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ABSTRACT
Internet of Things (IoT) and Storage-as-a-Service (STaaS) contin-

uum permit cost-effective maintenance of security-sensitive infor-

mation collected by IoT devices over cloud systems. It is necessary

to guarantee the security of sensitive data in IoT-STaaS applications.

Especially, log entries trace critical events in computer systems and

play a vital role in the trustworthiness of IoT-STaaS. An ideal log

protection tool must be scalable and lightweight for vast quantities

of resource-limited IoT devices while permitting efficient and public

verification at STaaS. However, the existing cryptographic logging

schemes either incur significant computation/signature overhead

to the logger or extreme storage and verification costs to the cloud.

There is a critical need for a cryptographic forensic log tool that

respects the efficiency requirements of the IoT-STaaS continuum.

In this paper, we created novel digital signatures for logs called

Optimal Signatures for secure Logging (OSLO), which are the first

(to the best of our knowledge) to offer both small-constant sig-

nature and public key sizes with near-optimal signing and batch

verification via various granularities. We introduce new design

features such as one-time randomness management, flexible aggre-

gation along with various optimizations to attain these seemingly

conflicting properties simultaneously. Our experiments show that

OSLO offers 50× faster verification (for 2
35

entries) than the most

compact alternative with equal signature sizes, while also being

several magnitudes of more compact than its most logger efficient

counterparts. These properties make OSLO an ideal choice for the

IoT-STaaS, wherein lightweight logging and efficient batch verifica-

tion of massive-size logs are vital for the IoT edge and cold storage

servers, respectively.
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1 INTRODUCTION
System logs are vital tools for any security-critical applications [12].

They capture important events (e.g., user activity, errors, security

breaches), making them an important target for attackers. Recent

cyberattacks employ anti-forensics techniques to hide any evidence,

namely by deleting or modifying log files. As such, administrators

and/or verifiers cannot identify the source of errors during an

incident investigation. Thereby, ensuring the trustworthiness of log

files is a well-known topic for both authorities
1
and practitioners

[20, 31].

The emerging IoT harbors a sheer amount of IoT devices (e.g.,

sensors) that collect sensitive information (e.g., financial, health,

personal) from the environment. These data and their metadata

(i.e., log files) must be protected against such cyber attacks (e.g., im-

personation, tampering) by ensuring their authentication, integrity,

and confidentiality.

However, IoT devices are known to be resource-limited, ren-

dering them more vulnerable to such cyber attacks. Indeed, IoT

devices do not have the necessary storage capacity to keep locally

the log files. Additionally, they are more vulnerable to (especially

cyber-physical) attacks, and therefore there is a major risk of log

tampering.

A common practice is to securely offload log streams to a cloud

storage solution for future analytics and forensic investigation.

Storage-as-a-Service (STaaS)
2
offers advanced data storage and

infrastructure for end-users. However, it is highly expensive to

retain append-only files (i.e., logs) on fast-access cloud servers

which are usually dedicated to frequently accessed data.Cold storage
solution [15] is a new type of data warehouse, designed to host large-

scale archives. As such, Cold-STaaS becomes the best alternative to

keep such rarely used yet valuable log files.

An ideal secure log authentication scheme for IoT-STaaS should

offer (at minimum) the following properties:

• Scalability, Public Verifiability, and Non-Repudiation: (i) The
cryptographic solution should be scalable to large IoT networks. (ii)

It should allow any entity to verify the trustworthiness of informa-

tion (e.g., meta-data, logs) by external parties. (iii) It should provide

non-repudiation feature, which is essential for digital forensics and

legal dispute resolution (e.g., financial, health). These features are

usually offered by digital signatures [11, 24].

• Logger Efficiency: The cryptographic mechanisms must respect

the limited resources (e.g., battery, memory, CPU) for low-end IoT

1
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/

executive-order-on-improving-the-nations-cybersecurity/

2
https://www.intel.com/content/www/us/en/cloud-computing/storage-as-a-

service.html
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devices (e.g., sensors), which are expected to operate for long dura-

tions without a replacement. (i) The authentication process should

introduce a low computational overhead that translates into mini-

mum energy consumption. (ii) The signatures should be compact to

reduce the memory and transmission overhead. (iii) A small cryp-

tographic code size is desirable to reduce the memory footprint.

