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Abstract—In this paper, the spatial propagation of cascading
failures is studied for real utility outage data from Bonneville
Power Administration (BPA). The spatial propagation features
based on geographical distances are revealed by the proposed
analysis method. Furthermore, a critical component identification
method is proposed based on a new metric that combines the
information of the expected number of outages and that of
the spatial distance. A cascading failure mitigation strategy is
further proposed based on the upgrading of the identified critical
components. The effectiveness of the proposed mitigation strategy
in terms of suppressing spatial propagation is validated on the
14-year real utility outage data from BPA.

Index Terms—Blackout, cascading failure, interaction matrix,
mitigation, real data, spatial propagation, utility outage data.

I. INTRODUCTION

Large-scale cascading blackouts, such as the 2003 U.S.-
Canadian blackout [1] and the 2012 Indian blackout [2], have
serious economic and social impacts. Investigating and analyz-
ing the mechanisms of cascading blackouts can help identify
critical components and further provide effective mitigation.

Traditional cascading failure study is based on various
simulation models, such as hidden failure model [3] and OPA
model [4]. The simulated data has been studied for extracting
failure propagation properties, such as by the branching pro-
cess (BP) model [5], [6], multi-type BP model [7], and the
component interaction models including influence graph [8],
interaction network [9], and coupled interaction network [10].
However, simulation models and the simulated data are very
difficult to benchmark or validate.

Therefore, in recent years real outage data has been directly
analyzed. A 14-year real outage dataset from Bonneville Power
Administration (BPA) [11], [12] has been studied based on
an influence graph in [13]. The same data is investigated
by a generation-dependent interaction network estimated from
the expectation maximization (EM) algorithm in [14], and
a critical component based mitigation strategy is proposed
to suppress cascading failures. After upgrading the critical
components that lead to the highest expected number of
outages, the mitigated failure propagation is validated by the
decreasing probability of large cascades.

This work was supported by the National Science Foundation under
CAREER ECCS-2110211.

However, only focusing on the number of outages cannot
provide a detailed description of the cascading failure impacts.
How long time a cascading failure lasts and how wide an area
a cascading failure can spread to are also critical factors that
need to be considered. Therefore, a cascading failure analysis
utilizing the system topology information is useful. The failure
propagation paths and spatial distances between outages need
to be explicitly considered in the mitigation strategy, helping
prevent large-scale blackouts in a wide area.

In [15], the propagation path is described by electrical dis-
tance, which is the equivalent impedance between two compo-
nents. The component interaction, the number of outages, and
the amount of load shedding are combined in the mitigation
strategy design. However, using electrical distance to measure
spatial distance could lose the topology information such as
the actual geographical lengths of the components, leading
to ineffective spatial propagation mitigation. The topology
information of the BPA outage data is studied in [16] based
on cascade spreading statistics, providing a new direction for
mitigation. However, critical components are not identified by
directly considering spatial propagation.

In this paper, analysis and mitigation of cascading failure
spatial propagation based on the spatial topology are proposed
for the 14-year real utility outage data from BPA. The major
contributions of this paper are listed as follows.

1) We propose a cascading failure spatial propagation anal-
ysis method by defining the spatial distance between two
generations of outages, the total spatial distance between
the outages in a cascade, and also the average spatial
propagation velocity for two consecutive generations.

2) We propose a critical component identification method
based on a new metric called the total spatial distance
which combines the information of the expected number
of outages and that of the spatial distance. A cascading
failure mitigation strategy is further proposed based on
the upgrading of the identified critical components. Both
large cascading blackouts and the spatial propagation
can be effectively suppressed.

The remainder of this paper is organized as follows. Section
II describes the real utility outage data and the failure inter-
action matrices that are estimated from the data. Section III
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explains the spatial propagation analysis method for studying
spatial features in cascading failures. Section IV proposes a
critical component identification method considering spatial
propagation and a cascading failure mitigation strategy based
on the identified critical components. Section V presents the
results of spatial propagation analysis for the BPA data and
validates the effectiveness of the proposed mitigation strategy.
Finally, conclusions are drawn in Section VI.

II. INTERACTION MATRIX OF UTILITY OUTAGE DATA

In this paper, the 14-year real outage data since January
1999 from BPA in the Transmission Availability Data System
(TADS) is used for cascading failure analysis [11], [12].
Since cascading is defined as the uncontrolled successive loss
of system elements by North American Electric Reliability
Corporation (NERC), only 10,779 automatic outages are used
for analysis. The outage data is grouped into different cascades
and generations according to the gaps in start time between
successive outages [13], [14]. One cascade corresponds to one
cascading failure sample while one generation corresponds
to one stage in a cascade. Each cascade starts with initial
outages in generation 0 followed by outages grouped into
further generations until the cascade stops. Let F (m)

g be the
set of the failed components in generation g of cascade m.
We have a total of M = 6, 687 cascades listed below.

generation 0 generation 1 generation 2 · · ·
cascade 1 F (1)

0 F (1)
1 F (1)

2 · · ·
cascade 2 F (2)

0 F (2)
1 F (2)

2 · · ·
...

