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Abstract

Although architected materials based on truss networks have been shown to possess advantageous or extreme me-

chanical properties, those can be highly affected by tolerances and uncertainties in the manufacturing process, which

are usually neglected during the design phase. Deterministic computational tools typically design structures with the

assumption of perfect, defect-free architectures, while experiments have confirmed the inevitable presence of imper-

fections and their possibly detrimental impact on the effective properties. Information about the nature and expected

magnitude of geometric defects that emerge from the additive manufacturing processes would allow for new designs

that aim to mitigate (or at least account for) the effects of defects and to reduce the uncertainty in the effective prop-

erties. To this end, we here investigate the effects of four most commonly found types of geometric imperfections

in trusses, applied to eleven representative truss topologies in two and three dimensions. Through our study, we

(i) quantify the impact of imperfections on the effective stiffness through computational homogenization, (ii) examine

the sensitivity of the various truss topologies with respect to those imperfections, (iii) demonstrate the applicability of

the model through experiments on 3D-printed trusses, and (iv) present a machine learning framework to predict the

presence of defects in a given truss architecture based merely on its mechanical response.
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1. Introduction

Although additive manufacturing (AM) has enabled the fabrication of micro-architected materials with complex

geometries and topologies [1], the probability of producing unwanted structural imperfections grows as feature sizes

decrease, especially down to the resolution limits of the printing process [2]. This may result in significant differences

between the as-designed, nominal properties of, e.g., truss-based architected materials as obtained from theoretical

predictions and the experimentally observed properties of trusses [3–5]. Models based on the nominal, as-designed
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architecture of trusses tend to overestimate their fabricated counterparts’ stiffness, strength, and toughness, and dis-

crepancies can typically be attributed to the emergence of imperfections and defects during the manufacturing process

[6, 7]. This not only implies inaccurate property predictions; it also puts limitations on the theoretical/computational

search for optimal metamaterial architectures, which usually assume an ideal, defect-free fabrication process with

as-designed truss geometry and base material properties. Optimization with imperfections has been addressed only

in recent years [8] and has remained a challenge (especially if the exact details of the imperfections is not known a

priori). Imperfections can both be advantageous and disadvantageous. While buckling loads, e.g., can be strongly

reduced by symmetry-breaking imperfections, imperfections in the form of small perturbations have been exploited

to promote pre-defined buckling patterns in loaded structures [9].

In many studies, the experimentally predicted strength, stiffness, and failure modes of trusses have shown discrep-

ancies when compared to their as-designed counterparts [10–13], which has been attributed to different defect types

introduced in the fabrication process at the architectural and base material levels [14]. The high sensitivity of archi-

tected materials to fabrication defects stems, among others, from the oftentimes used periodic architectural design

(rich in symmetries to be broken by imperfections) as well as from the high stiffness-to-density ratio (which leads

to architectures composed of slender members that guide non-redundant load paths through the lattice) [8]. Small

perturbations in the load-optimized topology result in a behavior different from the computationally designed one,

causing a potentially significant deterioration of the effective response.

These uncertainties in the mechanical response require careful consideration when designing architected materials

not only for industrial applications. To overcome this problem, which is one of the culprits preventing metamaterials

from their entrance into many real-life applications, fabrication processes must become more precise or we must learn

to understand the architected materials’ sensitivity to imperfections and take it into account during the design process

[15, 16].

The most common imperfections observed in trusses can be classified into two categories. First, visualized in

Figure 1, geometric defects such as (a) variations of the beam cross-section’s shapes and beam surface roughness,

(b) beam waviness (observed especially in small-scale 3D-printing based on lithographic techniques), (c) perturbations

of the locations of nodes, and (d) the presence of broken beams1. The second category of defects concerns process-

induced base material heterogeneity, such as non-uniform mechanical properties due to inclusions or variations in

composition, cross-linking, and porosity.

A widely used categorization of lattices is based on their number of nodal connectivities, Z, which defines

stretching- vs. bending-dominated trusses (also termed kinematically rigid vs. non-rigid, respectively). In two di-

mensions (2D), trusses with low nodal connectivity are most affected by the occurrence of broken beams [17, 18].

Moreover, studies discovered that the kagome lattice (Z = 3) switches its deformation mode from stretching- to

1Here and in the following, we refer to struts inside a truss as beams, irrespective of their primary deformation modes. In addition, we refer to

nodes as the junctions between beams.
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(a) diameter variation (b) wavy beams (c) node displacement (d) broken beams

Figure 1: Four types of imperfections are presented that commonly appear during the fabrication process. Subfigure (a) is reprinted by permission

from Elsevier (Campoli et al., 2013). Figures (b) - (d) fabricated with selective laser sintering (SLS) on a Sintratec S1 printer.

and Fleck, 2008; Liu and Liang, 2012). Moreover, studies discovered that the kagome lattice (Z = 3) switches its

deformation mode from stretching-dominated to bending-dominated in case of a large percentage of broken beams.

The sensitivity of the e↵ective sti↵ness towards missing beam elements was studied for the hexagonal lattice (Guo

et al., 1994; Guo and Gibson, 1999) and non-periodic voronoii topologies (Silva and Gibson, 1997; Li et al., 2005;

Chen et al., 1999). Grenestedt (1998) focused on 2D (stretching-dominated) triangular and (bending-dominated)

hexagonal structures with wavy beams and observed that open cellular solids are more sensitive to this class of

imperfections than closed-cell materials.

Regarding the literature on 3D lattices, an extensive study of their sensitivity to defects has been carried out by

Liu et al. (2017). The authors studied the homogenized properties of imperfect 3D lattices in both linear elastic

and non-linear regimes. They experimentally observed that manufacturing settings, such as the building direction

and 3D-printing scanning rate, result in a non-uniform deterioration of the mechanical properties. Moreover, they

discovered that the octet unit cell is remarkably sensitive to geometric imperfections such as strut waviness and

thickness variations, which also a↵ects the failure mechanics of the truss lattice. Gross et al. (2019) focused on the

impact of the size and distribution of voids in the topology on the homogenized elastic properties and concluded that

the void volume fraction dominates the degradation of the mechanical properties over the void size. Queheillalt et al.

(2007) observed the same knock-down e↵ect in sti↵ness due to strut waviness in 3D topologies as previously reported

for 2D structures. In a similar manner, studies on diameter variation (Rinaldi et al., 2012; Campoli et al., 2013) and

missing struts (Wallach and Gibson, 2001; Latture et al., 2019) are only a few of many among the broad and extensive

literature on additive manufacturing and imperfect truss metamaterials.

While the sensitivity to imperfections of truss metamaterials and other cellular structures has been extensively

investigated in the past, they tend to focus on either 2D or 3D lattices, on a unique type of imperfection, or a particular

lattice topology. The variety of di↵erent methods to evaluate truss metamaterials’ sensitivity to imperfections often

results in contradicting interpretations of manufacturing defects. Most of the presented studies rely on experimental

observations, with only a few are taking on the challenge of introducing predictive models. Using modeling techniques
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Figure 1: Four types of imperfections are presented that commonly appear during the fabrication process. Subfigure (a) is reprinted by permission

from Elsevier [6]. Figures (b) - (d) fabricated with selective laser sintering (SLS) on a Sintratec S1 printer.

bending-dominated in case of a large fraction of broken beams. The sensitivity of the effective stiffness with respect

to missing beams was studied for the hexagonal lattice [19, 20] and non-periodic Voronoi topologies [21–23].

In three dimensions (3D), an extensive study of the truss sensitivity to defects was reported in [14], where the

homogenized properties of imperfect 3D lattices were studied in both the linear elastic and nonlinear regimes. Their

experiments revealed that manufacturing settings, such as the building direction and 3D-print scanning rate, result

in a non-uniform deterioration of the mechanical properties. Moreover, they discovered that the octet unit cell is

remarkably sensitive to geometric imperfections such as strut waviness and thickness variations, which also affects the

failure mechanisms. Studies that focused on the impact of the size and distribution of voids in a truss topology on its

homogenized elastic properties discovered that the void volume fraction dominates the degradation of the mechanical

properties over the void size [24]. Others observed the same knock-down effect in stiffness due to strut waviness in

3D topologies as previously reported for 2D structures [25]. Similarly, studies reported the importance of diameter

variations [6, 26] and missing beams [27, 28]. Few experimental studies on 3D metallic truss-based architected

materials investigated the influence of fabrication-induced imperfections on different truss topologies [29, 30]. These

are only a few examples from the broad literature available on additive manufacturing and imperfect trusses.

While the sensitivity to imperfections of truss metamaterials and other cellular structures has been extensively

investigated in the past, most of the above studies focus on either 2D or 3D trusses, on a unique type of imperfection,

or on a particular lattice topology. Statements and outcomes are specific to the types of imperfections and the truss

topologies studied, while a general overview is missing. Most of the presented studies rely on experimental observa-

tions, only a few have taken on the challenge of introducing predictive models for imperfect trusses. Finding general

statements about the influence of imperfections or even predictive models is challenging, as it strongly depends on

the truss topology, the cross-sectional geometry, the constituent material, and the effective property of interest. Most

numerical modeling techniques for trusses have hence relied on perfectly symmetric, periodic, and defect-free truss

lattices [31–35], whose predictions have limited validity in the presence of defects. Those few models that have cap-

tured the mechanical response of imperfect trusses were limited to a small selection of topologies and imperfection
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types [14, 17, 24]. Moreover, the distribution of imperfections in real-world trusses in stochastic (no two 3D-printed

trusses are alike), so that a statistical approach is required, which increases the modeling complexity and cost.

To gain insight into the effect of imperfections on the effective properties of periodic trusses (exemplified by their

anisotropic stiffness), we here investigate the effects of four most commonly found types of morphological defects in

trusses, applied to 11 representative truss topologies in 2D and 3D. To this end, we introduce a statistical description

of imperfections, which allows us to intentionally include defects into ideal trusses—both in experiments and in the

model. The chosen statistical defect distributions are rationalized by experimental observations from Selective Laser

Melting (SLM) additive manufacturing processes [14, 36].

