Environmental Modelling and Software 165 (2023) 105712

journal homepage: www.elsevier.com/locate/envsoft

Contents lists available at ScienceDirect

Environmental Modelling and Software

Check for

CCdownscaling: A Python package for multivariable statistical climate model &=

downscaling

Andrew D. Polasky ?, Jenni L. Evans ", Jose D. Fuentes ?

a Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA, USA
b Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA, USA

ARTICLE INFO ABSTRACT

Dataset link: https://zenodo.org/record/65066
77, https://zenodo.org/record/7305359

Keywords:

Statistical downscaling
Self organizing maps
Climate change
Random forest
software

Python

Future climate projections are made with global numerical models whose spatial resolution often exceed
100s of km?. These scales are too large to resolve many weather events, leaving a gap between the climate
information needed to understand the impact of climate change on many human activities, and the information
that can be provided by global models. Regional climate projections generated using statistical downscaling
methods can provide an essential bridge between global climate models and the high spatial resolution data
needed. As the demand for localized climate information continues to grow, new software tools are necessary
to provide downscaled climate information. In this article, we describe CCdownscaling, a software package that
provides multiple statistical climate downscaling methods to the station scale, including the Self Organizing
Maps method. CCdownscaling includes several evaluation metrics for assessing the skill of downscaled climate

information in various applications, and we demonstrate these features on an example dataset.

1. Introduction

General circulation models (GCMs) provide estimates for the state
of the Earth’s climate under a range of future greenhouse gas emissions
scenarios. The GCMs typically run on horizontal spatial (grid) scales
ranging from 0.7 x 0.7 degrees® to 2.5 x 2.5 degrees® (Taylor et al.,
2012; Priestley et al.,, 2020). These spatial scales are too large to
capture many weather events that are crucial for understanding the
impacts of climate change on human populations (Radi¢ and Clarke,
2011; Taylor et al., 2012). Therefore, it is often necessary to regionally
generate downscaled climate information to the spatial scales required
for the applications of interest (Maraun et al., 2010).

Precipitation is of particular interest and importance for projecting
impacts of climate change on human activity. Unfortunately, precip-
itation remains a challenge for GCMs in many regions, for example
the tropics, where the modeled precipitation can struggle to match
even the annual mean precipitation (Koutroulis et al., 2016; Yang
and Huang, 2022). As we move to higher spatial and temporal res-
olutions, the characteristics of precipitation become an even larger
challenge for most GCMs to accurately reproduce, with GCM errors
often being larger than size of projected changes (Zamani et al., 2020;
Almazroui et al., 2021). Even in the regions where GCMs do capture
the precipitation dynamics at the desired spatial scales, the amounts
of precipitation represent an areal average on the model grid, thereby

missing the characterization of localized extreme low or high precip-
itation events (Gervais et al., 2014). These characteristics create the
so-called “drizzle” effect in GCMs, and result in projections with too
many days of moderate precipitation and too few periods with no or
extreme high precipitation (Stephens et al., 2010; Mehran et al., 2014;
Koutroulis et al., 2016). Correcting these model biases remains a crucial
endeavor for determining accurate estimates of the impacts of climate
change, especially for accurately predicting changes to the frequency
and severity of droughts and flooding (Camici et al., 2014; Quintero
et al., 2018; Ahmadalipour et al., 2017).

Statistical downscaling of climate information is one option for
reaching the desired spatial-scale resolution, and for bridging the gap
between the information provided by the GCMs and that needed by
users of climate information (Robinson and Finkelstein, 1991; Fowler
et al., 2007). Statistical downscaling methods use empirical relation-
ships between the outputs of GCMs and more localized (i.e., weather
station) data to create quantitative models for scaling the given state of
climate from the synoptic scale to local environments. This approach
of incorporating GCM outputs and estimates of localized conditions
can be used to produce future climate scenarios under different ra-
diative forcing scenarios, such as the shared socioeconomic pathway
(SSP) scenarios produced by the Intergovernmental Panel on Climate
Change (Gidden et al., 2019).
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Numerous methods have been used for statistical downscaling, vary-
ing widely in complexity. Some of the earlier downscaling methods in-
clude bias-correction approaches to amend, scale, and produce outputs,
based on the results from GCMs, that apply to the local conditions (Karl
et al., 1990; Murphy, 1999). Subsequent approaches, based on a range
of statistical and machine learning techniques, include the use of
artificial neural networks (Hewitson and Crane, 1996; Ahmed et al.,
2015; Hernanz et al., 2022), clustering (Hewitson and Crane, 2006;
Wang et al., 2013), stochastic weather generators (Wilks, 1999; Kilsby
et al., 2007), and constructed analogs (Abatzoglou and Brown, 2012;
Pierce et al., 2014). These methods have improved the availability
and reliability of downscaled climate projections, but the choice of
downscaling method can have a significant impact on the results (Wang
et al., 2017).

While downscaling is a widely used approach for estimating climate
information at given locales (Maraun and Widmann, 2018), there is a
dearth of easy-to-use software for producing and evaluating tailored
downscaled climate projections. Some existing options include the Sta-
tistical Downscaling Model (SDSM, Wilby and Dawson, 2013), which
uses a conditional weather generator approach, and the DownscaleR
software package (Bedia et al., 2020) that provides several bias cor-
rection, linear regression, and analog methods. The SDSM provides
only a single downscaling approach, thereby limiting its adaptability to
diverse and broad applications. Other software packages, such as the R
package “musica”, exist and provide tools for validation of statistical
downscaling methods at multiple time scales (Hanel et al., 2017).

