Check for
Updates

Practical Cryptographic Forensic Tools
for Lightweight Internet of Things and Cold Storage Systems

Saif E. Nouma
saifeddinenouma@usf.edu
University of South Florida

Tampa, Florida, USA

ABSTRACT

Internet of Things (IoT) and Storage-as-a-Service (STaaS) contin-
uum permit cost-effective maintenance of security-sensitive infor-
mation collected by IoT devices over cloud systems. It is necessary
to guarantee the security of sensitive data in IoT-STaa$ applications.
Especially, log entries trace critical events in computer systems and
play a vital role in the trustworthiness of IoT-STaaS. An ideal log
protection tool must be scalable and lightweight for vast quantities
of resource-limited IoT devices while permitting efficient and public
verification at STaaS. However, the existing cryptographic logging
schemes either incur significant computation/signature overhead
to the logger or extreme storage and verification costs to the cloud.
There is a critical need for a cryptographic forensic log tool that
respects the efficiency requirements of the IoT-STaaS continuum.

In this paper, we created novel digital signatures for logs called
Optimal Signatures for secure Logging (OSLO), which are the first
(to the best of our knowledge) to offer both small-constant sig-
nature and public key sizes with near-optimal signing and batch
verification via various granularities. We introduce new design
features such as one-time randomness management, flexible aggre-
gation along with various optimizations to attain these seemingly
conflicting properties simultaneously. Our experiments show that
0SLO offers 50 faster verification (for 23° entries) than the most
compact alternative with equal signature sizes, while also being
several magnitudes of more compact than its most logger efficient
counterparts. These properties make 0SLO an ideal choice for the
IoT-STaaS, wherein lightweight logging and efficient batch verifica-
tion of massive-size logs are vital for the IoT edge and cold storage
servers, respectively.

KEYWORDS
Authentication, secure logs, cold storage, digital signatures

ACM Reference Format:

Saif E. Nouma and Attila A. Yavuz. 2023. Practical Cryptographic Forensic
Tools for Lightweight Internet of Things and Cold Storage Systems. In
International Conference on Internet-of-Things Design and Implementation
(IoTDI °23), May 09-12, 2023, San Antonio, TX, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3576842.3582376

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IoTDI °23, May 09-12, 2023, San Antonio, TX, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0037-8/23/05...$15.00
https://doi.org/10.1145/3576842.3582376

340

Attila A. Yavuz

attilaayavuz@usf.edu
University of South Florida
Tampa, Florida, USA

1 INTRODUCTION

System logs are vital tools for any security-critical applications [12].
They capture important events (e.g., user activity, errors, security
breaches), making them an important target for attackers. Recent
cyberattacks employ anti-forensics techniques to hide any evidence,
namely by deleting or modifying log files. As such, administrators
and/or verifiers cannot identify the source of errors during an
incident investigation. Thereby, ensuring the trustworthiness of log
files is a well-known topic for both authorities ! and practitioners
[20, 31].

The emerging IoT harbors a sheer amount of IoT devices (e.g.,
sensors) that collect sensitive information (e.g., financial, health,
personal) from the environment. These data and their metadata
(i.e., log files) must be protected against such cyber attacks (e.g., im-
personation, tampering) by ensuring their authentication, integrity,
and confidentiality.

However, IoT devices are known to be resource-limited, ren-
dering them more vulnerable to such cyber attacks. Indeed, IoT
devices do not have the necessary storage capacity to keep locally
the log files. Additionally, they are more vulnerable to (especially
cyber-physical) attacks, and therefore there is a major risk of log
tampering.

A common practice is to securely offload log streams to a cloud
storage solution for future analytics and forensic investigation.
Storage-as-a-Service (STaaS) 2 offers advanced data storage and
infrastructure for end-users. However, it is highly expensive to
retain append-only files (i.e., logs) on fast-access cloud servers
which are usually dedicated to frequently accessed data. Cold storage
solution [15] is a new type of data warehouse, designed to host large-
scale archives. As such, Cold-STaaS becomes the best alternative to
keep such rarely used yet valuable log files.

An ideal secure log authentication scheme for IoT-STaa$S should
offer (at minimum) the following properties:

e Scalability, Public Verifiability, and Non-Repudiation: (i) The
cryptographic solution should be scalable to large IoT networks. (ii)
It should allow any entity to verify the trustworthiness of informa-
tion (e.g., meta-data, logs) by external parties. (iii) It should provide
non-repudiation feature, which is essential for digital forensics and
legal dispute resolution (e.g., financial, health). These features are
usually offered by digital signatures [11, 24].

o Logger Efficiency: The cryptographic mechanisms must respect
the limited resources (e.g., battery, memory, CPU) for low-end IoT

Lhttps://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/
executive-order-on-improving-the-nations-cybersecurity/
Zhttps://www.intel.com/content/www/us/en/cloud-computing/storage-as-a-
service.html

https://doi.org/10.1145/3576842.3582376
https://doi.org/10.1145/3576842.3582376
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.intel.com/content/www/us/en/cloud-computing/storage-as-a-service.html
https://www.intel.com/content/www/us/en/cloud-computing/storage-as-a-service.html
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576842.3582376&domain=pdf&date_stamp=2023-05-09

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

devices (e.g., sensors), which are expected to operate for long dura-
tions without a replacement. (i) The authentication process should
introduce a low computational overhead that translates into mini-
mum energy consumption. (ii) The signatures should be compact to
reduce the memory and transmission overhead. (iii) A small cryp-
tographic code size is desirable to reduce the memory footprint.

o Cloud Storage and Verification Efficiency: Cold storage systems
maintain sheer sizes of data (e.g., order of TBs). This requires an
ability to compress cryptographic data, while periodic security
controls necessitate fast batch verification.

o Flexible Verification Granularity: There is usually a performance
and precision trade-off for secure log verification. For example, the
authentication of the entire log stream with a single condensed tag
offers minimal storage and fast verification time. However, having
a single altered log entry renders the overall authentication invalid.
Alternatively, signatures can be kept individually, per log entry,
for the highest precision, but with high storage overhead. Hence,
the cryptographic solution should permit for both logger and cold
storage to adjust the storage granularity and verification precision
depending on the application requirements [10, 19] .

It is a highly challenging task to devise a digital signature scheme
that meets the stringent performance and security requirements
of both IoT devices and STaaS$ simultaneously. The state-of-the-art
techniques prioritize the needs of either the logger or verifier side
while omitting performance and security features for the other side.
In the following, we outline the research gap in the existing secure
logging schemes by focusing on digital signatures.

1.1 Related Work and Research Gap

We first discuss the closest related works to our solutions with a
focus on digital signature-based approaches. We then discuss other
relevant and complementary works.

Related Work in our Scope: OSLO follows a prominent aggregate
signature (AS)-based secure logging models (e.g., [10-12, 14, 18, 19,
24, 31]), where the logger compute an aggregate signature on its
log entries so they can be attested later. Digital signatures offer
public verifiability and non-repudiation via Public Key Infrastruc-
tures (PKI). Therefore, they are suitable tools to provide scalable
authentication for IoT and cold storage systems. Hereby, we outline
the state-of-art signatures that are applicable in our context.

The standard digital signatures (e.g., RSA, Ed25519 [3]) involve
expensive operations (e.g., modular exponentiation, Elliptic Curve
(EC) scalar multiplication), which are costly for resource-limited
IoTs. They do not offer aggregation property. Therefore, they in-
troduce O(T) signature overhead for T log entries putting a heavy
storage burden on cold storage. Finally, the majority of them do not
offer batch verification, which is important for fast authentication.

Aggregate Signatures (AS) [4, 29] can aggregate multiple dis-
tinct signatures into a single compact tag. Some aggregate signa-
tures offer batch verification. Hence, they are instrumental tools for
building cryptographic forensic schemes [12, 19, 20, 24, 31]. The
Condensed-RSA (C-RSA) [29] and BLS [4] are two essential aggre-
gate signatures but with a costly computation in both signing and
verification. BLS requires highly expensive pairings and EC scalar
multiplication with a heavy special hash function at the verifier

341

Saif E. Nouma and Attila A. Yavuz

and signer sides, respectively. C-RSA requires costly modular expo-
nentiation with large key sizes. As shown in our experiments, they
are highly costly for our envisioned IoT-STaa$ applications.
Forward-secure and Aggregate Signatures (FAS) [14, 24, 31] offer
breach-resiliency and signature aggregation. Despite their merits,
FAS schemes introduce significant computational and storage over-
head either at the signer and/or verifier sides. Some of these are
signer-efficient signatures [31], which makes them ideal choices for
secure logging in resource-constrained IoT. However, this comes at
the cost of a linear public key size. Our experiments proved that this
introduces costly cloud storage overhead. Moreover, they cannot
offer storage at different granularities due to fixed public key sizes.
Hence, they are not suitable for emerging cold storage applications.
Recent AS schemes with extended properties for IoTs (e.g., [16,
25, 26, 30]) are either based on BLS [4] or Schnorr [6]. Hence, they
inherit similar computational overhead (e.g., pairing, EC scalar mul)
at the signer, which was demonstrated by our analysis that it might
not be suitable for highly resource-limited devices. Additionally,
we observe the absence of performance evaluations on low-end
devices (e.g., 8-bit ATMega2560). In our comparisons, we focus
on Ed25519 [3], SchnorrQ [6] and BLS [4] to represent the signer
overhead schemes that rely on such cryptographic operations.

Other/Complementary Related Work: Our proposed scheme

(OSLO) is a special class of aggregate digital signature, and therefore
does not offer data confidentiality that can be achieved by: (i) data
encryption at the logger [8], (ii) private-auditing at STaaS$ side, (iii)
privacy-enhancing tools like searchable encryption [27].

There is a line of work focuses on Proof of Data Possession
(PDP) [2] and Proof of Retrievability (PoR) [1] on the outsourced
user data. Some works cope with privacy-preserving public audit-
ing [28]. These works differ from our system model and primary
performance objective. IoT devices do not compute a signature,
but just transfer log files to STaa$S, without initiating data authen-
tication/integrity check. Rather, administrators (or STaaS) initi-
ates usually an interactive integrity check protocol to audit the
outsourced data, whereas AS-based schemes are generally non-
interactive. PoOR/PDP schemes offer fast audit time that is achieved
by homomorphic linear authenticators (HLA) [28]. These enable
an external entity to audit the data without having to retrieve the
entire set. However, it comes at the cost of a very high computa-
tional overhead on IoT devices since the most deployed HLAs (i.e.,
BLS, RSA) suffer from expensive signing (see Table 1 and Fig. 7). In
a different line, Li et al. in [17] proposed a public auditing protocol
with data sampling for IoT networks.

