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ABSTRACT
The formation of the first stars marks a watershed moment in the history of our universe. As the first luminous structures, these
stars (also known as Population III, or Pop III stars) seed the first galaxies and begin the process of reionization. We construct
an analytic model to self-consistently trace the formation of Pop III stars inside minihalos in the presence of the fluctuating
ultraviolet background, relic dark matter-baryon relative velocities from the early universe, and an X-ray background, which
largely work to suppress cooling of gas and delay the formation of this first generation of stars. We demonstrate the utility of
this framework in a semi-analytic model for early star formation that also follows the transition between Pop III and Pop II star
formation inside these halos. Using our new prescription for the criteria allowing Pop III star formation, we follow a population
of dark matter halos from 𝑧 = 50 through 𝑧 = 6 and examine the global star formation history, finding that each process defines
its own key epoch: (i) the stream velocity dominates at the highest redshifts (𝑧 ≳ 30), (ii) the UV background sets the tone at
intermediate times (30 ≳ 𝑧 ≳ 15), and (iii) X-rays control the end of Pop III star formation at the latest times (𝑧 ≲ 15). In all
of our models, Pop III stars continue to form down to 𝑧 ∼ 7 − 10, when their supernovae will be potentially observable with
forthcoming instruments. Finally, we identify the signatures of variations in the Pop III physics in the global 21-cm spin-flip
signal of atomic hydrogen.
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1 INTRODUCTION

Formed in the pristine hydrogen and helium gas of the early universe,
the first stars, also known as Population III (Pop III) stars, are thought
to have been very different from the stars we observe today (Pop
I/II) (Bromm 2013, Loeb & Furlanetto 2013). In these metal-free
clouds, Pop III stars must rely on the radiative transitions of molecular
hydrogen (H2) to cool, fragment, and collapse to high densities.
However, this cooling is comparatively inefficient (relative to atomic
hydrogen cooling at high temperatures or cooling in metal-enriched
gas via transitions of, e.g., CO, H2O, etc.) and is believed to result
in a population of very massive stars. These stars are expected to
form in so-called dark matter (DM) ‘minihalos’ of 105 − 106 𝑀⊙
and likely formed in isolation or groups of a few (Abel et al. 2002,
Bromm et al. 2002, Bromm 2013). At such large masses, these stars
will have short (∼ 5 Myr) lives, some of which may have ended their
lives in superluminous pair-instability supernovae (SNe; Barkat et al.
1967, Fryer et al. 2001, Heger & Woosley 2002, Heger et al. 2003).
In so doing, they ejected metals into the interstellar and intergalactic
media, paving the way for future generations of metal-enriched star
formation (Ferrara et al. 2000, Madau et al. 2001, Furlanetto & Loeb
2003).

Observationally probing the epoch of the first stars, which is col-
loquially referred to as ‘Cosmic Dawn’, is a difficult endeavor. Given
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their short lifetimes and their formation in small groups, Pop III stars
and their host minihalos were likely very faint (Mebane et al. 2018).
In addition, these halos likely only dominated in the very early uni-
verse, requiring observations that can probe to 𝑧 ≳ 20 − 30. To that
end, observations of the indirect signatures of these stars, such as
in their SNe or through the highly redshifted 21-cm line, offer a far
more promising avenue to study Cosmic Dawn (e.g., Mebane et al.
2020, Magg et al. 2022, Muñoz et al. 2022, Lazar & Bromm 2022).
However, even the most promising of these avenues, observations
of the 21-cm line, will be challenging. Therefore, leveraging robust
theory models will be crucial to the design of instruments that are
sensitive to the relevant areas of parameter space and development
of software pipelines to robustly infer those parameters.

Pop III halos have been studied theoretically with a variety of
methods (in order of decreasing computational cost): numerical sim-
ulations (e.g., Machacek et al. 2001, Abel et al. 2002, Wise & Abel
2007, O’Shea & Norman 2008, Maio et al. 2010, Stacy et al. 2012,
Hirano et al. 2015, Xu et al. 2016, Sarmento et al. 2018, Park et al.
2021, Kulkarni et al. 2021, Schauer et al. 2021), semi-analytic mod-
els (e.g., Trenti et al. 2009, Jaacks et al. 2018, Visbal et al. 2018,
Mebane et al. 2018, Visbal et al. 2020, Magg et al. 2022), and an-
alytic calculations (e.g., Tegmark et al. 1997, Haiman et al. 2000,
McKee & Tan 2008, Kulkarni et al. 2013, Ricotti 2016). Because the
models are essentially unconstrained in the absence of observations,
exploring the breadth of the available parameter space is challenging,
especially with detailed numerical calculations. Semi-analytic mod-
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els offer a compromise between the computational efficiency of an
analytic calculation and the rigor of a numerical simulation. In prac-
tice, applications of these models to high redshift star formation, such
as the model described in this work, begin with a numerical model for
dark matter (DM) halo growth (such as through abundance matching
to a simulated halo mass function or through simulated halo merger
trees) and fold in the physics of star formation (initial mass function,
supernovae, feedback, etc.) through analytic approximations. In such
models, these two pieces are connected with the minimum DM halo
mass for Pop III stars to form.

The minimum mass is the host halo mass scale above which a
star forming cloud is able to form, cool, and collapse, driven by the
presence of H2 (Haiman et al. 1996a, Haiman et al. 1996b, Tegmark
et al. 1997, Machacek et al. 2001). As a result, an understanding of
processes that affect the amount of H2 present in a halo is crucial
for understanding when and where early star formation can occur.
There are several key processes believed to significantly affect the
H2 fraction in a halo—the relic velocity between baryons and DM
in the early universe (environmental) and the buildup of X-ray and
photodissociating UV backgrounds (feedback) (e.g., Loeb & Furlan-
etto 2013, Ricotti 2016, Mebane et al. 2018, Schauer et al. 2021,
Kulkarni et al. 2021, Muñoz et al. 2022, Nebrin et al. 2023).

The effect of a strong UV background, specifically in the Lyman-
Werner (LW) bands of H2 (11.2-13.6 eV), is relatively well-studied,
both analytically and in numerical simulations (e.g., Tegmark et al.
1997, Machacek et al. 2001, Shang et al. 2010, Wolcott-Green et al.
2011, Visbal et al. 2014b, Kulkarni et al. 2021). As stars form, they
radiate and build up a metagalactic LW background, which breaks
down H2 and suppresses later generations of star formation. The
relative DM-baryon motion, often referred to as the stream velocity,
has only come to be thought of as significant in recent years and,
as such, is relatively less studied (e.g., Tseliakhovich & Hirata 2010,
Dalal et al. 2010,Maio et al. 2011a, Naoz et al. 2013, Fialkov 2014).
The stream velocity suppresses accretion and limits the gas fraction in
the least massive halos. As such, these two processes both negatively
impact the H2 content of a halo. X-rays, on the other hand, are more
complicated, as they can both positively and negatively feed back into
the star formation process through photoionization and heating of
the IGM, respectively (e.g., Machacek et al. 2003, Ricotti & Ostriker
2004, Hummel et al. 2015, Ricotti 2016, Park et al. 2021). Each of
these mechanisms can be parameterized in terms of the minimum
DM halo mass for star formation, and most work has focused on
studying these processes independently. The recent simulations of
Kulkarni et al. (2021) and Schauer et al. (2021) are some of the
first attempts to study the joint effects of the two negative processes,
the LW photodissociation and stream velocity, but present discrepant
estimates for this minimum mass scale.

Motivated by these uncertainties and the lack of a single model
that encompasses all of these effects,1 in this work we present an
analytic calculation for the minimum star-forming halo mass that in-
corporates the aforementioned three processes. We update the semi-
analytic model presented in Mebane et al. (2018) to explore the
effects of variations in the underlying Pop III physics on the global
star formation rate density. Finally, we use these results to make pre-

1 We note, however, that while this paper was in the final stages of preparation,
Nebrin et al. (2023) presented a calculation for the minimum halo mass to
host Pop III star formation that included the LW background and streaming
mechanisms, in addition to several others with more modest effects, but not
the effects of X-rays. We will compare to their model throughout.

liminary observational predictions, specifically in calculating Pop III
SN rates and the global 21-cm signal.

The paper is structured as follows. In § 2 we outline our analytic
calculation of the minimum mass and present a fitting formula that
summarizes these calculations. In § 3, we describe the semi-analytic
model and our improvements to Mebane et al. (2018). In § 4 we
present our results—namely the fiducial model and the effects of
varying the physics incorporated into the minimum mass. In § 5 we
compare our results to previous works and in § 6 we present potential
observable signatures of Pop III star formation. Finally, in § 7, we
summarize our main conclusions.

In this work we use a flat ΛCDM cosmology with Ωm = 0.3111,
ΩΛ = 0.6889, Ωb = 0.0489, 𝜎8 = 0.8102, 𝑛𝑠 = 0.9665, and ℎ =

0.6766, consistent with the results of Planck Collaboration et al.
(2020).

2 THE MINIMUM MASS FOR POP III STAR FORMATION

In this section, we will describe the components of our simple ana-
lytic model of the aforementioned processes—the metagalactic LW
background, stream velocity, and X-ray background—to generate an
estimate of the minimum star-forming halo mass scale. Schemati-
cally, this is broken down as follows: a halo must first accrete gas
(filter mass; § 2.1) and then must be able to efficiently cool (cooling
threshold; § 2.2). These two thresholds are modified in the presence of
a DM-baryon relative velocity (Sections 2.1.2 and 2.4). Once the first
stars form, they produce a UV background (dissociation threshold;
§ 2.3) and an X-ray background (§ 2.5) that can affect the minimum
mass for subsequent generations of stars.

2.1 Accretion mass

In the absence of both a LW background and a stream velocity,
there are two relevant processes — a halo must be able to accrete
baryons and must then be able to cool and form stars. The former
of these is governed by the so-called ‘filtering’ scale, which is the
scale below which baryonic perturbations are suppressed relative to
the DM fluctuations (Gnedin & Hui 1998) by thermal pressure. This
scale, or the associated mass scale (the filter mass), is sometimes
referred to as the cosmological Jeans mass because it resembles a
time-averaged Jeans mass and effectively sets a minimum halo mass
necessary for gas accretion.

2.1.1 No stream velocity

Building from the calculation of the filtering scale outlined in Naoz
& Barkana (2007), Naoz et al. (2013) calculate the filter mass using
numerical simulations and show that the results can be reproduced
with an analytic calculation from linear theory. Inspired by the cal-
culations of Naoz et al. (2013), in this section we describe a simple
model that produces remarkable agreement with the analytic model
therein.

Following the discussion in Gnedin (2000), we calculate the fil-
tering wavenumber, 𝑘𝐹 , defined as the scale at which the baryonic
perturbations grow significantly compared to the DM fluctuations.
Assuming that the perturbations satisfy 𝛿𝑏 (𝑡, 𝑘 = 0) = 𝛿𝑐 (𝑡, 𝑘 = 0),
the ratio of these quantities can be expanded as

𝛿𝑏

𝛿𝑐
≈ 1 − 𝑘2

𝑘2
𝐹

(1)

where we have dropped the higher order terms and assumed that the
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perturbations are small. If we introduce the growth factor 𝐷 (𝑡) and
define 𝐴(𝑡) ≡ 𝐷 (𝑡)/𝑘2

𝐹
, this becomes

𝛿𝑏

𝛿𝑐
= 1 − 𝐴(𝑡)

𝐷 (𝑡) 𝑘
2 (2)

The linearized Euler equation can be recast in terms of the density
perturbations as

𝜕2𝛿

𝜕𝑡2
+ 2𝐻

𝜕𝛿

𝜕𝑡
= 4𝜋𝐺𝜌̄𝛿 −

𝑐2
𝑠𝑘

2

𝑎2 𝛿 (3)

Substituting eq. 3 for baryon and DM overdensities into eq. 2 yields

𝑑2𝐴

𝑑𝑡2
+ 2𝐻

𝑑𝐴

𝑑𝑡
=

𝑐2
𝑠

𝑎2 𝐷 (𝑡) (4)

which, when solved, gives the evolution of 𝐴(𝑡), or, equivalently,
the filtering scale 𝑘𝐹 (𝑎). Noting that the Jeans wavenumber can be
written as 𝑘2

𝐽
= (3/2)Ω𝑚𝐻2𝑎2/𝑐2

𝑠 , the full solution of eq. 4 can be
cast in terms of 𝑘2

𝐹
:

1
𝑘2
𝐹

=
1

𝐷 (𝑡)

∫ 𝑡

0
𝑑𝑡′𝑎2 (𝑡′)

¥𝐷 (𝑡′) + 2𝐻 (𝑡′) ¤𝐷 (𝑡′)
𝑘2
𝐽
(𝑡′)

∫ 𝑡 ′′

𝑡 ′

𝑑𝑡′′

𝑎2 (𝑡′′)
(5)

For large redshifts (𝑧 ≳ 5; the relevant regime here), we know that
Ω𝑚 → 1, so we can use the results for an Einstein-de Sitter cosmol-
ogy; i.e., that 𝑎 ∝ 𝑡2/3 and 𝐷 ∝ 𝑎. With these, eq. 5 simplifies to

1
𝑘2
𝐹
(𝑡)

=
3
𝑎

∫ 𝑎

0

𝑑𝑎′

𝑘2
𝐽
(𝑎′)

(
1 −

√︂
𝑎′

𝑎

)
(6)

2.1.2 Including the DM-baryon relative velocity

To this point, we have ignored the effects of a relative velocity be-
tween DM and baryons. However, Tseliakhovich & Hirata (2010)
showed that the relative velocity between DM and baryon den-
sity fluctuations following recombination can have important con-
sequences for structure formation in the early universe. This relative
velocity, often referred to as the stream velocity, is a product of the
differing growth histories of DM and baryon perturbations prior to
recombination and decoupling. That is, because they only interact
gravitationally, DM particles began collapsing into their potential
wells well before the end of recombination. Baryons, on the other
hand, were prevented from such collapse by the thermal pressure
that resulted from their coupling to the photon field. Once recombi-
nation had concluded, the photons and baryons decoupled and the
baryons were free to fall into DM potential wells. However, they
retained memory of their motion prior to that point and a spatially-
varying distribution of relative velocities was produced as a result. It
has since been shown, analytically and with numerical simulations,
that this relative stream velocity has a variety of effects on structure
formation in the early universe, ranging from reducing the number
density of DM halos to suppressing the gas content of halos (e.g.,
Dalal et al. 2010, Tseliakhovich & Hirata 2010, O’Leary & McQuinn
2012, McQuinn & O’Leary 2012, Naoz et al. 2012, Naoz et al. 2013,
Fialkov 2014, Williams et al. 2022, Lake et al. 2023). It is the latter
phenomenon that is especially relevant for Pop III star formation, as
a suppression of gas accretion can delay H2 cooling and collapse.2

2 The suppression of halo number density has important implications for
structure formation, especially at the highest redshifts, when we expect the
very first stars to form. However, we defer analysis of this contribution to
future work and here limit our focus to the effect of the stream velocity on the
gas being used to form stars.
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Figure 1. The filter mass calculated using our approximation (solid) compared
to the results of Naoz et al. (2013) (dashed) and the fit to our calculation (eq. 8;
dotted) for various values of the stream velocity (different colors).

Naoz et al. (2013) carry out the full self-consistent calculation of
this effect, which requires modification of the definition of the fil-
tering scale to account for large scale structure and inclusion of the
temperature and density fluctuations in the coupled differential equa-
tions describing the growth of perturbations (i.e., eq. 3). As a simple
approximation to this calculation, we propose taking the stream ve-
locity as a modification to the sound speed (which appears only in
calculation of the Jeans wavenumber) and adding it in quadrature
(Stacy et al. 2011):

𝑐𝑠 ↦→
√︃
𝐴𝑐2
𝑠 + 𝑣2

bc (7)

where we include the constant 𝐴 to account for differences between
our calculation of the sound speed and that of Naoz et al. (2013).
Calibrating our calculation to the results of Naoz et al. (2013), we
set 𝐴 = 0.64.