Defects are introduced spatially randomly across a representative volume element (RVE), not considering any spe-

cific underlying causal mechanisms (such as print directions or material anisotropy). By intentionally incorporating

the as-designed imperfections into 3D-printed periodic trusses, we experimentally assess its effective response. As a

typical effective response that is easily computed, we determine the homogenized stiffness tensor (using affine bound-

ary conditions for an upper bound, as the imperfect RVE is in general non-periodic). To compare with experiments

and to validate the model, we further perform simulations of uniaxial (vertical) compression with fixed boundary

conditions at the top and bottom.

Both approaches provide a rich set of data, which we subsequently use to train machine learning models that

predict the imperfection probability distribution based on a given structure’s effective mechanical response. Overall,

while our forward model highlights the sensitivity of different truss topologies to imperfection types and magnitudes

for a given distribution of defects, the inverse model predicts the defect distribution in a truss whose effective elastic

moduli are known.

The remainder of this manuscript is structured as follows. We introduce the statistical description of imperfections

in Section 2 and discuss their theoretical implementation. In Section 3 we present the homogenized stiffness proper-

ties and select the RVE size based on the necessary confidence interval to yield a sufficient statistical representation.

Section 4 studies the mechanical sensitivity of 2D and 3D trusses to imperfections of different magnitudes. A valida-

tion of the proposed model with experiments is presented in Section 5. The machine learning model summarized in

Section 6 finally allows us to invert the framework and to predict the type and probability distribution of imperfections

in a truss on the basis of its effective elastic moduli. Section 7 concludes this study.

2. Statistical description of imperfections in slender trusses

We consider periodic networks of slender trusses, whose topology and geometry are encoded in the architecture

on a single unit cell (UC). The unit cell contains nn nodes, which are rigidly connected by nb straight beams of

constant cross-section. Specifically, we assume circular cross-sections of area A = πD
2

4 , where D is the cross-sectional

diameter, which is assumed constant along the length of each beam length. The area moment of inertia against bending

is I = π
64 D4. The slenderness of a beam is characterized by the ratio λ = D

L with L denoting the beam length. Here and
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in the following, all (nominal) geometric parameters of the as-designed truss are denoted by capital letters, whereas

those of the imperfect truss are described by lower-case letters. The base material is assumed to be homogeneous,

isotropic, linear elastic so that, along with sufficient slenderness, beams adhere to Euler-Bernoulli beam theory.

Starting from the nominal (perfect) design of a truss architecture, we consider a statistical distribution of defects,

which lead to the imperfect truss. Rather than characterizing defects experimentally (which would necessarily depend

on a particular fabrication route), we focus on the four most frequently observed types of imperfections, which we

apply to the perfect trusses to produce the imperfect trusses used in our simulations. The choice of the specific statis-

tical distributions and the imperfection magnitudes can be adapted for particular processing routes with known defect

distributions, which may, of course, affect the reported results. While the presented forward prediction techniques

generally apply to arbitrary magnitudes of imperfections, the inverse design may be sensitive to the imperfection

magnitude, and we here restrict our study to the imperfection types described below.

The four types of imperfections considered in the following are:

• Node displacements: many printed samples show errors in the positioning of the nodes [37]. We replicate

this imperfection by perturbing every undeformed node location. Specifically, the node’s center location is

randomly displaced onto the surface of a sphere in 3D (or circle in 2D), which has radius rnds and is centered at

the nominal node position, as shown in Figure 2(a). The imperfect position of a node originally at (X,Y,Z) is

hence

(x, y, z) = (X,Y,Z) + rnds

(√
1 − cos2 θ cos ϕ,

√
1 − cos2 θ sin ϕ, cos θ

)
, (1)

where the polar angles θ and ϕ are drawn from uniform distributions such that ϕ ∈ [0, 2π] and θ ∈ [0, π]. (In

2D, the analogous description follows from fixing θ = π
2 .) As a realistic approximation of the displacement

amplitude (here, radius rnds), we assume a half-Gaussian distribution centered at µ = 0 and having the standard

deviation σ = ξndsL (L being a characteristic beam length in the RVE). rnds then follows from a Box-Muller

transform [38]. Parameter ξnds ∈ [0, 1] is used in the following to control the severity of the node displacements.

In all of the following examples, we do not allow this imperfection to lie outside ξnds ∈ [0, 0.3], which includes

strong defects while avoiding the merging of adjacent nodes.

• Missing beams: a worst-case scenario, absent beams imply a missing nodal connection, which we implement

by removing beams from the truss, as visualized in Figure 2(b). Missing beams appear during the printing

process (or afterwards) when a previously intact beam breaks or is not printed properly. Parameter ξmis ∈ [0, 1]

denotes the ratio of the number of missing beams to the total number of beams in the RVE (where ξ = 0 implies

all beams are intact, while ξ = 1 means no connectivity between nodes). We select the missing beam by a

Bernoulli distribution with probability ξmis. In practice, rather than altering the finite element connectivity in

the RVE, we reduce the Youngs’s modulus of each missing beam to 10−10 its original value. (The impact of

this approximation on the outcome was verified to be negligible.) In case of using beams that are refined into

multiple beam elements (as required for the implementation of wavy beams), all elements of a given strut are
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(d) Diameter variations along

the beam length let the diameter

d follow a Gaussian distribution

centered at the nominal diame-

ter D and with standard deviation

σ = ξdiaD.

Figure 2: Visualization of imperfection types in 2D. In (a) and (c), the solid black lines show the original, undeformed lattice. The color code in

(d) visualizes the different diameters.

considered to be broken. Throughout all of the following examples, we restrict ξnds < 0.2, as more than 20% of

beams missing can no longer be considered as an ’imperfection’ and also makes simulations and experiments

complicated to realize.

• Beam waviness: although as-designed trusses typically feature straight beams, as-manufactured struts often

show waviness [14], which is induced, e.g., by mechanical vibrations or layering steps during 3D-printing.

Parameter ξwvy ∈ [0, 1] quantifies the maximum positional deviation of a beam centerline from its straight

nominal configuration, as shown in Figure 2(c). In simulations, this imperfection is realized by introducing an

additional node at the center of the beam at a distance rwvy from the beam’s longitudinal axis and the beam’s

midpoint, as shown in Figure 2(c). For a statistical distribution, the new node’s position is chosen from a

circle in the plane perpendicular to the beam centerline and centered on the beam’s midpoint (Figure 2(c)).

The displacement rwvy is obtained form a half-Gaussian distribution centered at µ = 0 and having the standard

deviation σ = ξwvyL. The new node’s location on the circle is defined by a uniformly distributed angle ζ ∈
[0, 2π]. Of course, wavy beams in reality can assume complex shapes not represented here; however, the

proposed kink is a straightforward approximation efficiently capturing the loss in axiality of a beam. We impose

ξwvy < 0.1 to prevent contact between beams (and also because larger imperfections may not be viewed as

“imperfections” anymore but rather present a change in design).

• Diameter variation: 3D-printing often causes substantial erroneous variations in the cross-section of a beam

along its length [6, 16, 36, 39, 40], as illustrated in Figure 2(d). In the following, we select a circular cross-

section for the study of different topologies in Section 4, while comparison to experiments in Section 5 will
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require the use of elliptical cross-sections. For circular cross-sections, the diameter of the beams in the RVE is

described either by a normal Gaussian distribution centered at µ = D with standard deviation σ = ξdiaD, where

D is the nominal diameter and ξdia ∈ [0, 1] controls the diameter variations, or by a half-Gaussian distribution

with the analogous features. The imperfect cross-section of each beam is obtained from the new diameter d

generated by the Box-Muller transform. (For elliptical cross-sections, the analogous holds, with variations

being applied to the major axes of the ellipse.) We study both normal Gaussian (Section 5) and half-Gaussian

(Sections 3 and 6) distributions in response to the different fabrication techniques. The two-photon lithography

used in our experiments leads to beams being thinner or thicker than nominal, while experiments that used

Selective Laser Sintering (SLS) observed that the diameter only increases from its nominal value [14]. This

also underlines the versatility of the model, as it applies to different imperfection distributions, as needed for a

particular application or fabrication route. Here, we impose ξdia < 0.2, since we consider larger imperfections

as design choices rather than defects. (We note that one could also consider variations of beam diameters along

the length of a strut. Yet, for simplicity we consider constant cross-sections per strut (in reality, the strength of

a given strut is typically determined by its thinnest cross-section.)

3. Homogenized stiffness of imperfect trusses

The numerical study of imperfections is realized using a fully resolved RVE with purposely introduced imperfec-

tions, described by ξnds (node displacements), ξmis (missing beams), ξwvy (wavy beams), and ξdia (diameter variations).

The impact of the four defect types is assessed by comparing the effective stiffness of an imperfect truss with that of a

perfect truss. We define the defect sensitivity of a truss topology as the ratio of the normalized effective moduli with

respect to those of the defect-free truss. We simulate each (perfect and imperfect) truss as an assembly of linear elastic

Euler-Bernoulli beams with rigid nodal connections. Beams are chosen to be sufficiently slender (and trusses are con-

sequently in the low-relative-density regime), so that Euler-Bernoulli beam theory is applicable, while the extension

to Timoshenko beams is technically straightforward. We stress that the relative densities of the investigated lattices

(and any derived quantities) are not adjusted for the presence of imperfections. Instead, we treat variations in density

as a byproduct of an imperfection type. As such, variations in relative density are already implicitly included in the

conclusions of our exploration.

While for periodic truss structures the effective response can be obtained by homogenizing a single representative

unit cell [17, 32–34], this becomes impractical in the case of an imperfect truss. The latter breaks the periodicity of

the truss and hence not only makes the choice of an RVE non-unique and challenging but also prevents the application

of periodic boundary conditions.