As the need for regional climate information increases, there is
demand to develop easy-to-implement numerical methods to gener-
ate regionally downscaled climate projections. One objective of this
study is to describe the CCdownscaling (Climate Change Downscal-
ing) software package that provides a framework for incorporating
user-defined variables to generate climate projections at the station
level. Notably, CCdownscaling includes the popular and theoretically
sound Self-Organizing Map (SOM) downscaling method, which was
not previously available in any publicly available software. An addi-
tional objective is to couple the provided downscaling methods with a
framework for evaluating the skill of the generated climate projections.
The package is written in Python because the language is widely used
in both the Atmospheric Science and Machine Learning communities,
making it an ideal choice for wide distribution and application. Given
that applications of climate projections differ widely and apply to
diverse environments, it is crucial to establish evaluation metrics for
the downscaled products. In short, the goals of this paper are to:

— Describe an easy to use Python package implementing the SOM
algorithm, as well as other downscaling methods.

— Describe a set of metrics for evaluating the reliability of down-
scaling methods included in the Python package.

— Demonstrate the use of the methods and metrics in the CCdown-
scaling package on an example downscaling use case.

1.1. Description of the CCdownscaling package

The CCdownscaling package is an open-source and freely available
implementation of a number of downscaling approaches, designed for
downscaling from GCM grid scale to station locations. The code has also
been designed to easily accommodate new methods as desired by future
users. CCdownscaling package provides a framework for using many
common machine learning tools as downscaling methods with the goal
to allow users to leverage existing and ongoing advances in machine
learning when approaching downscaling problems. The package allows
users to leverage the powerful scikit-learn (Pedregosa et al., 2011)
and TensorFlow (Abadi et al., 2015) machine learning libraries to use
common machine learning approaches for downscaling. In addition,
the CCdownscaling package provides several point-based downscaling

Environmental Modelling and Software 165 (2023) 105712

methods, as well as metrics for evaluating the skill of different methods
on several variables important for different downscaling applications.

The SOM downscaling method (initially described in Hewitson and
Crane (2006)) is not currently available in any publicly available
software package. We have incorporated the SOM downscaling in
CCdownscaling within a flexible framework. In doing so, we demon-
strate how CCdownscaling can be easily extended to new machine
learning methods, to allow for future additions to the downscaling
package, and integrate with commonly used existing machine learning
frameworks. This will allow for easy integration of future machine
learning techniques. Using the scikit-learn package (Pedregosa et al.,
2011), we provide a number of additional machine learning algorithms
for comparison as downscaling methods, including random forest and
multiple linear regression models.

The CCdownscaling package contains three primary components:
pre-processing tools, downscaling methods, and evaluation metrics.
The pre-processing tools include methods for variable selection and
dimension reduction (Section 3), tools for selecting specific patterns
of train and test data (Section 2.3). The downscaling methods (Sec-
tion 4) provide a range of approaches for addressing the challenges of
downscaling for different climate regimes and variables. And finally,
the evaluation metrics (Section 5) provide tools for assessing the skill
of the downscaling methods and inputs. An example showing the use
of each of these components is provided in the form of a Python script
and Jupyter notebook with the software package.

2. Downscaling for climate change with CCdownscaling

While GCMs are our best tools for overall assessment of future
climate scenarios, there are many important impacts of climate change
that are not well specified in GCMs. Extreme precipitation events,
for example, are often underrepresented in GCMs, and are a major
potential climate change impact (Fig. 1). GCM data often has significant
biases compared to the observed values in the historical period. Cor-
recting these biases is important before projecting to future scenarios.
Downscaling can provide a method for bias correction, ensuring that
the distribution of values matches the observed distribution. Statistical
downscaling is important to provide a bridge between the best available
GCMs and information needed to make critical decisions on costs
and adaptations to climate change. These include providing inputs to
downstream applications, including crop yield modeling and human
comfort metrics (Charles et al., 2017; Dahl et al., 2019).

Downscaling of GCM simulations to the scales desired for these ap-
plications needs to replicate the conditions resulting from climate and
provide information on variability due to the weather and local factors.
In this section, we describe how the CCdownscaling package can be
used for downscaling, describing both the methods for downscaling
and the diagnostics included in CCdownscaling to evaluate the success
of the downscaling based on key factors (e.g., statistical distribution,
behavior of extremes, temporal correlation) important to the chosen
situation.

2.1. Example case

Downscaling is generally useful to answer specific questions that
cannot be adequately addressed by global models. In this paper, we
will demonstrate the use of the CCdownscaling package to answer three
such questions for a chosen location, using data from O’Hare airport
near Chicago, Illinois. We will look at the frequency of days with a
maximum temperature above the historical 90" percentile, the change
in the average rainfall, and change in frequency of precipitation above
20 mm per day.

To carry out this downscaling, we use precipitation and daily max-
imum temperature from the Global Summary of Day (GSOD, National
Climatic Data Center, 2020) dataset for O’Hare Airport in Chicago,
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Fig. 1. Bar chart comparing the rainfall amounts for O’Hare Airport (Chicago, Illinois,
USA) in the observed data, the NCEP reanalysis data, and an example GCM (the GFDL-
ESM2M model from the Coupled Model Intercomparison Project Phase 5 (CMIP5))
for 1976-2005. The Reanalysis and GCM data underestimate the large rainfall events
compared to the observations.

llinois. Reanalysis data is taken from the National Center for En-
vironmental Prediction (NCEP, Kalnay et al., 1996) reanalysis 2 for
relative humidity (at 850 hPa), air temperature (850 hPa), geopotential
height (500 hPa), sea level pressure (SLP, surface), and zonal and
meridional wind components (700 hPa). These predictors were selected
to capture the synoptic environment of the region. More information on
the variables selection process can be found in Section 3.

This data is used to train the downscaling methods included in the
CCdownscaling software package, and to evaluate the results using the
various metrics described below. Results shown below for this exam-
ple, and the required data sets and Python code are provided in the
GitHub repository (https://github.com/drewpolasky/CCdownscaling).
The period from 1976 to 1999 is used to train the downscaling methods,
which are then tested on the years from 2000 to 2005. In the following
sections we discuss the methods and evaluation metrics in the context
of this example case.