...
...

...
...

cascade M F (M)
0 F (M)

1 F (M)
2 · · ·

There are 346 buses and n = 582 transmission lines
involved in the outages. The transmission lines are considered
components. Based on the data, the component interactions
in cascading failures are organized into an interaction ma-
trix. Due to obvious evolution among generations and high
heterogeneity among cascades, an interaction matrix Bg is
estimated for any two consecutive generations based on the
EM algorithm developed in [14]. The algorithm estimates the
interaction matrix by updating pm,g

ij for each cascade m, which
is the probability of component j outage in generation g + 1
following the component i outage in generation g. Since the
largest generation number G = 109, there are 108 interaction
matrices (Bg = [bgij ] ∈ Rn×n, g = 0, . . . , 107). The element
bgij is the empirical probability that component j will fail in
generation g + 1 after component i fails in generation g.

III. SPATIAL DISTANCE IN CASCADING FAILURE

The power system topology of the transmission lines (com-
ponents) involved in the BPA outage data in Section II is
shown in Fig. 1. The green dots are buses and the lines are
components. Since the actual geographical layout of the buses
is not available, we use line thickness to represent the length
of the components. In power systems, the topological distance
dti1i2 between buses i1 and i2 can be defined as the number

Fig. 1. System topology based on the BPA outage data.

of components (transmission lines) along the shortest path
between these two buses. The geographical distance dgi1i2 can
be defined as the length of the components on the shortest path.
Since we want to keep the information of component length
for practical considerations, the distance between component
i : i1 → i2 and component j : j1 → j2 is defined as:

dij = min{dgi1j1 , d
g
i1j2

, dgi2j1 , d
g
i2j2

}, (1)
which is the shortest geographical distance among all possible
geographical distances between one bus of component i and
one bus of component j. Note that dij = dji and dij = 0
when components i and j share at least one common bus.

Then the spatial distance between the outage components
in two successive generations g and g + 1 of cascade m can
be calculated based on the final pm,g

ij obtained in interaction
matrix estimation as:

d
(m)
g→g+1 =

∑
j∈F(m)

g+1

∑
i∈F(m)

g

pm,g
ij∑

i∈F(m)
g

pm,g
ij

dij . (2)

Note that a weighted averaging is performed for the component
pairs in successive generations based on the final pm,g

ij that
indicates the dependencies between components i and j.

The total spatial distance between the outages in cascade
m can be further calculated as:

d
(m)
total =

G−1∑
g=0

d
(m)
g→g+1. (3)

Investigating the relationship between the total number of
outages of the cascades, generations, and their d

(m)
total could

help reveal the detailed features in spatial propagation.
Then the average spatial propagation velocity from gener-

ation g to generation g + 1 can be calculated as:

v̄g→g+1 =
1

Mg→g+1

Mg→g+1∑
m=1

d
(m)
g→g+1, (4)

where Mg→g+1 is the number of cascades that contains
generations g and g + 1. Here one generation is considered
as one discrete time step.

In [17], based on very simple cascading overload simu-
lations, it is found that the propagation velocity of a Eu-
clidean distance of the failures from the center of the initial
failure is approximately constant and is similar for different
networks. However, in many real cascading blackouts such
as the infamous 2003 U.S.-Canadian blackout [1] the spatial
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Fig. 2. Subgraph starting with r.

propagation actually accelerated significantly as cascading
progressed. Here we will reveal the average spatial propagation
velocity for real historical outage data.

IV. CRITICAL COMPONENT IDENTIFICATION AND
CASCADING FAILURE MITIGATION

In [14], critical components are identified by calculating the
expected number of outages starting with each component,
and the larger the expected number of outages is, the more
critical the corresponding component is in cascading failure
propagation. A mitigation strategy is also developed based on
the identified critical components. However, this mitigation
does not consider component spatial distances and thus cannot
guarantee to suppress cascading failure spatial propagation.

To develop a more comprehensive mitigation strategy, the
expected number of outages and the spatial distance between
components are combined to create a new metric for the
identification of critical components.

A. Expected Number of Outages Starting with a Component

The expected number of outages that one root component
could cause is obtained based on the subgraph in the failure
interaction network starting with the root component. A major
challenge is that the subgraphs may have loops (directed
circles or self-loops) due to complicated interactions among
outages, as illustrated in Fig. 2. This problem could be
overcome by solving a set of linear equations [14].