Therefore, we compute the homogenized response of a sufficiently large RVE (containing many UCs) by applying

affine displacement boundary conditions [41]. Due to the randomness of the introduced imperfections, we perform

ensemble averaging and compute the average effective response over a number of equally large but random realizations
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to ideally render the approach independent of domain size and imperfection distribution [42, 43]. To this end, we must

choose the RVE, also referred to as SVE (stochastic Volume Element), significantly larger than an individual UC and

the imperfections such that the resulting truss is statistically homogeneous (i.e., with uniform mechanical properties at

larger scales). A discussion of the RVE size chosen in our study to satisfy these criteria is provided in Appendix B. We

select the effective stiffness tensor C̄ as a representative measure to describe the mechanical response of an imperfect

lattice. We follow the common approach of applying six linearly independent 3D strain cases (three cases in 2D)

through affine displacement boundary conditions on the outer boundary of the RVE and computing the resulting

average stress tensors within the RVE. Correlating stresses and strains yields the full 3D (or 2D) stiffness tensor

components [18, 44].

We restrict our study to topologies with cubic symmetry, which results in three independent material constants to

be extracted from the effective stiffness tensor C̄; e.g., the effective Young’s modulus Ē, the effective generalized Pois-

son’s ratio ν̄, and the effective shear modulus Ḡ, which characterize, respectively, the uniaxial stiffness, the Poisson

effect, and the shear resistance of the truss.

These are conveniently obtained form the compliance tensor S̄ = C̄−1 in Voigt notation [45]:

Ē = (1/S11 + 1/S22 + 1/S33)/3,

ν̄ = (S12/S11 + S13/S11 + S23/S33)/3,

Ḡ = (1/S44 + 1/S55 + 1/S66)/3.

(2)

For each truss topology and for each combination of the statistical defect parameters (ξnds, ξmis, ξwvy, ξdia) we create

N random realizations of sufficiently large RVEs (see Tables 3 and 4) and determine the elastic moduli in (2) as the

ensemble averages over the N realizations.

For defect-free trusses, a single realizations is, of course, sufficient, whose computed effective moduli (with the

chosen RVE sizes and affine displacements boundary conditions) agree well with the homogenized moduli obtained

form a single UC with periodic boundary conditions [33] (see Appendix A).

We study a representative selection of truss topologies in 2D (cross-squared, triangle, hexagon, square, diamond,

kagome) and in 3D (octet, octahedron, bitruncated octahedron, cube, 3D diamond), which covers a broad range of

properties from stiff, stretching-dominated structures with nodal connectivities Z ≥ 4 in 2D and Z ≥ 6 in 3D) to highly

bending-dominated, compliant ones (with Z < 4 in 2D and Z < 6 in 3D) [46]. (Of course, the provided framework

can also be applied to other topologies). While theoretically ξ ∈ [0, 1], in reality a truss becomes impossible to

print or difficult to simulate above a certain ξ-value (and we cannot really interpret the truss as a periodic network

with imperfections anymore). We therefore restrict the range of ξ in the following parameter study to ξnds ∈ [0, 0.3],

ξmis ∈ [0, 0.2], ξwvy ∈ [0, 0.1] and ξdia ∈ [0, 0.2]. For ease of comparison, we assign to all structures the same

beam slenderness ratio λ = D/L = 0.1, which constitutes the lower limit for many 3D-printers when fabricating

large samples while satisfying the Euler-Bernoulli assumption of slender beams [47]. Note that this results in varying

relative densities (or fill fractions) across the chosen topologies, as shown for the 2D topologies in Table 3 and for the
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3D topologies in Table 4. In 2D the relative density is computed as the ratio of the beam volume Vb to the total area

of the RVE, AUC, while in 3D we report the relative density (i.e., the fill fraction).
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Ḡ

Figure 2: Visualization of the homogenization approach: First, we apply imperfections to a 30⇥30⇥30 perfect lattice using a Gaussian distribution
that depends on the imperfection strength ⇠. A�ne displacement BCs (here only showing "̂3 on the left and "̂5 on the right) are then applied to the

structure to compute the e↵ective sti↵ness of the architecture. For visualization purposes the strain in this Figure is increased to "0 = 15% while

for all calculations in the imperfection study a strain of "0 = 0.1% is deemed su�cient to extract the e↵ective properties.
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Table 1: Relative area density Vb/AUC and nodal connectivity Z for all 2D topologies analyzed within this study. The RVE size is defined as the

number of UCs tessellated along the two principle axis to build the full RVE. The slenderness ratio is fixed at � = 0.1 to validate Euler-Bernoulli

beam theory for slender beams, except for the shorter link in the cross topology where � = 0.14. Z defines the nodal connectivity.
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Table 2: Relative volume density Vb/VUC and nodal connectivity Z for all 3D topologies analyzed within this study. The RVE size is defined as

the number of UCs (see Figure ?? bottom) tessellated along the three principle axis to build the full RVE. The slenderness ratio is fixed at � = 0.1.
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Figure 3: The six truss topologies studied in 2D along with the chosen RVE size (in UCs), relative area density Vb/AUC, slenderness ratio λ, and

nodal connectivity Z. The RVE size is defined as the number of UCs (a single UC is shown in each case) tessellated along the two principle axis

to build the full RVE. In all topologies, all respective beams have the same length with a fixed slenderness ratio of λ = 0.1—except for the shorter

struts in the cross-square topology, where we used λ = 0.14.

⇠nds

Perfect lattice Imperfect lattice A�ne boundary conditions

⇠mis

⇠wvy
⇠dia Strain

0% 15%

Ē
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Ḡ

Figure 2: Visualization of the homogenization approach: First, we apply imperfections to a 30⇥30⇥30 perfect lattice using a Gaussian distribution
that depends on the imperfection strength ⇠. A�ne displacement BCs (here only showing "̂3 on the left and "̂5 on the right) are then applied to the
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for all calculations in the imperfection study a strain of "0 = 0.1% is deemed su�cient to extract the e↵ective properties.
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number of UCs tessellated along the two principle axis to build the full RVE. The slenderness ratio is fixed at � = 0.1 to validate Euler-Bernoulli

beam theory for slender beams, except for the shorter link in the cross topology where � = 0.14. Z defines the nodal connectivity.
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Table 2: Relative volume density Vb/VUC and nodal connectivity Z for all 3D topologies analyzed within this study. The RVE size is defined as

the number of UCs (see Figure ?? bottom) tessellated along the three principle axis to build the full RVE. The slenderness ratio is fixed at � = 0.1.

2

Figure 4: The five truss topologies studied in 3D along with the chosen RVE size (in UCs), relative density Vb/VUC, and nodal connectivity Z. The

RVE size is defined as the number of UCs (a single UC is shown in each case) tessellated along the three principal axes to build the full RVE. The

slenderness ratio is fixed as λ = 0.1.

4. Homogenization results: imperfection sensitivity of the effective stiffness

Figures 5 and 6 summarize the homogenized effective elastic properties of the studied truss topologies in 2D and

3D, respectively, as functions of the four statistical defect distributions introduced in Section 2.

Error bars indicate the standard deviation obtained from N = 100 random RVE realizations for each choice of ξi.

As may be expected, the shown standard deviations increase with increasing ξi-values. Results show that the defect
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sensitivity strongly depends on the truss topology and on the elastic property. For example, the effective Young’s

modulus of the square, kagome, and cube are highly sensitive to imperfections. By contrast, the triangle’s effective

Poisson’s ratio ν̄ shows only a negligible sensitivity. We have not included the sensitivities of Passion’s ratio ν̄ for

the square and cube lattices in the plot, since the their values for a structure without any imperfections, ν̄(ξ = 0),

is negligibly small and can therefore not be used to reasonably compute the sensitivity. In agreement with previous

findings [17], we observe a higher sensitivity of the kagome lattice to all types of imperfections as compared to a

triangular topology. Across all topologies, the sensitivity of Poisson’s ratio, ν̄, to variations in the beam diameter is

almost negligible compared to the other three defect types. Also remarkable is the high similarity of the sensitivity of

Young’s modulus Ē of the square and kagome topologies under the influence of every geometrical imperfection. The

same agreement is also observed for the shear modulus Ḡ of the diamond and kagome topologies. Let us discuss the

specific influence of each type of imperfection.

Nodal displacements effect significantly the effective Young’s moduli Ē of the highly anisotropic trusses, such

as the square and cubic lattices, whose moduli drop on average by around 50% for ξnds = 0.3 (Figures 5a and 6a).

By contrast, Young’s moduli of the (bending-dominated) bitruncated octahedron and 3D diamond truss remain

nearly unaffected by nodal displacements, owing to their low nodal connectivity, which is not influenced by the

imperfections. Additionally, highly stretching-dominated topologies such as the cross and triangular trusses in 2D

and the octet in 3D remain widely unaffected by increasing node displacements. Recall that we report the effective

Young’s modulus in the three principal directions. Therefore, structures with beams that are nominally aligned with

the principal directions (such as the square and cubic trusses) are highly sensitive to variations in nodes position, as

this type of imperfection will result in a breaking of symmetry and a transition from stretching to bending mechanisms

when loaded along the principal directions. Moreover, the shear modulus Ḡ of those structures with a relatively low

nodal connectivity Z, which have beam connections under π/4 with respect to the principal cubic axes of the truss

(such as in the diamond, kagome, and octahedron lattice) are highly sensitive to nodal displacements (Figures 5i and

6i). Displacing the nodes breaks the alignment of the force chains under shear and hence reduces the shear stiffness.

The same applies to making the beams wavy, see Figures 5k and 6k. We note that, although the differences in nodal

connectivity Z between the various truss topologies helps explain some of the observed effects, it cannot alone explain

entirely the reported findings, which warrants further investigation.

Interestingly, structures that show little resistance to shear in their defect-free configuration, such as the hexagon,

square, cube, and 3D diamond, display shear stiffening with increasing nodal displacements, as visualized in Figure 7.