Herein, our goal is to achieve optimal signing and small cryp-
tographic payload for IoT devices, while offering compact storage
and plausible verification efficiency at STaaS. By doing so, we per-
mit low-end IoT to actively compute signatures, thereby ensuring
public verifiability and non-repudiation. We note that OSLO can
be transformed into a homomorphic authenticable signature (via
Map-to-Point operation as in BLS [4]). However, this would result
in a costly signing, due again to reliance on BLS/RSA. Therefore,
our scope and counterparts are AS-based secure logging schemes.

Practical Cryptographic Forensic Tools
for Lightweight Internet of Things and Cold Storage Systems

1.2 Our Contribution

In this work, we created a new series of secure logging schemes that
we refer to as Optimal Signatures for secure Logging (0SLO). To the
best of our knowledge, OSLO schemes are the first AS-based secure
logging schemes that achieve small-constant tag and public key
sizes with near-optimal signing and batch verification via various
granularities. These features make them ideal for IoT-STaa$S appli-
cations, wherein efficient signing and batch verification are critical
for the resource-limited IoTs and cold storage servers, respectively.

Main Idea: Elliptic-Curve (EC)-based signatures usually offer
the most compact tag sizes with a better signing efficiency compared
to RSA-based [29] and pairing-based [4] alternatives. However, the
most efficient EC-based signatures (e.g, Ed25519 [3], SchnorrQ [6])
still require at least one expensive operation (i.e., EC scalar multi-
plication) during signing. Many techniques attempted to address
this bottleneck. A naive approach is to pre-compute private/public
commitments during the key generation. This is at the cost of a
linear storage overhead on the signer. As the number of log entries
grows, such storage becomes infeasible on resource-constrained
devices.

An alternative approach is to eliminate the public commitments
(both computation and storage) from signature generation, by re-
placing them with one-time random seeds [21, 31]. Despite being
highly signer efficient, these approaches require linear public key
storage at the verifier, which incurs extreme overhead on Cold-
STaaS (e.g., ~ 3.3 TB for 2% log entries). Overall, AS scheme is
either efficient for the signer but with the expense of extreme stor-
age cost and verification overhead, or expensive for the low-end
device in terms of signing and storage overhead. In Section 1.1
and Section 6, we discuss AS-based signatures in terms of their
conundrums.

In OSLO, we attempt to address these limitations by putting
forward several new design approaches. (i) We introduce a new
randomness management mechanism that achieves O(log, T)
intermediate and O(1) final one-time seed storage and computation.
Our approach eliminates the linear server storage while preserving
optimal and deterministic signing via a tree-based seed data
structure that respects the post-signature disclosure requirement of
EC-based signatures. (ii) Our schemes can aggregate additive and
multiplicative homomorphic signature components separately with
any desired granularity. This permits us to compress tags either at
the IoT side per epoch, and/or compact them individually at the
verifier. (iii) We propose two instantiations of OSLO: Signer-Optimal
Coarse-grained 0SLO (SOCOSLO) and Flne-grained Public-key
0SLO (FIPOSLO). OSLO significantly outperforms their counterparts
for the cold storage and verification time, with various granularities
and high signer performance. In Table 1, we show a high-level
comparison of 0SLO with their counterparts (selection rationale to
be discussed in Section 6) and outline their desirable properties
below:

e Compact Cold Cryptographic Storage and Fast Verification: We

compared our schemes with their alternatives for cryptographic
storage and total verification times for 23° entries (each is of size 32
bytes). OSLO achieves the fastest verification and compact storage
among their counterparts. (i) They enable total storage of just 0.10

342

10TDI °23, May 09-12, 2023, San Antonio, TX, USA

KB, which is several magnitudes more compact than alternative EC-
based signatures (e.g., Ed25519, FI-BAF) with TBs of storage. (ii)
SOCOSLO has 7x smaller signature than C-RSA and the same size
as BLS, but with 9x and 50X faster verification, respectively. It is
24x faster than its most signer-efficient counterpart FI-BAF.

o Flexible Verification Granularities and Architectures: (i) In
some IoT applications, IoT devices periodically stream their sensing
reports to a verifier. In SOCOSLO, the logger signs each entry as
collected and sequentially aggregates into a single “umbrella
signature” to be uploaded to the verifier per epoch. SOCOSLO has
a compact signature with the fastest verification (89x than
BLS) for an epoch level (e.g., L1 = 256 items) of granularity (i.e.,
coarse-grained). However, it requires O(L;) initial public keys
at the verifier but with O(1) final public key at the cold storage.
(ii) FIPOSLO keeps every signature separately to be authenticated
and aggregated at the distiller. This enables the highest level
of granularity (i.e., fine-grained) and O(1) public key size. (iii)
0SLO introduces a distillation process, in which the entries are
verified and organized with a desired degree of granularities. The
distillation can be done with an intermediate verifier (e.g., an edge
cloud) or by the cold storage server itself.

o Near-optimal Logging Efficiency: 0SLO schemes are highly sign-

ing efficient makes them ideal alternatives for logging in the
resource-limited IoT devices. (i) SOCOSLO achieves a near-optimal
signing by eliminating costly operations (e.g., EC multiplication).
This makes it 27x and 40x faster than the most compact traditional
and aggregate counterparts SchnorrQ and BLS, respectively. While
as fast as FI-BAF, SOCOSLO is also many magnitudes more compact
at the cold storage with 20X faster verification. (ii) FIPOSLO is the
second-fastest alternative at the signer but with the finest granu-
larity and O(1) public-key storage advantage over SOCOSLO and
FI-BAF. It has the largest private key to enable pre-computation,
but this can be replaced with scalar multiplication for a compact
private key.

o Full-fledge Implementation: We implemented OSLO schemes on

alow-end IoT device and commodity hardware and compared their
performance with that of their counterparts. Our experiments con-
firm that the asymptotic advantages of OSLO translate into practical
performance. We open-source our implementation for public test-
ing and adaptation purposes in the following online repository:

https://github.com/SaifNOUMA/OSLO

2 PRELIMINARIES
Notation: || and |x| denote concatenation and the bit length of vari-

able x, respectively. x (i S means variable x is randomly selected
from the finite set S using a uniform distribution. |S| denotes the
cardinality of set S. {0, 1}* denotes a set of binary strings of any
finite length. {x;}_, denotes the set of items (x1, x2, ..., xn). logx
denotes log, x. H; : {0,1}* — {0,1}%,i € {0,1} are distinct Full
Domain Hash Functions [13], where k is the security parameter.
T denotes the maximum number of items to be signed in a given
signature scheme. Our schemes operates over epochs, in which Ly
items are processed, with a total Ly epochs available s.t. T = L; - L.
JosJ1
L

i
the iteration range jo < j < ji in the epoch i. Mij € M; means that

The variable 57! denotes the aggregated (or derived) value of s for

https://github.com/SaifNOUMA/OSLO

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

Saif E. Nouma and Attila A. Yavuz

Table 1: Performance comparison of 0SLO and its counterparts on embedded IoT and cold storage servers

Logger (Signer) Cold Storage Server
Scheme IoT Device: AtMega2560 (8-bit) Commodity Hardware (Desktop) [Ver time (ms) Dynamic |Granularity, Initial/Final
Signing (in sec) Cryptographic |Priv Key|| Cold Cryptographic Data [Ver Time | (per epoch) |Granularity] Level Public Key
(per item) Payload (KB) |Size (KB)| Entire Sig/PK Set | One Sig || (hours)
(for 23° entries) (KB)
Ed25519 [3] 1.45 16.38 0.03 220TB | 0.10 | 2243.12 56.78 X Fine o(1)/0(1)
SchnorrQ [6] 0.27 16 0.03 220TB | 0.10 154.92 4.16 x Fine o(1)/0(1)
FI-BAF [31] 0.01 0.05 0.10 330TB | 0.77 164.90 4.44 x Coarse | O(T) /O(T)
C-RSA [29] 83.26 0.25 0.51 077KB | 4.72 73.22 2.05 v Coarse/Fine| O(1) / O(1)
BLS [4] 4.08 0.03 0.03 0.10KB | 0.10 432.55 15.15 v Coarse/Fine| O(1)/O(1)
SOCOSLO 0.01 0.05 0.06 0.10KB | 0.11 8.33 0.17 v Coarse |0(T/Ly) / O(1)

FIPOSLO 0.09 16 65.6 0.10KB | 0.10 8.12 3.80 7 Fine o(1)/0(1)

The details of experiment settings, hardware/software configurations, and cryptographic parameters are given in Section 6. We chose our counterparts to cover the primary signature schemes, deployed for secure

logging in the IoT domain. More details about our selection rationale can be found in Section 6.1. The total number of entries and the size of an epoch are T = 235 and Ly = 28, respectively. At the cold storage

server, the cryptographic storage (i.e., cold cryptographic data) is the total size of signatures and public keys needed to verify T entries. The verification time (in hours) is the total runtime of the batch verifying T
items. At the logger (signer), the signature size is measured for an epoch. The signing time (in seconds) is given for a single entry. The verification time (in ms) is for all the collected items in a given epoch.

j . — — —
M; belongs to set of items M;. M = {M; }ie—i> denotes a super vector

where each]_/I; contains Ly messages and_i) are epoch indices of
M.
Definition 2.1. An aggregate signature scheme ASGN consists of
four algorithms (Kg, Agg, ASig, AVer) as follows:
- (I, sk, PK) < ASGN.Kg (1%, T): Given the security parameter
k and the maximum number of messages to be signed T,
it returns a private/public key pair (sk, PK) with a public
parameter I.
- o,u < ASGN.Agg(oy,...,04): Given a set of signatures
{oi}iL,, it combines them and outputs an aggregate tag o1,
- 0j < ASGN.ASig(sk, M;): Given the secret key sk and a
message M;, it returns a signature o; as output.
- b <« ASGN.AVer(PK, {Mi}‘l.‘zl,al,u): Given the public key
PK, a set of messages {M;}!_, and their corresponding ag-
gregated signature oy 4, it outputs b = 1 if oy, is valid or
b = 0 otherwise.

0SLO schemes rely on the intractability of Discrete Logarithm
Problem (DLP) [13].

Definition 2.2. Let G be a cyclic group of order g, let « be a
generator of G, and let DLP attacker A be an algorithm that returns
an integer in Zg. We consider the following experiment:

Experiment Exp tg’ é (A):

b i Z;, B« o mod q, b’ — A(B),
If o mod p = B then return 1, else return 0

The DL-advantage of A in this experiment is defined as:
AdvQH(A) = PrExptSh (A) = 1]

The DL advantage of (G, @) in this experiment is defined as follows:
Adng(t) = m&%x{Adng(ﬂ)}, where the maximum is over

all A having time complexity t.