The example use case is provided as both a Python script and
Jupyter notebook in the package repository. Both provide the same
code, with the Jupyter notebook providing a more interactive format.
With the package installed, it can either be run directly in Python from
the ohare_example.py file or the Jupyter notebook of the same name,
located in the “example” folder. The data (in NetCDF format) needed to
run the example can be downloaded from https://zenodo.org/record/
7817799.

2.2. Reproducing climate variability

A downscaling method must be able to demonstrate that it can
reproduce the variability of the observed climate from the input data.
This is particularly important in cases (such as precipitation) where
the variability is not well described in the GCMs (Stephens et al.,
2010). The CCdownscaling package includes several metrics to evaluate
the ability of a downscaling method to reproduce the existing climate
variability, including Probability Density Function (PDF) skill score,
Kolmogorov-Smirnov testing, and seasonal tests (see Section 5 for more
details on these methods). These tests are carried out on an independent
test set, to help separate from the data used to train the downscaling
model. For our example case, we use the final 6 years of the 30 year
period (2000-2005) as our test set. (Fig. 2).
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Fig. 2. Bar chart of precipitation amounts for O’Hare Airport for SOM and random
forest downscaling, as well as the uncorrected NCEP precipitation values, and the
station observations. The NCEP values underestimate particularly the large precipitation
events. The two part random forest downscaling corrects this to some degree, but the
SOM and Quantile Mapping (QMAP) methods do significantly better.

2.3. Adapting to new climate conditions

A key challenge for statistical downscaling comes from trying to
make predictions for future climate scenarios, where we are expecting
the conditions to be significantly different from those we observe today.
A good downscaling technique must therefore be able to adapt to
changes in the underlying climate that go beyond the data it was
trained on. Evaluating downscaling methods on this criteria requires
some creativity, since the observational records typical cover smaller
changes in climate than those we expect under most climate change
scenarios (Gulev et al., 2021).

To address this difficulty, we implement two evaluation methods
in the CCdownscaling package. For the first method, the input data
is ranked over a given time period, and split such that the highest or
lowest time periods are in the test set. For example, we select the six
hottest years from 1976 to 2005 at O’Hare airport, and use those years
for the test set, training on the other years. In this case, the six wettest
years averaged 0.95 mm per day above the remaining years, an increase
of 40%. To evaluate the different downscaling methods, we plot their
performance on the biased train and test sets, to see how much of the
change in precipitation they capture (Fig. 3). Selecting the train and
test sets for this method can be done with the select max target years
function.

The second method takes advantage of the differences in climate
between seasons to explore the ability of the methods to shift to
new climates. We train a model on one season (e.g., spring), and
evaluate that same model on another season (e.g., summer). In the
O’Hare example, the summer is an average of 12.7 °C warmer than
the spring, with 18.5% more precipitation, providing a more extreme
test case than selecting the warmest set of years. This method requires
tuning for individual locations when selecting the train and test season
dates. For the O’Hare example, we use March-April-May (MAM) for
spring, June-July—August (JJA) for summer. Other regions, such as
tropical or monsoon environments, would require different date selec-
tions. This is customizable by setting the train and test dates in the
select season_train_test function.

These two functions for splitting train and test data are provided in
addition to two more traditional techniques: a simple split, taking the
most recent years for the test set, and a k-fold cross validation split,
which forms a number of train/test split sets by dividing the available
data into a given number (k) of segments. Each of these segments is
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Fig. 3. Bar chart comparing the downscaling precipitation for the SOM (a), RF (b), and QMAP (c) methods when trained on the 24 years with the least precipitation from
1976-2005, and evaluated on the years with the most precipitation. None of the methods capture all of the shift to more precipitation, but the RF method does the best job,
increasing in average precipitation by 0.59 mm per day, compared to 0.3 for the SOM and QMAP methods.

held out as the test data while the downscaling model is trained on
the remaining data. This is especially useful in areas with limited input
data, as a smaller test set size can be used while still maintaining a
robust estimate of model skill (Fushiki, 2011).

Many of the changes projected under most climate change scenarios
represent climates that have not been previously experienced, posing
a challenge for training and verifying statistical downscaling models.
Using these methods, we are able to test the ability of the downscaling
methods to adapt to different circumstances to those they were trained
on. In the example Jupyter notebook, examples for each of these
splitting methods can be found in Section 2.

2.4. Considering extremes

One of the most critical pieces for understanding the impact of
climate change is understanding changes in frequency and severity of
extreme events (Katz and Brown, 1992). These events are also more
difficult for GCMs to represent accurately than changes to the average
of a given variable, increasing the need for downscaling methods that
can capture such events (Kysel et al., 2002; Knutti and Sedlacek, 2013).

In the CCdownscaling package, we consider two forms of extreme
events: percentage-based and absolute. Percentage-based events are de-
fined by the frequency of exceeding a given percentile of the observed
data for a given location. For example, at O’Hare airport, the 90"
percentile for the training data of 1976-1999 is 30.6 °C, and we can
calculate the number of days in the train and test sets that fall above
this threshold.

Absolute metrics look at values that have specific meanings for
impacts. For example, many crops suffer from decreased growth rates
above certain temperature thresholds. Schlenker and Roberts (2009)
found that average daily temperature of above 39 °C for corn, and
30 °C for soy caused yields to decline rapidly. CCdownscaling pro-
vides tools for assessing both of these types of metrics through the
included Climdex module, which implements the 27 ETCCDI climate
indices (Peterson, 2005). These indices cover a range of temperature
and precipitation based metrics to provide an overview of the changes
in key aspects of a region’s climate. A full list of the indices can be
found in Appendix A, and an example use of these metrics can be found
in Section 9 of the example Jupyter notebook.

2.5. Comparing downscaling methods with CCdownscaling

The different downscaling methods provided by the CCdownscaling
package have different strengths and weaknesses when answering dif-
ferent downscaling questions. Demonstrations of these differences can
be found in the results in Section 5.