This remarkable feature is explained in Figure 8, which compares the shear deformation of a perfect cube truss to that

of an imperfect one, having considerable node displacements with ξnds = 0.3. For improved visibility, we apply an

extreme shear deformation of 10%, which does not affect the conclusions. The perfect truss (Figure 7a) distributes the

load homogeneously, and the struts (oriented under 45◦ with respect to the principal load directions) deform primarily

in bending and carry low stresses. This is turn yields a low resistance to shear. As ξnds increases (Figure 7(b)), an

increasing number of beams tend to align with the principal directions, which leads to the apparent force chains (often
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Figure 2: Sensitivity of 2D bending- and stretching dominated topologies with respect to increasing imperfection standard deviation ⇠. Each error

bar represents all results obtained over N = 100 computations. The connecting lines support the visualization of the sensitivity progression. Each

plots color relates to one of the topologies below, framed by the same color.

2

Figure 5: Sensitivity of 2D bending- and stretching-dominated truss topologies with respect to the imperfection standard deviations ξnds, ξwvy, ξdia,

and missing beam probability ξmis. Each error bar represents the standard deviation obtained from N = 100 random realizations of the imperfect

trusses. Line and marker colors correspond to the six truss topologies shown below. While all nodes in any of the structures have the same

coordination number of connecting struts, Z, the cross unit cell has two type of nodes, connected to different numbers of struts, which is why the

coordination number for some nodes in the cross lattice is Z = 4, while for others Z = 8.

observed in granular materials [48]) with high tensile and compressive stresses in the two principal directions.

The same explanation holds for the increase in Young’s modulus of the 2D diamond lattice when subjected to

node displacements (Figure 5a)—with the only difference that the loading direction and topology are rotated by 45◦
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Figure 3: Sensitivity of 3D bending- and stretching dominated topologies with respect to increasing imperfection standard deviation ⇠. Each error

bar represents the results over N = 100 computations and the lines connect the average sensitivity to visualize the sensitivities’ progression. The

color of the frame around the di↵erent UCs is linked to the color of the sensitivity-plots.

3

Figure 6: Sensitivity of 3D bending- and stretching-dominated truss topologies with respect to the imperfection standard deviations ξnds, ξwvy, ξdia,

and missing beam probability ξmis. Each error bar represents the standard deviation obtained from N = 100 random realizations of the imperfect

trusses. Line and marker colors correspond to the five truss topologies shown below.

to the above case. Again, increasing ξnds leads to force chains along the principal loading directions and hence to a

stiffening of the structure, which transforms from bending- to stretching-dominated.

Missing beams reduce the rigidity and promote bending in the truss, significantly reducing the effective stiffness

[49] as well as its yield strength [50]. As there is an extensive body of prior work on missing beams in 2D and 3D
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x

y

x

y

Axial beam stresses Axial beam stresses

0.0006 0.01-0.010.0012

(a) (b)

Figure 5: Comparison of the 2D ideal square RVE on the left and the respective non-ideal counterpart with strong nodal displacement imperfections

⇠ = 0.3 on the right. For visualization purposes, we here increase the shear strain to "0 = 10% and highlight the axial stresses in every beam element,

normalized by the materials Young’s modulus E. Inside the imperfect lattice force chains develop (emphasized in the circular magnification) that

undergo tensile stresses in direction of loading and compressive stresses perpendicular to it.

4

Figure 7: Variations of the effective shear modulus Ḡ of the 2D hexagonal and square, and the 3D cube and diamond topologies with increasing

nodal displacements (as a function of the standard deviation ξnds of the node displacement distribution).

trusses, we may use that data for a validation of our homogenization setup (which is presented in Appendix C). Our

results confirm a severe impact of missing beams on the effective Young’s modulus of those structures with low nodal

connectivity Z, such as the 2D hexagonal (Z = 3) and square lattices (Z = 4), and the corresponding 3D topologies,

i.e., the bitruncated octahedron (Z = 4) and cubic (Z = 6) topologies (Figures 5b and 6b). A connection between the

nodal connectivity (related to the predominant deformation mode) and missing connections was already reported in

previous studies [17] as the main factor behind the reduction of the effective Young’s modulus of truss metamaterials.

The higher the number of beams connected at a node, the better the load is redistributed on the surrounding beams

if one of them is missing, keeping the structure stretching-dominated. Similar to the reported sensitivity of Young’s

modulus with increasing nodal displacements (Figures 5a and 6a), structures that take the loads applied in the three

principal cubic directions by beams aligned with those directions (e.g., the square and cube) lose a significant amount

of their stiffness in those directions when the perfect beam alignment is broken by imperfections. Interestingly,

the diamond, even though a bending-dominated topology, is as resistant to missing beams as the highly stretching-

dominated cross lattice. This underlines that the nodal connectivity Z can explain many but not all observations.

For trusses with higher nodal connectivity (triangular, cross, and octet lattices), a moderate reduction of Ē and Ḡ is

observed, as the fraction of missing beams increases. Their effective Poisson’s ratio ν̄ is marginally affected by this

imperfection. By contrast, for low Z and with an increasing number of missing beams, large unconnected regions (i.e.,

voids) form across the structure, causing high stress concentrations and promoting failure. This observation agrees

with previous research that focused on the impact of missing beams on the octahedron, bitruncated octahedron, and

other 3D architectures [24].

Beam waviness generally leads to increased beam bending at the expense of beam stretching. Consequently,

structures like the square, kagome, and cross lattice in 2D and the cubic lattice in 3D (whose beams align with the

three cubic axes) are highly affected by the presence of wavy beams [14] (Figures 5c and 6c). On the other hand,

bending-dominated structures such as the hexagonal, diamond or bitruncated octahedron lattices are the least affected

by wavy beams and only show minor reductions of their effective Young’s modulus [17]. Note that we focus on the

effective elastic response and do not consider the increased risk of buckling of members in compression, which may
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Figure 8: Comparison of the 2D ideal square RVE on the left and the respective non-ideal counterpart with strong nodal displacement imperfections

ξ = 0.3 on the right. For visualization purposes, we here increase the shear strain to ε0 = 10% and highlight the axial stresses in every beam element,

normalized by the materials Young’s modulus E. Inside the imperfect lattice force chains develop (emphasized in the circular magnification),

corresponding to axial tensile stresses in the direction of loading and axial compressive stresses perpendicular to it.

significantly reduce the strength of the structure.

Variations of the cross-sectional area show a similar trend of the effective properties for all studied topologies:

Ē decreases steadily with increasing diameter variations, while Poisson’s ratio ν̄ is only marginally affected. All

topologies show a steady decrease of Ḡ(ξ), with the bending-dominated hexagon and 3D diamond lattice being the

most sensitive to beam diameter changes. (Note that considering diameter variations larger than nominal—here they

are confined to consider only diameter reductions—may lead to a different sensitivity towards this imperfection.)

5. Experiments

To confirm the accuracy of the model described above, we performed experiments on 3D-printed octahedron

trusses as a representative 3D example. For a fair comparison between simulations and experiments, we modified the

numerical setup to match the experimental conditions in terms of sample size, boundary, and loading conditions. We

computationally design imperfect trusses with intentional defect distributions, and probe their effective stiffness under

uniaxial compression using both simulations and experiments (see Figure 9).

5.1. Nanomechanical Experiments

We performed quasi-static nanomechanical compression experiments (Alemnis ASA) on a 5 × 5 × 5 octahedron

lattice with clamped boundaries at the bottom and top (Figure 10). We chose fabrication at the microscale, using a
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Figure 2: Procedure to obtain the e↵ective response of an imperfect lattice within the experimental approach, allowing for a direct comparison

between numerical and experimental results. After applying imperfections to a perfect lattice using the imperfection strength ⇠, the e↵ective
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Figure 8: Procedure to obtain the e↵ective response of an imperfect lattice within the experimental approach, allowing for a direct comparison

between numerical and experimental results. After applying imperfections to a perfect lattice using the imperfection strength ⇠, the e↵ective

response of the architecture is taken from the stress-strain curve in a compression load-case. For visualization purposes the here shown compression
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Figure 9: Comparison of the sensitivity of Young’s modulus Ē to the approximation E⇤ between the homogenization approach and the experimental

approach for three di↵erent imperfection types. We here restrain ourselves to the octahedron topololgy, noting that the experimental approach can

be equally applied to any other structure.

of Ē from the full sti↵ness matrix creates an upper bound for the missing beam imperfection and a lower bound when

the lattice is subjected to wavy beams. Even though the results slightly di↵er when analyzed with the di↵erent

approaches, the overall tendency remains the same. In the case of node deviations within the truss architecture, the

di↵erent boundary conditions, mesh size, beam shape, and e↵ective property evaluation approach are not a↵ecting

the resulting sensitivity of the topology towards the imperfection. We refrain from comparing the sensitivity of both

methods to the increasing magnitude of diameter imperfections since its implementation varies strongly between
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approach for three di↵erent imperfection types. We here restrain ourselves to the octahedron topololgy, noting that the experimental approach can

be equally applied to any other structure.

ations within the truss architecture, the di↵erent boundary conditions, mesh size, beam shape, and e↵ective property

evaluation approach are not a↵ecting the resulting sensitivity of the topology towards the imperfection. We refrain

from comparing the sensitivity of both methods to the increasing magnitude of diameter imperfections since its imple-

mentation varies strongly between both. In the case of the homogenization approach, we only allow the diameter to

decrease from its intended, perfect dimension. To prevent early failure of the lattice in experiments, the same imper-

fection is implemented based on a fullly Gaussian distribution in the experimental approach, allowing for thickening

as well as thinning of the diameter. Overall the agreement between both approaches is rated high enough to consider

the simplified experimental approach as a valid alternative to validate the imperfection-study with actual benchmark

tests.

6

Figure 9: Protocol for comparing simulated with experimentally determined stiffness data: after applying imperfections to a defect-free lattice, the

effective response of the truss is obtained from the stress-strain curve under uniaxial compression—both from simulations and from experiments

on a 3D-printed truss.

two-photon lithography system (Nanoscribe GmbH, Ip-Dip photoresist), due to its high resolution and the ability to

print slender structures, for which the beam theory approximation is valid [51, 52]. The dimensions of the lattices

were 130× 130× 130 µm3, resulting in a constant beam length of ∼18 µm. We first printed defect-free lattices (within

the tool’s tolerances), which served as a reference for the computation of the sensitivity to geometric imperfections.