In Figure 1, we present the results of this calculation for various
values of the stream velocity.3 While our results do not precisely
agree with the analytic calculation of Naoz et al. (2013), the approxi-
mation we employ performs remarkably well, as our estimates of the
filter mass are discrepant by less than a factor of 2 and the agreement
improves with increasing 𝑣bc. In Figure 2, we compare our analytic
approximation to the numerical simulations of Naoz et al. (2013),
demonstrating similar agreement to that seen in Figure 1. Note that
to compare the results of this three-dimensional analytic calculation
to the simulated results, we scale the velocity by a factor of 1/

√
3

because the stream velocity acts in a particular direction, whereas
the sound speed is isotropic.

We find that the following fitting formula reproduces our treatment
of the filter mass quite well:

𝑀𝐹 (𝑣bc, 𝑧) ≃ 1.66 × 104
(
1 + 𝑣bc

𝜎vbc

)5.02 ( 1 + 𝑧

21

)0.85
𝑀⊙ (8)

2.2 Molecular hydrogen cooling threshold

Once a halo is able to accrete gas, we must then find the threshold
mass necessary to build up sufficient molecular hydrogen so that the

3 We conventionally refer to the stream velocity in multiples of the root-mean-
square value of its Maxwellian distribution, which is 𝜎vbc = 30 km s−1 at
𝑧rec = 1100.
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Figure 2. The filter mass calculated using our approximation (solid curves)
compared to the numerically simulated results of Naoz et al. (2013) (points)
for various values of the stream velocity (different colors).

gas can cool and collapse to high densities. Molecular hydrogen is
primarily formed through a two step process, as follows:

H + e− → H− + ℎ𝜈 (𝑘9) (9)
H− + H → H2 + e− (𝑘10) (10)

where the associated reaction rate coefficients 𝑘𝑖 are given in Shang
et al. (2010). Note that for this calculation we use the T4 spectrum
rate coefficients given therein. Accounting for the formation of H2 via
these two processes and the destruction of H− by CMB photons (with
associated rate coefficient 𝑘25), the net production rate coefficient of
H2 is

𝑘form = 𝑘9

[
𝑘10𝑛H

𝑘10𝑛H + 𝑘25

]
, (11)

where 𝑛𝐻 is the hydrogen number density and we have limited our
focus to H2 formation in the gas-phase.4

The halo density is therefore a key input to the cooling process. Mo-
tivated by their numerical simulations, Visbal et al. (2014a) argued
that high-𝑧 minihaloes fall into two regimes. At very small masses,
the maximum gas density in a halo follows 𝑛𝐻 ∝ 𝑇

3/2
vir , which re-

flects the maximum temperature allowed by adiabatic compression
from the ambient IGM temperature to the halo virial temperature. For

4 Once a halo has been enriched by early generations of star formation, H2
formation could, in principle, be catalyzed by the presence of dust grains
(Nakatani et al. 2020). However, for 𝑇vir ≤ 104 K, where H2 cooling will
be dominant, Nebrin et al. (2023) find that the dust-catalyzed formation rate
will be smaller than the gas-phase formation rate except in the cases of a
highly-enriched halo forming H2 with maximal efficiency. Yamaguchi et al.
(2023) find that the volume-filling fraction of metal-enriched wind bubbles
will be ≲ 10% and the average metallicity of the universe ⟨𝑍 ⟩/𝑍⊙ ≲ 10−3

for 𝑧 ≳ 6 in both their optimistic Pop III and Pop II models. Therefore, even
if a significant number of halos are forming Pop II stars, it is unlikely that
these halos will be able to enrich nearby Pop III halos to a degree that dust
catalysis will be the dominant H2 formation channel.

these small haloes, the IGM entropy is sufficiently large, compared to
the entropy generated during halo collapse, that this adiabatic limit is
a good approximation. However, at larger halo masses the entropy is
dominated by halo formation, and in this regime the gas settles into
a “universal” profile in which the central core density is independent
of halo mass (at a fixed redshift). To normalize the scalings in these
two regimes, we fit to the gas densities found by O’Leary & McQuinn
(2012), which yields5

𝑛H ≃


6.19

(
𝑇vir

103 K

)
cm−3, for 𝑇vir < 2 × 103 K

12.38
(
1 + 𝑧

21

)3
cm−3, for 𝑇vir ≥ 2 × 103 K.

(12)

We note that the transition between these regimes occurs at a redshift-
dependent halo mass,

𝑀turn = 9.64 × 105
(
1 + 𝑧

21

)−3/2
𝑀⊙ . (13)

Defining the ionized fraction 𝑥HII ≡ 𝑛HII/𝑛H and molecular frac-
tion 𝑓H2 ≡ 𝑛H2/𝑛H, the above pair of reactions (eq. 9) yield the
evolution equations

¤𝑥HII = −𝛼𝐵𝑛H𝑥
2
HII (14)

¤𝑓H2 = 𝑘form𝑛H𝑥HII (1 − 𝑥HII − 2 𝑓H2 ) (15)

where we have introduced the Case B recombination coefficient 𝛼𝐵
to account for electron depletion due to recombination with H atoms.

Following the discussion outlined in Tegmark et al. (1997), in the
limit of inefficient cooling (where 𝑛 and 𝑇 are constant), these can
be solved to find that

𝑓H2 (𝑡) − 𝑓 𝑖H2
≈ 𝑘form

𝛼𝐵
ln(1 + 𝑡/𝑡𝑖rec) (16)

where 𝑡𝑖rec ≡ (𝛼𝐵𝑛H𝑥HII)−1 is the initial recombination timescale.
For 𝑡 ≪ 𝑡𝑖rec, the density of electrons is sufficiently large that H2 is
produced at a constant rate 𝑘form/𝛼𝐵. For 𝑡 ≫ 𝑡𝑖rec, electrons will
have been sufficiently depleted and the H2 fraction will grow slowly.
Therefore, when 𝑡 ∼ 𝑡𝑖rec, the H2 fraction will reach a saturation level

𝑓H2 ,sat ≈
𝑘form
𝛼𝐵

≈ 4.97 × 10−4
(

𝑇

103 K

)1.52
(17)

which is a factor of ∼ 1.5 larger than the value reported in Tegmark
et al. (1997), where the difference results from the incorrect use of
the Case A recombination coefficient in that calculation (as noted by
Nebrin et al. 2023).6

With this in hand, we need to find the critical level of H2 that
needs to build up for cooling to become efficient. This can be found
by comparing the cooling time of a cloud of gas to (a fraction 𝜁 of)

5 We have chosen to normalize to these results, which fall a factor of a
few below that of Visbal et al. (2014a), in order to estimate the typical halo
gas density rather than the maximum. Variations in this normalization are
effectively folded into the choice of our free parameter, 𝜁 (introduced later).
We discuss the effect of making a different density choice (e.g., Nebrin et al.
2023) in more detail in § 5.1.
6 To calculate the second equality, we have approximated 𝑘form ≈ 𝑘9 (because
𝑘25 ≪ 𝑛𝑘10 for the gas densities of relevance here) and made a power-law
fit to the Case B recombination coefficient given in Draine (2011) between
30 K ≤ 𝑇 ≤ 104 K.
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the then-current Hubble time; i.e., 𝑡cool < 𝜁𝑡𝐻 . The cooling time is
given by

𝑡cool =
3𝑘𝐵𝑇vir

2Λ(𝑛H, 𝑇vir) 𝑓H2

(18)

where for the molecular hydrogen cooling function we use the ap-
proximation to that found by Galli & Palla (1998), valid between the
temperatures 120 K and 6400 K (Trenti & Stiavelli 2009):

Λ(𝑛H, 𝑇) ≃ 10−31.6
(

𝑇

100 K

)3.4 (
𝑛H

10−4cm−3

)
erg s−1 (19)

For the era of the first stars, when 𝑧 ≫ 1, we can again approximately
use the results for an Einstein-de Sitter cosmology, for which the
Hubble time is

𝑡𝐻 =
2

3𝐻0

[
Ω𝑚 (1 + 𝑧)3

]−1/2
≈ 6.52 × 109

[
Ω𝑚ℎ

2 (1 + 𝑧)3
]−1/2

yr

(20)

Enforcing the condition that cooling must occur on timescales shorter
than a fraction 𝜁 of the Hubble time (meant to represent the rate at
which a halo accumulates thermal energy through accretion), we
find that the critical H2 density needed for efficient cooling at a virial
temperature 𝑇 is

𝑛H2 ,crit = 1.534×10−4𝜁−1 (Ω𝑚ℎ2)1/2 ( 𝑇

103 K

)−2.4 ( 1 + 𝑧

21

)3/2
cm−3

(21)

From this, we can compute the critical H2 fraction as 𝑓H2 ,crit =

𝑛H2 ,crit/𝑛H. With the virial temperature given in Barkana & Loeb
(2001) and plugging in the values for our chosen cosmology, this can
be written as

𝑓H2 ,crit ≃ 8.17 × 10−7𝜁−1
(

𝑀

106𝑀⊙

)−2.27 ( 1 + 𝑧

21

)−1.9
(22)

It turns out that the critical H2 fraction will be achieved in the low-
mass regime (in eq. 12) for the redshifts of interest, so we have
omitted the solution associated with the high-mass halo density. We
will see that once we introduce a photodissociating Lyman-Werner
background, as is discussed in § 2.3, the high-mass regime will
become important.

Comparing this threshold to the molecular hydrogen fraction in
a halo (eq. 17), we can solve for the critical virial temperature (or
mass) necessary for efficient cooling (setting 𝜁 = 0.25 for our fidu-
cial calculations; see Visbal et al. 2014b). This yields the cooling
threshold

𝑀cool (𝑧) ≃ 1.55 × 105
(

𝜁

0.25

)−0.3 ( 1 + 𝑧

21

)−1
𝑀⊙ (23)

This threshold (along with the filter mass; see § 2.1) sets a baseline
value for the minimum halo mass for efficient cooling in the absence
of any radiation backgrounds or other external effects and is displayed
in the flat part of the curves in Figure 3. That is, for each 𝑧, there
is a critical value of the Lyman-Werner background intensity below
which the cooling threshold sets the minimum mass.

2.3 The photodissociating Lyman-Werner background

Once the first stars form, they produce radiation backgrounds that
make subsequent generations of star formation more complex by
affecting the amount of H2 available to cool. The primary process

that suppresses the H2 content of a halo is negative feedback as-
sociated with the Lyman-Werner background; i.e. radiation of UV
photons with energies of 11.2-13.6 eV that can dissociate molecular
hydrogen. Therefore, as more stars form, a growing LW background
builds up (e.g., Visbal et al. 2014b) and future generations of star
formation are delayed and suppressed. In practice, the buildup of
the LW background drives an increase in the minimum mass for star
formation.

In order to get a minimum mass scale for a halo to be able to effi-
ciently cool in the presence of a photo-dissociating LW background,
we compare two H2 number density thresholds: the collapse thresh-
old, which is set by the cooling time, 𝑛crit

𝐻2
(eq. 21), and the dissocia-

tion equilibrium threshold, 𝑛eq
𝐻2

(i.e., the equilibrium H2 density that
results from a fixed LW background intensity). The former of these
can be parameterized by the virial temperature of the halo, 𝑇vir, and
the latter by the intensity in the LW bands, which is conventionally
expressed in units of 𝐽21 = 10−21erg s−1 cm−2 Hz−1 sr−1. Equating
the two thresholds yields a maximum value of the LW intensity that
allows a cloud with a fixed virial temperature to collapse or, equiva-
lently, yields the critical virial temperature needed for collapse under
a fixed value of the LW background intensity.

The dissociation equilibrium threshold is set by balancing the rate
of H2 formation and destruction, comparing the rates of photodisso-
ciation (pd) and collisional dissociation (cd):

𝑓
eq
𝐻2

= min
(
𝑘form
𝑘pd

𝑓𝑒,
𝑘form
𝑘cd

𝑓𝑒

)
(24)

where we use the recombination code CosmoREC (Chluba & Thomas
2013) to compute the electron fraction 𝑓𝑒 and the reaction rate coef-
ficients are the same as defined above (Shang et al. 2010).

This equilibrium is modified by the effects of self-shielding—in
halos where a sufficiently high column density of H2 builds up, the
gas can become optically thick to LW radiation and ‘shield’ itself
against photodissociation. This is usually parameterized in the form
of a ‘shielding factor’, 𝑓shield, which reduces the photodissociation
rate:

𝑘pd (𝑁𝐻2 , 𝐽LW) = 𝑓shield (𝑁𝐻2 , 𝑇)𝑘pd (𝑁𝐻2 = 0, 𝐽LW) (25)

so a value of 𝑓shield = 1 (0) would correspond to no (complete)
shielding. We approximately calculate the column density using the
peak halo gas density given in eq. 12—i.e., 𝑁H2 = 𝑓H2𝜆J𝑛H/2,
where 𝜆𝐽 is the Jeans length in the halo gas cloud. We compute
𝑓shield following Wolcott-Green et al. (2011) (WG11) and Wolcott-
Green & Haiman (2019) (WG19). Noting that the Wolcott-Green &
Haiman (2019) expression is a correction to Wolcott-Green et al.
(2011) at higher densities, our shield factor is given by

𝑓shield =



𝑓 (𝛼 = 1.1) (WG11) 𝑛 ≤ 103 cm−3

𝑓 (𝛼 = eq 8) (WG19) 103 ≤ 𝑛/cm−3 ≤ 107,

𝑁𝐻2 ≤ 1017 cm−2,

𝑇 ≤ 8000 K
1 otherwise

(26)

where the limits reflect those set by WG11/19. Equating eq. 21 and
𝑛eq = 𝑛H 𝑓

eq
H2

(given by eqs. 12 and 24), we numerically solve for
the virial temperature necessary for a gas cloud to collapse in the
presence of a fixed LW background intensity. In the presence of
a strong LW background, halos may be in the high mass limit of
eq. 12, so we fit those independently and summarize the associated
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Figure 3. The minimum mass for a halo to form H2 in the presence of a Lyman-
Werner background, calculated for a range of LW backgrounds following the
steps described in Sections 2.2 and 2.3 at various redshifts (colored lines). The
fitting formulae for the cooling and dissociation thresholds (eqs. 23 and 29,
respectively) are overlaid with dashed lines.

minimum masses as follows. For the low-mass limit, we find

𝑀LW,low ≃ 3.35 × 104
(

𝜁

0.25

)−0.19

×
[
1 + 13

(
𝐽LW
𝐽21

)0.38
] (

1 + 𝑧

21

)−1
𝑀⊙

(27)

At high masses, we find

𝑀LW,high ≃ 1.05 × 104
(

𝜁

0.25

)−0.33

×
[
1 + 26

(
𝐽LW
𝐽21

)0.62
] (

1 + 𝑧

21

)−3.91
𝑀⊙

(28)

Noting that the transition for these two regimes in the halo density
occurs at 𝑀turn (as defined in eq. 13), the photodissociation mass is
set by

𝑀LW = max
[
min

(
𝑀LW,low, 𝑀turn

)
,

𝑀LW,highH
(
𝑀LW,high − 𝑀turn

) ] (29)

where H(𝑡 − 𝑡0) is the Heaviside step function (which returns 0 for
𝑡 < 𝑡0 and 1 for 𝑡 ≥ 𝑡0). At a fixed redshift as a function of increasing
𝐽LW, this means we select the low-density result until that crosses
the turnover mass, at which point we select the larger of the turnover
mass or the high-density result.

The results of this calculation for various redshifts are given in
Figure 3. Because this portion of the calculation does not account
for the buildup of H2 (eq. 17), we must still also compare this to the
cooling threshold presented in § 2.2 and check that a halo has enough
H2 to efficiently cool (i.e., we choose the larger of eqs. 23 and 29).
The cooling threshold sets the baseline for the minimum mass for
small values of the LW intensity, with the turnover decreasing with
redshift. Once the LW background takes over, however, the critical
mass increases with increasing LW background intensity at a fixed 𝑧.