The SOM method (see Section 4.1 for more details on the method)
is well suited to assessing changes in the frequency of events, and does
a good job of recreating past climate variability (Ning et al., 2012). It
can, however, struggle to respond to large changes in the underlying
climate, and cannot extrapolate to new extreme values (Hewitson and
Crane, 2006). It is better suited to analyses of how frequently an ex-
treme event may occur in a future climate by estimating the frequency
of synoptic conditions that have historically created extreme events,
rather than estimating the maximum severity of events (Polasky et al.,
2021).

The Random Forest method (Section 4.2) is highly adaptable, and
generally does a better job of matching individual days than many of
the other methods (He et al., 2016). However, it can also overfit to the
data, and result in too many days with moderate values. This effect can
be particularly acute for precipitation downscaling, with random forest
models often producing to many days of moderate precipitation, and
not enough dry days, or days of extreme rainfall (Fig. 3b).

Quantile mapping (Section 4.3) is generally very good at reproduc-
ing the historical climate variability, but often struggles to generalize to
new climates, especially for more complex variables such as precipita-
tion (Zhao et al., 2017). Quantile mapping is also vulnerable to variance
inflation, where the variance in the downscaled output is higher than
the variance in the observed data over a given area (Maraun, 2013;
Cannon et al., 2015), because the variance at low resolutions tends to
be lower than the variance at high resolutions. In mapping between the
two distributions, the marginal difference in value is corrected, but the
local variability in values is not included, leading to an overly strong
spatial correlation between observed locations. Without further correc-
tion, this leads to spatial averages that overproduce extremes at either
end of the distribution, especially for variables such as precipitation,
that have lower spatial correlations.
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Table 1

Variable importance rankings for maximum temperature for SIR, PCA, and RF methods.
Table entries are NCEP variable names and pressure level in hPa. PCA is an unsu-
pervised method, meaning there is no influence of the maximum temperature target
variable on the rankings.

SIR PCA RF

1 HGT 500 HGT 500 AIR surface

2 AIR surface HGT 600 RHUM 850

3 HGT 600 HGT 700 RHUM surface
4 HGT 300 HGT 300 UWND surface
5 AIR 700 SLP surface RHUM 700

6 SLP surface VWND 600 VWND surface
7 HGT 850 UWND 600 AIR 850

8 VWND 600 AIR 600 RHUM 500

9 UWND 700 AIR 850 UWND 850
10 UWND 300 VWND 600 RHUM 600

3. Variable selection

Appropriate variable selection for downscaling is of critical impor-
tance for training a reliable and accurate downscaling model (Najafi
et al.,, 2011; Hammami et al., 2012; Teegavarapu and Goly, 2018).
There are a large number of variables that could potentially be useful
when downscaling. For most downscaling targets, there are a large
number of atmospheric variables that correlate in complex ways. In
the case of precipitation, for example, useful variables might include
relative humidity, sea level pressure, or other variables related to hu-
midity, circulation patterns, or convective activity (Charles et al., 1999;
Timbal et al., 2008; Maraun et al., 2010). The selection of variables
for downscaling must also take into account the representation of
those variables in the GCMs. Many potentially useful variables are not
reliably simulated in GCMs, making them likely to be poor choices for
a downscaling model (Cavazos and Hewitson, 2005; Teegavarapu and
Goly, 2018).

In most cases, expert opinion is likely to be useful in selecting
final sets of predictors that make physical sense for the climatology
of the downscaling target region. It can then be useful to compare
to the variables that objective methods identify as the most useful.
These objective methods can also be used to select a subset of the
initial predictor set, to improve model speed with minimal drops in
performance.

CCdownscaling includes three methods for variable selection, Sliced
Inverse Regression (SIR, Li, 1991), and Principal Component Analysis
(PCA, Hotelling, 1933) and random forest (RF, Breiman, 2001). Differ-
ent methods for variable selection can make different identifications
of the most important variables, so it can be helpful to run multi-
ple techniques, and look for common variables between the different
approaches. CCdownscaling makes comparing these methods straight-
forward, all of these methods are implemented in the variable_selection
code, and an example can be found in the example folder and Jupyter
notebook. The relative importance rankings for an initial set of five
predictors at five pressure levels from these three methods can be found
in Table 1. The six input variables are air temperature (AIR), geopoten-
tial height (HGT), relative humidity (RHUM), sea level pressure (SLP,
surface only), meridional wind speed (VWND), and zonal wind speed
(UWND).

Two of the three methods, SIR and PCA, also serve as dimension
reduction techniques. These method can be used to transform the high-
dimension input data to lower dimension constructed features that
maintain as much of the original information as possible (Ma and Zhu,
2013). This can be used to construct a set of new inputs that are a
combination of the original inputs, and capture as much as possible
of the variance of the downscaling target. These new variables can be
used as inputs to the downscaling methods, reducing the computational
requirements by having fewer input variables, while still retaining the
original information.
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4. Downscaling methods

The CCdownscaling package incorporates several downscaling
methods, all conforming to a common framework for integration into
downscaling workflows. The Application Programming Interface (API)
mirrors the scikit-learn setup for machine learning models, which
allows the easy integration of scikit-learn methods, and ease of use
for those already familiar with scikit-learn. This approach allows for
the development, testing, and comparison of different downscaling
methods in a shared framework, as displayed in Fig. 4. The usage of the
methods is demonstrated in Sections 4 and 5 of the example Jupyter
notebook. All of the downscaling methods in the package are initially
trained from reanalysis data. Once a model has been trained, it can
then be used with GCM data to provide downscaled estimates for future
climate scenarios.

4.1. SOM downscaling

Self-Organizing Maps (SOMs) are an unsupervised machine learning
method for mapping a complex set of inputs onto a two-dimensional
map of nodes, each representing a typical pattern observed in the
input data (Kohonen, 1990). For downscaling, SOMs can be used to
identify characteristic synoptic scale weather patterns, and relate those
patterns to the observed local conditions (Hewitson and Crane, 2006).
The SOM can then be used with GCM projections to explore changes
to the frequency of these patterns in future climate scenarios (Gibson
et al., 2016). SOMs have been broadly used for downscaling, particu-
larly of precipitation, in regions such as South Africa (Hewitson and
Crane, 2006), Florida (Sinha et al., 2018), and the Midwest United
States (Polasky et al., 2021).