The fabricated beams possessed an elliptical cross-section with an average major axis of a = 2.3±0.1 µm and a minor

axis of b = 1.8 ± 0.1 µm. Due to limitations in the printing process, the ratio between the major to minor axis varied

linearly from ∼1.3 to 1 between horizontal struts and vertical struts, which was accounted for in the numerical models.

The elliptical shape of the diagonal and horizontal beams is a consequence of the chosen printing process close to the

resolution limit. The overall dimensions of the fabricated samples remained negligibly affected by shrinkage in the
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Figure 4: Exemplary sample with no imperfections (perfect) in its pre-loading state. Elliptical beams become apparent when zooming into one of

the unit cells.

3

Figure 10: Representative sample with no imperfections (defect-free) in its pre-loading state. The inset highlights the elliptical beam cross-sections.
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development process, resulting in an overall sample width w ∼ 130 ± 2 µm and height h ∼ 130 ± 2 µm, as shown in

Figure 10. The cross-sectional area of each elliptical beam was Ae =
πab

4 and the second moments of inertia Iy =
π
64 a3b

and Iz =
π
64 b3a.

Perfect and imperfect samples were produced by converting the beam models of Section 2 into Standard Tes-

sellation Language (STL) format with finite beam thickness; i.e., we deliberately 3D-printed perfect and imperfect

samples with as-design defect distributions of the four types discussed above. In the case of diameter imperfections,

both major axes a and b were multiplied by the same ξdia. When including missing beams, beams on boundaries of

the truss were excluded from being removed to avoid boundary nodes from being only partially supported. Similarly,

boundary nodes at the top and bottom clamps were excluded from the node-displacement imperfection to prevent

disconnections from the supporting plates. In the case of diameter variations, we continue to use a Gaussian dis-

tribution to vary ξdia; however, we restrict the random diameter to not fall beneath 2/3 of its nominal value (i.e.,

20 µm
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Figure 6: Tutti Frutti

Figure 7: Perfect as-designed lattice (left), and the respective fabricated equivalent before (left) and after (right) the compression experiment.

Identical experiments were conducted for lattices with the same dimension and topology but with pre-included imperfections, as shown in Figure 6

5

Figure 11: Visualisation of all four imperfections types which were intentionally included in the truss samples. The center image a) shows the

defect-free octahedron lattice. In the corners, we visualize the four different imperfection types applied to the perfect lattice with b) showing node

deviations, c) missing beams, d) wavy beams and e) diameter variations. We additionally zoom into a section of each lattice and highlight the

imperfection in red.
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a > 1.2 µm for the elliptical cross-section) to honor the print limitations. As already explained in the introduction, we

additionally allow the diameter to increase (according to a Gaussian distribution), since with two-photon lithography,

Stereolithography (SLA), or Digital Light Processing (DLP), beams may also end up thicker than nominal. Figure 11

provides a visualization of all four types of imperfection in printed samples. The magnitude of each imperfection was

chosen to exceed the fabrication tolerances of the two-photon lithography technique by orders of magnitude, so that

fabrication-induced imperfections play only a minor role (which also confirms the choice of this printing process to

be ideal for this study).

5.2. Modeling the experimental conditions

In Section 3 we reported homogenized elastic properties, which admitted general insight into the effective truss

performance and have classically been reported. Here, by contrast, we change the simulation setup to match the

experimental conditions. To this end, we simulate the uniaxial compression of samples that are fully clamped on the

top and bottom faces with free lateral faces. Instead of simulating large RVEs, we model samples of 5×5×5 UCs as in

experiments. Moreover, beam cross-sections have the same elliptical shapes as in experiments. The elastic properties

of the base material used in simulations were obtained from compression experiments on micropillar produced with

identical printing conditions as the trusses. We extract the effective Young’s modulus E∗ of truss samples in the

compression direction from the slope of the stress-strain curve. As before, we compute the average response of

N = 100 random realizations for a given set of imperfection distributions.

a) Node displacement b) Missing beams c) Wavy beams d) Diameter variation
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Figure 7: Comparison of the sensitivity of Young’s modulus Ē to the approximation E⇤ between the homogenization approach and the experimental

approach for three di↵erent imperfection types. We here restrain ourselves to the octahedron topololgy, noting that the experimental approach can

be equally applied to any other structure.
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Figure 8: Exemplary sample with no imperfections (perfect) in its pre-loading state. Elliptical beams become apparent when zooming into one of

the unit cells.

6

Figure 12: Comparison of the sensitivity of the effective Young’s of an octahedron truss with respect to three different types of imperfections, as

obtained from homogenization and from uniaxial compression. For the comparison between uniaxial compression and homogenization, we choose

a 40×40×40 octahedron lattice with beams having circular cross-sections, as shown in Figure 6. In cases (a) - (c), the results of the homogenization

approach are identical to those of Figure 6, whereas for (d) the diameter variation now represents the same setting as for the experimental setup

(diameters may be larger or smaller than nominal).

To illustrate the differences between the two loading scenarios, Figure 12 compares the effective Young’s modulus

of the octahedron truss with varying imperfection distributions, as obtained from homogenization (Section 3) and from

uniaxial compression simulations. Although results differ quantitatively, the same qualitative trends are observed (in
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the case of node displacement and diameter variation, both approaches yield nearly identical results). This indicates

that, although the boundary conditions are different, the general conclusions drawn in Section 3 can also be expected

to hold here.

5.3. Experimental results and comparison with simulations

Figure 13 shows the effective Young’s modulus E∗ (normalized by that of a defect-free truss) of trusses with

four different types of imperfections. The imperfection strengths in this comparison study, ξnds = 0.2, ξmis = 0.1,

ξwvy = 0.1, and ξdia = 0.2, are chosen to be relatively high to suppress the effects of any material imperfections.

Each experimental data point represents the average of five experiments, each conducted on a different lattice real-

ization with identical imperfection magnitudes. The respective numerical simulations are averaged over 100 random

realizations, applying the same imperfection magnitude but not the exact same distribution as in the experiment. We

refrained from comparing the experiment to a simulation with the exact same imperfection distribution to demonstrate

the strength of the model to be generally applicable independent of the exact imperfection realization. Simulations

generally over-predict the effective truss stiffness by an approximately constant offset, which we attribute to inevitable

small imperfections in the printing and possibly a slightly different polymerization state between the truss samples

and the micropillars used to calibrate the model (the effective stiffness of the defect-free truss differs by 11.8% be-

tween simulations and experiments). Furthermore, the print direction [14], node geometry [36, 53], node fillet size

[54], and boundary effects can affect the mechanical response and hence contribute to the offset. Figure 13 confirms

that the impact of the four types of defects shows excellent agreement between simulations and experiments. The

relative error between those is 15.9% for displaced nodes, 25% in case of missing beams, 25.3% for wavy beams, and

22.8% for varying diameters. Overall, this confirms the successful prediction of the influence of imperfections by the

model – and we use the close to constant offset of ∼ 20% between the experimental and numerical data to introduce a

correction factor of 1.2 to be used with all subsequent simulation data.
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Figure 6: Perfect as-designed lattice (left), and the respective fabricated equivalent before (left) and after (right) the compression experiment.

Identical experiments were conducted for lattices with the same dimension and topology but with pre-included imperfections, as shown in Figure 5
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Figure 7: Comparison of the experimentally measured Young’s modulus E⇤ and Sensitivity E⇤(⇠)/E⇤(⇠ = 0) with the respective result from the

numerical simulation with the identical lattice configuration for the perfect lattice and for di↵erent imperfections. Note that the standard deviation

in case of experiments is due to di↵erent measurements on five identical structures while the standard deviation in the numerical simulations is a

result from di↵erent realizations of the topology for the selected imperfection.

5

Figure 13: Comparison of the experimentally measured and simulated effective Young’s moduli of four octahedron trusses, each with a different type

of imperfection. Data are normalized with respect to the defect-free stiffness E∗(ξ = 0) = 13.1 MPa in the simulation and E∗(ξ = 0) = 11.1 MPa

in case of the experiment. The shown standard deviations of the experimental data stems from averaging over five identical structures, while the

standard deviation of the simulated data is the result from averaging over 100 different random realizations of the imperfections. (We refrain

from comparing the experiment to simulations on the exact same defective truss to underline the generality of the model to accurately capture the

experimental observations without knowing the exact defect distribution.

6. Predicting imperfections using inverse modeling

The model of Section 4 uses the defect distributions as input parameters to compute the resulting effect on the

effective mechanical properties of imperfect trusses. We can also revert the problem and pose the inverse question.

Can we devise a predictive tool, capable of providing information about the distribution of imperfections by using

the measured mechanical response of a truss as the input? In the following, we apply this inverse strategy to two

different scenarios, based on the previously described sensitivity calculations: Section 6.1 uses the rather hypothetical

availability of 15 of the anisotropic homogenized effective elastic constants of a defective truss, as described in Sec-

tion 3. Section 6.2 only uses three measurable input parameters, derived from the setup in Section 5, for which we

also present experimental benchmarks.

6.1. Inverse model based on homogenized elastic constants

We create a general machine learning framework that takes as input an a-priori chosen set of effective mechanical

properties (e.g., Young’s moduli, Poisson’s ratios, shear moduli) of imperfect topologies, and it outputs a probability

distribution of the imperfections likely to cause the deviations in the observed mechanical properties from the ideal

ones. Figure 14 shows a schematic of the approach based on conditional variational autoencoders (CVAE), whose

methodological and training details are presented in Appendix D.