• Cloud Storage and Verification Efficiency: Cold storage systems

maintain sheer sizes of data (e.g., order of TBs). This requires an

ability to compress cryptographic data, while periodic security

controls necessitate fast batch verification.

• Flexible Verification Granularity: There is usually a performance

and precision trade-off for secure log verification. For example, the

authentication of the entire log stream with a single condensed tag

offers minimal storage and fast verification time. However, having

a single altered log entry renders the overall authentication invalid.

Alternatively, signatures can be kept individually, per log entry,

for the highest precision, but with high storage overhead. Hence,

the cryptographic solution should permit for both logger and cold

storage to adjust the storage granularity and verification precision

depending on the application requirements [10, 19] .

It is a highly challenging task to devise a digital signature scheme

that meets the stringent performance and security requirements

of both IoT devices and STaaS simultaneously. The state-of-the-art

techniques prioritize the needs of either the logger or verifier side

while omitting performance and security features for the other side.

In the following, we outline the research gap in the existing secure

logging schemes by focusing on digital signatures.

1.1 Related Work and Research Gap
We first discuss the closest related works to our solutions with a

focus on digital signature-based approaches. We then discuss other

relevant and complementary works.

Related Work in our Scope: OSLO follows a prominent aggregate

signature (AS)-based secure logging models (e.g., [10–12, 14, 18, 19,

24, 31]), where the logger compute an aggregate signature on its

log entries so they can be attested later. Digital signatures offer

public verifiability and non-repudiation via Public Key Infrastruc-

tures (PKI). Therefore, they are suitable tools to provide scalable

authentication for IoT and cold storage systems. Hereby, we outline

the state-of-art signatures that are applicable in our context.

The standard digital signatures (e.g., RSA, Ed25519 [3]) involve

expensive operations (e.g., modular exponentiation, Elliptic Curve

(EC) scalar multiplication), which are costly for resource-limited

IoTs. They do not offer aggregation property. Therefore, they in-

troduce O(𝑇 ) signature overhead for 𝑇 log entries putting a heavy

storage burden on cold storage. Finally, the majority of them do not

offer batch verification, which is important for fast authentication.

Aggregate Signatures (AS) [4, 29] can aggregate multiple dis-

tinct signatures into a single compact tag. Some aggregate signa-

tures offer batch verification. Hence, they are instrumental tools for

building cryptographic forensic schemes [12, 19, 20, 24, 31]. The

Condensed-RSA (C-RSA) [29] and BLS [4] are two essential aggre-

gate signatures but with a costly computation in both signing and

verification. BLS requires highly expensive pairings and EC scalar

multiplication with a heavy special hash function at the verifier

and signer sides, respectively. C-RSA requires costly modular expo-

nentiation with large key sizes. As shown in our experiments, they

are highly costly for our envisioned IoT-STaaS applications.

Forward-secure and Aggregate Signatures (FAS) [14, 24, 31] offer

breach-resiliency and signature aggregation. Despite their merits,

FAS schemes introduce significant computational and storage over-

head either at the signer and/or verifier sides. Some of these are

signer-efficient signatures [31], which makes them ideal choices for

secure logging in resource-constrained IoT. However, this comes at

the cost of a linear public key size. Our experiments proved that this

introduces costly cloud storage overhead. Moreover, they cannot

offer storage at different granularities due to fixed public key sizes.

Hence, they are not suitable for emerging cold storage applications.

Recent AS schemes with extended properties for IoTs (e.g., [16,

25, 26, 30]) are either based on BLS [4] or Schnorr [6]. Hence, they

inherit similar computational overhead (e.g., pairing, EC scalar mul)

at the signer, which was demonstrated by our analysis that it might

not be suitable for highly resource-limited devices. Additionally,

we observe the absence of performance evaluations on low-end

devices (e.g., 8-bit ATMega2560). In our comparisons, we focus

on Ed25519 [3], SchnorrQ [6] and BLS [4] to represent the signer

overhead schemes that rely on such cryptographic operations.

Other/Complementary Related Work: Our proposed scheme

(OSLO) is a special class of aggregate digital signature, and therefore
does not offer data confidentiality that can be achieved by: (i) data

encryption at the logger [8], (ii) private-auditing at STaaS side, (iii)

privacy-enhancing tools like searchable encryption [27].