We note that the amplitude of the LW background will be computed
self-consistently by our semi-analytic model, as described in § 3.

2.4 Thermalization threshold

The cooling argument of § 2.2 essentially requires that the halo pro-
duce enough molecular hydrogen in order for its radiative cooling

to shed the thermal energy generated with gravitational infall. How-
ever, in the presence of streaming, it must also shed the excess kinetic
energy carried by the baryons (which will also be thermalized dur-
ing collapse). This effect can be described as follows (Fialkov et al.
2012):

𝑇vir ↦→ 𝑇vir +
𝜇𝑚𝑝 (𝛼vbc𝑣bc)2

2𝑘𝐵
(30)

where 𝛼vbc parameterizes the magnification of the stream velocity as
gas collapses into the halo potential well and has been shown to take
on values of ∼ 4− 6 in simulations (Fialkov et al. 2012, McQuinn &
O’Leary 2012).

We can understand the numerical value of 𝛼vbc by the following
two arguments (McQuinn & O’Leary 2012). First, we consider the
case of accreting shock heated gas as it collapses into the halo. In
adiabatic collapse, 𝜌 ∝ 𝑇3/2, so the overdensity of the virialized gas
with no stream velocity is

𝛿𝑏 ∼
(
𝑇vir

𝑇ad
IGM

)3/2
(31)

The thermal energy associated with the stream velocity provides an
extra contribution to the IGM temperature, corresponding to𝑇IGM ↦→
𝑇IGM (1 + 5M2

bc/9), where Mbc = 𝑣bc/𝑐s,IGM is the mach number
of the streaming gas.7 With eq. 31, this means that the gas density
in the halo scales as 𝑛H ∝ 𝛿𝑏 ∝ (1 + 5M2

bc/9)
−3/2. We can fold

this additional contribution to the gas density into equation 21 and
calculate the new virial temperature necessary for efficient cooling
with the same argument as that outlined in § 2.2. Combining this
result with equation 30 suggests 𝛼vbc ∼ 6 at 𝑧 = 20. However, as the
critical H2 fraction, IGM temperature, and stream velocity all evolve
with redshift, the value of 𝛼vbc given by this calculation will as well.

Next, we can consider that velocities will be boosted by a factor of
(1+𝛿)1/3 in an adiabatically collapsing region, so the effective stream
velocity will be magnified to ≈ 6𝑣bc for overdensities of 𝛿 ∼ 200. If
the circular velocity of the halo is to be larger than this local stream
velocity, the circular velocity necessary for the high velocity gas to
be captured by the halo potential well is

𝑣c (𝑣bc) =
√︃
𝑣2

c + (6𝑣bc)2/3 (32)

where we divide by a factor of 3 because the local stream velocity will
have a particular directionality, whereas the halo gas moves isotrop-
ically after thermalization. Converting this velocity to the associated
virial temperature corresponds to a redshift-independent value of
𝛼 ∼ 4.

These analytic arguments give us a ballpark value of 𝛼vbc ∼ O(1−
10) on average. For our fiducial calculations, however, we defer to the
more detailed numerical simulations of McQuinn & O’Leary (2012)
(who find 𝛼vbc ∼ 4 − 6) and therefore set 𝛼vbc = 5.

In practice, we incorporate this into our model by adding this extra
contribution to the virial temperature (eq. 30) to the result of the
calculation in Sections 2.3 and 2.2. This contribution to the mass
scale can be parameterized as a modification to the virial velocity of

7 This can be seen if we assume that the energy in the stream velocity is con-
verted into thermal energy in the IGM. That is, the kinetic energy associated
with streaming gives 𝜇𝑚𝑣2

bc/2 = 𝜇𝑚𝑐2
𝑠M2

bc/2. Using the expression for the
sound speed of a monatomic ideal gas and assuming some fraction 𝛽 of this
energy is converted into thermal energy (as seen in the simulations of O’Leary
& McQuinn 2012 and McQuinn & O’Leary 2012), then the temperature is
increased from 𝑇 → 𝑇 ′ by a factor of 𝑓 ≡ 𝑇 ′/𝑇 = 1 + 5𝛽M2

bc/9. We have
taken 𝛽 = 1 to compute the ballpark value above.
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the halo. That is, for our chosen cosmology, the virial velocity of a
halo without the effects of streaming is given by (Barkana & Loeb
2001)

𝑣0 = 5.28 × 10−2𝑀1/3
0

(
1 + 𝑧

21

)1/2
km s−1 (33)

where 𝑀0 is the larger of eqs. 23 and 29. Then, the thermalization
threshold is given by

𝑀bc,LW,cool ≃ 6.79×103
[
𝑣2

0 + (𝛼vbc𝑣bc)2
]3/2 ( 1 + 𝑧

21

)−3/2
𝑀⊙ (34)

2.5 X-ray background

Unlike the Lyman-Werner dissociation and stream velocity, the
buildup of a metagalactic X-ray background both negatively and
positively feeds back into the minimum mass (and thus the star for-
mation rate). A background of X-ray radiation can photoionize the
IGM, boosting the electron fraction and heating the gas. The in-
creased density of free electrons can then promote the formation of
H2, supporting star formation, while the heating can make accre-
tion of gas more difficult. Some energy from this radiation goes into
ionizing the hydrogen and helium atoms and the rest goes to the
electron, heating it. Following the discussion in Furlanetto (2006),
the hot electron distributes its energy by collisionally ionizing other
atoms, producing secondary electrons, collisionally exciting H and
He, and undergoing Coulomb collisions with thermal electrons. The
cross sections of these processes set the fraction of the energy that
goes into heating and the fraction that goes into ionization, for which
we use the expressions of Shull & van Steenberg (1985):

𝑓X,h = 𝐶1
[
1 − (1 − 𝑥

𝑎1
𝑒 )𝑏1

]
(35)

𝑓X,ion = 𝐶2 (1 − 𝑥
𝑎2
𝑒 )𝑏2 (36)

Note that we test the effects of more accurately including secondary
ionizations (see e.g., Furlanetto & Stoever 2010, Ricotti 2016) and
find that they do not meaningfully change the results.

Therefore, calculating the effects of an X-ray background requires
a calculation of the IGM temperature and electron fraction. As de-
scribed in Furlanetto (2006), the X-ray contribution to the tempera-
ture and electron fraction of the IGM can be written in terms of the
X-ray emissivity 𝜖𝑋 as follows:

𝑑𝑇𝑋

𝑑𝑧
=

2
3
𝑓X,h

𝜖𝑋

𝑘𝐵𝑛

𝑑𝑇𝑋

𝑑𝑡

𝑑𝑡

𝑑𝑧
= −2

3

(
𝑓X,h
0.2

)
𝜖𝑋

𝑘𝐵𝑛𝐻 (𝑧) (1 + 𝑧) (37)

𝑑𝑥𝑒

𝑑𝑧
= − 𝑓X,ion

𝜖𝑋

𝐸𝐻𝑛𝐻 (𝑧) (1 + 𝑧) (38)

where 𝐸𝐻 = 13.6 eV is the ionization energy of hydrogen. We
calculate a spectrum-averaged X-ray emissivity from the 𝐿𝑋 − SFR
relation, which we scale by a factor 𝑓𝑋 to account for deviations from
the local calibration (e.g., Mineo et al. 2012, Lehmer et al. 2016)8:

𝜖𝑋 (𝑧) = 2.6 × 1039 𝑓𝑋

(
𝜌SFR (𝑧)

𝑀⊙yr−1cMpc−3

)
erg s−1cMpc−3 (39)

8 Theoretical models (e.g., Mesinger et al. 2013, Fragos et al. 2013) predict
that the 𝐿𝑋 − SFR relation will increase with redshift, with 𝑓𝑋 ∼ 10 − 50
at 𝑧 ∼ 10 suggested by the results of Greig et al. (2021) and The HERA
Collaboration et al. (2022). An upper limit on the value of 𝑓𝑋 is placed
by the Chandra Deep Field-South observations of the unresolved soft X-ray
background (SXB; Hickox & Markevitch 2007); 𝑓𝑋 ≳ 100 would saturate
the SXB (McQuinn 2012), so we bound our models by testing values between
𝑓𝑋 ∼ 1 − 100.
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Figure 4. The evolution of the IGM temperature (top) and electron fraction
(bottom) with redshift for various values of 𝑓𝑋 using the star formation history
computed with the fiducial parameters of Mebane et al. (2018). We compare
our calculation to that of CosmoREC (i.e., no X-ray heating) with a black
dot-dashed curve and show the CMB temperature with a black dotted curve.

where 𝜌SFR is the star formation rate density computed from our
model.

Initializing the calculation with the IGM temperature and electron
fraction calculated with CosmoREC, we integrate the full evolution
equations (given in Furlanetto 2006) simultaneously, yielding the
histories displayed in Figure 4.

With these in hand, we compute the X-ray contribution to the min-
imum mass through its effects on the previously discussed quantities:
the filter mass and LW mass. To incorporate the effects of heating,
we modify the temperature evolution of the IGM used in the calcula-
tion of the filter mass (see § 2.1). This will have the effect of raising
the filter mass at late times as the IGM temperature rises steeply
for 𝑧 ≲ 15 (Figure 4). Ionization raises the free electron fraction of
the IGM. The free electrons catalyze the formation of H2, hastening
collapse and lowering the minimum mass scale derived from LW
photodissociation (see § 2.3).

However, because of the higher density and thus recombination
rate within a halo, the relevant electron fraction within a DM halo
will be smaller than the IGM value that we calculate from integrating
equation 38. We can estimate the electron fraction in a halo by
appealing to a similar argument as that outlined in § 2.2. That is, if
we assume that 𝑛HII = 𝑛e, then eq. 14 will describe the evolution of
𝑥e as well. This then admits the same solution as before; that is:

𝑥e,rec =
𝑥IGM

e
1 + 𝑡𝐻/𝑡𝑖rec

(40)
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where 𝑡rec is defined as before and we have taken 𝑡 = 𝑡𝐻 to be the
relevant timescale for comparison here.

Therefore, there are two relevant limits for this calculation. If the
recombination time is long compared to the Hubble time (so 𝑡rec ≫
𝑡𝐻 ), then the cloud will not reach equilibrium and thus the electron
fraction in the halo will be given by eq. 40. If the recombination time
is sufficiently short compared to the Hubble time (i.e., 𝑡rec ≪ 𝑡𝐻 ),
then the solution (eq. 40) no longer applies—because the ionizing
background could raise the electron fraction during that time—and
we must instead calculate the equilibrium level of ionization.

For the equilibrium calculation, we balance ionization and recom-
bination, solving

𝛼𝐵𝑛𝑒𝑛𝑝 = Γ𝑋𝑛HI (41)

where Γ𝑋 is the ionization rate. Because we do not directly model the
X-ray source spectrum (i.e., 𝜖𝑋 is taken to be frequency-independent),
the ionization rate can be found by solving the cosmological radiative
transfer equation (Haardt & Madau 2012):

Γ𝑋 (𝑧) = 𝑐

∫ ∞

𝜈thresh

𝑑𝜈
𝜎HI (𝜈)
ℎ𝜈

∫ ∞

𝑧
𝑑𝑧′

(1 + 𝑧)3

𝐻 (𝑧′) (1 + 𝑧′)4
𝜖𝑋 (𝑧′)𝑒−𝜏

(42)

where the threshold frequency ℎ𝜈thresh = 13.6 eV, 𝜈′ = 𝜈(1+𝑧′)/(1+
𝑧), and the optical depth is 𝜏 =

∫ 𝑧′
𝑧

(𝑑ℓ/𝑑𝑧′′)𝑑𝑧′′ [𝑛HI𝜎HI (𝜈′′) +
𝑛HeI𝜎HeI (𝜈′′)]. For the cross sections 𝜎HI and 𝜎HeI, we use the fits
of Verner et al. (1996).

As we evolve the X-ray background throughout our calculation,
we fold the newfound halo electron fraction into our calculation of
the LW mass (in eq. 24), and expect that it will suppress the mass
scale as 𝑥e,halo increases.

Including the effects of X-rays in a simple fitting formula is com-
paratively more difficult than the preceding effects. In particular, to
incorporate the effects of heating, one must integrate over the full
temperature history to accurately estimate the filter mass. Therefore,
we only present a simple modification to the fitting formulae for
the photodissociation threshold to account for the effect of X-ray
ionization:

𝑀LW,Xray,low ≃ 𝑀LW,low

(
𝑥e,halo

𝑥e,no Xray

)−0.19
(43)

𝑀LW,Xray,high ≃ 𝑀LW,high

(
𝑥e,halo

𝑥e,no Xray

)−0.33
(44)

where 𝑀LW,low and 𝑀LW,high are given by equations 27 and 28, and
𝑥e,no Xray is the electron fraction of the IGM without the effects of an
X-ray background.9 From these formulae, we can see that an increase
in the electron fraction from the IGM electron fraction without the
effects of an X-ray background will indeed suppress the dissociation
mass, though the strength of this contribution will depend on the
density regime we are in.

2.6 Summary

Our minimum mass model can be summarized as follows. A halo
must first exceed the filter mass threshold (§ 2.1; eq. 8) in order to be

9 For this calculation, one can refer to a recombination code such as RECFAST
or CosmoREC (Seager et al. 1999, Chluba & Thomas 2013). For the relevant
redshifts for Pop III star formation (i.e., between 𝑧 = 5 and 50), however,
the electron fraction without X-rays is well fit by a power-law of the form
𝑥e,no Xray ≈ 2.19 × 10−4 [ (1 + 𝑧)/21]0.12.

able to accrete baryons. Once this gas is accreted, a sufficiently large
fraction of H2 must build up such that the gas can efficiently cool and
collapse to high densities (§ 2.2; eq. 23). If the halo is in a region of
the universe with a large DM-baryon relative velocity, the halo must
also overcome the additional thermal energy associated with the
relative motion (§ 2.4; eq. 34). As the first generations of stars form,
they produce a photodissociating LW background (parameterized in
terms of the specific intensity 𝐽LW) and a photo-heating and -ionizing
X-ray background (which increases the temperature of the IGM and
the electron fraction of the halo 𝑥e,halo). Strong LW intensities and
efficient X-ray heating can significantly boost the minimum mass
(§ 2.3 and 2.5; eq. 29), while ionization can promote the formation
of H2 and lower the mass (eq. 43).

In practice, this means the minimum mass is given by

𝑀min = max[𝑀𝐹 , 𝑀bc,LW,cool] (45)

where 𝑀𝐹 is given by eq. 8 and 𝑀bc,LW,cool is given by eq. 34 (which
depends on eqs. 23, 29, and 43). These fitting formulae presented in
the preceding several sections are accurate to within 40% of the full
calculation, and we find that using them does not change the results of
the semi-analytic calculation (if we do not include the effects of IGM
heating). IGM heating appears to be important at the latest times and
in the case of the strongest X-rays; that is, when 𝑓𝑋 ≳ 50 − 100.
This contribution to the minimum mass is discussed in more detail
in § 4.2.

Calculating the minimum mass and understanding how and when
individual components of the physics are important requires robust
characterization of the star formation histories and associated ra-
diation backgrounds. As such, we now explore the effects of this
minimum mass model in the context of a semi-analytic model for
high-redshift star formation.

