrL 2(\scrP ,\mu ) = \langle \widehat y, y\rangle \scrL 2(\scrP ,\mu ) \in R (Assumption 2.1). The
part of \scrJ in (B.1a) does not depend on the reduced quantities, so it does not contribute
to the gradient. Let \scrJ 2 denote the second term (B.1b) in the cost function \scrJ , i.e.,

\scrJ 2 = - 2

\int 
\scrP 
tr

\Bigl( 
y(p)\ast \widehat \scrC (p) \widehat \scrA (p) - 1 \widehat \scrB (p)\Bigr) d\mu (p).

We start by computing \nabla \widehat Ai
\scrJ 2. To do so, we evaluate \scrJ 2( \widehat Ai +\Delta \widehat Ai) for a perturbation

\Delta \widehat Ai to obtain

\scrJ 2

\Bigl( \widehat Ai +\Delta \widehat Ai

\Bigr) 
= - 2

\int 
\scrP 
tr

\biggl( 
y(p)\ast \widehat \scrC (p)\Bigl( \widehat \scrA (p) + \widehat \alpha i(p)\Delta \widehat Ai

\Bigr)  - 1 \widehat \scrB (p)\biggr) d\mu (p)

= - 2

\int 
\scrP 
tr

\biggl( 
y(p)\ast \widehat \scrC (p)\Bigl( I + \widehat \alpha i(p) \widehat \scrA (p) - 1\Delta \widehat Ai

\Bigr)  - 1 \widehat \scrA (p) - 1 \widehat \scrB (p)\biggr) d\mu (p).

Assuming small enough \Delta \widehat Ai, using the property in (2.3), and applying the Neumann
series formula yield

\scrJ 2

\Bigl( \widehat Ai +\Delta \widehat Ai

\Bigr) 
= - 2

\int 
\scrP 
tr

\Bigl( 
y(p)\ast \widehat \scrC (p) \widehat \scrA (p) - 1 \widehat \scrB (p)\Bigr) d\mu (p)

+ 2

\int 
\scrP 
tr

\Bigl( \widehat \alpha i(p)y(p)
\ast \widehat \scrC (p) \widehat \scrA (p) - 1\Delta \widehat Ai

\widehat \scrA (p) - 1 \widehat \scrB (p)\Bigr) d\mu (p)
 - 2

\int 
\scrP 
tr

\Biggl( 
y(p)\ast \widehat \scrC (p) \infty \sum 

m=2

\Bigl( 
 - \widehat \alpha i(p) \widehat \scrA (p) - 1\Delta \widehat Ai

\Bigr) m \widehat \scrA (p) - 1 \widehat \scrB (p)\Biggr) d\mu (p)

=\scrJ ( \widehat Ai) +

\biggl\langle 
2

\int 
\scrP 
\widehat \alpha i(p) \widehat \scrA (p) - \ast \widehat \scrC (p)\ast y(p) \widehat \scrB (p)\ast \widehat \scrA (p) - \ast d\mu (p),\Delta \widehat Ai

\biggr\rangle 
F

 - 2
\infty \sum 

m=2

\int 
\scrP 
tr

\Bigl( 
y(p)\ast \widehat \scrC (p)\Bigl(  - \widehat \alpha i(p) \widehat \scrA (p) - 1\Delta \widehat Ai

\Bigr) m \widehat \scrA (p) - 1 \widehat \scrB (p)\Bigr) d\mu (p).(B.2)

First, we check that the candidate for the gradient, resulting from the second term in
the last equation, is indeed bounded:\bigm\| \bigm\| \bigm\| \bigm\| \int 

\scrP 
\widehat \alpha i(p) \widehat \scrA (p) - \ast \widehat \scrC (p)\ast y(p) \widehat \scrB (p)\ast \widehat \scrA (p) - \ast d\mu (p)