There is a line of work focuses on Proof of Data Possession

(PDP) [2] and Proof of Retrievability (PoR) [1] on the outsourced

user data. Some works cope with privacy-preserving public audit-

ing [28]. These works differ from our system model and primary

performance objective. IoT devices do not compute a signature,

but just transfer log files to STaaS, without initiating data authen-

tication/integrity check. Rather, administrators (or STaaS) initi-

ates usually an interactive integrity check protocol to audit the

outsourced data, whereas AS-based schemes are generally non-

interactive. PoR/PDP schemes offer fast audit time that is achieved

by homomorphic linear authenticators (HLA) [28]. These enable

an external entity to audit the data without having to retrieve the

entire set. However, it comes at the cost of a very high computa-

tional overhead on IoT devices since the most deployed HLAs (i.e.,

BLS, RSA) suffer from expensive signing (see Table 1 and Fig. 7). In

a different line, Li et al. in [17] proposed a public auditing protocol

with data sampling for IoT networks.

Herein, our goal is to achieve optimal signing and small cryp-

tographic payload for IoT devices, while offering compact storage

and plausible verification efficiency at STaaS. By doing so, we per-

mit low-end IoT to actively compute signatures, thereby ensuring

public verifiability and non-repudiation. We note that OSLO can

be transformed into a homomorphic authenticable signature (via

Map-to-Point operation as in BLS [4]). However, this would result

in a costly signing, due again to reliance on BLS/RSA. Therefore,

our scope and counterparts are AS-based secure logging schemes.
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1.2 Our Contribution
In this work, we created a new series of secure logging schemes that

we refer to as Optimal Signatures for secure Logging (OSLO). To the

best of our knowledge, OSLO schemes are the first AS-based secure

logging schemes that achieve small-constant tag and public key

sizes with near-optimal signing and batch verification via various

granularities. These features make them ideal for IoT-STaaS appli-

cations, wherein efficient signing and batch verification are critical

for the resource-limited IoTs and cold storage servers, respectively.

Main Idea: Elliptic-Curve (EC)-based signatures usually offer

themost compact tag sizes with a better signing efficiency compared

to RSA-based [29] and pairing-based [4] alternatives. However, the

most efficient EC-based signatures (e.g, Ed25519 [3], SchnorrQ [6])

still require at least one expensive operation (i.e., EC scalar multi-

plication) during signing. Many techniques attempted to address

this bottleneck. A naive approach is to pre-compute private/public

commitments during the key generation. This is at the cost of a

linear storage overhead on the signer. As the number of log entries

grows, such storage becomes infeasible on resource-constrained

devices.

An alternative approach is to eliminate the public commitments

(both computation and storage) from signature generation, by re-

placing them with one-time random seeds [21, 31]. Despite being

highly signer efficient, these approaches require linear public key

storage at the verifier, which incurs extreme overhead on Cold-

STaaS (e.g., ≈ 3.3 TB for 2
35

log entries). Overall, AS scheme is

either efficient for the signer but with the expense of extreme stor-

age cost and verification overhead, or expensive for the low-end

device in terms of signing and storage overhead. In Section 1.1

and Section 6, we discuss AS-based signatures in terms of their

conundrums.

In OSLO, we attempt to address these limitations by putting

forward several new design approaches. (i) We introduce a new

randomness management mechanism that achieves O(log
2
𝑇 )

intermediate and O(1) final one-time seed storage and computation.

Our approach eliminates the linear server storage while preserving

optimal and deterministic signing via a tree-based seed data

structure that respects the post-signature disclosure requirement of

EC-based signatures. (ii) Our schemes can aggregate additive and

multiplicative homomorphic signature components separately with

any desired granularity. This permits us to compress tags either at

the IoT side per epoch, and/or compact them individually at the

verifier. (iii) We propose two instantiations of OSLO: Signer-Optimal

Coarse-grained OSLO (SOCOSLO) and FIne-grained Public-key

OSLO (FIPOSLO). OSLO significantly outperforms their counterparts

for the cold storage and verification time, with various granularities

and high signer performance. In Table 1, we show a high-level

comparison of OSLO with their counterparts (selection rationale to

be discussed in Section 6) and outline their desirable properties

below:

• Compact Cold Cryptographic Storage and Fast Verification: We

compared our schemes with their alternatives for cryptographic

storage and total verification times for 2
35

entries (each is of size 32

bytes). OSLO achieves the fastest verification and compact storage

among their counterparts. (i) They enable total storage of just 0.10

KB, which is several magnitudes more compact than alternative EC-

based signatures (e.g., Ed25519, FI-BAF) with TBs of storage. (ii)
SOCOSLO has 7× smaller signature than C-RSA and the same size

as BLS, but with 9× and 50× faster verification, respectively. It is
24× faster than its most signer-efficient counterpart FI-BAF.