We consider the five 3D topologies shown in Figure 6, whose homogenization (as described in Section 3) yields

their effective Young’s moduli Ē, effective Poisson’s ratios ν̄, and effective shear moduli Ḡ – resulting in a total of 15

available material constants. As in Section 3, we use RVEs of 30 × 30 × 30 UCs and circular beam cross-sections
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Figure 14: Setup of the Conditional Variational AutoEncoder (CVAE) used for the inverse prediction of an imperfection distribution based on

effective elastic truss properties.

with a slenderness ratio of λ = 0.1 in simulations. Imperfections are randomly added from the ranges ξnds ∈ [0, 0.3],

ξmis ∈ [0, 0.2], ξwvy ∈ [0, 0.1], and ξdia ∈ [0, 0.2]. We generate a training dataset of 1215 different imperfection

parameter combinations ξ = {ξnds, ξmis, ξwvy, ξdia} and compute the corresponding 15 homogenized elastic properties

χ = {Ē1, ν̄1, Ḡ1, . . . , Ē5, ν̄5, Ḡ5} across the five topologies (Figure 6). For validation purpose, we also generate a similar

test dataset containing 520 pairs of imperfection parameters ξ and elastic properties χ. The test dataset is not exposed

to the machine learning model during the training stage. Using the training dataset, we train the aforementioned

machine learning model (for details, see Figure 14 and Appendix D) with the objective of identifying the defect

distribution ξ for given elastic properties χ. Rather than resulting in a unique defect values ξ, the stochastic machine

learning model predicts a joint probability distribution P(ξ) (over all the four imperfection types in ξ) which further

quantifies the uncertainty of the prediction. Note that P(ξ) is empirically obtained by repeatedly sampling a sufficiently

large number of output predictions from the machine learning model. In the context of the following results, we use

3000 samples for each set of elastic properties input χ to obtain a representative probability distribution. (Each

prediction is made almost instantly and therefore, the computational expense of repeated sampling is negligible).

To quantify the accuracy of the machine learning model, we compare the true imperfection parameters (ξtrue) with

the expectation of the marginal probabilities
{
E[P(ξnds)],E[P(ξmis)],E[P(ξwvy)],E[P(ξdia)]

}
predicted for a given set

of elastic properties χ. Note that the marginal probability distribution of a particular imperfection type is computed
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by straightforwardly ignoring the other imperfection types in the collection of the joint samples of ξ predicted by the

machine learning model, while the expectation E[·] is approximated by the mean of those samples.

Figure 15 summarizes the accuracy between the true ξ and the predicted marginal expectations of all four imper-

fection types for each χ in the test dataset. For all the imperfection types, the predicted marginal expectation of ξ is

close to its true counterpart (coefficient of determination R2 ≥ 98%), showing that our model is an accurate tool to

predict defect distributions (and hence possible error sources, e.g., during the printing process). To further visualize

the accuracy, we chose a random set of elastic properties χ from the test dataset and compare its true imperfection pa-

rameters ξ with the predicted marginal probability distributions. A representative example is illustrated in Figure 16,

which shows that not only is ξ predicted close to the actual values but also how our model provides a probability

distribution quantifying the uncertainty. This feature becomes handy when applying the model to experimental data,

where the measured effective properties always come with a measurement inaccuracy (as discussed below).

Figure 15: Accuracy of the predicted marginal expectation of each imperfection vs. the true value on the test dataset. All dashed lines (in red)

represent the ideal line with zero intercept and unit slope; the corresponding R2 deviations are indicated. All 15 elastic properties are considered as

input to the machine learning model.

Figure 17 demonstrates in a “heat map” the correlation between the 15 effective elastic properties of the studied

topologies and the four imperfection types. Areas marked in white (i.e., close to zero correlation) are deemed irrel-

evant for the results in Figure 15 and can therefore be excluded in future studies. It is apparent that the values of

Poisson’s ratio remain approximately unaffected by any diameter changes or beam waviness, whereas the Young’s

and shear moduli show little correlation with node displacements of most topologies (with the cube topology being an

exception). These are interesting general insights into the impact of imperfections on the different elastic properties.

In addition, this correlation matrix can advise future studies by removing topologies/elastic properties with little sig-

nificance for the prediction accuracy, reducing the experimental costs required to characterize the imperfections (as

also utilized in the following results).

21



Node deviation Missing beams Wavy beams Diameter variation

0 0.1 0.2 0.3
0

0.1

0.2

0.3
R2
nds = 0.98

True ⇠nds
M
ar
gi
na
le
xp

ec
ta
tio

n:
⇠

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2
R2
mis = 1.0

True ⇠mis

0 0.05 0.1
0

0.05

0.1
R2
wvy = 0.99

True ⇠wvy

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2
R2
dia = 0.99

True ⇠nds

Figure 3: Accuracy of the machine learning prediction for all four imperfection types
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2

Figure 16: Predicted marginal probability distribution of imperfections for a sample chosen randomly from the test dataset with true imperfections

ξnds = 0.186, ξmis = 0.011, ξwvy = 0.073, and ξdia = 0.064. Red lines shows the true values, while the blue distribution presents the marginal

probability distribution of the predicted imperfections.
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Figure 4: Accuracy of the machine learning prediction for all our imperfection types. NEEDS TO BE UPDATED
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Figure 5: The heatmap visualizes correlations between e↵ective mechanical properties (E,V,G) for six di↵erent topologies with respect to the

capability of detecting the four imperfection types. Strong correlations are visualized in red, while input parameters with no e↵ect on a respective

imperfection strength converge to a white color. Each number corresponds to the following topology: 1) Cube, 2) Octet, 3) Octahedron, 4)

Bitruncated Octahedron, 5) 3D Diamond, 6) Cuboctahedron. The order of UCs in the heatmap needs to be changed to be identical to the rest of the

paper

and would require extensive experimental setups. As explained previously in Section ??, applying a�ne boundary

conditions to the lattice is also much harder than simply clamping the top an bottom surface. We therefore decide to

confirm the previously presented prediction tool by applying several modifications for the model to be more applicable

to standard experimental studies. The same lattice dimensions as in Section ?? are selected to numerically calculate

the e↵ective Young’s modulus E⇤ of the six topologies. We again train a machine learning model, now using the

3

Figure 17: The “heat map” visualizes correlation coefficients between the effective elastic properties (Ē, V̄ , Ḡ) of the 3D truss topologies and

the four imperfection types. A correlation coefficient of +1 or −1 indicates perfect correlation, while a value of zero may (or may not) indicate

independence between two variables (positive or negative, respectively). Strong correlations are visualized in red, while input parameters with

weak effect on ξ tend to a white color. Indices of the elastic properties correspond to the topologies shown below: 1) octet, 3) octahedron, 4)

bitruncated octahedron, 4) cube, 5) diamond.

6.2. Inverse model based on uniaxial stiffness measurements

Of course, printing and testing five separate truss topologies to predict any printing-induced imperfections is

unrealistic, considering the high cost and work load. In particular, experimentally determining Poisson’s ratio and the
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shear modulus of a truss is time-consuming and requires a complex setup, unlike the simple characterization of the

uniaxial Young’s modulus (see Section 5). We therefore adjust the machine learning framework of Section 6.1 to

be applicable to standard experimental measurements. To this end, we use the same setup as in Section 5 and only

consider the effective Young’s modulus E∗ of the five 3D truss topologies. Since we only increase (and not decrease)

the diameter of beams imperfect, we can fabricate a defect-free lattice with thinner beams than in the experimental

study of Section 5. The thinner beams are required to ensure a small slenderness ratio for the additionally printed

bitruncated octahedron lattice, which has shorter beams than the octahedron. Printed beams have an elliptical cross-

section with an average major axis of a = 1.9 ± 0.1 µm and a minor axis of b = 1.6 ± 0.1 µm. All other dimensions

remain the same as in Section 5. We use the same elliptical beam dimensions for the initial defect-free lattice in

our simulations. We again train a machine learning model with the analogous CVAE structure of Figure 14, now

using only the five input parameters {Ē1, Ē2, Ē3, Ē4, Ē5} instead of the previous 15 elastic properties to predict ξ.

Imperfections are randomly chosen from the ranges ξnds ∈ [0, 0.3], ξmis ∈ [0, 0.2], ξwvy ∈ [0, 0.1], and ξdia ∈ [0, 0.2].

Owing to the reduced computational costs, we choose a larger training set of ∼ 8166 trusses with randomly chosen

imperfection distributions. We also generate a similar test dataset of 3500 trusses for validation purpose.

The accuracy of this new model on the test dataset reduces the coefficients of determination to R2
nds = 0.36,

R2
mis = 0.92, R2

wvy = 0.97, and R2
dia = 0.84. By considering the quite varying correlations between elastic properties

and imperfections (see Figure 17), we further reduce the number of topologies to three—retaining only the octet,

bitruncated octahedron, octahedron—while obtaining almost the same prediction accuracy (R2
nds = 0.08, R2

mis = 0.92,

R2
wvy = 0.96, and R2

dia = 0.64). The size of the training set was ∼ 10500, compared to 4500 trusses in the test set. We

accept the ∼ 24% loss in R2
dia due to the reduction of the tested topologies from five to three, since the extra workload

of producing those is not worth the additional accuracy. The accuracy of predicting the node deviation ξnds was already

low at 36%, so the further reduction to 8% is irrelevant at this point (we accept that ξnds cannot be predicted accurately

based on this choice). However, by making these simplifications, we have reduced the complexity of the problem to

three input parameters {Ē1, Ē2, Ē3}, facilitating a reasonable prediction of ξmis, ξwvy, and ξdia, as shown in Figure 18.

By constrast, we can no longer predict node displacements (ξnds). However, the imperfections due to missing beams

(ξmis) and wavy beams (ξwvy) can be predicted with an accuracy of over 90% (and variations in beam diameter are still

predictable with an 64% accuracy), which is deemed satisfactory. This is in agreement with the correlation matrix of

Figure 17, even though the latter was established for different boundary conditions (there affine homogenization, here

uniaxial compression). Young’s modulus is insufficient to predict node displacements. Knowledge of Poisson’s ratio

of either topology 1, 2, or 4, or the shear modulus of topology 4 would be required to provide the missing information

on ξnds.