3 SEMI-ANALYTIC MODEL

We base our calculations on an updated version of the semi-analytic
model presented in Mebane et al. (2018) (hereafter, M18). This model
employs a feedback-limited star-formation prescription, wherein star
formation is tracked in individual halos until feedback shuts off the
formation process. We follow a sample of 100 halos from 𝑧 = 50 to 6
with masses ranging from 106 −1013𝑀⊙ at 𝑧 = 6 with timesteps of 1
Myr. The growth history of these halos is calculated using abundance
matching, where we assume that halos maintain their comoving num-
ber density through cosmic time, with the halo mass function given
in Trac et al. (2015). Star formation is followed in individual halos
by comparing the halo mass to the evolving minimum mass outlined
in § 2. Once a halo passes this star formation threshold, we compare
its gas mass (which is given by 𝑀gas = Ω𝑏/Ω𝑚𝑀h until supernovae
evacuate some fraction of this gas) to the local Jeans mass. If the
gas mass exceeds the local Jeans mass, it will randomly form one or
two stars (determined by a fixed binary probability 𝑓bin = 0.5) with
masses drawn from a Chabrier-like IMF (Chabrier 2003):

𝑑𝑁

𝑑𝑚
∝ 𝑀−𝛼 exp

[
−
(
𝑀char
𝑀

)𝛽]
(46)

where 𝛼 is the Salpeter-like power-law slope that characterizes the
high-mass end of the IMF and 𝑀char is the characteristic mass.
These massive stars live for 5 Myr and their end-of-life behavior is
determined by their stellar mass; i.e., stars with 𝑀/𝑀⊙ ∈ [8, 40] ∪
[140, 260] end their lives in SNe and the rest collapse directly to
BHs.
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Semi-analytic modeling of Pop III halos 9

Because Pop III stars form in minihalos at high redshifts, super-
nova feedback can significantly affect their environments through
metal enrichment and gas ejection. When a supernova occurs in a
halo, the circumstellar gas is enriched according to the metal yields
given by Heger & Woosley (2002) and Heger & Woosley (2010) for
pair-instability and core-collapse SNe, respectively. We then assume
that 10% of the released kinetic energy couples to gas in the halo and
ejects it. The mass and metallicity of the ejected gas is then followed
and allowed to reaccrete after a free-fall time (roughly 50 Myr for a
105𝑀⊙ minihalo at 𝑧 = 15; see §6.4 in Mebane et al. 2018 for a de-
tailed discussion of this choice). In the meantime, the halo continues
to grow via accretion from the pristine IGM, enabling the potential
formation of subsequent generations of Pop III stars. We note that
the ability for halos to form multiple generations of Pop III stars is a
unique feature of our model that we discuss in more detail in § 5.2.
The simulations of Abe et al. (2021)—which modeled the effects of
SN feedback and metal enrichment on Pop III star formation—found
that the delay in reaccretion of enriched gas allowed for multiple gen-
erations of Pop III star formation before a halo crossed the critical
metallicity and transitioned to the Pop II regime, which motivates
our choice here.

The transition to Pop II star formation is an important piece of our
model, as Pop II stars will dominate in the buildup of the metagalactic
LW and X-ray backgrounds. A halo will transition to Pop II star
formation once it has reached the atomic cooling threshold (𝑇vir >

104 K) or has been sufficiently enriched (i.e., the mean metallicity
of the halo exceeds the critical CII and OI concentrations given in
Bromm & Loeb 2003). We note that we assume that atomic-cooling
haloes form Pop II stars without attempting to model metal mixing
in those haloes, but even if metal mixing is inefficient, their rapid
radiative cooling will modify the process of star formation so that H2
is no longer required. Any Pop III stars forming in massive haloes
are thus likely to be more similar to Pop II stars than those forming
inside minihaloes.

Once a halo transitions, we use the bursty star formation pre-
scription outlined in Furlanetto & Mirocha (2022). This modifies the
feedback-regulated models of Furlanetto et al. (2017) to include a
feedback delay that accounts for the nonzero lifetimes of SN progen-
itors. That is, rather than instantaneously injecting SN feedback into
the system after stars form, we include a 5-30 Myr delay (accounting
for stellar lifetimes) that allows for continued star formation in the
meantime. As a result, the star formation rate can ‘overshoot’ the
expectation of a simple feedback-limited model and halos will ulti-
mately go through cycles of star formation in characteristic ‘bursts.’
This effect is most pronounced in the least massive halos, which are
the most susceptible to the effects of feedback. As a halo grows, these
star formation cycles damp out and the star formation efficiency ap-
proaches the equilibrium result used in M18 (originally presented in
Furlanetto et al. 2017).

We use the aforementioned framework to evolve the system of ha-
los between redshifts 50 and 6. We extrapolate these results (which
are calculated for a sample of 100 halos) to calculate global quan-
tities, such as the star-formation rate density (SFRD), by averaging
over the halo mass function. To minimize noise in our calculations
(because we track only 100 halos for computational efficiency), at ev-
ery timestep, we inject 10,000 ‘fake’ halos into our calculation. These
halos form stars with a probability given by the star formation duty
cycle 𝑓duty (𝑧) = 𝑁III,on (𝑧)/𝑁III (𝑧), where 𝑁III,on (𝑧) is the number
of halos that are actively forming stars and 𝑁III (𝑧) is the number of
halos that are able to form Pop III stars at a given 𝑧 (i.e., have yet
to transition to Pop II star formation). We compare this procedure to
calculating the SFRD with 1,000 ‘real’ halos (compared to the 100

in our fiducial runs) and find that the ‘fake’ halo injection robustly
reproduces the expected SFRD.

4 RESULTS

We now use the updated prescription for the minimum mass (§ 2)
and the improvements to the semi-analytic framework (§ 3) to follow
star formation during the Pop III era. For the fiducial model:

(i) In calculating the minimum mass, we assume a stream velocity
magnitude of 𝑣bc = 1𝜎vbc and an L𝑋−SFR scaling of 𝑓𝑋 = 10.

(ii) We assume a Chabrier IMF (equation 46) with a maximum
mass of 500𝑀⊙ , 𝛼 = 2.35 (Salpeter 1955), 𝛽 = 1.6, and
𝑀char = 20𝑀⊙ .

(iii) We include bursty star formation for Pop II halos.

We note that our fiducial value for the magnitude of the stream ve-
locity (1𝜎vbc) was chosen for ease of comparison with existing work.
The stream velocity follows a Maxwell-Boltzmann distribution, for
which the mean is

√︁
8/3𝜋𝜎vbc ∼ 0.92𝜎vbc and the most probable

value is
√︁

2/3𝜎vbc ∼ 0.82𝜎vbc. We find that choosing one of these
values would lower the minimum mass at early times by a factor of a
few but would be qualitatively similar to the 1𝜎vbc case. Our fiducial
choice of 𝑓𝑋 = 10 is motivated by the findings of The HERA Col-
laboration et al. (2022) (and the predictions of Fragos et al. 2013).
We also present variations of many of these parameters around these
fiducial values.

In Figure 5, we present the minimum mass calculated using the
radiation backgrounds computed with our fiducial parameter set (see
lower panel of Figure 6 for the associated SFRD). We can understand
the evolution of the minimum mass with time by inspecting the evo-
lution of the individual contributions to the minimum mass (colored
curves) in various epochs.

(I) Streaming dominance, 𝑧 ≳ 30: At the earliest times, the
stream velocity is the dominant limiting factor and the shape of
the minimum mass traces the evolution of the cooling threshold
for a region of 1𝜎vbc streaming (red). The comparison between
the cooling threshold with and without streaming (solid and
dashed red curves, respectively) demonstrates the significant
effect of the stream velocity on the minimum mass (nearly
two orders of magnitude magnification). During this time, the
minimum mass decays with the stream velocity as 𝑣 ∝ (1 + 𝑧)
and the calculations with and without streaming (dashed vs
solid curves) rapidly converge.

(II) LW dominance, 10 ≲ 𝑧 ≲ 30: By 𝑧 = 30, the SFRD has
grown (largely dominated by Pop III stars; the solid red curve
in the lower panel of Figure 6) and the LW background has
built up, so the LW mass (blue) takes over and the minimum
mass begins to grow. Coincident with this is an almost plateau
in the Pop III SFRD, as the minimum mass is now growing at
a rate comparable to the growth rate of low mass halos. This
redshift evolution of the LW mass is tied to the efficiency of
self-shielding in massive halos. In other words, because of the
steep decrease in halo gas density as the universe expands (i.e.,
𝑛gas ∝ (1 + 𝑧)3), self-shielding is less efficient at lower 𝑧 and
the LW mass can climb steadily as a result.

(III) Bursty star formation, 7 ≲ 𝑧 ≲ 15: At later times, Pop II
star formation dominates and the effect of the bursty SF cycles
is apparent in both the SFRD and the minimum mass. As a
result, the Pop II SFRD overshoots the equilibrium case (black
dashed curve in lower panel of Figure 6) and induces a slight
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increase in the minimum mass, as we expect from the results
of Furlanetto & Mirocha (2022). We discuss this effect in more
detail in § 4.3.

(IV) X-ray era, 𝑧 ≲ 15: At the latest times, we can compare the
positive and negative effects of the X-ray background. The
dominant effect of the X-ray background is the positive feed-
back from photoionization, which suppresses the minimum
mass more efficiently at lower 𝑧 (orange vs. black curve) as
the universe becomes ionized (Figure 4). With 𝑓𝑋 = 10 in our
fiducical model, the negative effect of X-ray heating is sub-
dominant and is manifested as an upturn in the filter mass at
the latest times. Because of this minimum mass suppression
(from ionization), Pop III star formation persists through the
end of our calculation to 𝑧 ∼ 6.

While the redshifts of transition between the different effects will
vary with 𝑣bc and 𝑓𝑋 , this evolution of the minimum mass is quali-
tatively generic to all models, as is discussed below.

4.1 Comparison to M18

Comparing our fiducial minimum mass to that of M18 during this
epoch, we can isolate the key differences that result from the updated
calculations described in § 2. The M18 model used a prescription for
the minimum mass fit to the results of simulations (O’Shea & Nor-
man 2008) that did not include the effects of self-shielding. As the
Lyman-Werner background builds up, we see a nearly order of mag-
nitude suppression in the mass scale. The inclusion of self-shielding,

following the updated criterion of WG11/WG19 (eq. 26), introduces
more efficient shielding in the densest halos, suppressing the effects
of the photodissociating background. Coupled with the positive ef-
fect of X-ray ionization,10 this has the effect of allowing a sustained
and slowly growing level of Pop III star formation down to the latest
times, when the SFRD begins to decline. Moreover, the peak Pop III
SFRD is nearly two orders of magnitude larger in the new model,
largely because of the self-shielding in massive halos. As a result,
Pop III star formation will contribute significantly for a much longer
time. The difference in the shapes of the minimum mass curves at
𝑧 ≳ 25 is due to the inclusion of the stream velocity in the calcu-
lation of the cooling threshold. However, because of the additional
requirement that the halo gas mass must exceed the local Jeans mass
in order for star formation to begin, the nearly order of magnitude
increase in the minimum mass only slightly filters into the global
SFRD.

In Figure 7, we compare the calculation of the Pop III SFRD using
our fiducial cosmology to that of M18 and consider some individual
parameter variations to diagnose the differences. Disentangling the
sources of discrepancy induced by changes in the overall cosmology
is challenging, but it is clear that the early phases of Pop III star
formation are sensitive to this choice. Once the radiation backgrounds

10 The minimum mass prescription used in M18 does not include the effects
of an X-ray background — without this positive feedback, the minimum mass
would be increased by a factor of a few at late times; see § 4.2.
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Figure 6. (top) The minimum DM halo mass for Pop III star formation as a
function of redshift in our fiducial model (𝑣bc = 1𝜎vbc, 𝑓𝑋 = 10; solid black
curve) and the previous incarnation of the semi-analytic model (M18; dashed
black curve). (bottom) The star formation rate density (SFRD) as a function
of redshift comparing our fiducial model (solid) to M18 (dashed). Note that
we are using a different fiducial parameter set from M18 for this comparison.
The Pop III (II) contribution to the SFRD is given in red (blue) and the total
SFRD is given in black.

build up and the SFRD reaches its peak, however, the differences are
washed out and the various models converge to the same result.

Some simulations note that Pop III stars are likely to form in small
groups or clusters (e.g., Greif et al. 2011, Latif et al. 2022). In our
fiducial model we assume that Pop III stars form either in isolation or
in a binary, so we test the effects of this assumption by comparing our
predicted SFRD to a model run with a fixed star-formation efficiency
(SFE) of 0.001 in Figure 7. With a fixed SFE, more stars will form
in more massive halos than less massive ones and, in general, more
stars will form in all halos than in our fiducial model. As a result, we
see that an increased SFE raises the global SFRD, though the effect
is modest, with the deviation between the models reaching a factor
of a few at the latest times (near the peak of Pop III star formation).

For a more detailed discussion of the star formation process in
individual minihalos we refer the reader to the analysis in M18, for
which our model is analogous. Here, we instead now turn to an
exploration of the variations in the global SFRD that result from
variations in the individual star formation physics.

4.2 The effects of the minimum mass on Pop III star formation

The minimum mass model outlined in § 2 allows us to naturally test
the effects of varying the details of Pop III star formation physics. To
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Figure 7. The redshift evolution of the Pop III SFRD for different choices
of the underlying cosmology (different colors) and star-formation efficiency
(SFE; dashed line) with 𝑓𝑋 , 𝑣bc = 0. Our fiducial choice is given in black, the
cosmology used in M18 in orange, and variations of one or a few parameters
from our fiducial choice in the other colors.

this end, we examine the evolution of the minimum mass and Pop
III SFRD for representative values of the stream velocity and X-ray
background strength (which is parameterized by 𝑓𝑋; see equation 39)
in Figures 8 and 9. Note that in these figures, we have omitted the Pop
II SFRD because the timing of the transition is effectively indepen-
dent of the details of Pop III star formation (and our model assumes
these halos are not subject to the same feedback mechanisms)—in
other words, most halos transition to Pop II star formation once they
cross the atomic cooling threshold, rather than as a result of metal
enrichment. 11 We have also zoomed in on the times during which
the effects of X-ray feedback will be dominant (𝑧 ≤ 25).

First, we can isolate the effects of introducing and varying the
stream velocity strength with no X-ray background (i.e., 𝑓𝑋 = 0;
Figure 8). We also demonstrate the effects of variations in our choice
of halo gas density by overlaying the evolution of the minimum mass
and SFRD using the fiducial parameters adopted in Nebrin et al.
(2023) (i.e., their density prescription, 𝜁 = 0.16, and 𝛼vbc = 6;
dashed curves). However, we defer discussion of those differences to
§ 5.1 and focus on variations in 𝑣bc and 𝑓𝑋 here.

Broadly, the minimum mass is dominated by the cooling mass at
early times and the joint LW-X-ray mass once star formation has built
up for all values of 𝑣bc. As we increase the stream velocity, however,
the filter and cooling masses grow in strength at early times and
the minimum mass demonstrates a qualitatively different shape as a
result (as it decays with the stream velocity 𝑣bc ∝ (1+ 𝑧)). Increasing
the stream velocity from 0 → 1 or 1 → 2𝜎vbc induces an increase in
the minimum mass by a factor of ∼ 10 − 20. This drastic increase in
the minimum mass is clearly reflected in the Pop III SFRD for regions

11 For example, a 1013𝑀⊙ halo at 𝑧 = 6 will have crossed the atomic cooling
threshold at 𝑧 ∼ 43, while for 1010𝑀⊙ and 108𝑀⊙ halos, that crossing point
is 𝑧 ∼ 23 and 𝑧 ∼ 10, respectively.
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Figure 8. (top) The minimum mass for three different values of the stream
velocity (different colors), comparing our calculation (solid curves) to that
based on Nebrin et al. (2023) (dashed curves; i.e., using their density thresh-
old, taking 𝜁 = 0.16, and setting 𝛼vbc = 6). (bottom) The associated Pop III
SFRD for the same cases as above.

with a moderate or strong relative velocity (𝑣bc ≳ 2𝜎vbc). Note that
the effect of this in the SFRD is diminished somewhat in going
from 0 to 1𝜎vbc because of the additional requirement that a halo
must build up enough gas to exceed the local Jeans mass (dashed
black curve in Figure 9), which takes a significant time, thereby
raising the effective minimum mass for the first generation of star
formation. Nevertheless, the first stars do not form until 𝑧 ∼ 30 − 35
in regions of the strongest relative velocity (compared to 𝑧 ∼ 40− 45
in weak streaming regions)—a nearly 50 Myr delay in the onset of
star formation. However, despite this delay, once minihalos begin to
form Pop III stars, the SFRD quickly approaches the ‘equilibrium’
level seen in the no/weak streaming case, so the late time behavior is
indistinguishable from the weak streaming limit in most cases. In the
case of strong relative velocity (yellow curves), the minimum mass
is already growing steeply by the time the SFRD builds up to a high
level, so it is not able to reach the same peak level as in regions with
𝑣bc ≲ 2𝜎vbc.