SOCOSLO uses Boyko-Peinado-Venkatesan (BPV) generator [5].

It reduces the computational cost of expensive operations (e.g.,

EC scalar mul.) via pre-computation technique. It consists of two
algorithms described as follows:

1) (T,0,k) « BPV.Offline(1¥, p,q, @): It chooses BPV param-

eters (v, k) as the size of the pre-computed table and number

343

of randomly selected elements, respectively. Then, it gener-
ates the pre-computed table I' = {r;, R;}?_,.

2) (r,R) « BPV.Online(T): It generates a random set S €
{1,...,0} of size |S| = k. Then, it computes a one-time com-
mitment pair (r < Y;egr;i mod q, R < [];cs Ri mod p).

3 MODELS

System Model: Our system model follows a well-known AS-based
secure logging models (e.g., [11, 12, 18, 19, 24, 31]), in which logger
(i.e., IoT device) computes authentication tags on its log entries to
be publicly verified later. Specifically, we consider an IoT-Cloud con-
tinuum wherein vast quantities of IoT devices generate log streams
and report them to an (edge) cloud for analysis. As depicted in Fig.
1, our model consists of three main entities:

(i) Logger (Signer): represent the end-user IoT devices (e.g., med-
ical sensors). They collect sensitive information (e.g., personal,
health), and periodically upload them with their corresponding
log entries to a nearby edge server (e.g., access point). They are
expected to be resource-limited in terms of computation, storage,
battery, and bandwidth.

(ii) Distiller: Any authorized entity can verify the log files and
their digital signatures via corresponding public keys. For example,
in a smart-building application, the IoT sensors can upload their
periodic sensing reports to a nearby edge cloud. Before placing logs
and signatures into the cold storage, we consider that the edge cloud
performs a distillation process. That is, it maintains Cold Crypto-
graphic Data (CCD) that harbors “valid” batches of log entries with
their compressed (and adjustable) tags in various granularities. We
assume that it keeps the “invalid” log entry-signature pairs individ-
ually. Remark that in the vast majority of real-life applications, the
number of “invalid” (flagged) entries usually form only a negligi-
ble part of the entire log set. Hence, the “valid” entries dominate
the storage of CCD. After the distillation, the edge cloud uploads
CCD to the cold storage servers for long-term maintenance and
check.

(iii) Cold Storage Server (CSS) : It gives a STaaS service for our
IoT-STaaS continuum. As discussed in Section 1, STaaS need regular
audits to prove that their digital archives are trustworthy [7]. Hence,

Practical Cryptographic Forensic Tools
for Lightweight Internet of Things and Cold Storage Systems

verifiers periodically check the authentication and integrity of logs
maintained in CSS . For simplicity, verifiers are part of CSS.

Threat and Security Model: We follow the threat model of cryp-
tographic audit log techniques originally introduced by Schneier et
al. in [22] and then improved in various subsequent cryptographic
works [10, 12, 18, 31]. In this model, the adversary is an active at-
tacker that aims to forge and/or tamper audit logs to implicate other
users. The state-of-the-art cryptographic secure logging schemes
rely on digital signatures to thwart such attacks with public veri-
fiability and non-repudiation. As stated in Section 1, we focus on
signer-efficient (EC-based) aggregate signature-based approaches
due to their compactness and fast batch verification properties.

We follow the Aggregate Existential Unforgeability Under Chosen
Message Attack (A—-EU-CMA) [4] security model that captures our
threat model. A~-EU-CMA considers the homomorphic properties of
aggregate signatures and can offer desirable features such as log
order preservation (if enforced) and truncation detection for signa-
ture batches. OSLO schemes are single-signer aggregate signatures,
and therefore we do not consider inter-signer aggregations.

Definition 3.1. A-EU-CMA experiment for ASGN is as follows:
Experiment Exptﬁ;EH_CMA(ﬂ)
(1) (I, sk, PK) « ASGN.Kg(1%,T), .
(2) (M*, ") « AROC), ASN.ASigek (M) (ppcy.
(3) If ASGN. AVer (PK, M*,6*) = 1 & M* ¢ {M,}
else 0.
The A-EU-CMA of A is defined as
Advpsen MM A) = PriExptysey M(A) = 1].
The A-EU-CMA advantage of ASGN is defined as

AdVNET N T, T) = mﬂgx{Advﬁggﬁ_CMA(ﬂ)},

L

=1 return 1

where the maximum is over A having time complexity ¢, with at
most T’ queries to RO(.) and T queries to ASGN.ASig(.).

The oracles reflect how 0SLO works as ASGN scheme. The signing
oracle ASGN.ASig(.) returns an aggregate signature o on a batch of

— — —>
messages M = (M, ..., M,) computed under sk. ASGN.Agg(.) ag-
gregates the individual (or batch) signatures of these messages.
ASGN.Agg(.) can be performed during the signing or before verifi-
cation (e.g., in the distillation). It can aggregate additive or multi-
plicative components §; € o;. RO(.) is a random oracle from which
A can request the hash of any message of her choice up to T" mes-
sages. In our proofs (see Section 5), cryptographic hash functions
are modeled as a random oracle [13] via RO(.).

4 PROPOSED SCHEMES

Our goal is to create new cryptographic secure logging schemes
that can meet the stringent requirements of low-end IoT devices
with efficient signing and compact signatures while achieving fast
verification and optimal storage in the cloud. We aim to achieve:
(i) A near-optimal signer efficiency with no costly EC-scalar mul-
tiplication or modular exponentiation. (ii) Compact aggregate tag
storage and transmission. (iii) O(1) final cryptographic storage for
the cold storage, which means O(1) public key and signature size
for maximum compression. (iv) Fast batch verification for a large

344

10TDI °23, May 09-12, 2023, San Antonio, TX, USA

number of messages. (v) Ability to aggregate tags in any desired
granularity at the signer and/or verifier sides.

We observe that, among the existing aggregate signatures, EC-
based signer-efficient variants (e.g., [31, 32]) have the best potential
for IoT, yet lack the necessary compactness and fast verification
for cold storage applications (see Section 1 for a recap). They trans-
form the Schnorr signature [23] into a one-time aggregate signa-
ture, in which the generation and storage of costly commitments

(R « o" mod g, r & Zy) are shifted to the key generation and
verifier, respectively. In a nutshell, the signing process separates
the message M from the commitment by replacing H(M||R) with
H(M]||x), where x is one-time randomness. “x” cannot be disclosed
before signing and does not admit aggregation. Hence, it enforces
O(T) storage and expensive batch verification, which are extremely
costly as shown in Section 6.

We developed several new techniques that address the signer ver-
sus verifier bottleneck conundrum. In Fig. 1, we outline our system
model and 0SLO’s high-level functionalities. We first describe our
data structures and new seed management strategy to cope with
linear seed storage in Section 4.1. We then present our proposed
schemes SOCOSLO and FIPOSLO that offer efficient signing, com-
pact server storage, and batch verification with various granularity
options.

4.1 OSLO Data Types and Seed Management

0SLO Data types: OSLO Tree-based structure (OSLOT) is a hash-
based tree for seed storage and management, in which the leaves
are one-time random seeds x, and the left and right children are
computed via Hy,1, respectively. Let L1 and D = log Ly be the maxi-
mum number of leaves and tree depth, respectively. OSLOT nodes
x4[i] at depth d,0 < d < D, for index i,0 < i < 24, are computed
as:

, {Ho(xdl [Li]]), ifi=0 mod2
xqli] = i P
Hi(xg-1[L3]]), ifi=1 mod2

Disclosed Seeds (DS) is a hash table structure. It maintains the
disclosed nodes as values and their coordinates (i.e., depth d, index
i) as keys. Formally, it is presented as follows: DS : (d,ig) —
xqlig], where0 <d < Dand 0 < iy < 2% — 1.

The Seed Management Functions (SMF) are formalized in Fig. 2: (i)
Seed Computation (SC) takes the source node x4, [io] and computes
the requested child x;[i] by traversing OSLOT tree. (ii) Seed Storage
Optimizer (SSO) discloses ancestor nodes progressively when the
logger completes a given number of epochs. Given leaf index i and
the OSLOT root xo[1], it outputs a compact DS;. SSO seeks the seeds
that share the same ancestor, thereby ensuring at most O(logL;)
storage. (iii) Seed Retrieval (SR) returns the seed xp [i] if DS contains
an ancestor for leaf of index i.

An instance of OSLOT is provided in Fig. 3a, where (L1 = 2. Ly =
28). It shows the OSLOT status after completing the 6th epoch. The
seeds, to be disclosed, are highlighted. They can be determined by
running SSO algorithm. The SSO output is: DSg « SSO(xo[1], 6)
where DS = {(1,0) : x1[0]; (2,2) : x2[2]; (3,6) : x3[6]}.

The advantage of OSLOT seed management is apparent over the
linear disclosure of one-time commitments in Schnorr-like schemes.

10TDI ’23, May 09-12, 2023, San Antonio, TX, USA

Saif E. Nouma and Attila A. Yavuz

"‘----IOT devices: Loggers '\} 'l/ """" fE:ige Cloud: Distiller ““N\‘ /" Cold éz(;t-'age Server: CS-S--T-:\\‘
{8 e o (o - o, coppf W= i e i) B
i E:(Mll Mlz nen Mfz) i E : ettt ——————————— \\i "~ : i
i B % E OSLO.AVer @ OSLO. Distill @ !! - i,/ 9“ TN

- - o P 1
e = Y))) i A X) s > -9 H
ii o, — OSLO. ASIG(sk, TT}) ,:E "\"\bi « OSLO.AVer(PK,M;,0;)! | CCD; « CCD;_y Ua; ::,: :\-‘\ b < 0SLO.SeBVer(PK, M,CCD,,) ,;,:
Nz == == z===z2/ NSzzzzzzzzozz ==zzzzzzz ==zzz=== ==zzzzzzs ==z NIozrosszsosoIIosozIsIzzIzz

Figure 1: A high-level illustration of OSLO system model and algorithms

xqli] — sC(xq, [io], do, 0. d,):

-

: Setxp — xdo[io] andi «— ig — (ip — 1) - 24-do
cforj=d-dy—1,..., 0do

o Ho(xp), if[i/2/] =0 mod 2

p= Hi (xp), if |i/2/] =1 mod 2

return (xg[i] < xp)

w N

ol

DS; « sS0(x[0],1):

1: Let f= (P, ..., PD) be the binary representation of i

2: J—{j.jeAo,..., D} \ Bj =0}, DS; « {} and counter [« 0
3: for j € J do

4 deD-jiige |l/27]

5: xqlig] < SC(x0[0],0,0,d,iyg)

6: Add {(d,ig) : xq[ig]} to DS; and increment [« [+2/

7: return DS;

xpli] « SR(DS, i):

if 3(d,ig) € DS, where xg[iq] is an ancestor node of xp [i] then
xpli] « sc(xqligl.d, iq, D,i)
elsexpi] « L

W WD

return xp [i]

Figure 2: Seed Management Functions (SMF)

It transforms O(T) of both logger transmission and verifier stor-
age into (at most) O(log L1). Upon finishing all epochs, the logger
discloses the OSLOT root xp[1], enabling O(1) verifier storage.