6.3. Predicting imperfections from experimental measurements

As a validation example, we apply the proposed machine learning framework to predict the distribution of im-

perfections in trusses based on experimental measurements only. To this end, we printed three samples—each one
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Figure 18: Accuracy of predicted marginal expectation of each imperfection vs. the true value on the test dataset, using the uniaxial Young’s

moduli of three 3D truss topologies (octet, bitruncated octahedron, octahedron) as input parameters. Due to the smaller number of input parameters

(number of mechanical properties and number of UCs), the accuracy of the prediction decreases when compared to Figure 15. All dashed lines (in

red) represent the ideal line with zero intercept and unit slope; the corresponding R2 deviations are indicated.

of octet, bitruncated octahedron, and octahedron type. All three were designed to have identical, randomly chosen

imperfections satisfying ξnds = 0.238, ξmis = 0.157, ξwvy = 0.054, and ξdia = 0.113. Figure 19 shows the three lattices

before exposing them to a quasistatic compression test to identify their effective Young’s moduli E∗.

The experimentally measured Young’s moduli (including the correction factor of 1.2 identified in Section 5 to

match differences between experiments and simulations) are E∗ = 11.8743 MPa for the octet, E∗ = 3.0867 MPa

for the octahedron, and E∗ = 0.91776 MPa for the bitruncated octahedron. Using these three input parameters, our

machine learning framework yields the predictions in Figure 20, which captures the distributions of missing beams,

wavy beams, and diameter variations well, and it even predicts node displacements (even though we discussed that

this type of imperfection is hard to predict with the present framework). This confirms that our machine learning tool

can predict realistic defect distributions of the chosen types from easily accessible experimental measurements.
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Figure 19: Fabricated octet, octahedron, and bitruncated octahedron samples (from left to right) with deliberately introduced imperfections satisfy-

ing the distributions ξnds = 0.238, ξmis = 0.157, ξwvy = 0.054, and ξdia = 0.113.
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Figure 20: Predicted marginal probability distribution of imperfections based on experimental measurements on the three samples in Figure 19.

The samples had the true distributions ξnds = 0.238167, ξmis = 0.157455, ξwvy = 0.054072, and ξdia = 0.112529, shown as red lines. The blue

distributions are the predictions by the machine learning framework.
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7. Conclusion

We have studied the sensitivity of the effective elastic properties of various 2D and 3D periodic trusses with respect

to four frequently observed types of geometric imperfections. We first computed the homogenized, effective elastic

properties of a total of 11 different stretching- and bending-dominated truss topologies (6 in 2D, 5 in 3D) based on

affine displacements applied to large RVEs of trusses with random imperfections. (Results without imperfections

matched closely with periodic homogenization.) We discussed that, while most imperfections reduce the effective

stiffness, some imperfection types may even lead to stiffening of specific truss topologies. To validate the numerical

framework, we further computed the uniaxial Young’s modulus of 3D trusses, which was compared to experimental

measurements on trusses with different types of imperfections—overall showing convincing agreement. In addition

to the forward model, predicting the reduction in stiffness of defective trusses, we also presented an inverse machine

learning-based approach, which predicts the defect distribution in a truss based on given elastic properties. This

inverse model was trained in two flavors: first, based on the full homogenized elastic properties of five different

truss topologies (which highlighted the different correlations between elastic properties and imperfection types) and,

second, based on only the uniaxial stiffness of three truss topologies (which can readily be realized in experiments).

Using experimentally measured Young’s moduli of three trusses, their underlying defect distribution was predicted

along with prediction uncertainties, overall showing convincing agreement.

The knowledge gained and the new (forward and inverse) modeling tools reported here aid to the still open chal-

lenge of incorporating fabrication-induced imperfections into the design process of truss-based architected materials.

Knowledge of the property (in-)sensitivity is essential for designing structures for not only safety-relevant industrial

applications. The inverse model helps identify the predominant defect types in manufactured truss architectures based

on relatively simple measurements towards optimizing the design and manufacturing process [5] as well as designing

structures that are less sensitive to imperfections [55].

Of course, this study can be extended in multiple directions, which also highlights its limitations. The assumption

that all defect probability distributions are Gaussian and centered around the defect-free truss can be extended to,

e.g., skew-normal distributions, where appropriate. Furthermore, the expectation value need not overlap with the as-

designed geometry [36]. The distributions and magnitudes of the different imperfection types can also be set to those

of a specific fabrication route. Going beyond elasticity, a similar strategy can be applied to study the sensitivity of the

yield strength [14, 23, 50, 56] or fracture toughness [57] of trusses to imperfections.
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Appendix A. Periodic vs. affine boundary conditions for homogenization

We compute the effective response of trusses with random imperfections by applying affine displacement boundary

conditions to large RVEs (containing the numbers of UCs reported in Tables 3 and 4). Periodic boundary conditions

are unfortunately problematic in this setting. As affine displacement boundary conditions generally over-predict the

effective stiffness, we here compare the computed homogenized properties of defect-free trusses using both periodic

homogenization [33, 34] and the here chosen affine displacement assumption.

Table A.1 compares the effective Young’s modulus Ē, effective Poisson’s ratio ν̄, and the effective shear modulus

Ḡ, all calculated from a single RUC with periodic BCs [33] as well as from the RVEs in Tables 3 and 4 with affine

displacement boundary conditions. Results show a good agreement between the effective properties, confirming the

appropriateness of the chosen affine displacement approach. Only for strongly bending-dominated topologies such

as the hexagon and diamond topologies in 2D as well as for the bitruncated octahedron and the diamond in 3D, the
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Periodic BCs Affine displacement BCs

2D E/E ν G/E E/E ν G/E

Cross 1.127 · 10−2 0.405 5.583 · 10−3 1.127 · 10−2 0.405 5.583 · 10−3

Triangle 9.114 · 10−3 0.330 3.434 · 10−3 9.194 · 10−3 0.330 3.426 · 10−3

Hexagon 6.652 · 10−5 0.971 1.688 · 10−5 7.613 · 10−3 0.961 1.689 · 10−5

Square 7.854 · 10−3 0.0 2.945 · 10−5 7.854 · 10−5 0.0 2.945 · 10−5

Diamond 8.268 · 10−5 0.985 2.777 · 10−3 8.807 · 10−5 0.984 2.777 · 10−3

Kagome 2.274 · 10−3 0.331 8.536 · 10−4 2, 274 · 10−3 0.331 8.534 · 10−4

3D E/E ν G/E E/E ν G/E

Octet 7.553 · 10−3 0.33 5.595 · 10−3 7.554 · 10−3 0.33 5.595 · 10−3

Octahedron 3.776 · 10−3 0.33 2.790 · 10−3 3.777 · 10−3 0.33 2.790 · 10−3

Bitr. Oct. 4.134 · 10−5 0.493 1.363 · 10−5 5.445 · 10−5 0.490 2.240 · 10−5

Cube 7.854 · 10−3 0.0 2.945 · 10−5 7.863 · 10−3 0.0 2.947 · 10−5

Diamond 3.812 · 10−5 0.494 3.769 · 10−5 3.773 · 10−5 0.494 3.660 · 10−5

Table A.1: Comparison of the effective elastic properties of different 2D and 3D truss topologies as obtained from homogenization with periodic

boundary conditions (using an in-house code and formulation [33]) vs. affine displacement boundary conditions. Moduli are normalized by the

base material’s Young’s modulus E. Poisson’s ratio of the base material is ν = 0.49. All beams have a slenderness ratio of λ = 0.1, except for the

cross topology in 2D, which has two sets of beams with different lengths, where the shorter beams have a slenderness ratio of λ = 0.14.

deviations between the two approaches is appreciable.
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Appendix B. Choice of RVE and ensemble sizes

Imposing random imperfections onto a perfect lattice results in an infinite range of imperfect structures. A sta-

tistically appropriate computation of the effective properties requires a sufficiently large RVE. Since an ideal, infinite

RVE size is computationally untractable, we choose a finite-size RVE, which must be sufficiently large (spatial aver-

aging criterion). In addition, we compute the effective response by averaging over a ensemble of N different random

realizations, which must be sufficiently large (ensemble averaging criterion) as well. For practical reasons, we choose

the RVE size sufficiently small to allow for efficient computations and to fit within a 3D quadrilateral (2D quadratic)

domain. For an RVE much larger than the size of the UC and of the imperfections and for large N, the average

stiffness C̃(N) = 1
N

∑N
i=1 C̃i converges to it the true effective stiffness µ = C∗ as a Gaussian distribution by the central

limit theorem. We compute the confidence interval
(
µ − z∗ σ√

N
, µ + z∗ σ√

N

)
and the resulting effective variance (margin

of error) e = z∗ σ√
N

. We select the critical value z∗ = 1.96 within a z-statistic for a confidence level of 95%; µ is the

ensemble mean stiffness, σ describes the standard deviation (visualized in the shape of error bars in all examples). The

selected RVE sizes presented in Tables 3 and 4, combined with a total number of N = 100 random samples, guarantees

for almost all geometries and imperfection types a margin of error e < 0.1%. Therefore, we deem the chosen RVE

and ensemble sizes sufficient. Exceptions are the Poisson’s ratio sensitivity towards node displacements and missing

beams of the kagome structure, where the margins of error increase to e = 0.37% and e = 0.79%, respectively (see

the standard deviation in Figure 5f). We attribute this large standard deviation to the relatively small C̄1122 stiffness

tensor component of the kagome lattice (Table A.1), when compared to the other components.