The SOM method begins by creating a set of nodes arranged in a two
dimensional grid. Each of these nodes is defined by a vector, matching
the size of one case of training data. To train the SOM, each element of
the training data (in our example case, downscaling for O’Hare Airport,
this data comes from the NCEP reanalysis, taking a 5 x 5 grid-point
window around the station) is compared to the SOM nodes. The node
whose vector is nearest (in Euclidean distance) to the training element
is selected as the Best Match Unit (BMU),

BMU = min(W, — (1)) (€8]

where W, is the weight vector for node v, I is the input dataset, and ¢ is
the index of the training element. The BMU vector is then incrementally
updated towards the training element, as are the neighboring nodes to
the BMU. Each node weight vector is updated

W, (s + 1) = W,(s) + O, v)a X (I(t) — W,(s)) 2)

where s is the current iteration of the training, a is the learning
rate of the SOM, and O is the neighborhood function, governing how
much the update effects the nodes near to the BMU. The value of ©
decreases exponentially the distance of the node to BMU. Adjusting
the neighboring nodes in addition to the BMU has the effect of sorting
similar nodes to be near to one another in the map. The overall update
rate is governed by «. With each successive pass through the dataset,
«a is decreased to more rapidly converge to a stable map.

Once the SOM has been trained, each day in the training data
can be placed on the map by finding the BMU. For each node of the
SOM, this gives a set of days corresponding to that pattern. The station
observations for those days can be combined to create a probability
function of local values for each SOM node. To create new down-
scaled projections, GCM data can be mapped onto the SOM, matching
each day to its BMU. The probability function of the downscaling
target variable can then be sampled from, producing the downscaled
value for that day. By iterating through the days included in the
GCM data sets, we produce a daily downscaled time series for the
given location. The SOMs were implemented in Python using the
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Fig. 4. This flowchart provides the sequence of training the downscaling process using historical data. Variables are selected from the reanalysis data for the target predictand,
and the downscaling methods are trained and tested using the different evaluation metrics described in the text. In parenthesis are the names of the functions used for a given
step in the downscaling process. The figure is adapted from Polasky et al. (2021). Once the downscaling model has been selected and trained, it can then be applied to future

climate projections.

TensorFlow library (Abadi et al., 2015), adapted from the open-source
TensorFlow-SOM project (Gorman, 2019).

The SOM method has the advantage of providing insight into the
weather patterns giving rise to specific downscaled outcomes, through
the patterns detected by the individual nodes of the SOM. In the O’Hare
Airport example, the highest precipitation nodes fall in the center of
the top two rows of the SOM (Fig. 5). The color gradient represents
the frequency of that nodes being the BMU in the training data, while
the number in the box is the average precipitation for the days falling
on that node. Two of these nodes for example, the node at row 4,
column 5 (4,1), and node (3,4), both have high precipitation, but
very different temperature patterns (Fig. 6). Node (3,4) represents a
warm summer day, with temperatures between 17 °C in the south of
the region around O’Hare, and 11 °C in the North at 850 hPa. The
high precipitation likely corresponds to summer-type convection. The
(4,1) node is colder, with a strong southwest/northeast temperature
gradient, and the precipitation is likely driven by mid-latitude cyclones.

4.2. Scikit-learn downscaling methods

Scikit-Learn is a widely used machine learning library for Python
that provides a wide range of machine learning tools (Pedregosa et al.,
2011). These methods have been adapted for use as downscaling tools
in CCdownscaling, as demonstrated for a random forest model for the
O’Hare Airport example. Random forests are a widely used machine
learning approach, that have been successfully applied to a wide range
of problems (Breiman, 2001). Their adaptability and ease of use have
led to random forest being a go-to method in machine learning (Biau
and Scornet, 2016). Random forests have been used for downscaling
temperature and precipitation in a variety of locations (Hutengs and
Vohland, 2016; Sa’adi et al., 2017; Pang et al., 2017; Polasky et al.,
2021).

The CCdownscaling package provides a framework for extending
scikit-learn provided methods to better suit downscaling problems.
An example of this functionality is given in two_step_random_forest
model, which adapts the standard random forest from scikit-learn to
have a classifier to initially split dry/precipitation days, then a second
regressor model to predict the amount of precipitation for the wet days.
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Fig. 5. Heat map of the SOM nodes for O’Hare Airport. The color represents the
number of observations of occurrence of that node, while the number in each box
is the average precipitation on the days in that node cluster.

This model addresses issues of the random forest producing too many
days of middling precipitation, and too few dry days, similar to the
undownscaled GCMs, and generally outperforms a basic random forest
for precipitation metrics (Section 5).

4.3. Quantile mapping

Quantile mapping is a commonly used approach for downscaling,
especially for temperature (Maraun, 2013; Han et al., 2019). Unlike
the other methods included in this software package, quantile map-
ping uses only a single variable as input, typically the value being
downscaled (i.e., daily precipitation from the model for downscaling
precipitation). It takes the approach of comparing the difference in
value between the quantile ranks of an initial and final distribution.
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A transformation is calculated between these ranks, which can then be
applied to a new input distribution, to create a downscaled output that
better matches the observed distribution of events.

Quantile mapping is effective at bias correcting GCMs outputs, but
quantile mapping relies on the fields of the target variable from the
GCMs. This can be an issue, particularly in the case of precipitation,
where the representation of the processes underlying the output values
are not properly resolved by the GCMs. Other methods, which can make
use of variables that are better captured in the GCMs, are likely to
yield superior results of the downscaling in these circumstances (Zhao
et al., 2017). Nonetheless, quantile mapping provides a straightforward
bias correction approach, and is a useful point of comparison for other
downscaling methods (Wood et al., 2004).