4.2 Signer-Optimal Coarse-grained 0SLO
(S0COosLO)

SOCOSLO offers a near-optimal signing efficiency in terms of both
computational and storage overhead. It offloads an aggregate tag
upon signing an epoch of individual log entries. Unlike previous
EC-based signature designs, SOCOSLO pre-stores a O(L1) sublinear
number of public commitments (R) at the verifier side, and compact
them after receiving the authenticated logs from IoT devices. In the
following, we explain the formal description of SOCOSLO routines.

SOCOSLO Digital Signature Algorithms: We give the aggre-
gate signature functions of SOCOSLO in Fig. 4a.

In SOCOSLO.Kg(.), for a given T, we first select the number of
epochs and items to be signed in an epoch as L1 and Ly, respectively
(Step 1). We then generate the initial ephemeral randomness ry
and the root of OSLOT tree x([0] (Step 2). These values will be
used to generate ephemeral public commitments (R) and one-time
randomness (x) for a given epoch state St : (i). We generate EC-
based parameters (p, ¢, @) and private/public key pair (y, Y) (Step
3-4). SOCOSLO is coarse-grained, and therefore we combine the
commitments for each epoch as in Step (5-7), which results in
initial O(L1) and final O(1) storage at the verifier via aggregation.
The private/public key and parameters are as in Steps (8-9).

345

SOCOSLO.Agg(.) is a keyless signature aggregate function with
a dual signature combination mode. That is, given tag element
s € o or R € o, it performs additive or multiplication aggregation,
respectively.

SOCOSLO.ASig(.) is an aggregate signature generation that signs
each entry and sequentially aggregates into a single umbrella sig-
nature (i.e., the tag representing all items in the given epoch). The
seed xp [i] is computed once per epoch i (Step 1) and used to derive
one-time seeds x{ (Step 4). The aggregate signature sg */ is computed
with only a few hash calls and modular additions plus a modular
multiplication (Step 3-5). This makes SOCOSLO the most signer ef-
ficient alternative. At the end of epoch i, the logger determines a
set of disclosed seeds DS; via SSO, updates its internal state (Step
6), and outputs the condensed signature UI.I’LZ (Step 6-7).

SOCOSLO. AVer(.) receives the public key PK, a set of messages
]_)/I, and their corresponding aggregate signature o as input. The
verifier checks if messages comply with the epoch size, and then
identifies the format of the aggregate signature to choose com-
ponent R (Step 1). SOCOSLO.AVer(.) can be invoked by the edge
cloud or CSS as the final verifier. This difference dictates if the
aggregate commitment R is included in the initial public key PK or
the aggregate signature o. Below, we will elaborate further that
the SOCOSLO.Distill(.) function can be used to verify the entries
and then compact them according to a granularity parameter p.
Hence, if the verification is done during the distillation, the verifier
already has Ril’L2 € Ras part of PK and this value is used in the
verification (Step 8). Otherwise, if the verification is run by the CSS,
then “R” can be found as a part of the signature in CCD. The verifier
retrieves the seeds in the given epoch (Step 4) and then computes
the aggregate hash component e (Steps 2-7). Finally, the aggregate
signature is verified (Step 8). Fig 3b depicts the mechanism for seed
retrieval. It consists of the verifier’s view after finishing 6 epoch.
It illustrates the request to retrieve the seed of the 31d epoch.

SOCOSLO Distillation and Selective Batch Verification: The
verification involves two entities of our system model (as in Section
3) (i) Distiller (ii) Cold Storage Server (CSS). The cryptographic data
structure (CCD) is maintained by CSS and updated by distillers.
Fig. 4b formally describes the distillation and batch verification pro-
cesses. First, both entities initialize CCD as empty sets of signatures.
SOCOSLO.Distill(.) updates CCD structure by aggregating valid
signatures in CCDY (Step 2-12). It keeps valid tags according to the
granularity parameter p. Hence, CSS maintains a condensed tag o4,
set of umbrella signatures CCDY, and individual invalid signatures
CCD! (Step 17). SOCOSLO. SeBVer(.) is a selective batch verification
routine that can be run in three modes: (i) Mode “V” verify the valid
set which consists of one aggregate signature for all valid entries

Practical Cryptographic Forensic Tools
for Lightweight Internet of Things and Cold Storage Systems

5 Non-disciosed Seed
O Disclosed seed
Xol0] () Seed for disclosure
[] Unreached node
[C] Reached node

1 1
X0 1 .
|5 One-time seeds

X
2 : of 2 epoch
] e

(a) Tree-based seed managment

10TDI °23, May 09-12, 2023, San Antonio, TX, USA

i) Secret seed
(O Disclosed seed
@ Requested seed

+ .
X3[3] © SCT(,[01,1,0,3,3) X313] < SR(DS4,3) DSe
; pemm— (L0 i
Traverse subtree of root x;[0] Step 1: Retrieve x,[0] S COREA Y
to retrieve x3(3] e--=~ Step 2: Compute x3[3] from (22) x[2]
x1[0] via SCT (3,6) x3[6)

(b) Verifier’s view

Figure 3: Illustration of tree-based seed management functionalities

-

(SN}

w

E

: sk« (y,r0,x0[0]) ; PK « (Y,?),where_R) — {R;’Lz}

(I, sk, PK) « SOC0SLO.Kg(1%,T):

: Select integers (L1, Lp) such that Ly - Ly = T and Ly is a power of 2

s x0[0] & (0,13% 7 & 25D log (L) s p & [0,1]
: Generate large primes g and p > g such that q|(p — 1). Select a generator & of the subgroup

G of order q in Zz.

: infI;Yhaymodp
:fori=0,...,L; —1do

1L L. j j T
r; 2 — Z}.zl r{ mod g, where r{ — Hy(ro |l i1 j)

) 1,Ly
RM2 o mod p

1
Li-1
i=0
The system-wide param I < (p,q,a, L1,L2,T,D, St : (i =0))

: return (I, sk, PK)

[RSN

S1u SOC0SLO. Agg({; € a}%,):

s if § € Zg then 814, — Z?:l Sj mod q else 81,4 H}‘:l &j mod p

: return 81y,

N DR

1,
: return ;

1,L. — . — P L
a;’ 2 S0C0SLO.ASig(sk, M;): require i < Li and M; = {Ml] }jzl

: xp[i] « 5C(x[0],0,0,D, 1) and s>0 0
:forj=1,...,Lp do

r; « Ho(ro |l]l j) mod g

— HO(M{ Il xii) mod g, where x{ «— Hy(xpli] |l j)
I socosLo.agg (s}
— (s7"2, DS; — $50(x0[0],7)) and St : (i — i+1)
Ly

€
ey
1

EhR, G O

J J
s .7), where s —e; -ymodgq
1Ly

i

i

PN IR =

— - — —
b « SOCOSLO.AVer (PK, M, o): Set of messages M = { M; }ie? and require |M;| = 0 mod

=
Ly, Vie i

¢ if R ¢ o then R — 50C0SL0. Agg({R)"2 € P} =)

e—0

N
: fori€ i do

xpli] < SR(DS, i)
forj_:l,...,Lgdu
x] e HyGep il 1)
e<—e+H0(M{ [x{) mod g

: if R=Y® - @® mod p then return b = 1 else return b = 0

— ;
CCDj « S0C0SL0.Distill(PK, CCD;_1, M;, o'l.I’LZ): Initialize sy = 0 and Ry = 1

=
b; «— SOCOSLO.AVer (PK, Mj, 0" 2)
: if b; = 1 then
1L
4 < SOC0SLO.Agg(sg,s;” %)

1:
2
3

1Ly
4 Rg < S0C0SLO.Agg(Ry, R;™2)
5: if i mod p - L; = 0 then
6: sA < SOCOSLO.Agg(sA,Sq)
7 R4 < S0C0SLO.Agg(RA, Ry)
8 op «— (sa,Ra)

9: ou = (sq.Rq)

10: Reset (6g =0, Rg=1)

11: CCDY — {oa}

12: cep¥ « cepY u {oy,, Lp_—iLlJ}
13: else

14: GE’LZ — (s;'LZ,R:'Lz)

15 copl —cepl_ | u (o2, 1)

16: Delete R}’Lz from PK

17: CCD; « (CCDY, ccpY, ccpt, ps;)
18: return CCD;

- - -
b « S0COSLO.SeBVer(PK, M, CCD, p1): require |M| = 0 mod Ly

1: Attach DS to every signature o to be verified
2: switch (p)
3: case V™
4 M (M}

: i \cep!

\74 —_
5: bV« s0c0SL0.AVer (PK, M, o.4)
A

6: b=b
7: case ‘U™
8: for (o4, i¢) € CCDY do
9: Me (M} -

: Hie7\cep!
10: bf,j « S0COSLO.AVer (PK, ﬁ, op)

. D= U
11: =1{b¢ }pejcopv
12 case “T":
13 for (0y,i¢) € CCD! do

T —

14: by < SOCOSLO.AVer (PK, Mj,, o¢)

. D=l
15: =15} pejcepl|

N

16: return b

(a) Digital signature algorithms

(b) Distillation and selective batch verification

Figure 4: Signer-Optimal Coarse-grained 0SLO (SOCOSLO)

(ii) Mode “U” checks partial umbrella signatures in case the overall
authentication (mode “V”) is failed. Depending on the application
requirements, CCDV storage overhead can be adjusted according
to the granularity parameter p. (iii) Mode “I” checks the invalid set
by verifying separately each entry. The generic SOCOSLO.AVer(.)
enables both the verifier and CSS to use it in the distillation and
verification processes, respectively.