Figure B.21 visualizes the convergence of the effective Young’s modulus Ē for the example of the bitruncated

octahedron. On the left, we show for the example of missing beams at ξmis = 0.2 how Ē converges with increasing

Figure B.21: On the left, the effect of ensemble averaging is visualized for the example of a bitruncated octahedron lattice with ξmis = 0.2. On the

right, the spatial averaging criterion shows how, with increasing mesh refinement, the effective response converges to the one evaluated using the

continuum model described in Section Appendix A
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ensemble size, using an RVE size of 40×40×40 UC. On the right, the convergence of Ē is shown with increasing RVE

size (each data point is computed from N = 100 realizations). In case of the bitruncated octahedron an even larger

mesh size would be required to improve the result; however, running several simulations with an assembly larger than

40 × 40 × 40 becomes computationally infeasible.

Appendix C. Comparison to existing literature

As explained in the introduction, prior studies have numerically probed the sensitivity of different truss topologies

to imperfections. For reference, we here compare our results in Figures 5 and 6 to findings in literature. While we

selected a constant slenderness ratio of λ = 0.1 in all our simulations in Figures 5 and 6, we here change this value for a

comparison with literature data. Symons and Fleck [17] used a slenderness ratio of λ = 0.02 for their study of missing

beams in triangular, hexagonal, and kagome lattices. Recently, Liu and Liang [18] studied triangular lattices with

λ = 0.043, while Gross et al. [24] used λ = 0.05 in their 3D simulations. For the purpose of a comparison, we reran

the simulations for missing beams for a selection of 2D and 3D topologies, to allow for a comparison of our approach

with those stated above. In 2D, Figure C.22 shows good agreement with the results in [18] (who used periodic BCs

and beam elements) to compute the effective mechanical properties for the triangular lattice when subjected to missing

beams. The result for the bulk modulus Ḡ also agrees with observations in [17]. These authors further studied the

sensitivity of Ḡ to the number of missing beams for the hexagonal and kagome lattices, which also agree with our

data. The comparison to studies that select different slenderness ratios sheds light on this additional parameter, which

also has a determining influence on the sensitivity. While the Ḡ-sensitivity for the hexagonal (red) and triangular

(blue) topologies remains almost unchanged when decreasing the slenderness ratio from λ = 0.1 to λ = 0.02, the

shear-stiffness of the kagome lattice drops faster for slender beams, when compared to our results from Figure 5.

In 3D, the study by Gross et al. [24] on the sensitivity of different topologies to an increasing amount of missing

beams, using periodic BCs and the finite element method with Timoshenko beams, permits a direct comparison with

our results (see Figure C.23). Compared to our data, their study shows almost identical results for Young’s modulus

and the shear modulus for the octet and octahedral topologies (marked in orange and blue, respectively) but a different

sensitivity to missing beams in case of the bitruncated octahedron. Interestingly, our numerical data for the shear

modulus of the bitruncated octahedron agree excellently with the analytical predictions from the literature [24] up

to ξmis ≤ 0.15, unlike the numerical data reported within the same publication [24]. We cannot conclusive explain

the differences in the numerically obtained data for the bitruncated octahedron but our agreement with the analytical

solution makes us confident that the data reported here are trustworthy.
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Figure C.22: Comparison of the sensitivity of Young’s modulus and the shear modulus to missing beams with increasing ξmis for selected 2D truss

topologies to literature results [14, 17]. The sensitivity of the triangular lattice for slenderness ratios of λ = 0.02 and λ = 0.043 is almost identical.

0 0.05 0.1 0.15
0.4

0.5

0.6

0.7

0.8

0.9

1.0

ξmis

Ē
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Figure C.23: Comparison of the sensitivity of the Young and shear moduli to missing beams with increasing ξmis for selected 3D truss topologies

to results in [24] for randomly removed beams.
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Appendix D. Machine learning framework for predicting imperfections based on deviations in mechanical

properties

We use a conditional variational autoencoder (CVAE) [58, 59] to predict probabilistic estimates of the imper-

fections, i.e., probability P(ξ) based on a set of given imperfect mechanical properties, χ. Figure 14 schematically

illustrates the CVAE framework, which consists of a feed-forward neural network called the encoder, a probabilis-

tic latent space, and another feed-forward neural network called the decoder. In the following, we describe each

component of the framework.

Encoder: For a given pair of ξ and χ from the training dataset, the encoder receives as input their concatenation,

i.e., (ξ,χ) ∈ Rdim(ξ)+dim(χ). The encoder outputs two vectors: µ ∈ Rd and s ∈ Rd, where d is treated as a hyperparam-

eter. The interpretation of µ and s as well as d are discussed later. For the scope of this work, we model the encoder

architecture as
µ = Lh→d

ω2
◦ R ◦ Ldim(ξ)+dim(χ)→h

ω1 [(ξ,χ)],

s = Lh→d
ω3

◦ R ◦ Ldim(ξ)+dim(χ)→h
ω1 [(ξ,χ)].

(D.1)

Here, Li→ j
ωk denotes a linear layer parameterized by the set of trainable weights and biases ωk = {Ak, bk} such that any

v ∈ Ri is transformed according to

Li→ j
ωk [v] = Akv + bk, with Ak ∈ R j×i, bk ∈ R j. (D.2)

Similar to the output dimension d, the hidden/intermediate dimension h is treated as a hyperparameter. R(·) = max(0, ·)
is the rectified linear activation unit (ReLU), which acts element-wise on the input and introduces nonlinearity to

the series of linear transformations. All the trainable parameters of the encoder are collectively denoted as ωE =

{ω1, ω2, ω3}.
Latent space: During the training phase of the CVAE, the outputs of the encoder, i.e., µ and s, are interpreted as

mean and log-variance of a Gaussian distribution, respectively. We sample a latent space representation z ∈ Rd of the

encoder inputs (ξ,χ) as

z ∼ N
(
[µ1, . . . , µd]⊺, diag

([
σ2

1, . . . , σ
2
d

]⊺))
, (D.3)

where si = log(σ2
i ) is the log-variance (alternatively, σi = exp(si/2) is the standard deviation) of the ith component.

diag(·) denotes the diagonal matrix created using the input vector (·), and N denotes the Gaussian distribution. From

an implementation perspective, z is sampled as

z = µ + ε ⊙ [σ1, . . . , σd]⊺ with ε ∼ N(0, I), (D.4)

where ⊙ denotes element-wise multiplication. Also known as the reparameterization trick [58], (D.4) is specifically

used to sample the distribution while maintaining the differentiability required for back-propagation-based training of

the neural networks.
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Decoder: The latent space representation z and the imperfect mechanical properties χ are concatenated and passed

as input to the decoder. Based on those, it predicts the imperfection characteristics ξ̂ ∈ Rdim(ξ). Similar to the encoder,

we model the decoder architecture as

ξ̂ = Lh→dim(ξ)
ω5 ◦ R ◦ Ld+dim(χ)→h

ω4 [(z,χ)] (D.5)

with ωD = {ω4, ω5} containing the trainable parameters of the decoder.

Training: Given a representative dataset D = {(ξ(n),χ(n)) : n = 1, . . . ,N}, the encoder and decoder training (i.e.,

finding appropriate trainable parameters ωE and ωD, respectively) is formulated as a minimization problem of the

form:

min
ωE , ωD

1
N

N∑
n=1

∥∥∥ξ(n) − ξ̂(n)
∥∥∥2

︸                  ︷︷                  ︸
reconstruction loss

+

N∑
n=1

DKL

(
N

(
[µ(n)

1 , . . . , µ
(n)
d ]⊺, diag

([
σ(n)

1
2
, . . . , σ(n)

d
2
]⊺))

∥ N(0, I)
)

︸                                                                                  ︷︷                                                                                  ︸
Kullback–Leibler divergence loss

. (D.6)

The reconstruction loss ensures that the input to the encoder ξ(n) (i.e., the imperfection characteristics) – conditioned

upon a given set of mechanical properties χ(n) – is accurately reconstructed by the decoder into ξ̂(n). Due to the

probabilistic informational bottleneck between the encoder and decoder, an accurate reconstruction of the dataset may

be interpreted as learning a compressed and continuous latent representation z of input ξ(n) conditioned upon χ(n). The

Kullback–Leibler divergence (KLD) loss in (D.6) penalizes the divergence of the latent space distribution (see (D.3))

from the standard Gaussian distribution. As discussed later, ensuring that the latent space can be approximated by a

standard Gaussian distribution is critical to solve the inverse problem of estimating ξ based only on known χ. The

KLD between two probability distributions P and Q is given by [60]

DKL(P ∥ Q) =
∫ ∞

−∞
p(x) log

(
p(x)
q(x)

)
dx, (D.7)

where p and q denote the probability densities of P and Q, respectively. For the case of Gaussian distributions, the

KLD loss in (D.6) simplifies to

DKL

(
N

(
[µ1, . . . , µd]⊺, diag

([
σ2

1, . . . , σ
2
d

]⊺)) ∥ N(0, I)
)
=

1
2

d∑
i=1

(
σ2

i + µ
2
i − 1 − log(σ2

i )
)
, (D.8)

where the superscripts (·)(n) have been omitted for better readability.

Inference: During the inference phase, the imperfections ξ are the unknowns to be estimated given the mechanical

properties χ. Assuming that the model is trained sufficiently such that the latent space distribution can be approximated

by the standard Gaussian distribution (ensured by minimizing the KLD loss in (D.6)), the latent vector z is sampled

as

z ∼ N(0, I) (D.9)

(instead of using the encoder) and concatenated with the known χ. The encoder is ignored during the inference phase.

The concatenated vector (z,χ) is mapped by the decoder to ξ̂. The inference process can be repeated M times by

sampling z via (D.9) to empirically obtain P(ξ).
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Implementation details: To ensure faster training and high prediction accuracy, all data features in D are inde-

pendently and linearly scaled to the range of [−1, 1] before training. Note that the results during the inference phase

are scaled back to their original range after prediction from the decoder. Across all the results presented here, we use

d = 6 as the latent space dimension and h = 128 as the hidden dimension in the encoder and decoder architectures.

For training, we minimize the loss in (D.6) with the Adam optimizer [61] for 2000 epochs with a learning rate of

10−4 and batch size of 1024. For inference, we sample M = 3000 predictions to obtain representative probability

distributions. All implementations are performed in PyTorch [62].
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