For Bg , the subgraph starting with the root node r is
denoted by Gg

r (Cg
r ,Lg

r), where the cardinality of the subgraph
component set Cg

r is Ng
r . The node numbers in the subgraph

are re-ranked from 1 which corresponds to component r. For
the new node number j we denote j0 as its old number before
the re-ranking. An adjacency matrix Cg = [cguv] ∈ RNg

r ×Ng
r

is built, for which cguv = bgu0v0 if there is a link from node
v0 to node u0 in Bg . Let the vector of the expected number
of outages for the nodes be eg ∈ RNg

r ×1 = [eg1 eg2 · · · e
g
Ng

r
]⊤.

Then eg is obtained by solving:
eg −Cgeg = c, (5)

where c = [cg−1
r 0 · · · 0]⊤ and cg−1

r is the number of
times the root node is assumed to fail in generation g − 1.
This provides a simple and efficient way to consider the
complicated interactions among various components.

B. Critical Component Identification Considering Cascading
Failure Spatial Propagation

Previous research only considers the expected number of
outages to identify critical components [14]. Here, the ex-
pected number of outages will be combined with spatial dis-
tance information to help better identify critical components,
reducing both the number of outages and spatial propagation.

For every node u0 ∈ Cg
r \{r} in the failure interaction

network from Bg , if it is in the subgraph Gg
r staring with node

r and its re-ranked node number is u, the outage measure
from component r to component u0 will be sgr,u0 = egu. If
node u0 is node r, then sgr,r = eg1−cg−1

r . After completing all
calculations for each node in each failure interaction matrix,
we combine the expected number of outages and the spatial
distances to calculate a new metric for each node in Cg

r , the
expected spatial propagation Igd (r):

Igd (r) =

Ng
r∑

i=1

sgr,i dri. (6)

Further, the total spatial propagation, Id(r), over all genera-
tions is obtained as:

Id(r) =

G−1∑
g=0

Igd (r). (7)

The proposed metric considers not only the number of
outages following a component failure but also the extent of
spatial propagation after that component failure. A component
is considered critical if its failure leads to many outages with
extensive spatial propagation.

C. Mitigation Strategy Based on Critical Components
To design the mitigation strategy for reducing the spatial

propagation, we identify 20 critical components with the
highest Id values, and the set of these critical components is
denoted by Cd. Mitigation based on Cd could be implemented
by reducing the failure probabilities of the critical components
in Bg . Specifically, for the jth component in Cd in descending
order of Id, the corresponding column in Bg is multiplied by
αj = j/40. The greater Id is, the heavier the suppression is on
the corresponding component. Then the mitigated interaction
matrices Bd

g are used by the generation-dependent interaction
model in [14] to generate mitigated cascades. By recalculating
the spatial propagation velocities based on the generated
cascades, the mitigation effect will be validated.

V. SPATIAL PROPAGATION ANALYSIS AND CASCADING
FAILURE MITIGATION

Cascading failure spatial propagation before and after miti-
gation is discussed in this section. To validate the effectiveness
of the proposed spatial propagation mitigation, the mitigation
based on the critical components that only focus on the ex-
pected number of outages in [14], denoted by Ce, is compared.

A. Spatial Propagation Analysis Before Mitigation
Most cascades have one generation, and only 752 cascades

have positive d
(m)
total. Fig. 3 shows the complementary cumu-

lative distribution (CCD) of the relatively large d
(m)
total’s (i.e.



Fig. 3. CCD of large d
(m)
total’s.

Fig. 4. v̄g→g+1 without mitigation.

d
(m)
total > 10−2 which is around 90th percentile of d

(m)
total for

all cascades), indicating that there is a dramatic difference
between different cascades. The maximum d

(m)
total is 2.13×104

for m = 4, 005 that has the largest number of generations.
The spatial propagation velocity v̄g→g+1 is shown in the

Fig. 4. When g = 97, v̄g→g+1 has the highest value
which is 1, 700. When g = 39, 53, 66, 82, 100, 105, 106, 107,
v̄g→g+1 = 0, which is due to the components in these
generations sharing the same buses. Based on (2), if two
components i and j connect to at least one common bus, the
responding dij is zero which further leads to zero v̄g→g+1.

The v̄g→g+1 for different generations is significantly differ-
ent. Meanwhile, the number of outages is 2,658 for g = 0
while it decreases sharply in further generations. To better
reveal the cascading failure spatial propagation properties, the
outages from successive generations are grouped. Specifically,
the generation grouping rules are listed below.