346

4.3 FIne-grained Public-key 0SLO (FIPOSLO)

FIPOSLO employs BPV pre-computation [5] to pre-store a constant
size of one-time commitments at the logger. Previous works [21]
have shown that the incurred storage is negligible for low-end IoT.
This is important for immediate and fine-grained verification at
the distiller. More importantly, it enables CSS to authenticate log
entries individually, thereby achieving accurate investigation and

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

(I, sk, PK) « FIPOSLO.Kg(1%,T): Step 1-4 are identical to SOCOSLO.Kg, the rest is
as follows:

: (T,0,k) « BPV.Offline(1%,p,q, @)

: sk — (y,x0[0],70,T) ; PK « Y

: The system-wide param I « (p,q, @, v,k,L1, L, T, D, p,St: (t = 1))

: return (I, sk, PK)

RSN

o7 « FIPOSLO.Sig(sk, M;): require t < T

e LLLZJ;thmosz

:if j =1thenxp[i] « SC(x([0],0,0,D,i)

 x(— Ho(xplil [l J)

: (r¢, Ry) < BPV.Online(T, v, k)

: et « Ho(Mg || x¢) mod q

st 1y —er-ymodgq

2 if j = Ly then p < (s¢, Re, X¢, DSt « $S0(x0[0], 7))
: else o7 «— (s¢, Ry, xt)

: Ste—t+1

: return oy

S0 XV UR W =

—_

b — FIPOSLO. AVer (PK, M, o):

1: if \M\ =1thene «— H(M || x) mod q,whereX’/I =M
2: else execute SOCOSLO.AVer steps 3-8
3: if R=Y¢ - @® mod p then return b = 1 else return b = 0

Figure 5: FIne-grained Public-key 0SLO (FIPOSLO)

optimal recovery. We describe our fine-grained variant (FIPOSLO)
in Fig. 5.

FIPOSLO provides various performance advantages at the dis-
tiller side. For instance, it offers an immediate verification of each
message within an epoch by attaching the seed x{ to the signature
as shown in FIPOSLO.Sig(.) (Step 7). Unlike SOCOSLO, it permits
a O(1) public-key storage at the distiller. That is, the signer gen-
erates commitment value R; via BPV (Step 4) and includes it in
the signature (Step 8). Therefore, by introducing the BPV generator,
FIPOSLO eliminates the initial O(L;) public key storage and enables
the highest level of granularity by verifying signatures individually.

The distillation and selective batch verification functionalities
are similar to SOCOSLO with minor differences and therefore are not
repeated. Indeed, the verifier aggregate every signature separately.
Thereby, the invalid set CCD' contains individual signatures (high-
est granularity) making CSS verify each invalid entry separately.
As such, FIPOSLO offer better verification precision than SOCOSLO,
but with slightly slower verification time.

5 SECURITY ANALYSIS

We prove that 0SLO schemes are A-EU-CMA signature schemes in
Theorem 5.1 (in the random oracle model [13]) and Lemma 5.1. We
ignore terms that are negligible in terms of .

THEOREM 5.1. Advgagg;%‘(\p,qm(t, T.,T) < Advg,La(t’), where
' =0(t) + O(T - (x® + RNG)).

Proof: Let A be a SOCOSLO attacker. We construct a DL-attacker
F that uses A as a sub-routine. That is, we set (b <i Z:, B «—

a® mod p) as defined in DL-experiment (i.e., Definition 2.2) and
then run the simulator ¥ by Definition 3.1 (i.e., A-EU-CMA experi-
ment) as follows:
Algorithm F(B)
Setup: ¥ maintains LH, LM, and LS to keep track of
query results in the duration of the experiment. LH is a

Saif E. Nouma and Attila A. Yavuz

hash list in form of tuples (M, b, k), where M; and h; de-
note the I'" data item queried to RO(.) and its corresponding
RO(.) answer, respectively, while k € {0, 1} refers to the
selected cryptographic hash function Hy. LH(I,0,k] and
LH|[1,1,k] denote the access to the element M;, hj, respec-
tively via the hash function Hy. LM is a list of messages,
in which each of its elements LM([i] is a message set T/Ii
(i.e., the i batch query). LS is a signature list that is used
to record answers given by SOCOSLO.ASiggy.

e F creates a simulated SOCOSLO public key PK as follows:

a) Y « Band xp[1] <$4 {0, 1}*
b) forl=1,...,T do
i)R; « Y - % mod p where (s}, ¢)) 3 Zy
c) fori=1,...,L; do
)RM HJL-il R(i-1).L,+j mod p
d) Set (L1, Ly, p) as in SOCOSLO.Kg(.).
e) Set PK « (Y,T?)), where R « {R}’L2 }5:11
f) Set I « (p,q, &, L1,L2,T,D = logLy) and init | «
0,i<0
Execute FARO().S0C0SL0. ASigsk () (p):
- Queries: A queries the SOCOSLO.ASigg (.) oracle on T
messages of her choice. It also queries RO(.) oracle on up

to T” messages of her choice. These queries are handled
as follows:

e How to Handle RO(.) Queries: ¥ implements a function
H-Sim(6, k) that works as RO(.) as follows: If 3I’ : § €
LHIU',0,i] then return LH[I',1,i]. Otherwise, return

h i ZZ‘I as the answer for Hg, insert new tuple (4, h)
to LH as (LH[L0,k] « 6, LH]L 1,k] « h) and then
update [< [+ 1. That is, cryptographic hash functions
Hj— 1 used in SOCOSLO are modeled as random oracles.

When A queries RO(.) on a message M;, ¥ returns
h; < H-Sim(M;, k) as described above. Any call for
SC or SSO functions invoke Hy call to traverse OSLOT tree
(per Fig. 2) that are all simulated via H-Sim as described.

® How to respond to SOCOSLO.ASigg (.) Queries:

- For each batch query]\—/I; A queries
SOCOSLO.ASig()) on {M/ }2, of her choice. If
i > L1 ¥ rejects the query (i.e., the query limit is
exceeded), else F continues as follows:
a) ¥ computes xp[i] « SC(xo[1],0, 1, D, i).
10
1
¢c) forj=1,...,Ly do
i) F sets x/ « H-Sim(xp[i] || j,0), if (M/ || x/) €

LH then F aborts, else inserts (Ml.j I x{, 0) to LH.

b) Initialize s;”” « 0

ii) ¥ computes sil’j — SOCOSLO.Agg(sl.l’j_l,slj)
d) F sets 0; « (sl.l’LZ,DSi = SSO(x¢[1],1)), inserts
(M, 07) to (LM, LS) and i « i+ 1.

347

Practical Cryptographic Forensic Tools
for Lightweight Internet of Things and Cold Storage Systems

- Forgery of A : Eventually, A outputs a forgery on
PK as (T/I*, "), where M= {]\7:‘)}167 and o* =
(s*, DS*). By definition 3.1, A wins A-EU-CMA exper-
iment for SOCOSLO if SOCOSLO.AVer(PK, A? o) =1
and 1\7*) ¢ LM hold. If these conditions hold, A re-
turns 1, else, returns 0.

- Forgery of : If A loses in the A-EU-CMA experiment for
SOCOSLO, ¥ also loses in the DL experiment, and there-
fore ¥ aborts and returns 0. Otherwise, if 1\7‘) € LH then
F aborts and returns 0 (i.e., A wins the experiment with-

out querying RO(.) oracle). Otherwise, ¥ continues as
follows:

R = Y?¢ . o® mod p holds for the aggregated variables
(R, e, s). That is, given the indices of corresponding pre-

vious messages —l) F retrieves (sj, r;) from (LS, LH),
L

27 Lji1 €i-1)-L,+j mod

SOCOSLO.Agg({sil’LZ}iE—l)). Moreover,

and then computes e =
q and s =

SOCOSLO.AVer(PK, 1\?, ¢*) = 1 holds, and therefore R =
Y€ . & mod p also holds. Note that A queries ¥ on L,
batches and T messages in total. Hence, ¥ disclosed the
root of OSLOT tree, from which required seeds can be de-
rived. ¥ calls x;[D] « SR(DS*, i), Vi € _i>,where SR func-
tion invoke SC which already simulated via H-Sim. It then
computes e* = Zie7 Z}L.il H—Sim(Mij* I xf*,O) where
xl! «— H-Sim(x;[D] || j,0) . Thus, the following equations
hold: R=Y¢-a*modp, R=Y¢ -a* mod p,
¥ then extracts y’ = b by solving the below modular
linear equations (note that only unknowns are y and r),
where Y = B as defined in the public key simulation:
r=y -e+smodg r=y -e* +s* modq

B’ = ab mod p holds, since A ’s forgery is valid and non-
trivial on B’ = B. By Def. 2.2, ¥ wins the DL-experiment.

The execution time and probability analysis are as follows:
Execution Time Analysis: In this experiment, the runtime of ¥ is

that of A plus the time it takes to respond RO(.) queries.

e Setup phase: ¥ draws 2T + 1 random numbers, performs
2T modular exponentiations and multiplications. Hence, the
total cost of this phase is (2T)-O (k3 +x?)+(2T+1)-RNG, where
O(x?) and O(x?) denote the cost of modular exponentiation
and modular multiplication, respectively. RNG denotes the
cost of drawing a random number.

o Query phase: ¥ draws L; - log L1 - RNG to compute the epoch
seeds and T - RNG to derive one-time random keys. It also
draws T -RNG to handle A ’s RO(.) queries. The cost of query
phase is bounded as O(T) - RNG.

Therefore, the approximate total running time of F is t’ = O(t) +
O(T - (x3 + RNG)).

Success Probability Analysis: F succeeds if all below events occur.

- EI: ¥ does not abort during the query phase.
- E2: A wins the A-EU-CMA experiment for SOCOSLO.

348

10TDI °23, May 09-12, 2023, San Antonio, TX, USA

- E3: F does not abort after A ’s forgery.
- Win: ¥ wins the A-EU-CMA experiment for DL-experiment.
- Pr[Win] = Pr[E1] - Pr[E2|E1] - Pr[E3|E1 A E2]
e The probability that event E1 occurs: During the query phase,
F aborts if (Ml.j||x{) € LH, 1<i<Lj 1< j<Lyholds, before
F inserts (Mij I x{) into LH. This occurs if A guesses xlj (before
it is released) and then queries (Mij I xlj) to RO(.) before querying it
to SOCOSLO.ASig(.). The probability that this occurs is zl,(, which
is negligible in terms of k. Hence, Pr[EI] = (1 — zi,c) ~ 1.
o The probability that event E2 occurs: If ¥ does not abort, A also
does not abort since the A ’s simulated view is indistinguishable
from A ’s real view (see the indistinguishability analysis). Thus,

T — A-EU-CMA
PrlE2|E1] = Advipo St (T T).

e The probability that event E3 occurs: F does not abort if the
following conditions are satisfied: (i) A wins the A~-EU-CMA experi-
ment for SOCOSLO on a message M* by querying it to RO(.). The
probability that A wins without querying M* to RO(.) is as difficult
as a random guess. (ii) After F extracts y’ = b by solving modular
linear equations, the probability that Y/ # a¥" mod p is negligible
in terms k, since (Y = B) € PK and SOCOSLO. AVer(PK, M*,c*) = 1.
Hence, Pr[E3|E1 A E2] = Ad"ééggéfg?p,q,a) (£, T’,T). Omitting
the terms that are negligible in terms of «, the upper bound on
A-EU-CMA-advantage of SOCOSLO is as follows:

A-EU-CMA L
AV 0 gy BT T) < Adv2l (),

Indistinguishability Argument: The real-view of X,eal is com-
prised of the public key PK, parameters I, the answers of
SOCOSLO.ASiggk(.) (recorded in LS by F) and the answer of
RO(.) (recorded in LH by F). All these values are generated by
SOCOSLO algorithms as in the real system, where sk = (xo[1], ro, y)
serves as the initial randomness. The joint probability distribution

of A real 1s random uniform as that of sk.