• Flexible Verification Granularities and Architectures: (i) In

some IoT applications, IoT devices periodically stream their sensing

reports to a verifier. In SOCOSLO, the logger signs each entry as

collected and sequentially aggregates into a single “umbrella

signature” to be uploaded to the verifier per epoch. SOCOSLO has

a compact signature with the fastest verification ( 89× than

BLS) for an epoch level (e.g., 𝐿1 = 256 items) of granularity (i.e.,

coarse-grained). However, it requires O(𝐿1) initial public keys

at the verifier but with O(1) final public key at the cold storage.

(ii) FIPOSLO keeps every signature separately to be authenticated

and aggregated at the distiller. This enables the highest level

of granularity (i.e., fine-grained) and O(1) public key size. (iii)
OSLO introduces a distillation process, in which the entries are

verified and organized with a desired degree of granularities. The

distillation can be done with an intermediate verifier (e.g., an edge

cloud) or by the cold storage server itself.

•Near-optimal Logging Efficiency: OSLO schemes are highly sign-

ing efficient makes them ideal alternatives for logging in the

resource-limited IoT devices. (i) SOCOSLO achieves a near-optimal

signing by eliminating costly operations (e.g., EC multiplication).

This makes it 27× and 40× faster than the most compact traditional

and aggregate counterparts SchnorrQ and BLS, respectively. While

as fast as FI-BAF, SOCOSLO is also many magnitudes more compact

at the cold storage with 20× faster verification. (ii) FIPOSLO is the
second-fastest alternative at the signer but with the finest granu-

larity and O(1) public-key storage advantage over SOCOSLO and

FI-BAF. It has the largest private key to enable pre-computation,

but this can be replaced with scalar multiplication for a compact

private key.

• Full-fledge Implementation: We implemented OSLO schemes on

a low-end IoT device and commodity hardware and compared their

performance with that of their counterparts. Our experiments con-

firm that the asymptotic advantages of OSLO translate into practical
performance. We open-source our implementation for public test-

ing and adaptation purposes in the following online repository:

https://github.com/SaifNOUMA/OSLO

2 PRELIMINARIES
Notation: | | and |𝑥 | denote concatenation and the bit length of vari-

able 𝑥 , respectively. 𝑥
$← S means variable 𝑥 is randomly selected

from the finite set S using a uniform distribution. |S| denotes the
cardinality of set S. {0, 1}∗ denotes a set of binary strings of any

finite length. {𝑥𝑖 }𝑛𝑖=1 denotes the set of items (𝑥1, 𝑥2, . . . , 𝑥𝑛). log𝑥
denotes log

2
𝑥 . 𝐻𝑖 : {0, 1}∗ → {0, 1}𝜅 , 𝑖 ∈ {0, 1} are distinct Full

Domain Hash Functions [13], where 𝜅 is the security parameter.

𝑇 denotes the maximum number of items to be signed in a given

signature scheme. Our schemes operates over epochs, in which 𝐿2
items are processed, with a total 𝐿1 epochs available s.t.𝑇 = 𝐿1 · 𝐿2.
The variable 𝑠

𝑗0, 𝑗1
𝑖

denotes the aggregated (or derived) value of 𝑠 for

the iteration range 𝑗0 ≤ 𝑗 ≤ 𝑗1 in the epoch 𝑖 .𝑀
𝑗
𝑖
∈ −→𝑀𝑖 means that
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Table 1: Performance comparison of OSLO and its counterparts on embedded IoT and cold storage servers

Scheme
Logger (Signer) Cold Storage Server

Ver time (ms) Dynamic Granularity Initial/FinalIoT Device: AtMega2560 (8-bit) Commodity Hardware (Desktop)

(per epoch) Granularity Level Public KeySigning (in sec) Cryptographic Priv Key Cold Cryptographic Data Ver Time
(per item) Payload (KB) Size (KB) Entire Sig/PK Set One Sig (hours)