\bigm\| \bigm\| \bigm\| \bigm\| 
F

\leqslant 
\int 
\scrP 
| \widehat \alpha i(p)| 

\bigm\| \bigm\| \bigm\| \widehat \scrA (p) - 1
\bigm\| \bigm\| \bigm\| 
F

\bigm\| \bigm\| \bigm\| \widehat \scrC (p)\bigm\| \bigm\| \bigm\| 
F

\bigm\| \bigm\| \bigm\| \widehat \scrA (p) - 1
\bigm\| \bigm\| \bigm\| 
F

\bigm\| \bigm\| \bigm\| \widehat \scrB (p)\bigm\| \bigm\| \bigm\| 
F
\| y(p)\| F d\mu (p)

\leqslant 
\bigm\| \bigm\| \bigm\| \widehat \alpha i( \cdot ) \widehat \scrA ( \cdot )

 - 1
\bigm\| \bigm\| \bigm\| 
\scrL \infty (\scrP ,\mu )

\int 
\scrP 

\bigm\| \bigm\| \bigm\| \widehat \scrC (p)\bigm\| \bigm\| \bigm\| 
F

\bigm\| \bigm\| \bigm\| \widehat \scrA (p) - 1
\bigm\| \bigm\| \bigm\| 
F

\bigm\| \bigm\| \bigm\| \widehat \scrB (p)\bigm\| \bigm\| \bigm\| 
F
\| y(p)\| F d\mu (p)<\infty ,

where we used (2.2) and (2.3) (see (A.4) in the proof of Lemma 2.6). Second, we
check that the remaining terms in (B.2) are of lower order:\bigm| \bigm| \bigm| \bigm| \bigm| 

\infty \sum 
m=2

\int 
\scrP 
tr

\Bigl( 
y(p)\ast \widehat \scrC (p)\Bigl(  - \widehat \alpha i(p) \widehat \scrA (p) - 1\Delta \widehat Ai

\Bigr) m \widehat \scrA (p) - 1 \widehat \scrB (p)\Bigr) d\mu (p)\bigm| \bigm| \bigm| \bigm| \bigm| 
\leqslant \scrL 2(\scrP ,\mu ) y\| \scrL 2(\scrP ,\mu )

\infty \sum 
m=2

\bigm\| \bigm\| \bigm\| \widehat \scrC ( \cdot )\Bigl(  - \widehat \alpha i( \cdot ) \widehat \scrA ( \cdot )
 - 1

\Delta \widehat Ai

\Bigr) m \widehat \scrA ( \cdot )
 - 1 \widehat \scrB ( \cdot )\bigm\| \bigm\| \bigm\| 

\scrL 2(\scrP ,\mu )

\leqslant \| y\| \scrL 2(\scrP ,\mu )

\infty \sum 
m=2

\bigm\| \bigm\| \bigm\| \widehat \alpha i( \cdot ) \widehat \scrA ( \cdot )
 - 1

\bigm\| \bigm\| \bigm\| m

\scrL \infty 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \widehat \scrC ( \cdot )\bigm\| \bigm\| 
F

\bigm\| \bigm\| \widehat \scrA ( \cdot )
 - 1\bigm\| \bigm\| 

F

\bigm\| \bigm\| \widehat \scrB ( \cdot )\bigm\| \bigm\| 
F

\bigm\| \bigm\| \bigm\| 
\scrL 2(\scrP ,\mu )

\bigm\| \bigm\| \Delta \widehat Ai

\bigm\| \bigm\| m

F
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= \| y\| \scrL 2(\scrP ,\mu )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \widehat \scrC ( \cdot )\bigm\| \bigm\| 
F

\bigm\| \bigm\| \widehat \scrA ( \cdot )
 - 1\bigm\| \bigm\| 

F

\bigm\| \bigm\| \widehat \scrB ( \cdot )\bigm\| \bigm\| 
F

\bigm\| \bigm\| \bigm\| 
\scrL 2(\scrP ,\mu )