5. Validation methods

In addition to providing a range of downscaling methods, CC-
downscaling also provides a number of different evaluation metrics to
compare methods and assess the suitability of a downscaling output
for a given task. Depending on the goals of the downscaling and even
the use case, different downscaling applications may best be assessed
using different evaluation criteria. For example, estimating drought
conditions will require accurate estimation of average precipitation and
temperature over longer time frames, while projecting for flooding situ-
ations will require accurate representation of large precipitation events,
and temporal correlation for multi-day events. The implementation of
many validation methods in CCdownscaling is thus a key part of its
broad applicability. In this section, we describe a number of evaluation
metrics and show the results of these metrics on the O’Hare Airport
example for a range of downscaling methods. Examples of these metrics
can be found in Sections 7 and 8 of the example Jupyter notebook.

5.1. SOM training metrics

The SOM method includes two specialized training metrics: quan-
tization and topological error. These are commonly used metrics for
assessing the training characteristics of a model setup, and should be
used when tuning the hyperparameters (controllable parameters that
define the setup and training characteristics) of the model.
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Fig. 7. Quantization error for SOM grids of increasing size. Quantization error
decreases as the number of nodes increases, as the specificity of each node increases.
Choosing the correct size of SOM grid is a trade off between the increasing complexity
of the graph, and thus potential for overfitting, and the decreasing quantization error
with larger maps. For this example, a grid size of 5 x 7 was chosen, as representing
the “elbow” where rate of decrease in the QE slows down.
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Fig. 8. Topographic error for increasing SOM grids sizes for the same example as
Fig. 7. TE increases monotonically with the size of the grid.

Quantization error (QE) refers to the average distance between
the day vectors assigned to a node, and the characteristic vector of
the node (Kohonen, 1990). Smaller values of QE represent reduced
spread within each cluster. As the size of the map increases, this value
will naturally decrease, as days are increasingly subdivided between
clusters. A common tactic for settling on a map size is to look for the
“elbow” where the decrease in QE slows down, with the increase in
map size (Céréghino and Park, 2009). In Fig. 7, this occurs at the 5 x 7
map size, and that map size was selected for further analyses.

Topographical Error (TE) is calculated as the percentage of input
vectors whose second-best matching units are adjacent to their best
match units. This is a measure of how well the topology of the orig-
inal dataset is being preserved in the lower-dimension space of the
SOM (Uriarte and Martin, 2005). TE generally increases as the size
of the map increases, with more opportunities for non-adjacent nodes
to match an input vector (Fig. 8). These two metrics combine to help
choose an optimal size for the SOM, balancing the gains in specificity
against the increasing complexity of the model. An example demon-
strating both of these methods can be found in som training example.py
in the example folder of the package.
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Table 2

Results scores for several different downscaling methods using the O’Hare airport
example precipitation data. There are noticeable difference between the SOM and
random forest (RF) scores, with the SOM showing a much higher RMSE than the RF but
a higher PDF skill score, indicating that while the SOM does not match the individual
days as well as the random forest model, it provides a better match of the distribution
of events. The NCEP data come from the NCEP reanalysis precipitation for the grid
point nearest to O’Hare Airport, without any downscaling applied.

PDF skill score KS test statistic RMSE (mm/day) Bias (mm/day)

SOM 0.99 0.03 11.03 0.04
RF 0.97 0.64 8.57 -0.48
RF two part 0.97 0.08 8.51 0.45
Qmap 0.99 0.17 9.97 -0.18
NCEP 0.97 0.65 8.88 0.12

5.2. Distribution tests

One of the key characteristics for a downscaling method is deter-
mining the skill of a downscaling approach is how well it reproduces
the historical distribution of events. Precipitation, in particular, is
commonly spread over too many days with small amounts of precip-
itation in GCMs projections, reducing the number of dry days and
large precipitation events (Fig. 2). These metrics are especially valuable
when trying to understand the shifts in climate, and the frequency of
different event types under climate change scenarios (Perkins et al.,
2013; Polasky et al., 2021). We implement two common distribution
tests in CCdownscaling: PDF skill score and the Kolmogorov-Smirnov
test.

The PDF skill score measures the similarity between two prob-
ability density functions (PDFs), by calculating the minimum value
between observed and modeled counts within each bin of a histogram
to measure the shared area within the distribution:

n
Sscore = Y, min(Z,,, Z,) 3)
1

where S, is the skill score, Z and Z, are the frequency of modeled
and observed values in a given bin, respectively, and n is the number
of bins used to calculate the PDF (Perkins et al., 2007). PDF skill score
provides an easily-interpretable score for the similarity between the
observed and downscaled distribution of values.

The Kolmogorov-Smirnov (KS) test provides a non-parametric sta-
tistical test to evaluate the likelihood that two samples are drawn
from the same underlying distribution (Massey, 1951). The KS test
provides both a test statistic, which can be used to assess the similarity
of two distributions (where smaller values are more similar), and a
probability that the given distributions are drawn from the same under-
lying probability distribution. Tables 2 and 3 show the KS scores and
probabilities for the different methods for the O’Hare Airport example
for precipitation and maximum air temperature, respectively.

In most cases, PDF score and KS test statistic are strongly corre-
lated (Brands et al., 2012). An exception occurs when the distribution
includes a large number of near zero values, as in the case of daily
precipitation. In this instance, PDF score can struggle due to the kernel
density smoothing applied in the calculation (Brands et al., 2012). The
effect of this difference can be seen in the O’Hare Airport example. For
temperature, the SOM and random forest methods score similarly to
one another in both PDF score and KS statistic (Table 3). By contrast,
for precipitation, the PDF statistic for the two methods is similar, while
the SOM far outperforms the random forest on KS statistic. The two-part
random forest achieves a KS statistic score much closer to that of the
SOM, primarily by correcting the number of days with no precipitation
compared to the single random forest. Visually, we can see that the
SOM much better matches the observed distribution (Fig. 2), indicating
that the KS test statistic better represents the relative skill of the two
downscaling methods for precipitation.
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Table 3

As in Table 3, but for daily maximum temperature. The SOM and Quantile mapping
(Qmap) methods have somewhat higher PDF skill scores, while the Qmap method does
the best job of matching the day-to-day values, with the lowest RMSE.