(for 2
35

entries) (KB)

Ed25519 [3] 1.45 16.38 0.03 2.20 TB 0.10 2243.12 56.78 × Fine O(1) / O(1)
SchnorrQ [6] 0.27 16 0.03 2.20 TB 0.10 154.92 4.16 × Fine O(1) / O(1)
FI-BAF [31] 0.01 0.05 0.10 3.30 TB 0.77 164.90 4.44 × Coarse O(𝑇 ) / O(𝑇 )
C-RSA [29] 83.26 0.25 0.51 0.77 KB 4.72 73.22 2.05 ✓ Coarse/Fine O(1) / O(1)
BLS [4] 4.08 0.03 0.03 0.10 KB 0.10 432.55 15.15 ✓ Coarse/Fine O(1) / O(1)

SOCOSLO 0.01 0.05 0.06 0.10 KB 0.11 8.33 0.17 ✓ Coarse O(𝑇 /𝐿1) / O(1)
FIPOSLO 0.09 16 65.6 0.10 KB 0.10 8.12 3.80 ✓ Fine O(1) / O(1)

The details of experiment settings, hardware/software configurations, and cryptographic parameters are given in Section 6. We chose our counterparts to cover the primary signature schemes, deployed for secure

logging in the IoT domain. More details about our selection rationale can be found in Section 6.1. The total number of entries and the size of an epoch are𝑇 = 2
35

and 𝐿2 = 2
8
, respectively. At the cold storage

server, the cryptographic storage (i.e., cold cryptographic data) is the total size of signatures and public keys needed to verify𝑇 entries. The verification time (in hours) is the total runtime of the batch verifying𝑇
items. At the logger (signer), the signature size is measured for an epoch. The signing time (in seconds) is given for a single entry. The verification time (in ms) is for all the collected items in a given epoch.

𝑀
𝑗
𝑖
belongs to set of items

−→
𝑀𝑖 .
−→
𝑀 = {−→𝑀𝑖 }

𝑖∈−→𝑖 denotes a super vector

where each

−→
𝑀𝑖 contains 𝐿2 messages and

−→
𝑖 are epoch indices of

−→
𝑀 .

Definition 2.1. An aggregate signature scheme ASGN consists of

four algorithms (Kg, Agg, ASig, AVer) as follows:

- (𝐼 , sk, PK) ← ASGN.Kg(1𝜅 ,𝑇 ): Given the security parameter

𝜅 and the maximum number of messages to be signed 𝑇 ,

it returns a private/public key pair (sk, PK) with a public

parameter 𝐼 .

- 𝜎1,𝑢 ← ASGN.Agg(𝜎1, . . . , 𝜎𝑢 ): Given a set of signatures

{𝜎𝑖 }𝑢𝑖=1, it combines them and outputs an aggregate tag 𝜎1,𝑢 .

- 𝜎𝑖 ← ASGN.ASig(sk, 𝑀𝑖 ): Given the secret key sk and a

message𝑀𝑖 , it returns a signature 𝜎𝑖 as output.

- 𝑏 ← ASGN.AVer(PK, {𝑀𝑖 }𝑢𝑖=1, 𝜎1,𝑢 ): Given the public key

PK , a set of messages {𝑀𝑖 }𝑢𝑖=1 and their corresponding ag-

gregated signature 𝜎1,𝑢 , it outputs 𝑏 = 1 if 𝜎1,𝑢 is valid or

𝑏 = 0 otherwise.

OSLO schemes rely on the intractability of Discrete Logarithm
Problem (DLP) [13].

Definition 2.2. Let G be a cyclic group of order 𝑞, let 𝛼 be a

generator of G, and let DLP attackerA be an algorithm that returns

an integer in Z𝑞 . We consider the following experiment:

Experiment 𝐸𝑥𝑝𝑡𝐷𝐿
G,𝛼
(A):

𝑏
$← Z∗𝑞 , 𝐵 ← 𝛼𝑏 mod 𝑞, 𝑏′ ← A(𝐵),

If 𝛼𝑏
′
mod 𝑝 = 𝐵 then return 1, else return 0

The DL-advantage of A in this experiment is defined as:

AdvDL
𝐺
(A) = 𝑃𝑟 [𝐸𝑥𝑝𝑡𝐷𝐿

G,𝛼
(A) = 1]

The DL advantage of (G, 𝛼) in this experiment is defined as follows:

AdvDL
𝐺
(𝑡) = max

A
{AdvDL

𝐺
(A)}, where the maximum is over

all A having time complexity 𝑡 .