In Figure 9, we isolate the effects of X-ray feedback at fixed 𝑣bc.
First, across all three panels, it is evident that the inclusion of X-
ray feedback significantly enhances Pop III star formation. That is,
moving from no X-ray feedback (green) to even a weak background
(black) induces a factor of a few change in the minimum mass and
flattens the redshift evolution somewhat. Indeed, the clearest dif-
ference between the runs with and without X-ray feedback are the
duration of high levels of Pop III star formation—when X-ray sup-

pression of the minimum mass is not present, Pop III star formation
is quenched by 𝑧 ∼ 7 − 8.

Across all three streaming runs, both the positive and negative
effects of X-ray feedback are apparent in the minimum mass. During
the epoch where the minimum mass is set by LW feedback, positive
feedback is manifested as a suppression to the minimum mass but
the effect is relatively weak—the minimum mass is lowered by a
factor of ∼ 5 − 10 over two orders of magnitude increase in 𝑓𝑋 .
Despite this seemingly weak effect, the peak level of star formation
achieved is boosted as we increase 𝑓𝑋 . At the latest times, however,
with 𝑓𝑋 = 100 (red), the X-ray background has built up sufficiently
for the IGM heating to translate into a steep increase in the filter
mass, which can be seen in the smooth upturn of the minimum mass
curves at 𝑧 ∼ 5 − 10, where it switches back from tracing the LW or
cooling curves to again following the filter mass. The timing of this
transition is dependent on the strength of the X-ray background; with
𝑓𝑋 ≳ 50 the IGM is efficiently heated (Figure 4) after 𝑧 ∼ 15 and
the minimum mass rises steeply in response. This negative feedback
is reflected in the Pop III SFRD for the strongest X-rays—as heating
overtakes the suppression due to enhanced positive X-ray feedback,
𝑀min approaches the same late time value (∼ 108𝑀⊙) as the no X-ray
model and Pop III star formation is again shut off at the latest times,
though the transition happens more sharply than the no X-ray case.

Analyzing the effects of 𝑣bc and 𝑓𝑋 together, it is apparent that
the independent variations in the minimum mass and SFRD persist
in the presence of both effects. That is, as we increase 𝑣bc, the peak
SFRD is increasingly suppressed and as we increase 𝑓𝑋 , it is boosted.
In the case of the strongest X-rays and strong streaming (red curve
in rightmost panels), X-ray heating is significant at nearly the same
time that the LW mass takes over from the cooling threshold. The
steeper growth of the minimum mass in this case results in the SFRD
plummeting just as quickly as it grew.

We note that, regardless of 𝑓𝑋 and the local stream velocity, all of
these models yield a peak Pop III SFRD∼ 5×10−4 𝑀⊙ yr−1 Mpc−3.
These parameter choices primarily determine the duration of that
peak era. However, the peak SFRD will be sensitive to other choices
in the model; for example, we assume that each halo forms only one
or two stars at a time. The SFRD will be directly proportional to the
average mass of stars formed in each event.

4.3 The effects of bursty Pop II star formation

In Figure 10 we explore the effects of bursty Pop II star formation
on the global Pop III and II SFRD. For clarity in isolating the effects
of bursty star formation, we present the SFRD calculated for the
minimum mass prescription used in M18. As described in § 3, cycles
of bursty star formation should cause Pop II halos to overshoot the
equilibrium SFR, as is reflected in the two red curves. The signature
of these cycles is most clearly seen at low redshifts (when our 1 Myr
timesteps are much more finely spaced in redshift space) but they
affect the first Pop II halos as well. An increase in the Pop II SFRD
leads to a quicker buildup of the LW background and thus an increase
in the minimum mass. This in turn has the effect of suppressing Pop
III star formation—the Pop III SFRD plateau achieved in the bursty
case is smaller than that of the equilibrium case and star formation
shuts off at a redshift of ∼ 16 (12) in the bursty (equilibrium) case.
In this sense, bursty Pop II star formation acts as another negative
‘feedback’ mechanism for Pop III star formation.

However, we include bursty star formation in our fiducial model
and in the parameter variations shown in Figure 9 and find that
the negative effects are subdominant relative to the other effects
setting the minimum mass. That is, the inclusion of X-ray ionization
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Figure 9. (top) The minimum mass as a function of redshift for 𝑓𝑋 = 0, 1, 10, 100 (green, black, blue, red, respectively) and 𝑣bc = 0, 1, 3𝜎vbc moving from left
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black curve) are shown for reference. (bottom) The associated Pop III SFRD for the same cases as the upper panels.

and updated models for self-shielding, for example, suppress the
minimum mass to a level that bursty star formation in Pop II halos
does not meaningfully affect the ability of a minihalo to form Pop III
stars.

5 COMPARISON TO OTHER WORKS

Several other groups have considered the question of when and where
Pop III stars can form, both from a numerical and analytic standpoint.
Because this epoch of the universe’s history has yet to be observed,
the uncertainties are large and it is useful to consider a range of
models that explore the entire parameter space. In this section we
compare our results to those obtained by other groups, first focusing
on the minimum mass calculation and next on the semi-analytic
model.

5.1 Minimum mass model

The minimum halo mass for molecular hydrogen cooling has been
studied in a number of contexts. One of the first attempts to analyt-
ically describe early star formation came in Tegmark et al. (1997),
wherein the collapse threshold argument was introduced to identify
when H2 cooling will become efficient. We base the broad structure
of our photodissociation criterion—see § 2.3—on this argument.

This argument was shown to produce minimum masses that quali-
tatively agree with the results of simulations (e.g., Machacek et al.
2001, O’Shea & Norman 2008, Visbal et al. 2014b) though in detail
the results differ by a factor of a few. The effect of streaming on
gas accretion has been studied many times as well; we have already
compared our results to Naoz et al. (2013) in § 2.1.2, demonstrating
good quantitative agreement.

The first simulations to study the joint effects of LW photodissocia-
tion and the stream velocity on the minimum mass were K21 and S21.
In Figure 11, we compare our calculations to the simulated results of
K21 and S21, isolating the effects of photodissociation and streaming.
These two simulations tested various values for the LW background
and stream velocity with the goal of estimating the minimum DM
halo mass for star formation in the presence of these two effects. How-
ever, their simulations probe different regions of the LW parameter
space—the K21 group used values of 𝐽LW/𝐽21 = 0, 1, 10, 30 and S21
used 𝐽LW/𝐽21 = 0, 10−2, 10−1—and are discrepant in their limited
overlap. Therefore, we remain agnostic about committing to either
set of results and defer to our analytic calculation of the minimum
mass.12 We find that we can more closely reproduce their results with

12 During the era of LW dominance in the minimum mass (𝑧 ≲ 25; see
Figure 6 and § 4), the LW intensity is of order 𝐽LW/𝐽21 ∼ O(1 − 10) , so
the K21 results likely probe the more relevant parameter space for regulating
Pop III star formation.
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Figure 10. The Pop III (black) and Pop II (red) SFRD as a function of
redshift comparing the bursty (solid) and equilibrium (dotted) models for the
minimum mass prescription used in M18.

a modification of 𝜁 in our cooling threshold, perhaps in part because
of differences in the definition of the critical (K21) or average (S21)
mass thresholds. In particular, for the following comparison, we take
𝑡cool < 𝑡ff = 𝜁𝑡𝐻 =⇒ 𝜁 = 0.16.

In Figure 11, we show that our analytic calculations agree reason-
ably well with the K21 simulations and underpredict the S21 results
in the case of no streaming and no LW background (where the mass
scale should be set by the 𝑣bc = 0 cooling threshold described in
§ 2.2). This discrepancy continues as we introduce a nonzero LW
intensity and stream velocity.

First, we fix 𝑣bc = 0 and isolate the effects of varying 𝐽LW (left
panel). Comparing the simulated results, we see that those of S21
demonstrate a larger minimum mass for 𝐽LW/𝐽21 = 0.1 than those of
K21 for 𝐽LW/𝐽21 = 1. We find that the redshift evolution of our results
for 𝑀crit agrees qualitatively well with those of K21, especially for
large 𝐽LW. For 𝐽LW/𝐽21 = 1, however, our calculations differ from
that of K21 by a factor of a few. One key difference in the simulations
of S21 and K21 is in their calculation of 𝑓shield. In particular, K21 use
the same self-shielding criterion as in this work (WG11/19), which
was introduced as a correction to that used in S21 (namely, Draine &
Bertoldi 1996) for warm, dense gas. Previous calculations of 𝑀min
that ignored the effects of self-shielding (e.g., Machacek et al. 2001,
O’Shea & Norman 2008) predict minimum masses nearly an order
of magnitude larger than those found in this work. We find that
the minimum mass is fairly sensitive to the magnitude and redshift
evolution of the density threshold which in turn feeds into the strength
of the self-shielding effect and speculate that this is perhaps one
source of the discrepancy between K21 and S21.

Next, we fix 𝐽LW = 0 and isolate the effects of streaming. We find
that the calculation of the thermalization threshold (§ 2.4) with our
choice of 𝛼vbc = 5 produces excellent agreement with the simulated
results of K21. For 𝑣bc ≠ 0, our calculations underpredict those
of S21 by a factor of a few, with the discrepancy increasing with
increasing 𝑣bc. However, given that K21 and S21 disagree by similar
amounts, it is not clear how to resolve this difference.

Despite the small quantitative differences noted in the evolution of
the minimum mass displayed in Figure 11, we find that the resulting
Pop III SFRD changes only modestly if we replace our minimum
mass model with the fitting formula reported in K21.

On the other hand, we find that the large variations in 𝑀crit with
𝑣bc reported by S21 do significantly change the Pop III SFRD, if
we use their fitting formula. For example, with 𝑣bc = 3𝜎vbc their
procedure makes the minimum mass so large that no Pop III stars
form (cf. the star formation delay we see in Figure 9).

The impact of an X-ray background on the Pop III star formation
process is similarly uncertain. Ricotti (2016) studied the joint effects
of LW photodissociation and X-ray feedback analytically, using a
cooling and Jeans mass criterion to set the minimum mass. They
found that this criterion defined a global feedback loop, wherein Pop
III stars can positively and negatively feed back into the star formation
process, with the dominant effect depending on the strength of the
X-ray background. Both of their conditions for defining the minimum
mass are similar in spirit to ours but differ in detail, due to differences
in the details of our cooling criterion, X-ray calculations, and our use
of the filter mass rather than the Jeans mass. Qualitatively, however,
we find a similar feedback loop wherein a critical value for the X-
ray strength ( 𝑓𝑋 ≳ 40 for our model) defines the transition between
positive and negative feedback dominance. The simulations of Park
et al. (2021) follow up on this analytic calculation to investigate the
effects of incorporating local feedback processes in more detail and
find broad qualitative agreement with the results of Ricotti (2016).

While this project was being completed, a related study developing
a semi-analytic estimate for the minimum mass (akin to our § 2)
was released (Nebrin et al. 2023). In Figure 12, we compare our
results to their minimum mass model, adopting the same Lyman-
Werner background evolution (Incatasciato et al. 2023) and cooling
threshold (i.e., 𝑡cool < 6𝑡ff = 𝜁𝑡𝐻 =⇒ 𝜁 ≃ 0.16) to simplify
the comparison. While their model is fairly similar in spirit to that
presented in this work, in detail, there are some key differences that
result in distinct calculations of the minimum mass. For example, they
consider the joint effects of H2 cooling, LW feedback, and the stream
velocity on the minimum mass, as we do. They include the effects of
reionization feedback—which we do not include—though it is likely
to be significant only at fairly late times (𝑧 ≲ 10) and be patchy
until reionization is complete (at 𝑧 ≲ 6). We do not include such
inhomogeneous mechanisms here. They do not include the effects
of an X-ray background, which we show to be important in both
promoting and suppressing high redshift star formation between 𝑧 ∼
6 − 20 (§ 2.5). Therefore, we limit our comparison with their results
to the overlap: the calculations of the cooling, photodissociation, and
thermalization thresholds, for which there are some differences.

Based on the comparison in Figure 12, the similarities between our
models are clear. That is, the redshift evolution is comparable and the
minimum mass clearly transitions between the cooling mass and LW
mass at roughly the same time in the two models. Despite the broad
similarity, there is a difference of a factor of a few in the magnitude
of the minimum mass at the highest redshifts (most notably in the
case with no streaming). This difference can be attributed to their
choice of central halo gas density (i.e., comparing our equation 12
to their equation 7). As a result, our model has a critical H2 cooling
fraction that is two orders of magnitude smaller than their equation
16.13 This also results in a somewhat different redshift evolution
of the cooling mass (we find a different temperature scaling for the

13 Evaluating our eq. 22 for 𝑀 = 106𝑀⊙ and converting from 𝜁 → 𝜂 at
𝑧 = 9, we find 𝑓H2 ,crit ≃ 2.08 × 10−5.

MNRAS 000, 1–20 (2023)



Semi-analytic modeling of Pop III halos 15

15.0 17.5 20.0 22.5 25.0 27.5 30.0
z

105

106

107

M
cr

it
[M
�

]

JLW [J21] (vbc = 0)
0.0

0.01

0.1

1.0

10.0

30.0

K21

S21

15.0 17.5 20.0 22.5 25.0 27.5 30.0
z

vbc [σvbc] (JLW = 0)
0

1

2

3

K21

S21
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Figure 12. A comparison of the redshift evolution of the minimum mass
for three representative values of the stream velocity (0, 1, 2𝜎vbc — purple,
black, and orange, respectively) between our model and that of Nebrin et al.
(2023). The three sets of curves compare our calculation (eq. 45; solid curves),
the Nebrin et al. (2023) model (dashed curves), and our model with the Nebrin
et al. (2023) density criterion (dotted curves). This is analogous to their Figure
9. For ease of comparison, all take the Lyman-Werner radiation background
presented in Incatasciato et al. (2023).

low-mass density threshold). This difference will also feed into the
calculation of the dissociation threshold. Indeed, if we modify our
density threshold to match theirs (dotted curves in Figure 12), much
of the difference between our models at small streaming velocities is
erased.

Our treatment of the contribution to the minimum mass due to the
stream velocity is identical to that of Nebrin et al. (2023) (i.e., we
both employ the threshold identified in Fialkov et al. 2012), but we
also include the calculation of the filtering scale (accretion threshold)
as a baseline for our model and choose 𝛼vbc = 5 for our fiducial cal-
culations (while they set 𝛼vbc = 6). As such, we see similar evolution
of the minimum mass with increasing 𝑣bc, though the magnitude of
this increase differs for the same reasons as outlined above. Despite
these differences, at late times our calculations converge to the same
minimum mass value 𝑀min → 108𝑀⊙ as 𝑧 → 6.

In Figure 8, we overlay the results of our semi-analytic calcula-
tion assuming the same fiducial parameters as Nebrin et al. (2023)
(dashed curves; i.e., with their density threshold, taking 𝜁 = 0.16,
and setting 𝛼vbc = 6) to test how these assumptions feed into the
predictions made with our semi-analytic model. At high redshifts,
the evolution of the minimum mass is qualitatively similar between
the two cases, with the increased 𝛼vbc setting the discrepancy. As
expected, this leads to a slightly earlier onset of star formation in our
models than we would see with a stronger effect from the stream ve-
locity. At late times, the differences between the models are a result of
the different density parameterizations. In particular, our high-mass
density threshold is normalized to a somewhat smaller value than
that chosen in Nebrin et al. (2023) (cf. we choose 𝑛H ∼ 12 cm−3

while they choose 𝑛H ∼ 32 cm−3 at 𝑧 = 20). With all else fixed, this
means that, once we are in the high-mass regime, a halo needs to be
more massive to approach the same critical dissociation threshold.
Because the density evolves with redshift, this is equivalent to an
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earlier rise in the minimum mass to reach the same fixed density,
which we see. Combining the two effects, the resulting SFRDs are
effectively discrepant by a constant offset ofΔ𝑧 ∼ 1. While this would
in turn produce different observable signatures, we emphasize that
such discrepancies are significantly smaller than the uncertainties in
other parameters outside of the minimum mass model, such as the
selection of 𝑓𝑋 and the Pop III IMF.