The simulated view of A is as 1—4) sim» and it is equivalent to
Xreal except that in the simulation, values (s;, ;) for I = 1,...,T
are randomly selected from Zj. This then dictates the selection of
Ry forl =1,...,T as random via the public key simulation (step
c)-ii). Note that the joint probability distribution of these variables
is also random uniformly distributed and is identical to the original
signature and hash outputs (since Hp,; is modeled as RO(.) via
H-Sim). SOCOSLO.Distill(.) and SOCOSLO.SeBVer(,) use
SOCOSLO.Agg(.) and SOCOSLO.AVer(.), which are invoked in
the signature simulation and forgery/extraction phases. Since
CCD only contains the values produced in the simulation,

1—4)51-,,, for SOCOSLO.Distill(.) and SOCOSLO.SeBVer(.) are

indistinguishable from that of Zreal' O

LEMMA 5.1. FIPOSLO is as secure as SOCOSLO.

Proof:In the sketch proof, we first show that FIPOSLO public key and
signature simulations produce random uniformly distributed values
as in SOCOSLO. We then show that the forgery and extraction phases
in A-EU-CMA experiment for both variants are identical. Finally,
we provide an indistinguishability argument for the A~-EU-CMA for
FIPOSLO.

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

o Public Key Simulation: FIPOSLO.Kg(.) Step 1-4 are identical
to that of SOCOSLO, except commitment value R are generated via
BPV generator. Therefore, ¥ runs the public key simulation as in

SOCOSLO, expect_R) is not pre-stored as a part of the public key. All
{s1, Ry, el}lT:1 values are as in SOCOSLO simulation.

e Signature Simulation: ¥ sets (o7 = (s;, Rj, x1)), where (s;, R;)
are as defined above, and (e, x;) are obtained through RO(.) as in
SOCOSLO via H-Sim function. FIPOSLO. Sig(.) queries are individ-
ual, and therefore oy is not aggregated via SOCOSLO.Agg(.). The
abort conditions in both SOCOSLO and FIPOSLO are the same.

e Forgery and Extraction: SOCOSLO and FIPOSLO verifications are
identical except for the first step, which identifies if the signature
is on a single or batch of messages. If the forgery is an aggregate
signature on a batch message, FIPOSLO.AVer(.) verifies it by per-
forming aggregation as in SOCOSLO.AVer(.). Hence, the forgery
and extraction are identical, wherein A might return a batch or
individual forgery (o*, M*). F retrieves (s, R, e) from LS since R
components are the part of signatures but not PK (unlike SOCOSLO).

o Indistinguishability Argument: X,ml of FIPOSLO is as in
SOCOSLO except that {R}IT:l (generated via BPV) are not part of

PK but in individual signatures {o; = ({s;, R}, DSI)}L. The joint

probability distribution of the values in Zreal are random uni-
formly distributed as all derived from sk (as in SOCOSLO). Remark
that each Ry is also random uniform because the distribution of
BPV output r; is statistically close to the uniform random distribu-

—

tion with an appropriate choice of parameters (v, k) [5]. Asim is
-

identical to A ,,,; since public key and signature simulations pro-

duce random uniformly distributed values with equal size to X,eal.
As in SOCOSLO, FIPOSLO.Distill(.) and FIPOSLO. SeBVer(.) call
FIPOSLO.Agg(.) and FIPOSLO.AVer(.), in which CCD values are
produced by FIPOSLO.Sig(.) and H-Sim. O

6 PERFORMANCE ANALYSIS

In this section, we give a detailed performance comparison of
0SLO schemes with that of their counterparts.

6.1 Evaluation Metrics and Experimental Setup

Evaluation Metrics: We compare 0SLO schemes and their counter-
parts in terms of (i) logger’s energy usage, (ii) private/public key
sizes and signature size, (iii) batch verification time and crypto-
graphic cloud storage,

We select our main counterparts such that they reflect the per-
formance of primary families of aggregate signatures (ASs) (i)
Factorization-based: C-RSA [29] is a AS scheme with a near-optimal
signature verification. (ii) ECDLP-based: SchnorrQ [6] is one of
the fastest EC-based signature (compared to ECDSA/Ed25519 [3])
with a high-performance on embedded devices. FI-BAF [31] is a
signer-optimal FAS scheme, which is our closest logger-efficient.
(iii) Pairing-based: BLS [4] is a multi-user AS scheme that relies on
bilinear maps. It is the most compact-storage alternative. Also, we
observe BLS is the most deployed signature in recent AS schemes
with extended properties (e.g., [16, 26]) in the IoT networks, thereby
inheriting similar efficiency advantage of OSLO over BLS.
Parameter Selection: We set the security parameter as k = 128. We
used FourQ curve [6] and set |g| = 256 for the EC-based schemes.

349

Saif E. Nouma and Attila A. Yavuz

The BPV parameters are (v, k) = (1024, 16). The composite modulo
size in C-RSA is |n| = 2048.

Hardware/Software Configuration: We fully implemented OSLO, for
the signer and verifier sides, on a desktop equipped with an Intel
19-9900K@3.6 GHz processor and 64 GB of RAM. On the logger, we
implemented OSLO on a low-end device, AVR ATMega 2560 micro-
controller, due to its low energy consumption and extensive use
in practice. It is equipped with 256KB flash memory, 8KB SRAM,
and 4KB EEPROM, with a clock frequency of 16MHz. Our compar-
isons are based on the following software libraries: (i) MIRACL? for
C-RSA [29] and BLS [4]. (ii) FourQlib* for the EC-based schemes
(i.e., SchnorrQ [6], FI-BAF [31], and OSLO schemes). (iii) We used
OpenSSL® to implement the cryptographic hash functions Hj=g 1
via SHA-256. We open source our implementation for public testing
purposes (see Section 1.2).

6.2 Performance Evaluation and Comparison

In this section, we give a performance comparison of OSLO with its
counterparts analytically and experimentally.

6.2.1 Analytical Performance Comparison. We present an analyti-
cal performance analysis of our schemes with their counterparts. In
Table 2, we give the overhead of the main signature functions at the
signer and distiller sides w.r.t our metrics. It also provides the distil-
lation cost w.r.t the failure rate. In Table 3, we provide an analytical
comparison for the CSS cost w.r.t the cryptographic storage and the
batch verification. We highlight takeaways from our analysis below.

o Seed Management Overhead Analysis: One of OSLO’s contribu-

tions is the seed management (see Section 4.1) that enable both
near-optimal signer efficiency and O(1) storage at the CSS and dis-
tiller. The amortized seed management overhead of OSLO signing al-
gorithms across T messages is on average one hash call based on the
derivation and disclosure of seeds by SC and SSO algorithms, respec-
tively. The resulting average amortized cost is (w -H),
which corresponds to less than a single hash call, and therefore we
conservatively accept it as H in our analysis.

The average seed storage is O(IOEZLl) at CSS . At the end of last
epoch, the signer disclosed the OSLOT root, with which the CSS can
verify any prior log entry-signature pair with O(1) final storage.

o Logger (signer): Table 2 show that the SOCOSLO signature gen-

eration only requires 3 hash calls (in average), two and one modular
additions and multiplication, respectively. This makes it as light-
weight as its most signer efficient counterpart FI-BAF, but with
vastly superior performance at CSS . SOCOSLO is significantly more
logger efficient than all other alternatives in terms of runtime, with
a highly compact signature and small key sizes. FIPOSLO is the
second most signer efficient alternative requiring constant number
(e.g., 16) of EAdd operations. It relies on a pre-computed BPV table,
which increases its private key size in exchange for better signing ef-
ficiency. Note that the use of BPV can be avoided by accepting single
EMul, which makes FIPOSLO signing cost equal to that of SchnorrQ.
We remind that FIPOSLO accepts extra signing/verification cost over
SOCOSLO in exchange for finer granularity.
Shttps://github.com/miracl/MIRACL

*https://github.com/microsoft/FourQlib
Shttps://github.com/openssl/openssl

https://github.com/openssl/openssl

Practical Cryptographic Forensic Tools
for Lightweight Internet of Things and Cold Storage Systems 10TDI °23, May 09-12, 2023, San Antonio, TX, USA

Table 2: Private/public key and signature sizes, and signature generation/verification costs of 0SLO and its counterparts

Schem Logger (Signer) Verifier
eme Sig Gen Private Key [Sig Size|| Public Key Sig Ver (L) Distill & Agg (X7s - L
SchnorrQ [6]|[2H + Addy + Muly + EMul lql 2|q| lql H+1.3- EMul N/A
FI-BAF [31] 3H + 2Addg + Mul, 2-(lgl+x)|lgl+x|2L - (Iq] +x)2 - (H+ Addg) +2.3 - EMul Add,
C-RSA [29] H+ Expl'jjl' 2|n| n| 2|n| H+ Expl';'l Mul,
BLS [4] MitP + EMul’ lq] lq] 2|q| MLtP + Pr Mul,
SOCOSLO 3H + 2Addg + Mul, lq| + 2Kk lq] Li-lgql PBH+Addy+13-EMul/L,| Addg,+EAdd/L,
3H + Addg + Mul
q q .- .
FIPOSLO +k - (Add, + EAdd) 2-0-|q|+K2|q| +K lq| H+1.3 - EMul Addg + EAdd

Addg and Mulg denote modular addition and multiplication, respectively, with modulus g. EMul, EMul’ are EC scalar multiplication on FourQ and pairing-based curves, respectively. We used double-point
Jx]

scalar multiplication (e.g., 1.3EMul instead of 2EMul for FourQ). Pr is a pairing operation. Explyl

denotes modular exponentiation with exponent x and modulus y. L denotes the batch size of signatures.