1) Starting with generation 0, a generation group combines
several consecutive generations until the total number
of outages in this group is larger than a predetermined
threshold. This is repeated for the remaining generations.
In a special case, if the number of outages of a single
generation meets the condition, it is a group.

2) Before generation ge = 41 each generation has hundreds
or even thousands of outages while after generation ge
each generation only has less than ten outages. There-
fore, we choose two different thresholds for the number
of outages: for a group whose first generation is before
generation ge, the threshold is chosen as O1 = 129
(the 95th percentile of the number of outages in all
generations); for the remaining generation groups, the
threshold is set as O2 = 65, which is about half of O1.

3) If the remaining un-grouped generations do not have
greater than or equal to O2 number of outages, a few
generations in the previous generation group will be

Fig. 5. v̄g→g+1 for grouped generations.

TABLE I
COMPARISON OF CRITICAL COMPONENTS

Rank Ce Cd (Igd ) Rank Ce Cd (Igd )
1 83 24 (1.54×104) 11 201 41 (6.86× 103)
2 17 126 (1.47×104) 12 61 61 (6.48×103)
3 234 83 (1.15×104) 13 56 179 (6.48×103)
4 24 92 (9.60×103) 14 59 4 (5.99×103)
5 76 116 (9.52×103) 15 126 76 (5.98×103)
6 2 17 (8.46×103) 16 26 42 (5.91×103)
7 85 2 (8.20×103) 17 92 101 (5.87×103)
8 8 234 (8.02×103) 18 73 59 (5.70×103)
9 101 446 (7.86×103) 19 126 75 (5.64×103)
10 187 23 (7.02×103) 20 42 13 (5.20×103)

Fig. 6. CCDs of the number of generations of each cascade with and
without mitigation.

combined with the remaining un-grouped generations
until the number of outages in the last generation group
is greater than or equal to O2.

Then v̄g→g+1 is calculated for the grouped generations and
is shown in Fig. 5, where a clear increasing tendency of the
spatial propagation velocity is revealed, indicating that the
extent of spatial propagation is increased in later generations.
This is consistent with the previous blackouts such as the 2003
U.S.-Canadian blackout [1] in which the spatial propagation
accelerated significantly as the cascading progressed.

B. Mitigation Result of Critical Spatial Component

Mitigation based on critical components is implemented and
the spatial propagation features after mitigation are analyzed.
The two sets of critical components, Ce based on the expected
number of outages [14] and Cd based on the proposed total
spatial propagation, are listed in Table I. It is seen that the
critical components in Cd are different from those in Ce.
Compared with Ce, eight new components (highlighted by bold
font) are identified as critical components in Cd.
M cascades are generated under the mitigation based on

the two critical component sets. Fig. 6 shows the CCDs of



Fig. 7. CCDs of of large d
(m)
total’s with and without mitigation.

Fig. 8. Number of outages in grouped generations with and without
mitigation.

Fig. 9. v̄g→g+1 for grouped generations with and without mitigation.

the number of generations of each cascade with and with-
out mitigation. Compared with the case without mitigation,
two mitigation strategies can restrict failure propagation by
decreasing the number of generations. In Fig. 7, the CCDs of
d
(m)
total with and without mitigation are shown. Note that only

d
(m)
total > 129 (95th percentile of d(m)

total) is displayed. Compared
with Ce mitigation, the proposed Cd mitigation can more
significantly suppress cascading failure spatial propagation.

To illustrate the mitigation effect on v̄g→g+1, we generate
10M cascades and group the generations following the same
rules in Section V-A. Fig. 8 shows the number of outages in
the grouped generations. The proposed Cd mitigation strategy
has a similar number of outages in the grouped generations as
that under the Ce mitigation that only focuses on the expected
number of outages. In Fig. 9, the v̄g→g+1 for the grouped
generations with and without mitigation is shown. Compared
to the case without mitigation, both Cd and Ce mitigation
can suppress the spatial propagation of cascading failures.
The proposed Cd mitigation has the smallest average spatial
propagation velocity, thus validating the effectiveness of the
proposed mitigation strategy based on the identified critical
components from the defined total spatial propagation.

VI. CONCLUSION

In this paper, a cascading failure spatial propagation analysis
method and a critical component based mitigation strategy are
proposed. The cascading failure mitigation is based on the
identified critical components using a metric that considers
both the number of outages and the spatial distance. The
results of the 14-year BPA data show that there is an increasing
tendency of the spatial propagation velocity. Also, the pro-
posed mitigation strategy based on total spatial propagation
significantly outperforms the traditional mitigation strategy
that only focuses on the number of outages in terms of
suppressing cascading failure spatial propagation.
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