5.2 The Pop III star formation history

Next, we focus our comparison on two recent works studying semi-
analytic modeling of the formation of the first stars: Visbal et al.
(2020) and Magg et al. (2022). We note that both of these works
use the same LW feedback prescription used in M18, which does
not include the effects of self-shielding and to which we compare
our calculation in Figure 6. We demonstrate that inclusion of H2
self-shielding can suppress the minimum mass by nearly an order
of magnitude during this era and so expect that these results will
overpredict the suppression of Pop III star formation by the LW
background (and hence underpredict the resulting SFRD). We also
note that neither of these works includes X-ray feedback.

Visbal et al. (2020) apply analytic models for star formation to
DM halo merger trees from cosmological simulations to model the
Pop III star formation process. This approach, combined with their
grid-based calculation of the radiation backgrounds, allows them to
account for local, inhomogeneous effects on the SFRD, such as clus-
tering and mergers. Rather than following star formation in individual
halos (as we do), they assume a fixed fraction (0.001) of the gas in a
halo is converted into Pop III stars in a single star formation event,
corresponding to roughly 100𝑀⊙ of stars in a 106𝑀⊙ minihalo. Af-
ter a fixed delay time, these halos are assumed to have re-accreted
metal-enriched gas and will transition to equilibrium Pop II star for-
mation with a similar fixed star formation efficiency of 0.05. While
qualitatively similar to our approach, their model differs in its details:
we have a longer delay for re-accretion of enriched gas (∼ 50 Myr,
c.f. their Fig. 3), and we treat the subsequent enriched star formation
more carefully (without imposing a fixed star formation efficiency).
But the most important difference is in our use of a self-shielding
prescription. Ultimately, they find sustained Pop III star formation to
𝑧 = 6 (as we do), but find a Pop III SFRD nearly an order of magni-
tude smaller than our results, likely primarily because of differences
in the minimum mass. In their model, the transition to Pop II star
formation also occurs at earlier times than ours (𝑧trans ∼ 25 − 30
for our model). Nevertheless, the overall histories are qualitatively
similar.

Magg et al. (2022) similarly develop their semi-analytic model
using DM merger trees from cosmological N-body simulations with
the goal of analyzing the effects of variations in the recovery time
(time to transition to metal enriched star formation) on the 21-cm
signal (see § 6.2). In a procedure akin to that of Visbal et al. (2020),
they assume a fixed star formation efficiency for Pop II stars and
for their total mass of Pop III stars. However, they do not explicitly
include the LW feedback or stream velocity in their calculation of
the minimum mass, and they ignore X-ray feedback. Instead, they
parameterize the minimum mass in terms of a critical temperature and
calculate this threshold (which is based on the local circular velocity)
using individual pixels in their 21-cm simulation box. They also
employ a different IMF, choosing a power-law with 𝜙 ∝ 𝑀0.5 (i.e.,
a very top-heavy IMF), compared to our Chabrier IMF, which has a
power-law slope of −2.35 at large masses. Similarly to Visbal et al.
(2020), they specify a single event of Pop III star formation, followed
by a fixed recovery time before a transition to metal-enriched star

formation (for which they consider several possibilities; our fiducial
model corresponds most closely to their ‘intermediate’ (30 Myr)
transition case.

In this case, we find qualitative agreement with their model,
although their transition redshift is somewhat later than ours
(𝑧transition ∼ 20 − 25 compared to 25 − 30 in our fiducial model)
and they find much higher peak levels of Pop III star formation at a
level about an order of magnitude larger than the peak late-time value
we see. These are likely a result of their much higher star formation
efficiencies (≈ 0.02, which is a factor of 20 larger than the value
chosen in Visbal et al. 2020,and corresponds to a 𝑀III ∼ 103𝑀⊙
starburst in the smallest halos). Because many more Pop III stars
form in their model than ours, it takes longer for the Pop II star for-
mation to catch up and they find a somewhat later transition redshift.
Despite the differences, Pop III star formation persists to late times
in both of our calculations, though they find nearly an order of mag-
nitude larger Pop III contribution to the SFRD than in our model.
This illustrates the sensitivity of the SFRD to the assumed Pop III
star formation efficiency. Otherwise, the qualitative similarity of our
histories suggest that it is the total Pop III star formation efficiency,
integrated over all star formation episodes, that sets the amplitude
of the SFRD, whether or not a single event is assumed or repeated
cycles (as found in the simulations of Abe et al. 2021).

Finally, we compare our predictions to those of two high resolution
cosmological simulations: Jaacks et al. (2019) and Liu & Bromm
(2020).

Jaacks et al. (2019) utilize detailed subgrid models in conjunction
with cosmological simulations to predict the evolution of the global
star formation rate density prior to the epoch of reionization. They
self-consistently model the formation and evolution of both Pop III
and Pop II stars and the transition between the two generations.
Comparing the predictions of our fiducial model to theirs, we find
good agreement in the expected SFRD. Though star formation turns
on earlier in our semi-analytic calculations, we find that the overall
SFRD approaches a similar level between our models (𝜌SFR,peak ∼
few × 10−4𝑀⊙ yr−1 Mpc−3 at 𝑧 ∼ 10).

Liu & Bromm (2020) combine cosmological simulations with
semi-analytic models to study the global end stages of Pop III star
formation. In particular, they consider the effects of growing radia-
tion backgrounds, metal enrichment, and reionization to determine
the magnitude of Pop III star formation following the reionization
epoch. Given that the focus of this work is the evolution of the
global star formation rate at high redshifts, it is most instructive
to compare our outputs in the range of overlap: namely, between
𝑧 ∼ 10 − 25. Comparing our fiducial model to theirs, the qualita-
tive structure is the same—Pop III star formation grows to a peak at
𝑧 ∼ 10 and steadily declines thereafter, largely in response to a grow-
ing LW background. However, the peak value achieved in their results
(𝜌SFR,peak ∼ 10−4𝑀⊙ yr−1 Mpc−3) is a factor of a few smaller than
that which we find in our model, for the same reason as the differ-
ences noted with Visbal et al. (2020) and Magg et al. (2022). That is,
the use of a minimum star-forming mass scale for LW feedback cali-
brated to simulations that do not include the effects of self-shielding
overestimate the effect of a growing LW background.

6 OBSERVATIONAL IMPLICATIONS

We extend our semi-analytic model to generate preliminary predic-
tions of observable signatures of Pop III star formation in minihalos
in the early universe. Unfortunately, direct observations of Pop III
halos will be very challenging with both current and forthcoming

MNRAS 000, 1–20 (2023)



Semi-analytic modeling of Pop III halos 17

10 20 30 40 50
z

10−5

10−4

10−3

10−2

10−1

100

101
P

op
II

I
S

N
ra

te
(p

er
u

n
it

re
d

sh
if

t)
[y

r−
1

d
eg
−

2
]

Mchar,IMF [M�]

20 (fid.)

20 (vbc = 0σvbc)

150 (vbc = 1σvbc)

pair-instability

core-collapse

Figure 13. Redshift evolution of the Pop III SN rate for several models. We
show results for our fiducial model (solid curves), the fiducial model in a
region with no streaming (dotted curves), and a model with a much higher
characteristic Pop III mass (dashed curves). In each case, we show the PISN
and core-collapse rates separately (black and red curves, respectively).

telescopes. Indeed, M18 calculate that these halos will have abso-
lute magnitudes between 𝑀AB ≈ −10 and −5. Indirect signatures
of Pop III stars—i.e., in their transients or in their effect on their
surroundings—offer a far more promising avenue to constrain the
physics of Pop III star formation with current technology.

6.1 Pop III supernovae

Stars with masses between 140 − 260𝑀⊙ are expected to end their
lives in pair-instability supernovae (PISNe; Barkat et al. 1967, Fryer
et al. 2001, Heger & Woosley 2002, Heger & Woosley 2010). These
superenergetic supernovae can produce nearly two orders of mag-
nitude more energy than traditional core-collapse SNe and are so
powerful that they completely tear the progenitor star apart, leaving
no compact remnant behind. If Pop III stars have a top-heavy IMF—
as we expect from numerical simulations—it is likely that some of
them will form in this mass range and could produce PISNe. We can
calculate the transient rate as:

𝑑2𝑁

𝑑𝑡obs𝑑Ωobs
(𝑧) = 𝜂IMF

1 + 𝑧

𝑑2𝑉

𝑑𝑧𝑑Ωobs
𝜌SFR (𝑧) (47)

where 𝑑2𝑉/𝑑𝑧𝑑Ω is the differential comoving volume element, 𝜂IMF
is the number of progenitors per unit stellar mass (and is determined
by the IMF), the factor of 1/(1 + 𝑧) accounts for cosmological time
dilation, and 𝜌SFR (𝑧) is the usual SFRD calculated from our semi-
analytic model. From this, we can identify the rates associated with
different types of SNe by integrating the IMF over our range of
interest

𝜂IMF =

∫
𝑋
𝑚𝜙(𝑚)𝑑𝑚∫
𝑚𝜙(𝑚)𝑑𝑚

(48)

where the numerator is an integral over the range of progenitor masses
for the transient of interest (Lazar & Bromm 2022).
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Figure 14. The differential 21-cm brightness temperature (relative to the
CMB) for three representative Pop III star formation models—no stream
velocity and weak X-rays (blue), no streaming and strong X-rays (red), and
average streaming with moderate X-rays (the fiducial model; black)—and one
with no Pop II star formation (dashed black). For each of these models, the
transition from Pop III to Pop II dominance in the SFRD is indicated with a
colored vertical dotted line.

We summarize the results of this basic calculation in Figure 13. By
comparing runs with two different characteristic masses in the IMF—
moderately top-heavy (solid) and extremely top-heavy (dashed)—we
demonstrate the sensitivity of the supernova rates to the details of
the IMF. That is, if the Pop III IMF is truly very top-heavy, as is
shown in the dashed curve, the PISN rate will be several orders of
magnitude larger than the core-collapse SN rate. Jaacks et al. (2019)
also predict SN rates associated with Pop II and III stars in their
calculations. Scaling our predictions to their reported observing area
and calculating the cumulative SN rate integrated over redshift, we
find roughly equivalent predictions for PI and CC SNe as we expect
given the similarity of our predicted SFRDs.

Of course, these supernovae are only visible in very deep surveys.
Kasen et al. (2011) simulated the light curves of PISNe and found a
wide range of expected luminosities (see also Hummel et al. 2012).
Their results suggest that surveys reaching limiting magnitudes of
𝑚 >∼ 30 will be required to identify these sources, which (depending
on the PISN model) could reach events at 𝑧 ∼ 10–25. Our model
demonstrates that, even in optimistic models, such surveys must span
many square degrees to accumulate a significant number of events.

6.2 21-cm global signal

Another potential indirect signature of Pop III stars is in their impact
on their environment, the IGM. In particular, the sky-averaged 21-cm
‘spin-flip’ signal of atomic hydrogen provides a tracer of the IGM that
is sensitive to the electron fraction, temperature, and Ly𝛼 intensity.
We have already demonstrated that high redshift star formation has
the potential to very efficiently heat and ionize the IGM (Figure 4).
Mirocha et al. (2018) and Mebane et al. (2020) demonstrated that
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the inclusion of Pop III stars in calculations in the 21-cm signal can
introduce a characteristic asymmetry in the absorption trough due to
early star formation.

Here we extend our semi-analytic model to include calculation of
the Ly𝛼 background following Holzbauer & Furlanetto (2012):

𝐽𝛼 (𝑧) =
𝑛max∑︁
𝑛=2

∫ 𝑧max (𝑛)

𝑧
𝑑𝑧′ 𝑓recycle (𝑛)

(1 + 𝑧)2
4𝜋

𝑐

𝐻 (𝑧′) 𝜖 (𝜈
′
𝑛, 𝑧

′) (49)

where 𝑧max is the maximum redshift that a Ly𝑛 photon can experience
before it redshifts into the next transition, and 𝜈′𝑛 is defined as above
(equation 42). We sum over Ly𝑛 levels because a fraction 𝑓recycle (𝑛)
of Ly𝑛 photons will cascade down to become Ly𝛼 photons via a
series of radiative transitions (Hirata 2006, Pritchard & Furlanetto
2006). In practice, we truncate this sum at 𝑛 = 23 to exclude the
levels for which the photon horizon lies within the size of a H II
region of a typical galaxy at this time. We calculate the emissivity
with a procedure akin to our calculation of the LW emissivity:

𝜖 (𝑧) =
∫ ∞

𝑀min

𝑛(𝑀) Ω𝑏
Ω𝑚

¤𝑀∗
𝑚𝑝

(
𝑁Ly𝑛𝐸Ly𝑛
Δ𝜈Ly𝑛

)
𝑑𝑀 (50)

where 𝑀min is the minimum mass for star formation, ¤𝑀∗ is the star
formation rate of a halo of mass 𝑀 , 𝑁Ly𝑛 is the number of Ly𝑛
photons produced per baryon in stars (Barkana & Loeb 2005), 𝐸Ly𝑛
is the average energy of a Ly𝑛 photon, and Δ𝜈Ly𝑛 is the frequency
spacing between the 𝑛 and (𝑛 + 1)st Lyman line.

The spin temperature of the 21-cm line is set by a competition
between scattering of CMB photons, collisions, and scattering of
Ly𝛼 photons (Wouthuysen 1952, Field 1958, Furlanetto et al. 2006).
Following Furlanetto (2006) and Mebane et al. (2020) (and the ref-
erences therein), we calculate the coupling coefficients 𝑥 to compute
the spin temperature

1 −
𝑇𝛾

𝑇𝑆
=

𝑥𝑐 + 𝑥𝛼

1 + 𝑥𝑐 + 𝑥𝛼

(
1 −

𝑇𝛾

𝑇𝐾

)
(51)

and from this the 21-cm brightness temperature (relative to the back-
light of the CMB)

𝛿𝑇𝑏 = 27𝑥HI

(
Ω𝑏ℎ

2

0.023

) (
0.15
Ω𝑚ℎ

2
1 + 𝑧

10

)1/2 (𝑇𝑆 − 𝑇𝛾

𝑇𝑆

)
mK (52)

where 𝑥HI is the neutral fraction.
With this, we compute the differential 21-cm brightness tempera-

ture for three representative models (Figure 14). Note that we have
not included the ionizing UV background that will drive the process
of cosmic reionization, so these calculations are meant to be diagnos-
tics of the early universe signatures of Pop III physics on the 21-cm
global signal. We have also ignored the potential effects of a cosmic
radio background from accreting black holes (see e.g., Mebane et al.
2020, Ventura et al. 2023).

Indeed, the shape and timing of the signal are clearly sensitive to
the global processes that govern the SFR. When star formation is
strongly coupled to the X-ray luminosity (red curve; strong X-rays),
the IGM is efficiently heated and the depth of the absorption trough
is suppressed. As a result, the signal turns over to emission more
quickly, yielding a very sensitive probe of the X-ray background
strength. In kind, there is a clear signature of the stream velocity
in the width and timing of the absorption trough. That is, with the
stream velocity, star formation is delayed and the absorption trough
in turn is delayed as well. At late times, however, the star formation
rate quickly climbs to match the non-streaming levels and the signals
are indistinguishable.