Table 3: Storage and computation costs of 0SLO variants and its counterparts at the cold storage side

Cold Storage Server (CSS)
Sch Cold Cryptographic Data (CCD) I
cheme Valid Storage Invalid Storage Verification Valid Time Umbrella Verification Signatures
Pub Key Sig Pub Key
SchnorrQ [6] |q| 2-75-T-|q| Iql s+ T-(H+ 13- EMul) 7s-T-(H+13-EMul)
FI-BAF[31]|2-7s - T - (Iql +x)| lql+x [2-7p-T- (lq| + k) r5~T-(2H+2Addq+1‘3-EMul’)+1.3~EMul"[5-T~(2H+2Addq+1.3~EMul’)+% - EMul’
C-RSA [29] 2|n| In] 2|n| TS-T-(H+Muln)+Exp||i|\ s T- (H+/\4uz,,)+%»szl‘jJ
BLS [4] 2|q| Iql 2|q| s - T - (MtP + Mulg) + Pr 75T - (MtP+Mqu)+%~Pr
SOCOSLO 2lq] Iq] L - |q rs T+ (3H + Addy) + 1.3 - EMul ts - T - (3H +Addy) + =2 EMul
FIPOSLO Iql 2]q| Iql s - T - (3H +Addy) + %’ - EMul

Addq and Mulq denote modular addition and multiplication, respectively, with modulus q. EMul, EMul’ are EC scalar multiplication on FourQ and pairing-based curves, respectively. We used double-point

scalar multiplication (e.g., 1.3EMul instead of 2EMul for FourQ). Pr is a pairing operation. Expl‘);l denotes modular exponentiation with exponent x and modulus y. L denotes the batch size of signatures.

Table 4: Bandwidth overhead and signature generation time of 0SLO variants and its counterparts at the signer side

Cryptographic payload (KB) Signing (in sec)

Scheme Analyticl complexity 6 | 32 | 64 | 128 | 256 (per item)
SchnorrQ [6] 2-Ly-|ql 1 2 4 8 16 0.27
FI-BAF [31] Iql +x 0.05 | 0.05 | 0.05 | 0.05 | 0.05 0.01
C-RSA [29] [n] 0.25 | 0.25 | 0.25 | 0.25 | 0.25 83.26
BLS [4] Iq] 0.03 | 0.03 | 0.03 | 0.03 | 0.03 4.08
SOCOSLO lq[+x 0.05 | 0.05 | 0.05 | 0.05 | 0.05 0.01
FIPOSLO 2-Ly - Iq] 1 2 4 3 16 0.09

The cryptographic payload is displayed under various epoch sizes to showcase the variation of the signer’s bandwidth usage.

o Verifier/CSS : Table 3 shows the overall performance of e Logger: Figure 7 showcases the energy usage of 0SLO schemes
0SLO schemes and their counterparts at the server side. The ag- and their counterparts compared to that of sensors typically found
gregate signatures offer batch ver. for all valid entries (i.e., the in IoT devices. Specifically, we compared the energy usage of a
success rate g = 1) and umbrella signatures. The batch ver. of all single signature generation with that of sampling via pulse® and
valid entries requires only one EMul, while umbrella tags are based pressure’ sensors (10s per sampling time with 1msec reading time).
on granularity parameter p. In terms of storage, the final public key SOCOSLO and FIPOSLO have remarkably low energy usage with
and aggregate tag sizes of 0SLO schemes are as efficient as the most 0.88% and 7.38%, respectively, compared to that of the pulse sensor.
compact alternative BLS, but with a faster runtime since they do not For SOCOSLO, this translates into 4.5x and 9% lower energy usage
require expensive pairing (Pr) and map-to-point (MtP) operations. than the most efficient standard SchnorrQ and verifier compact

BLS, respectively. SOCOSLO is equally energy efficient to FI-BAF, but
with substantial gains on the cold storage to be further discussed
below. FIPOSLO is the second most energy-efficient alternative,
while offering a fine granularity and higher verification efficiency.

6.2.2 Experimental Evaluation. In Table 1 (see Section 1), we
outlined the experimental performance of OSLO schemes and
their counterparts at a high level. We now provide details on the
signing energy efficiency at the logger side. Then, we outline the

computational/storage performance at the cold storage (i.e., CSS). Shttps://pulsesensor.com/
"https://cdn-shop.adafruit.com/datasheets/1900_BMP183.pdf

350

https://pulsesensor.com/
https://cdn-shop.adafruit.com/datasheets/1900_BMP183.pdf

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

Traffic Variation and Bandwidth Usage: Table 1 depicts the signer
cryptographic payload, by enabling full aggregation (per epoch).
The signer-efficient variant, SOCOSLO, has equal and lesser band-
width overhead compared to the short signature scheme BLS and the
most signer-efficient counterpart FI-BAF, respectively. SOCOSLO is
the most suitable during a low-frequency upload since it has a
lightweight signature generation with a compact signature size.
For a high-frequency upload and/or more available battery lifetime,
FIPOSLO offer higher precision by uploading individual signatures
to a nearby edge cloud, to be verified and distilled separately. Ta-
ble 4 depicts the variation of the signer’s cryptographic payload
under different epoch sizes. Recall that the epoch size represents
the number of individual tags to be aggregated. That is, the low-
end devices can increase the epoch size when low bandwidth is
observed. FIPOSLO have equal cryptographic payload compared to
SchnorrQ, while having 3x faster signature generation time. Sim-
ilarly, SOCOSLO have equal bandwidth overhead compared to the
most signer-efficient counterpart FI-BAF but with constant and
flexible storage at the distiller and CSS sides. SOCOSLO is consid-
ered the best scheme to offer both low bandwidth overhead and
fast signature generation on the signer side.

One can adopt the sign-aggregate-forward approach in a hop-
by-hop setting, wherein each IoT device signs a set of log entries,
aggregates the individual signatures, and forward the resulting
tag to the next IoT device. Another possible design is to employ
a clustering approach [9] wherein the IoT devices elect a cluster
leader to communicate the authenticated log entries to the distiller.
The leader adjusts the cryptographic payload based on the network
conditions. For instance, for a set of 210 loggers and 2% of epoch
size, the bandwidth overhead for a maximum compression across
multiple signers is 16.03KB, which is 3x and 171X smaller than
single-signer agg. and non-agg. approaches, respectively.

o Distiller: The distiller storage overhead is more cumbersome
than the cold storage server, especially when the hardware is not a
resourceful device (e.g., hotspot). The latter receives sets of authen-
tication tags, from a large number of IoT devices, to be verified and
aggregated following a pre-determined policy. Thus, the authenti-
cation mechanism must have a low-cost verification algorithm and
a flexible aggregation capability. By introducing the granularity
parameter p, the distiller can adjust the tag sizes depending on its
resource capabilities and/or the network conditions.

 CSS :Fig. 6 shows the verification time and the storage over-
head for different sizes of log entry set (each entry is 32 bytes)
and failure rates 7. Recall that 7z denotes the ratio of entries with
“invalid” verification. As discussed in Sec. 3, in the vast majority
of real-world applications, the “invalid” logs (flagged events) are
expected to be only a small fraction of the entire log. Therefore,
it is preferable to not compress invalid tags, so that they can be
attested individually.

In the case of full signature aggregation (i.e., 7p = 0), we refer
the reader to Table 1 that summarizes the verification time and
storage advantages of our schemes. In Fig. 6, we further investigate
the efficiency of compared schemes for varying failure (zr) and
granularity (p) rates.

Specifically, we vary 7r = 0, 1,5% to observe verification time
and storage overhead in Fig. 6-([a],[b],[c]) and Fig. 6-([d],[e],[f]),
respectively. We increase the size of log entries from 64 GB (23!

351

Saif E. Nouma and Attila A. Yavuz

entries) to 2 TB (23° entries). We eliminated the counterparts, having
linear storage (i.e., SchnorrQ and FI-BAF) from the storage graphs.
In our experiments, for large logs, we processed them in small
batches and included repeated disk I/O time in our results. We
experimented with p from 1077% to 1% and we observed that it has
aminimal impact on performance in these margins. Further increase
mainly impacts storage with only a slight increase in verification
time.

Disk I/O and Cold Storage Cost: Considering a large IoT network
where several low-end IoT devices are offloading their authenti-
cated log entries to a remote edge cloud, and ultimately to the cold
storage server (CSS). The overall storage at both the edge clouds
and CSS become exponentially large and costly. Recall that log
files are infrequently accessed data, and therefore it is preferred
to store them at cold line solution (e.g., Google cloud 8), which
is relatively low-priced (i.e., $49.15/year for each Terabyte). How-
ever, we argue that OSLO is able to offer the best trade-off between
low-cost compact server storage, low disk I/O, and fast verification.
According to Table 1, SOCOSLO’s cryptographic storage overhead is
only 0.10KB for 1TB of log entries, whereas it is 3.3TB for the most
signer-efficient counterpart FI-BAF. Thus, SOCOSLO have lower disk
I/O time and cheaper storage cost since both metrics are directly
proportional to the storage overhead. Additionally, 0SLO optimizes
the disk memory access time by only loading the overall aggregate
tag to verify the set of log files. In case the verification is failed, the
partially condensed signatures are loaded to locate the flagged log.
The storage cost at the distiller is more expensive than that of the
cold storage server. As the distiller represents the medium between
IoT devices and CSS , its stored data is frequently accessed since
it receives the authenticated log entries, and distill them after per-
forming the verification. Afterward, it offloads the logs along with
the associated cryptographic payload upon finishing a pre-defined
set of epochs. This fits the standard storage for data stored within
only brief periods of time. Based on the Google cloud solution, the
storage cost of one Terabyte is equal to $245.76/year. Similarly,
the disk I/O becomes a key metric since the distiller is frequently
accessing the stored data.

0SLO schemes prove excellent verification performance for both
runtime and storage. They outperform all of their counterparts in
both metrics for varying failure rates. For instance, OSLO schemes
are significantly faster than their most storage-efficient alternative
BLS and much more compact than their fastest counterpart C-
RSA with significant speed superiority. Therefore, 0SLO schemes
are the most efficient alternatives for secure logging in IoT-StaaS
applications.