SOCOSLO uses Boyko-Peinado-Venkatesan (BPV) generator [5].
It reduces the computational cost of expensive operations (e.g.,

EC scalar mul.) via pre-computation technique. It consists of two

algorithms described as follows:

1) (Γ, 𝑣, 𝑘) ← BPV.Offline(1𝜅 , 𝑝, 𝑞, 𝛼): It chooses BPV param-

eters (𝑣, 𝑘) as the size of the pre-computed table and number

of randomly selected elements, respectively. Then, it gener-

ates the pre-computed table Γ = {𝑟𝑖 , 𝑅𝑖 }𝑣𝑖=1.
2) (𝑟, 𝑅) ← BPV.Online(Γ): It generates a random set 𝑆 ∈
{1, . . . , 𝑣} of size |𝑆 | = 𝑘 . Then, it computes a one-time com-

mitment pair (𝑟 ← ∑
𝑖∈𝑆 𝑟𝑖 mod 𝑞 , 𝑅 ← ∏

𝑖∈𝑆 𝑅𝑖 mod 𝑝).

3 MODELS
System Model: Our system model follows a well-known AS-based

secure logging models (e.g., [11, 12, 18, 19, 24, 31]), in which logger

(i.e., IoT device) computes authentication tags on its log entries to

be publicly verified later. Specifically, we consider an IoT-Cloud con-
tinuum wherein vast quantities of IoT devices generate log streams

and report them to an (edge) cloud for analysis. As depicted in Fig.

1, our model consists of three main entities:

(i) Logger (Signer): represent the end-user IoT devices (e.g., med-

ical sensors). They collect sensitive information (e.g., personal,

health), and periodically upload them with their corresponding

log entries to a nearby edge server (e.g., access point). They are

expected to be resource-limited in terms of computation, storage,

battery, and bandwidth.

(ii) Distiller : Any authorized entity can verify the log files and

their digital signatures via corresponding public keys. For example,

in a smart-building application, the IoT sensors can upload their

periodic sensing reports to a nearby edge cloud. Before placing logs

and signatures into the cold storage, we consider that the edge cloud

performs a distillation process. That is, it maintains Cold Crypto-
graphic Data (CCD) that harbors “valid” batches of log entries with
their compressed (and adjustable) tags in various granularities. We

assume that it keeps the “invalid” log entry-signature pairs individ-

ually. Remark that in the vast majority of real-life applications, the

number of “invalid” (flagged) entries usually form only a negligi-

ble part of the entire log set. Hence, the “valid” entries dominate

the storage of CCD. After the distillation, the edge cloud uploads

CCD to the cold storage servers for long-term maintenance and

check.

(iii) Cold Storage Server (CSS ) : It gives a STaaS service for our
IoT-STaaS continuum. As discussed in Section 1, STaaS need regular

audits to prove that their digital archives are trustworthy [7]. Hence,
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verifiers periodically check the authentication and integrity of logs

maintained in CSS . For simplicity, verifiers are part of CSS .

Threat and SecurityModel:We follow the threatmodel of cryp-

tographic audit log techniques originally introduced by Schneier et

al. in [22] and then improved in various subsequent cryptographic

works [10, 12, 18, 31]. In this model, the adversary is an active at-

tacker that aims to forge and/or tamper audit logs to implicate other

users. The state-of-the-art cryptographic secure logging schemes

rely on digital signatures to thwart such attacks with public veri-

fiability and non-repudiation. As stated in Section 1, we focus on

signer-efficient (EC-based) aggregate signature-based approaches

due to their compactness and fast batch verification properties.

We follow the Aggregate Existential Unforgeability Under Chosen
Message Attack (A-EU-CMA) [4] security model that captures our

threat model. A-EU-CMA considers the homomorphic properties of

aggregate signatures and can offer desirable features such as log

order preservation (if enforced) and truncation detection for signa-

ture batches. OSLO schemes are single-signer aggregate signatures,

and therefore we do not consider inter-signer aggregations.