For 𝑧 ≳ 20 − 25, the contributions of Pop III and II stars to the

SFRD (and thus global signal) are comparable. Indeed, comparing
our fiducial model to one with no Pop II contribution to the radiation
backgrounds (dashed black), the depth and shape of the absorption
trough are different at late times (following the transition to Pop II
star formation). At early times, Pop III stars tightly couple the spin
temperature to the gas kinetic temperature driven by the Wouthuysen-
Field effect. At later times, the spin temperature remains tightly
coupled to the temperature of the IGM, but the enhanced SFRD (in
response to the growth of Pop II halos) drives more rapid heating of
the IGM and thus the absorption signal is somewhat suppressed.

Comparing these calculations to the results of Mebane et al.
(2020), we find higher-redshift features than seen before. Namely,
the updated calculation of the LW mass introduces an earlier onset of
the absorption trough than seen in Mebane et al. (2020). We find that
variations in the X-ray background strength can suppress the depth
of the absorption trough, as they do.

Ventura et al. (2023) also predict the 21-cm global signal using a
semi-analytic model for high-redshift star formation. Though there
are differences in our modeling of the star formation process, the
overall evolution of the 21-cm signal that they calculate is in good
agreement with that which we see in our fiducial model in Figure 14.

We can also compare our 21-cm global signal predictions to those
made in Magg et al. (2022). We note that they neglect to include the
effects of X-rays (which will dominate the heating of the IGM) in
their calculation of the 21-cm signal. As expected, we find a similar
absorption depth and qualitative global signal to their ‘intermediate’
transition model. However, we find that the nadir of the absorption
trough is achieved at higher redshifts in our model (𝑧abs ∼ 20 − 25
compared to 10-15 in their model) and find a characteristic high
redshift contribution to the absorption from Pop III stars that is not
reflected in their results. This discrepancy is puzzling because we see
comparable (or larger) contributions to the Pop III SFRD between
their model and ours (see § 5.2). We speculate that this is perhaps
a result of the lack of X-ray heating included in their model. For
example, if we compare the weak and strong X-ray curves (blue and
red in Figure 14, respectively), we see that the inclusion of a strong
X-ray background moves the nadir of the absorption trough earlier
and suppresses its depth. In Magg et al. (2022), the only source of
heating is from Ly𝛼 photons, whereas we include both contributions,
so heating in their model proceeds more slowly.

Though this calculation makes several simplifying assumptions,
this estimate demonstrates that variations in the Pop III star formation
physics are reflected in the 21-cm global signal, especially at the
highest redshifts. Indeed, in all of the displayed cases, we find the
characteristic asymmetry in the absorption trough produced by early
IGM heating from high-redshift Pop III star formation identified by
Mirocha et al. (2018). Forthcoming low-frequency radio telescopes,
such as the lunar FarView array, plan to study the early universe
through the highly redshifted 21-cm line. Measurements of the global
signal at frequencies below 70 MHz will offer a strong and promising
probe of the details of Pop III star formation physics.

7 CONCLUSIONS

We have presented a simple analytic model for the minimum DM
halo mass for Pop III star formation that incorporates the combined
effects of a relic relative DM-baryon ‘stream’ velocity from the early
universe and feedback from the buildup of UV/LW and X-ray back-
grounds. Such a criterion is the crux of any semi-analytic model for
high-redshift star formation and allows us to self-consistently model
the formation of the first stars and the transition to subsequent gener-
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ations of metal-enriched star formation. We incorporate this analytic
calculation, a Chabrier-like IMF, and a criterion for ‘bursty’ Pop II
star formation as updates to the semi-analytic model of M18.

From this model, we identify three key epochs of Pop III star
formation. At the earliest times (𝑧 ≳ 30), the stream velocity is the
dominant environmental factor in setting the Pop III SFRD—so the
SFRD is most sensitive to choice of 𝑣bc in this era. However, the
stream velocity decays as 𝑣bc ∝ (1 + 𝑧), so for intermediate times
(30 ≳ 𝑧 ≳ 10), the LW background sets the Pop III SFRD, coincident
with the transition to Pop II star formation dominating the SFRD.
Finally, at the latest times (𝑧 ≲ 10), the persistence of Pop III star
formation is dictated by the strength of the X-ray background. While
bursty star formation can suppress Pop III star formation through the
LW background, we find that this is a secondary effect to those of
the aforementioned three processes.

These distinct epochs in the minimum mass are translated into
variations in the Pop III SFRD. In particular, the onset of early star
formation is directly responsive to the strength of the DM-baryon
relative velocity and the late-time magnitude of the SFRD (i.e., the
peak of the SFR) is sensitive to the physics of the LW and X-ray
backgrounds. Therefore, observations that even indirectly probe the
Pop III SFRD will be a powerful tool for understanding the physics
governing star formation in that era.

While Pop III halos will likely not be directly observable with
current (or near-future) technology, indirect signatures of these stars
are a promising avenue to probe this epoch. We find that superlumi-
nous Pop III SNe are theoretically observable with forthcoming deep
JWST and RST surveys and can shed light into the IMF for these first
stars. Similarly, global 21-cm experiments that are able to reach the
lowest frequencies will offer us a window into Cosmic Dawn and will
potentially be able to constrain the physics of Pop III star formation.
Recent work has shown that Pop III star formation is not limited to
Pop III halos alone; accretion of pristine gas from the IGM can result
in Pop III star formation in Pop II halos, though these stars will likely
be very rare and short-lived (Maio et al. 2011b; Venditti et al. 2023).

Although our model includes most of the key physical processes
regulating Pop III star formation, we have ignored processes for which
small-scale inhomogeneities are essential (such as metal enrichment
and photoheating from UV photons during reionization). In the fu-
ture, incorporating these processes will be essential for modeling
spatial fluctuations in the Pop III population.

DATA AVAILABILITY

No new data were obtained as part of this work. Results used to
generate the figures are available from the authors upon reasonable
request.

ACKNOWLEDGEMENTS

The authors thank Matt McQuinn, Rick Mebane, Smadar Naoz,
Claire Williams, William Lake, Massimo Ricotti, and Roy Zhao for
useful discussions. This work was supported by the National Science
Foundation through award AST-1812458. In addition, this work was
directly supported by the NASA Solar System Exploration Research
Virtual Institute cooperative agreement number 80ARC017M0006.

Software: numpy (van der Walt et al. 2011), astropy (Astropy
Collaboration et al. 2013), matplotlib (Hunter 2007), scipy (Virta-
nen et al. 2020)

REFERENCES

Abe M., Yajima H., Khochfar S., Dalla Vecchia C., Omukai K., 2021, MN-
RAS, 508, 3226

Abel T., Bryan G. L., Norman M. L., 2002, Science, 295, 93
Astropy Collaboration et al., 2013, A&A, 558, A33
Barkana R., Loeb A., 2001, Phys. Rep., 349, 125
Barkana R., Loeb A., 2005, ApJ, 626, 1
Barkat Z., Rakavy G., Sack N., 1967, Phys. Rev. Lett., 18, 379
Bromm V., 2013, Reports on Progress in Physics, 76, 112901
Bromm V., Loeb A., 2003, Nature, 425, 812
Bromm V., Coppi P. S., Larson R. B., 2002, ApJ, 564, 23
Chabrier G., 2003, PASP, 115, 763
Chluba J., Thomas R. M., 2013, CosmoRec: Cosmological Recombina-

tion code, Astrophysics Source Code Library, record ascl:1304.017
(ascl:1304.017)

Dalal N., Pen U.-L., Seljak U., 2010, J. Cosmology Astropart. Phys., 2010,
007

Draine B. T., 2011, Physics of the Interstellar and Intergalactic Medium.
Princeton University Press

Draine B. T., Bertoldi F., 1996, ApJ, 468, 269
Ferrara A., Pettini M., Shchekinov Y., 2000, MNRAS, 319, 539
Fialkov A., 2014, International Journal of Modern Physics D, 23, 1430017
Fialkov A., Barkana R., Tseliakhovich D., Hirata C. M., 2012, MNRAS, 424,

1335
Field G. B., 1958, Proceedings of the IRE, 46, 240
Fragos T., et al., 2013, ApJ, 764, 41
Fryer C. L., Woosley S. E., Heger A., 2001, ApJ, 550, 372
Furlanetto S. R., 2006, MNRAS, 371, 867
Furlanetto S. R., Loeb A., 2003, ApJ, 588, 18
Furlanetto S. R., Mirocha J., 2022, MNRAS, 511, 3895
Furlanetto S. R., Stoever S. J., 2010, MNRAS, 404, 1869
Furlanetto S. R., Oh S. P., Briggs F. H., 2006, Phys. Rep., 433, 181
Furlanetto S. R., Mirocha J., Mebane R. H., Sun G., 2017, MNRAS, 472,

1576
Galli D., Palla F., 1998, A&A, 335, 403
Gnedin N. Y., 2000, ApJ, 542, 535
Gnedin N. Y., Hui L., 1998, MNRAS, 296, 44
Greif T. H., Springel V., White S. D. M., Glover S. C. O., Clark P. C., Smith

R. J., Klessen R. S., Bromm V., 2011, ApJ, 737, 75
Greig B., et al., 2021, MNRAS, 501, 1
Haardt F., Madau P., 2012, ApJ, 746, 125
Haiman Z., Thoul A. A., Loeb A., 1996a, ApJ, 464, 523
Haiman Z., Rees M. J., Loeb A., 1996b, ApJ, 467, 522
Haiman Z., Abel T., Rees M. J., 2000, ApJ, 534, 11
Heger A., Woosley S. E., 2002, ApJ, 567, 532
Heger A., Woosley S. E., 2010, ApJ, 724, 341
Heger A., Fryer C. L., Woosley S. E., Langer N., Hartmann D. H., 2003, The

Astrophysical Journal, 591, 288
Hickox R. C., Markevitch M., 2007, ApJ, 661, L117
Hirano S., Hosokawa T., Yoshida N., Omukai K., Yorke H. W., 2015, MNRAS,

448, 568
Hirata C. M., 2006, MNRAS, 367, 259
Holzbauer L. N., Furlanetto S. R., 2012, MNRAS, 419, 718
Hummel J. A., Pawlik A. H., Milosavljević M., Bromm V., 2012, ApJ, 755,

72
Hummel J. A., Stacy A., Jeon M., Oliveri A., Bromm V., 2015, MNRAS,

453, 4136
Hunter J. D., 2007, Computing in Science & Engineering, 9, 90
Incatasciato A., Khochfar S., Oñorbe J., 2023, arXiv e-prints, p.

arXiv:2301.08242
Jaacks J., Thompson R., Finkelstein S. L., Bromm V., 2018, MNRAS, 475,

4396
Jaacks J., Finkelstein S. L., Bromm V., 2019, MNRAS, 488, 2202
Kasen D., Woosley S. E., Heger A., 2011, ApJ, 734, 102
Kulkarni G., Rollinde E., Hennawi J. F., Vangioni E., 2013, ApJ, 772, 93
Kulkarni M., Visbal E., Bryan G. L., 2021, ApJ, 917, 40
Lake W., et al., 2023, ApJ, 943, 132

MNRAS 000, 1–20 (2023)

http://dx.doi.org/10.1093/mnras/stab2637
http://dx.doi.org/10.1093/mnras/stab2637
https://ui.adsabs.harvard.edu/abs/2021MNRAS.508.3226A
http://dx.doi.org/10.1126/science.295.5552.93
https://ui.adsabs.harvard.edu/abs/2002Sci...295...93A
http://dx.doi.org/10.1051/0004-6361/201322068
https://ui.adsabs.harvard.edu/abs/2013A&A...558A..33A
http://dx.doi.org/10.1016/S0370-1573(01)00019-9
https://ui.adsabs.harvard.edu/abs/2001PhR...349..125B
http://dx.doi.org/10.1086/429954
https://ui.adsabs.harvard.edu/abs/2005ApJ...626....1B
http://dx.doi.org/10.1103/PhysRevLett.18.379
https://ui.adsabs.harvard.edu/abs/1967PhRvL..18..379B
http://dx.doi.org/10.1088/0034-4885/76/11/112901
https://ui.adsabs.harvard.edu/abs/2013RPPh...76k2901B
http://dx.doi.org/10.1038/nature02071
https://ui.adsabs.harvard.edu/abs/2003Natur.425..812B
http://dx.doi.org/10.1086/323947
https://ui.adsabs.harvard.edu/abs/2002ApJ...564...23B
http://dx.doi.org/10.1086/376392
https://ui.adsabs.harvard.edu/abs/2003PASP..115..763C
http://dx.doi.org/10.1088/1475-7516/2010/11/007
https://ui.adsabs.harvard.edu/abs/2010JCAP...11..007D
https://ui.adsabs.harvard.edu/abs/2010JCAP...11..007D
http://dx.doi.org/10.1086/177689
https://ui.adsabs.harvard.edu/abs/1996ApJ...468..269D
http://dx.doi.org/10.1046/j.1365-8711.2000.03857.x
https://ui.adsabs.harvard.edu/abs/2000MNRAS.319..539F
http://dx.doi.org/10.1142/S0218271814300171
https://ui.adsabs.harvard.edu/abs/2014IJMPD..2330017F
http://dx.doi.org/10.1111/j.1365-2966.2012.21318.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.424.1335F
https://ui.adsabs.harvard.edu/abs/2012MNRAS.424.1335F
http://dx.doi.org/10.1109/JRPROC.1958.286741
https://ui.adsabs.harvard.edu/abs/1958PIRE...46..240F
http://dx.doi.org/10.1088/0004-637X/764/1/41
https://ui.adsabs.harvard.edu/abs/2013ApJ...764...41F
http://dx.doi.org/10.1086/319719
https://ui.adsabs.harvard.edu/abs/2001ApJ...550..372F
http://dx.doi.org/10.1111/j.1365-2966.2006.10725.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.371..867F
http://dx.doi.org/10.1086/374045
https://ui.adsabs.harvard.edu/abs/2003ApJ...588...18F
http://dx.doi.org/10.1093/mnras/stac310
https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.3895F
http://dx.doi.org/10.1111/j.1365-2966.2010.16401.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.404.1869F
http://dx.doi.org/10.1016/j.physrep.2006.08.002
https://ui.adsabs.harvard.edu/abs/2006PhR...433..181F
http://dx.doi.org/10.1093/mnras/stx2132
https://ui.adsabs.harvard.edu/abs/2017MNRAS.472.1576F
https://ui.adsabs.harvard.edu/abs/2017MNRAS.472.1576F
http://dx.doi.org/10.48550/arXiv.astro-ph/9803315
https://ui.adsabs.harvard.edu/abs/1998A&A...335..403G
http://dx.doi.org/10.1086/317042
https://ui.adsabs.harvard.edu/abs/2000ApJ...542..535G
http://dx.doi.org/10.1046/j.1365-8711.1998.01249.x
https://ui.adsabs.harvard.edu/abs/1998MNRAS.296...44G
http://dx.doi.org/10.1088/0004-637X/737/2/75
https://ui.adsabs.harvard.edu/abs/2011ApJ...737...75G
http://dx.doi.org/10.1093/mnras/staa3593
https://ui.adsabs.harvard.edu/abs/2021MNRAS.501....1G
http://dx.doi.org/10.1088/0004-637X/746/2/125
https://ui.adsabs.harvard.edu/abs/2012ApJ...746..125H
http://dx.doi.org/10.1086/177343
https://ui.adsabs.harvard.edu/abs/1996ApJ...464..523H
http://dx.doi.org/10.1086/177628
https://ui.adsabs.harvard.edu/abs/1996ApJ...467..522H
http://dx.doi.org/10.1086/308723
https://ui.adsabs.harvard.edu/abs/2000ApJ...534...11H
http://dx.doi.org/10.1086/338487
https://ui.adsabs.harvard.edu/abs/2002ApJ...567..532H
http://dx.doi.org/10.1088/0004-637X/724/1/341
https://ui.adsabs.harvard.edu/abs/2010ApJ...724..341H
http://dx.doi.org/10.1086/375341
http://dx.doi.org/10.1086/375341
http://dx.doi.org/10.1086/519003
https://ui.adsabs.harvard.edu/abs/2007ApJ...661L.117H
http://dx.doi.org/10.1093/mnras/stv044
https://ui.adsabs.harvard.edu/abs/2015MNRAS.448..568H
http://dx.doi.org/10.1111/j.1365-2966.2005.09949.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.367..259H
http://dx.doi.org/10.1111/j.1365-2966.2011.19752.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.419..718H
http://dx.doi.org/10.1088/0004-637X/755/1/72
https://ui.adsabs.harvard.edu/abs/2012ApJ...755...72H
https://ui.adsabs.harvard.edu/abs/2012ApJ...755...72H
http://dx.doi.org/10.1093/mnras/stv1902
https://ui.adsabs.harvard.edu/abs/2015MNRAS.453.4136H
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.48550/arXiv.2301.08242
https://ui.adsabs.harvard.edu/abs/2023arXiv230108242I
https://ui.adsabs.harvard.edu/abs/2023arXiv230108242I
http://dx.doi.org/10.1093/mnras/sty062
https://ui.adsabs.harvard.edu/abs/2018MNRAS.475.4396J
https://ui.adsabs.harvard.edu/abs/2018MNRAS.475.4396J
http://dx.doi.org/10.1093/mnras/stz1529
https://ui.adsabs.harvard.edu/abs/2019MNRAS.488.2202J
http://dx.doi.org/10.1088/0004-637X/734/2/102
https://ui.adsabs.harvard.edu/abs/2011ApJ...734..102K
http://dx.doi.org/10.1088/0004-637X/772/2/93
https://ui.adsabs.harvard.edu/abs/2013ApJ...772...93K
http://dx.doi.org/10.3847/1538-4357/ac08a3
https://ui.adsabs.harvard.edu/abs/2021ApJ...917...40K
http://dx.doi.org/10.3847/1538-4357/acac8d
https://ui.adsabs.harvard.edu/abs/2023ApJ...943..132L