PDF skill score KS test statistic RMSE (K) Bias (K)
SOM 0.96 0.02 8.00 0.26
RF 0.94 0.04 3.24 -0.36
Qmap 0.96 0.03 2.76 —-0.25

Table 4
Climdex indices for maximum temperature, using the 6 warmest years as the test set.
See Appendix A for index definitions.

OBS SOM RF QMAP
TxMean 17.37 16.31 16.63 16.54
TxMin -13.59 -18.21 -11.41 -14.41
TxMax 37.77 36.70 37.60 37.35
Su25 127.5 112.7 112.7 117.7
IDO 31.33 41.17 31.17 34.83
Tx90p 60.17 35.17 39.83 43.67
Tx10p 31.33 41.17 31.17 34.83
WSDI 29.33 0 11.67 22.33

Table 5

Climdex indices for precipitation, using the 6 wettest years as the test set. Here, the
poor performance of the RF method on the high end of precipitation is very evident,
while the SOM and QMAP methods generally perform similarly. See Appendix A for
index definitions.

OBS SOM RF QMAP
PrcpMean 3.35 2.56 3.15 2.69
Rx1Day 93.7 56.8 38.6 68.1
Rx5Day 121 83.6 75.0 87.8
R95p 54.8 39.8 18.2 38.8
R99p 87.4 59.4 27.7 64.3
SDII 8.06 7.25 3.55 6.61
CDD 12.7 12.8 1.50 12.2
CWD 2.17 1.33 1.33 1.50
R10mm 36.0 29.0 29.0 30.7
R20mm 18.5 12.3 3.83 10.7

5.3. Error metrics

Error metrics are a common method for evaluating model skill,
evaluating the day by day differences in downscaled and observed
values for the testing period. These direct measures of difference are
most useful when comparing methods that seek to recreate the specific
conditions on each individual day, such as the random forest model.
Much of the goal with downscaling, and with any climate modeling, is
to understand the full range and frequency of events occurring, rather
than to predict the correct event on the specific day. For this reason, the
error metrics are often less useful for assessing downscaling model skill
than the distribution tests. Nonetheless, these measures can provide
useful comparisons, especially between similar classes of models, and
so we have made several error metrics available in CCdownscaling.

These error metrics should only be applied when comparing down-
scaled outputs calculated from reanalysis data to the ground-truth
observations. Data sets coming from GCMs are unlikely to match the
daily variation of the historical records, and the results may not repre-
sent the documented conditions. Commonly used error metrics such as
mean squared error and bias are included in the package. The results
for the O’Hare Airport example can be found in Table 2 for daily
precipitation, and Table 3 for maximum temperature. The results for
SOM and linear regression models for temperature show the differences
between the error and distribution metrics. The SOM outperforms
the linear model on the PDF and KS scores, as it provides a better
performance of matching the overall distribution of events, but scores
worse in terms of RMSE and bias, because it does not match the specific
day-to-day variations as well as the linear model.



A.D. Polasky et al.

401 . somRzo0.64 s
Random Forest R?: 0.93
Qmap R2: 0.94

301 *

Downscaled Data (° C)

—-201

-20 -10 0 10 20 30 40
Observed Data (° C)

Fig. 9. Scatter plot of the reanalysis downscaled (Y axis) against the observed
maximum temperature for the O’Hare station. The R? value for a linear regression
between the observed and downscaled data is shown in the legend.

1.0 A — SOM —— Qmap
—— Random Forest =~ —— NCEP
—— RF Two Part —— Obs
0.8 —— Linear

0.6 1

Correlation

0.4 1

0.2 1

0.0

Lag Time (days)

Fig. 10. Auto correlation for the different downscaling methods for precipitation at
O’Hare airport.

A similar approach can be taken by plotting the observed and down-
scaled data against one another, and calculating a linear regression
(Fig. 9). This provides a clear visual representation of how well the
downscaled data matches the observations, but suffers from the same
drawbacks as the error metrics mentioned above.

5.4. Extreme events

Performance on extreme events is a key goal for many downscaling
applications (Wigley, 1985). Many extreme event definitions will de-
pend on the specifics of the question to be answered, but we include
some common extreme event indices in the CCdownscaling package. In
addition to being potentially useful values for questions about future
climate scenarios, these indices can be a useful metric for determining
the skill of the different downscaling methods. Using the warmest
(wettest) year split described in Section 2.4, we calculate the maximum
temperature (precipitation) climdex values for the SOM, RF, and QMAP
methods (Tables 4 and 5). For precipitation, while the RF method does
the best job of the three at adapting the to higher average precipitation,
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the poor performance on the high and low ends of the distribution
are evident in the very low values for 95" percentile (R95p), 99th
percentile (R99p), and consecutive dry days (CDD). The differences are
not as pronounced for the max temperature indices, but here QMAP
clearly outperforms the other two methods for most of the indices.

5.5. Autocorrelation

Autocorrelation provides a metric for temporal similarity within
time series data. It is calculated by taking the correlation between
a timeseries and a time-lagged copy of the same timeseries, for a
number of different time lags. This can be particularly important for
applications such as flooding, where understanding the likelihood of
multi-day large rainfall events is crucial for projecting the frequency of
major flooding events in a given climate scenario. In the case of O’Hare
Airport, the autocorrelation (of both the observed and downscaled
datasets) falls off rapidly, with most of the downscaled methods, apart
from the SOM and Qmap, overestimating the observed correlation at a
lag of one day (Fig. 10).