\bigm\| \bigm\| \bigm\| \widehat \alpha i( \cdot ) \widehat \scrA ( \cdot )
 - 1

\bigm\| \bigm\| \bigm\| 2

\scrL \infty 

\bigm\| \bigm\| \Delta \widehat Ai

\bigm\| \bigm\| 2

F

1 - 
\bigm\| \bigm\| \bigm\| \widehat \alpha i( \cdot ) \widehat \scrA ( \cdot )

 - 1
\bigm\| \bigm\| \bigm\| 
\scrL \infty 

\bigm\| \bigm\| \Delta \widehat Ai

\bigm\| \bigm\| 
F

= o
\Bigl( \bigm\| \bigm\| \Delta \widehat Ai

\bigm\| \bigm\| 
F

\Bigr) 
.

Therefore,

\nabla \widehat Ai
\scrJ 2 = 2

\int 
\scrP 
\widehat \alpha i(p) \widehat \scrA (p) - \ast \widehat \scrC (p)\ast y(p) \widehat \scrB (p)\ast \widehat \scrA (p) - \ast d\mu (p).

Next, we compute \nabla \widehat Bj
\scrJ 2 similarly by evaluating \scrJ 2( \widehat Bj +\Delta \widehat Bj):

\scrJ 2

\Bigl( \widehat Bj +\Delta \widehat Bj

\Bigr) 
= - 2

\int 
\scrP 
tr

\Bigl( 
y(p)\ast \widehat \scrC (p) \widehat \scrA (p) - 1

\Bigl( \widehat \scrB (p) + \widehat \beta j(p)\Delta \widehat Bj

\Bigr) \Bigr) 
d\mu (p)

=\scrJ 2( \widehat Bj) - 2

\int 
\scrP 
tr

\Bigl( \widehat \beta j(p)y(p)
\ast \widehat \scrC (p) \widehat \scrA (p) - 1\Delta \widehat Bj

\Bigr) 
d\mu (p)

=\scrJ 2( \widehat Bj) - 2

\biggl\langle \int 
\scrP 

\widehat \beta j(p) \widehat \scrA (p) - \ast \widehat \scrC (p)\ast y(p)d\mu (p),\Delta \widehat Bj

\biggr\rangle 
F

.

It follows from (2.2) and (2.3) that the mapping p \mapsto \rightarrow \widehat \beta j(p) \widehat \scrA (p) - \ast \widehat \scrC (p)\ast is square-
integrable. Therefore

\nabla \widehat Bj
\scrJ 2 = - 2

\int 
\scrP 

\widehat \beta j(p) \widehat \scrA (p) - \ast \widehat \scrC (p)\ast y(p)d\mu (p).
Similarly, one can obtain

\nabla \widehat Ck
\scrJ 2 = - 2

\int 
\scrP 
\widehat \gamma k(p)y(p) \widehat \scrB (p)\ast \widehat \scrA (p) - \ast d\mu (p).

Finally, after differentiating the last part of \scrJ in (B.1c), we obtain

\nabla \widehat Ai
\scrJ = 2

\int 
\scrP 
\widehat \alpha i(p) \widehat \scrA (p) - \ast \widehat \scrC (p)\ast \Bigl( y(p) - \widehat \scrC (p) \widehat \scrA (p) - 1 \widehat \scrB (p)\Bigr) \widehat \scrB (p)\ast \widehat \scrA (p) - \ast d\mu (p),

\nabla \widehat Bj
\scrJ = 2

\int 
\scrP 

\widehat \beta j(p) \widehat \scrA (p) - \ast \widehat \scrC (p)\ast \Bigl( \widehat \scrC (p) \widehat \scrA (p) - 1 \widehat \scrB (p) - y(p)
\Bigr) 
d\mu (p), and

\nabla \widehat Ck
\scrJ = 2

\int 
\scrP 
\widehat \gamma k(p)\Bigl( \widehat \scrC (p) \widehat \scrA (p) - 1 \widehat \scrB (p) - y(p)

\Bigr) \widehat \scrB (p)\ast \widehat \scrA (p) - \ast d\mu (p),

which completes the proof.
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