7 CONCLUSION

In this work, we created new series of aggregate signatures, called
0SLO, for secure logging in resource-constrained IoT networks. To
the best of our knowledge, OSLO offer the best trade-off between
security guarantees and computational/storage efficiency. 0SLO em-
beds a new seed management design via tree-based structure and
post-signature disclosure of one-time commitments in EC-based
schemes. This enables a compact cryptographic data with signif-
icant speedup gains for both signing and verification, compared

8https://cloud.google.com/storage

https://cloud.google.com/storage

Practical Cryptographic Forensic Tools
for Lightweight Internet of Things and Cold Storage Systems

500 — 500

10TDI °23, May 09-12, 2023, San Antonio, TX, USA

«
8
3

Iy
&
3

[a] (.[F - 0%) m SchnorrQ FI-BAF 0 bl (p = 1%)

C-RSA BLS

8
3

8

3

HFIPOSLO ®SOCOSLO

&
3

a

3

&
3

8

3

2
3

S

3

&
3

&

8

Verification Time (Hours)

BB NN oW ow B
8 R
8 g

Verification Time (Hours)

B BN R 8 W A
g

1]
3

@
3

@

8

64GB 128GB 256GB 512GB 178 2TB 64GB 128GB

°
°

@
3

- wmt B __I — = m -

le] (¢ = 5%)

w w
g 8 8 &
8 8 8 8

Verification Time (Hours)
N
I
g

600
[d] (zp = 0.1%) [e] (tr =1%)
@ so @
52, @ 500
[[
‘:,!F 40 400
S S
& -
w w
o« 30 +. 300
(3 o
E 2
&2 & 200
e 4
o
2, &
S 5 100
, ~ . im
64GB 12868 256GB 512GB 118 218 64GB 12868

51268 118 218 64GB 12868 256GB 512GB 1718 218

1000
oo | 1] (T = 5%)

@

© 800

& 700

I

S 600

2

&

+ 500

o

£ 400

&

? 300

o

2

> 200

]
° i

— - | ° — —_— - u
51268 118 218 64GB 12868 25668 51268 178 218

Figure 6: Comparison of 0SLO schemes and their counterparts at the cold storage side

C-RSA 1.34 98.66
BLS 21.69 78.31
SchnorrQ 80.71 19.29
FI-BAF 99.12 0.88
FIPOSLO 92.62 7.38
SOCOsLO 99.12 0.88

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Pulse Sensor Signing

C-RSA 0.28 99.72
BLS 5.34 94.66
SchnorrQ 46.00 54.00
FI-BAF 95.83 4.17
FIPOSLO 71.88 28.13
SOCOSLO 95.83 4.17

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Pressure Sensor Signing

Figure 7: Energy consumption of 0SLO schemes and their counterparts at the logger side

to the state-of-the-art. To avoid losing verification granularity, we
introduce an adjustable parameter to keep additional condensed
tags after the distillation. This allows more flexibility for verifiers to
control the verification precision and the cryptographic data stored
on the cold storage servers. We presented an extensive performance
analysis with state-of-the-art on both commodity hardware and
low-end IoTs. Our experiments show that OSLO represents the best
secure logging candidate for numerous recent works in the IoT
domain. We formally proved that OSLO is secure and our implemen-
tation is open-source for public testing and adaptation.

ACKNOWLEDGMENTS

This research is supported by the unrestricted gift from the Cisco Re-
search Award (220159), and the NSF CAREER Award CNS-1917627.

REFERENCES

[1] Gaspard Anthoine, Jean-Guillaume Dumas, Mélanie de Jonghe, Aude Maignan,

Clément Pernet, Michael Hanling, and Daniel S Roche. 2021. Dynamic proofs

of retrievability with low server storage. In 30th USENIX Security Symposium

(USENIX Security 21). 537-554.

Giuseppe Ateniese, Roberto Di Pietro, Luigi V Mancini, and Gene Tsudik. 2008.

Scalable and efficient provable data possession. In Proceedings of the 4th interna-

tional conference on Security and privacy in communication netowrks. 1-10.

[3] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.
2012. High-speed high-security signatures. Journal of Cryptographic Engineering
2,2 (01 Sep 2012), 77-89. https://doi.org/10.1007/s13389-012-0027- 1

[4] Dan Boneh, Ben Lynn, and Hovav Shacham. 2004. Short Signatures from the
Weil Pairing. J Cryptol. 17, 4 (sep 2004), 297-319.

[2

—

352

[5] Victor Boyko, Marcus Peinado, and Ramarathnam Venkatesan. 1998. Speeding up
Discrete Log and Factoring Based Schemes via Precomputations. In EUROCRYPT
’98 (eurocrypt '98 ed.). 221-235.

[6] Craig Costello and Patrick Longa. 2016. Schnorrq: Schnorr signatures on fourq.
MSR Tech Report (2016).

[7] Rebecca Frank. 2022. Risk in trustworthy digital repository audit and certification.
Archival Science 22 (03 2022), 1-31.

[8] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. 2006. Attribute-
based encryption for fine-grained access control of encrypted data. In Proc of the
13th ACM conference on Computer and communications security. 89-98.

[9] Mohamed Grissa, Attila A Yavuz, and Bechir Hamdaoui. 2019. TrustSAS: A trust-
worthy spectrum access system for the 3.5 GHz CBRS band. In IEEE INFOCOM
2019-IEEE Conference on Computer Communications. IEEE, 1495-1503.

[10] Gunnar Hartung. 2016. Secure Audit Logs with Verifiable Excerpts. In Topics in

Cryptology - CT-RSA 2016, Kazue Sako (Ed.). Springer International Publishing,

Cham, 183-199.

Gunnar Hartung. 2017. Attacks on Secure Logging Schemes. In Financial Cryp-

tography and Data Security. Springer Int. Publishing, Cham, 268-284.

[12] Gunnar Hartung. 2020. Advanced Cryptographic Techniques for Protecting Log
Data. Ph. D. Dissertation. Karlsruhe Institute of Technology, Germany.

[13] Jonathan Katz and Yehuda Lindell. 2020. Introduction to modern cryptography.
CRC press.

[14] Jihye Kim and Hyunok Oh. 2019. FAS: Forward secure sequential aggregate
signatures for secure logging. Inf. Sciences 471 (2019), 115 - 131.

[15] Justin J Levandoski, Per-Ake Larson, and Radu Stoica. 2013. Identifying hot and
cold data in main-memory databases. In 2013 IEEE 29th International Conference
on Data Engineering (ICDE). IEEE, 26-37.

[16] Tian Li, Huaqun Wang, Debiao He, and Jia Yu. 2020. Permissioned blockchain-
based anonymous and traceable aggregate signature scheme for Industrial Inter-
net of Things. IEEE Internet of Things Journal 8, 10 (2020), 8387-8398.

[17] Xin Li, Huazhe Wang, Ye Yu, and Chen Qian. 2017. An IoT data communication
framework for authenticity and integrity. In 2017 IEEE/ACM Second International
Conference on Internet-of-Things Design and Implementation (IoTDI). IEEE, 159-
170.

[11

https://doi.org/10.1007/s13389-012-0027-1

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

[18]

[19

[20]

[21

[23

[24]

[25]

D. Ma. 2008. Practical forward secure sequential aggregate signatures. In Proceed-
ings of the 3rd ACM symposium on Information, Computer and Communications
Security (ASIACCS ’08) (Tokyo, Japan). ACM, NY, USA, 341-352.

Di Ma and Gene Tsudik. 2009. A New Approach to Secure Logging. Trans. Storage
5, 1, Article 2 (March 2009), 21 pages.

Giorgia Azzurra Marson and Bertram Poettering. 2014. Even More Practical
Secure Logging: Tree-Based Seekable Sequential Key Generators. In Computer
Security - ESORICS 2014, Mirostaw Kutytowski and Jaideep Vaidya (Eds.). Springer
International Publishing, Cham, 37-54.

Muslum Ozgur Ozmen, Rouzbeh Behnia, and Attila A. Yavuz. 2019. Energy-
Aware Digital Signatures for Embedded Medical Devices. In 7th IEEE Conf. on
Communications and Network Security (CNS), Washington, D.C., USA, June.

B. Schneier and J. Kelsey. 1999. Secure audit logs to support computer forensics.
ACM Trans. on Information System Security 2, 2 (1999), 159-176.

Claus-Peter Schnorr. 1991. Efficient signature generation by smart cards. Journal
of cryptology 4, 3 (1991), 161-174.

Efe U. A. Seyitoglu, Attila A. Yavuz, and Muslum O. Ozmen. 2020. Compact
and Resilient Cryptographic Tools for Digital Forensics. In 2020 IEEE Conference
on Communications and Network Security (CNS). 1-9. https://doi.org/10.1109/
(CNS48642.2020.9162236

Thokozani F. Vallent, Damien Hanyurwimfura, and Chomora Mikeka. 2021.
Efficient certificate-less aggregate signature scheme with conditional privacy-
preservation for vehicular adhoc networks enhanced smart grid system. Sensors
21, 9 (2021).

353

[26

[27

[28

[30

[31

(32

]

]

Saif E. Nouma and Attila A. Yavuz

Girraj Kumar Verma, Neeraj Kumar, Prosanta Gope, BB Singh, and Harendra
Singh. 2021. SCBS: a short certificate-based signature scheme with efficient
aggregation for industrial-internet-of-things environment. IEEE Internet of Things
Journal 8, 11 (2021), 9305-9316.

Cong Wang, Ning Cao, Jin Li, Kui Ren, and Wenjing Lou. 2010. Secure ranked key-
word search over encrypted cloud data. In 2010 IEEE 30th international conference
on distributed computing systems. IEEE, 253-262.

Cong Wang, Sherman SM Chow, Qian Wang, Kui Ren, and Wenjing Lou. 2011.
Privacy-preserving public auditing for secure cloud storage. IEEE transactions on
computers 62, 2 (2011), 362-375.

Attila A. Yavuz. 2018. Immutable Authentication and Integrity Schemes for
Outsourced Databases. IEEE Transactions on Dependable and Secure Computing
15, 1 (2018), 69-82.

Attila Altay Yavuz, Anand Mudgerikar, Ankush Singla, Ioannis Papapanagiotou,
and Elisa Bertino. 2017. Real-time digital signatures for time-critical networks.
IEEE Transactions on Information Forensics and Security 12, 11 (2017), 2627-2639.
Attila A. Yavuz, Peng Ning, and Michael K. Reiter. 2012. BAF and FI-BAF: Efficient
and Publicly Verifiable Cryptographic Schemes for Secure Logging in Resource-
Constrained Systems. ACM Transactions on Information System Security 15, 2
(2012), 28 pages.

Attila Altay Yavuz and Muslum Ozgur Ozmen. 2019. Ultra lightweight multiple-
time digital signature for the internet of things devices. IEEE Transactions on
Services Computing 15, 1 (2019), 215-227.

https://doi.org/10.1109/CNS48642.2020.9162236
https://doi.org/10.1109/CNS48642.2020.9162236

	Abstract
	1 Introduction
	1.1 Related Work and Research Gap
	1.2 Our Contribution

	2 Preliminaries
	3 Models
	4 Proposed Schemes
	4.1 OSLO Data Types and Seed Management
	4.2 Signer-Optimal Coarse-grained OSLO (SOCOSLO)
	4.3 FIne-grained Public-key OSLO (FIPOSLO)

	5 Security Analysis
	6 Performance Analysis
	6.1 Evaluation Metrics and Experimental Setup
	6.2 Performance Evaluation and Comparison

	7 Conclusion
	Acknowledgments
	References