6. Concluding remarks

The accelerating need for reliable, highly localized data for climate
change scenarios has led to the development of software packages such
as CCdownscaling that can readily and reliably provide information
tailored to individual sites or regions. CCdownscaling is a new software
package providing options for downscaling approaches and tools in
a manner that the user can readily apply and iterate upon to meet
the needs and requirements of the desired downscaled climate change
projections. It is freely available and open-source, to be easily used in
the creation of new downscaled climate data for a range of potential
uses. CCdownscaling provides SOM-based downscaling, along with the
extension of traditional machine learning tools to downscaling. We
demonstrate the capabilities of the package using an example station
located at the Chicago O’Hare Airport in Illinois. This example serves
to demonstrate the use of the software package, but will not cover many
issues that will come up for a real downscaling use case, including
limited data availability, complex terrain, or changes in land cover.

Typically, we have found the SOM method performs well for precip-
itation downscaling, while the random forest and QMAP methods often
perform well for temperature variables, but these results can vary based
on the meteorology and available data for a given location. In addition
to the downscaling methods, the package includes a variety of metrics
for assessing the skill and utility of downscaled outputs. These tools,
along with the example given, provide a framework for creating and
evaluating new downscaled products, tailored to a given location and
use case.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Jenni L. Evans reports financial support was provided by National
Science Foundation.

Data availability

The data used in this article are available at: https://zenodo.org/
record/6506677 (data) and https://zenodo.org/record/7305359 (code)

Acknowledgments

Thanks to Zach Moon for assistance in making the code more usable,
and Daniel Polasky for helpful comments on the manuscript. We also
thank two anonymous reviewers for their helpful comments on this
manuscript. Thanks as well to the Penn State Institute for Computa-
tional and Data Sciences for computational resources and support. This
work was supported by the National Science Foundation, United States
under grant 1639342.


https://zenodo.org/record/6506677
https://zenodo.org/record/6506677
https://zenodo.org/record/6506677
https://zenodo.org/record/7305359

A.D. Polasky et al.

Environmental Modelling and Software 165 (2023) 105712

Table A.1
ETCCDI climdex indices and definitions.
Index Definition
TxMean Average Daily Maximum Temperature
TxMin Average Minimum Daily Maximum temperature per year
TxMax Average Maximum daily maximum temperature per year
Su25 Number of “Summer Days” above 25 C
DO Number of “Icing Days” where maximum temperature is below 0 C
Tx90p Days per year above the 90" percentile of maximum temperature in the training data
Tx10p Days per year below the 10" percentile of maximum temperature in the training data
WSDI Warm Spell Duration Index: The number of days with at least 6 consecutive days above the reference 90" percentile
TnMean Average daily minimum temperature
TnMin Average minimum daily minimum temperature per year
TnMax Average maximum daily minimum temperature per year
Tn90p Days per year above the 90" percentile of minimum temperature in the training data
TnlOp Days per year below the 10" percentile of minimum temperature in the training data
CSDI Cold Spell Duration Index: The number of days with at least 6 consecutive days below the reference 10" percentile
FD Frost Days, number of days with minimum temperature below 0 C
TR Tropical Nights, number of days with minimum temperature above 20 C
PrcpMean Average precipitation per day
Rx1Day Maximum 1-day precipitation
Rx5Day Maximum consecutive 5-day precipitation
R95p Annual Total Precipitation when daily rainfall is above the 95" percentile
R99p Annual Total Precipitation when daily rainfall is above the 99" percentile
SDII Simple Precipitation Intensity Index
CDD Consecutive Dry Days, maximum length per year
CWD Consecutive Wet Days, maximum length per year
R10mm Days per year with precipitation above 10 mm
R20mm Days per year with precipitation above 20 mm

Appendix A. Climdex indices

The 27 Climdex Indices represent a standard set of values for
precipitation, maximum temperature, and minimum temperatures to
describe changes in climate, with a focus on extreme events, created
by the Expert Team on Climate Change Detection and Indices (ETC-
CDI, http://etccdi.pacificclimate.org/indices.shtml). These values pro-
vide an overview of mean and extreme changes that will be commonly
useful to many applications for maximum and minimum temperature,
as well as precipitation (see Table A.1).

Appendix B. Package setup

Installation instructions for the CCdownscaling package can be
found on the github, along with the code for the example use case, in
the form of both a Python script and Jupyter notebook. Both Jupyter
notebook and script contain the same code, the Jupyter notebook is
included to provide a more readable and interactive interface for the
example. To set up the environment for CCdownscaling, we recommend
using Conda for ease of installation. A Conda environment.yml file with
the list of requirements.

All the downscaling models in CCdownscaling conform to a common
API, making the addition of new methods to a downscaling use case
straightforward. The Jupyter notebook in the example folder gives an
example of the main pieces of the CCdownscaling package. Section 2
shows an example for using three different train/test splits. Section
5 demonstrates training several different models, all called using the
same format, where the model is created, then trained (fit), and final
downscaling output is generated (predict):

som = som_downscale.som_downscale(som_x = 7, som_y = 5, batch = 512,
alpha = 0.1, epochs = 50)

rf_two_part = correction_downscale_methods .two_step_random_forest()
random_forest = sklearn.ensemble.RandomForestRegressor ()

gmap = correction_downscale_methods.quantile_mapping()

#train

som.fit(training_data, train_hist, seed = 1)
random_forest.fit(training_data, train_hist)
rf_two_part.fit(training_data, train_hist)
qmap.fit(rean_precip_train, train_hist)

#generate outputs from the test data

som_output = som.predict(test_data)
random_forest_output = random_forest .predict(test_data)
rf_two_part_output = rf_two_part.predict(test_data)
gmap_output = gmap.predict(rean_precip_test)

The outputs from these different methods can then be passed into
any of the analysis methods. Section 6 demonstrates some of the
SOM specific analysis plots, including heatmaps and variable grids for
the SOM nodes. Section 7 then shows the more universal evaluation
metrics, computing skill score values for each of the methods. Section
8 makes the plots for comparing the different methods, and finally
Section 9 calculates the climdex values for each output.
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