20 Hegde & Furlanetto

Latif M. A., Whalen D., Khochfar S., 2022, ApJ, 925, 28
Lazar A., Bromm V., 2022, MNRAS, 511, 2505
Lehmer B. D., et al., 2016, ApJ, 825, 7
Liu B., Bromm V., 2020, MNRAS, 497, 2839
Loeb A., Furlanetto S. R., 2013, The First Galaxies in the Universe. Princeton

University Press
Machacek M. E., Bryan G. L., Abel T., 2001, ApJ, 548, 509
Machacek M. E., Bryan G. L., Abel T., 2003, MNRAS, 338, 273
Madau P., Ferrara A., Rees M. J., 2001, ApJ, 555, 92
Magg M., et al., 2022, MNRAS, 514, 4433
Maio U., Ciardi B., Dolag K., Tornatore L., Khochfar S., 2010, MNRAS,

407, 1003
Maio U., Koopmans L. V. E., Ciardi B., 2011a, MNRAS, 412, L40
Maio U., Khochfar S., Johnson J. L., Ciardi B., 2011b, MNRAS, 414, 1145
McKee C. F., Tan J. C., 2008, ApJ, 681, 771
McQuinn M., 2012, MNRAS, 426, 1349
McQuinn M., O’Leary R. M., 2012, ApJ, 760, 3
Mebane R. H., Mirocha J., Furlanetto S. R., 2018, MNRAS, 479, 4544
Mebane R. H., Mirocha J., Furlanetto S. R., 2020, MNRAS, 493, 1217
Mesinger A., Ferrara A., Spiegel D. S., 2013, MNRAS, 431, 621
Mineo S., Gilfanov M., Sunyaev R., 2012, MNRAS, 419, 2095
Mirocha J., Mebane R. H., Furlanetto S. R., Singal K., Trinh D., 2018,

MNRAS, 478, 5591
Muñoz J. B., Qin Y., Mesinger A., Murray S. G., Greig B., Mason C., 2022,

MNRAS, 511, 3657
Nakatani R., Fialkov A., Yoshida N., 2020, ApJ, 905, 151
Naoz S., Barkana R., 2007, MNRAS, 377, 667
Naoz S., Yoshida N., Gnedin N. Y., 2012, ApJ, 747, 128
Naoz S., Yoshida N., Gnedin N. Y., 2013, ApJ, 763, 27
Nebrin O., Giri S. K., Mellema G., 2023, arXiv e-prints, p. arXiv:2303.08024
O’Leary R. M., McQuinn M., 2012, ApJ, 760, 4
O’Shea B. W., Norman M. L., 2008, ApJ, 673, 14
Park J., Ricotti M., Sugimura K., 2021, MNRAS, 508, 6176
Planck Collaboration et al., 2020, A&A, 641, A6
Pritchard J. R., Furlanetto S. R., 2006, MNRAS, 367, 1057
Ricotti M., 2016, MNRAS, 462, 601
Ricotti M., Ostriker J. P., 2004, MNRAS, 352, 547
Salpeter E. E., 1955, ApJ, 121, 161
Sarmento R., Scannapieco E., Cohen S., 2018, ApJ, 854, 75
Schauer A. T. P., Glover S. C. O., Klessen R. S., Clark P., 2021, MNRAS,

507, 1775
Seager S., Sasselov D. D., Scott D., 1999, ApJ, 523, L1
Shang C., Bryan G. L., Haiman Z., 2010, MNRAS, 402, 1249
Shull J. M., van Steenberg M. E., 1985, ApJ, 298, 268
Stacy A., Bromm V., Loeb A., 2011, ApJ, 730, L1
Stacy A., Greif T. H., Bromm V., 2012, MNRAS, 422, 290
Tegmark M., Silk J., Rees M. J., Blanchard A., Abel T., Palla F., 1997, ApJ,

474, 1
The HERA Collaboration et al., 2022, arXiv e-prints, p. arXiv:2210.04912
Trac H., Cen R., Mansfield P., 2015, ApJ, 813, 54
Trenti M., Stiavelli M., 2009, ApJ, 694, 879
Trenti M., Stiavelli M., Shull J. M., 2009, ApJ, 700, 1672
Tseliakhovich D., Hirata C., 2010, Phys. Rev. D, 82, 083520
Venditti A., Graziani L., Schneider R., Pentericci L., Di Cesare C., Maio U.,

Omukai K., 2023, arXiv e-prints, p. arXiv:2301.10259
Ventura E. M., Trinca A., Schneider R., Graziani L., Valiante R., Wyithe J.

S. B., 2023, MNRAS, 520, 3609
Verner D. A., Ferland G. J., Korista K. T., Yakovlev D. G., 1996, ApJ, 465,

487
Virtanen P., et al., 2020, Nature Methods, 17, 261
Visbal E., Haiman Z., Bryan G. L., 2014a, MNRAS, 442, L100
Visbal E., Haiman Z., Terrazas B., Bryan G. L., Barkana R., 2014b, MNRAS,

445, 107
Visbal E., Haiman Z., Bryan G. L., 2018, MNRAS, 475, 5246
Visbal E., Bryan G. L., Haiman Z., 2020, ApJ, 897, 95
Williams C. E., et al., 2022, arXiv e-prints, p. arXiv:2211.02066
Wise J. H., Abel T., 2007, ApJ, 671, 1559
Wolcott-Green J., Haiman Z., 2019, MNRAS, 484, 2467

Wolcott-Green J., Haiman Z., Bryan G. L., 2011, MNRAS, 418, 838
Wouthuysen S. A., 1952, AJ, 57, 31
Xu H., Norman M. L., O’Shea B. W., Wise J. H., 2016, ApJ, 823, 140
Yamaguchi N., Furlanetto S. R., Trapp A. C., 2023, MNRAS, 520, 2922
van der Walt S., Colbert S. C., Varoquaux G., 2011, Computing in Science

and Engineering, 13, 22

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 000, 1–20 (2023)

http://dx.doi.org/10.3847/1538-4357/ac3916
https://ui.adsabs.harvard.edu/abs/2022ApJ...925...28L
http://dx.doi.org/10.1093/mnras/stac176
https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.2505L
http://dx.doi.org/10.3847/0004-637X/825/1/7
https://ui.adsabs.harvard.edu/abs/2016ApJ...825....7L
http://dx.doi.org/10.1093/mnras/staa2143
https://ui.adsabs.harvard.edu/abs/2020MNRAS.497.2839L
http://dx.doi.org/10.1086/319014
https://ui.adsabs.harvard.edu/abs/2001ApJ...548..509M
http://dx.doi.org/10.1046/j.1365-8711.2003.06054.x
https://ui.adsabs.harvard.edu/abs/2003MNRAS.338..273M
http://dx.doi.org/10.1086/321474
https://ui.adsabs.harvard.edu/abs/2001ApJ...555...92M
http://dx.doi.org/10.1093/mnras/stac1664
https://ui.adsabs.harvard.edu/abs/2022MNRAS.514.4433M
http://dx.doi.org/10.1111/j.1365-2966.2010.17003.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.407.1003M
http://dx.doi.org/10.1111/j.1745-3933.2010.01001.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.412L..40M
http://dx.doi.org/10.1111/j.1365-2966.2011.18455.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.414.1145M
http://dx.doi.org/10.1086/587434
https://ui.adsabs.harvard.edu/abs/2008ApJ...681..771M
http://dx.doi.org/10.1111/j.1365-2966.2012.21792.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.426.1349M
http://dx.doi.org/10.1088/0004-637X/760/1/3
https://ui.adsabs.harvard.edu/abs/2012ApJ...760....3M
http://dx.doi.org/10.1093/mnras/sty1833
https://ui.adsabs.harvard.edu/abs/2018MNRAS.479.4544M
http://dx.doi.org/10.1093/mnras/staa280
https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.1217M
http://dx.doi.org/10.1093/mnras/stt198
https://ui.adsabs.harvard.edu/abs/2013MNRAS.431..621M
http://dx.doi.org/10.1111/j.1365-2966.2011.19862.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.419.2095M
http://dx.doi.org/10.1093/mnras/sty1388
https://ui.adsabs.harvard.edu/abs/2018MNRAS.478.5591M
http://dx.doi.org/10.1093/mnras/stac185
https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.3657M
http://dx.doi.org/10.3847/1538-4357/abc5b4
https://ui.adsabs.harvard.edu/abs/2020ApJ...905..151N
http://dx.doi.org/10.1111/j.1365-2966.2007.11636.x
https://ui.adsabs.harvard.edu/abs/2007MNRAS.377..667N
http://dx.doi.org/10.1088/0004-637X/747/2/128
https://ui.adsabs.harvard.edu/abs/2012ApJ...747..128N
http://dx.doi.org/10.1088/0004-637X/763/1/27
https://ui.adsabs.harvard.edu/abs/2013ApJ...763...27N
http://dx.doi.org/10.48550/arXiv.2303.08024
https://ui.adsabs.harvard.edu/abs/2023arXiv230308024N
http://dx.doi.org/10.1088/0004-637X/760/1/4
https://ui.adsabs.harvard.edu/abs/2012ApJ...760....4O
http://dx.doi.org/10.1086/524006
https://ui.adsabs.harvard.edu/abs/2008ApJ...673...14O
http://dx.doi.org/10.1093/mnras/stab2999
https://ui.adsabs.harvard.edu/abs/2021MNRAS.508.6176P
http://dx.doi.org/10.1051/0004-6361/201833910
https://ui.adsabs.harvard.edu/abs/2020A&A...641A...6P
http://dx.doi.org/10.1111/j.1365-2966.2006.10028.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.367.1057P
http://dx.doi.org/10.1093/mnras/stw1672
https://ui.adsabs.harvard.edu/abs/2016MNRAS.462..601R
http://dx.doi.org/10.1111/j.1365-2966.2004.07942.x
https://ui.adsabs.harvard.edu/abs/2004MNRAS.352..547R
http://dx.doi.org/10.1086/145971
https://ui.adsabs.harvard.edu/abs/1955ApJ...121..161S
http://dx.doi.org/10.3847/1538-4357/aa989a
https://ui.adsabs.harvard.edu/abs/2018ApJ...854...75S
http://dx.doi.org/10.1093/mnras/stab1953
https://ui.adsabs.harvard.edu/abs/2021MNRAS.507.1775S
http://dx.doi.org/10.1086/312250
https://ui.adsabs.harvard.edu/abs/1999ApJ...523L...1S
http://dx.doi.org/10.1111/j.1365-2966.2009.15960.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.402.1249S
http://dx.doi.org/10.1086/163605
https://ui.adsabs.harvard.edu/abs/1985ApJ...298..268S
http://dx.doi.org/10.1088/2041-8205/730/1/L1
https://ui.adsabs.harvard.edu/abs/2011ApJ...730L...1S
http://dx.doi.org/10.1111/j.1365-2966.2012.20605.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.422..290S
http://dx.doi.org/10.1086/303434
https://ui.adsabs.harvard.edu/abs/1997ApJ...474....1T
http://dx.doi.org/10.48550/arXiv.2210.04912
https://ui.adsabs.harvard.edu/abs/2022arXiv221004912T
http://dx.doi.org/10.1088/0004-637X/813/1/54
https://ui.adsabs.harvard.edu/abs/2015ApJ...813...54T
http://dx.doi.org/10.1088/0004-637X/694/2/879
https://ui.adsabs.harvard.edu/abs/2009ApJ...694..879T
http://dx.doi.org/10.1088/0004-637X/700/2/1672
https://ui.adsabs.harvard.edu/abs/2009ApJ...700.1672T
http://dx.doi.org/10.1103/PhysRevD.82.083520
https://ui.adsabs.harvard.edu/abs/2010PhRvD..82h3520T
http://dx.doi.org/10.48550/arXiv.2301.10259
https://ui.adsabs.harvard.edu/abs/2023arXiv230110259V
http://dx.doi.org/10.1093/mnras/stad237
https://ui.adsabs.harvard.edu/abs/2023MNRAS.520.3609V
http://dx.doi.org/10.1086/177435
https://ui.adsabs.harvard.edu/abs/1996ApJ...465..487V
https://ui.adsabs.harvard.edu/abs/1996ApJ...465..487V
http://dx.doi.org/10.1038/s41592-019-0686-2
https://rdcu.be/b08Wh
http://dx.doi.org/10.1093/mnrasl/slu063
https://ui.adsabs.harvard.edu/abs/2014MNRAS.442L.100V
http://dx.doi.org/10.1093/mnras/stu1710
https://ui.adsabs.harvard.edu/abs/2014MNRAS.445..107V
http://dx.doi.org/10.1093/mnras/sty142
https://ui.adsabs.harvard.edu/abs/2018MNRAS.475.5246V
http://dx.doi.org/10.3847/1538-4357/ab994e
https://ui.adsabs.harvard.edu/abs/2020ApJ...897...95V
http://dx.doi.org/10.48550/arXiv.2211.02066
https://ui.adsabs.harvard.edu/abs/2022arXiv221102066W
http://dx.doi.org/10.1086/522876
https://ui.adsabs.harvard.edu/abs/2007ApJ...671.1559W
http://dx.doi.org/10.1093/mnras/sty3280
https://ui.adsabs.harvard.edu/abs/2019MNRAS.484.2467W
http://dx.doi.org/10.1111/j.1365-2966.2011.19538.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.418..838W
http://dx.doi.org/10.1086/106661
https://ui.adsabs.harvard.edu/abs/1952AJ.....57R..31W
http://dx.doi.org/10.3847/0004-637X/823/2/140
https://ui.adsabs.harvard.edu/abs/2016ApJ...823..140X
http://dx.doi.org/10.1093/mnras/stad315
https://ui.adsabs.harvard.edu/abs/2023MNRAS.520.2922Y
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/MCSE.2011.37
https://ui.adsabs.harvard.edu/abs/2011CSE....13b..22V

	Introduction
	The Minimum Mass for Pop III Star Formation
	Accretion mass
	Molecular hydrogen cooling threshold
	The photodissociating Lyman-Werner background
	Thermalization threshold
	X-ray background
	Summary

	Semi-analytic Model
	Results
	Comparison to M18
	The effects of the minimum mass on Pop III star formation
	The effects of bursty Pop II star formation

	Comparison to other works
	Minimum mass model
	The Pop III star formation history

	Observational Implications
	Pop III supernovae
	21-cm global signal

	Conclusions