Definition 3.1. A-EU-CMA experiment for ASGN is as follows:

Experiment ExptA-EU-CMAASGN (A)
(1) (𝐼 , 𝑠𝑘, 𝑃𝐾) ← ASGN.Kg(1𝜅 ,𝑇 ),
(2) (𝑀∗, 𝜎∗) ← ARO (.), ASGN.ASig𝑠𝑘 (

−→
𝑀 ) (𝑃𝐾),

(3) If ASGN.AVer(𝑃𝐾,𝑀∗, 𝜎∗) = 1 & 𝑀∗ ⊄ {−→𝑀𝑗 }𝐿1𝑗=1, return 1

else 0.

The A-EU-CMA of A is defined as

AdvA-EU-CMAASGN (A) = 𝑃𝑟 [ExptA-EU-CMAASGN (A) = 1] .
The A-EU-CMA advantage of ASGN is defined as

AdvA-EU-CMAASGN (𝑡,𝑇 ′,𝑇 ) = max

A
{𝐴𝑑𝑣A-EU-CMAASGN (A)},

where the maximum is over A having time complexity 𝑡 , with at

most 𝑇 ′ queries to RO(.) and 𝑇 queries to ASGN.ASig(.).

The oracles reflect how OSLOworks as ASGN scheme. The signing

oracle ASGN.ASig(.) returns an aggregate signature 𝜎 on a batch of

messages

−→
𝑀 = (−→𝑀1, . . . ,

−−→
𝑀𝐿1 ) computed under 𝑠𝑘 . ASGN.Agg(.) ag-

gregates the individual (or batch) signatures of these messages.

ASGN.Agg(.) can be performed during the signing or before verifi-

cation (e.g., in the distillation). It can aggregate additive or multi-

plicative components 𝛿𝑖 ∈ 𝜎𝑖 . RO(.) is a random oracle from which

A can request the hash of any message of her choice up to𝑇 ′ mes-

sages. In our proofs (see Section 5), cryptographic hash functions

are modeled as a random oracle [13] via RO(.).

4 PROPOSED SCHEMES
Our goal is to create new cryptographic secure logging schemes

that can meet the stringent requirements of low-end IoT devices

with efficient signing and compact signatures while achieving fast

verification and optimal storage in the cloud. We aim to achieve:

(i) A near-optimal signer efficiency with no costly EC-scalar mul-

tiplication or modular exponentiation. (ii) Compact aggregate tag

storage and transmission. (iii) O(1) final cryptographic storage for
the cold storage, which means O(1) public key and signature size

for maximum compression. (iv) Fast batch verification for a large

number of messages. (v) Ability to aggregate tags in any desired

granularity at the signer and/or verifier sides.

We observe that, among the existing aggregate signatures, EC-

based signer-efficient variants (e.g., [31, 32]) have the best potential

for IoT, yet lack the necessary compactness and fast verification

for cold storage applications (see Section 1 for a recap). They trans-

form the Schnorr signature [23] into a one-time aggregate signa-

ture, in which the generation and storage of costly commitments

(𝑅 ← 𝛼𝑟 mod 𝑞, 𝑟
$← Z∗𝑞) are shifted to the key generation and

verifier, respectively. In a nutshell, the signing process separates

the message𝑀 from the commitment by replacing 𝐻 (𝑀 | |𝑅) with
𝐻 (𝑀 | |𝑥), where 𝑥 is one-time randomness. “𝑥” cannot be disclosed

before signing and does not admit aggregation. Hence, it enforces

𝑂 (𝑇 ) storage and expensive batch verification, which are extremely

costly as shown in Section 6.

We developed several new techniques that address the signer ver-
sus verifier bottleneck conundrum. In Fig. 1, we outline our system

model and OSLO’s high-level functionalities. We first describe our

data structures and new seed management strategy to cope with

linear seed storage in Section 4.1. We then present our proposed

schemes SOCOSLO and FIPOSLO that offer efficient signing, com-

pact server storage, and batch verification with various granularity

options.

4.1 OSLO Data Types and Seed Management
OSLO Data types: OSLO Tree-based structure (OSLOT) is a hash-

based tree for seed storage and management, in which the leaves

are one-time random seeds 𝑥 , and the left and right children are

computed via 𝐻0,1, respectively. Let 𝐿1 and 𝐷 = log𝐿1 be the maxi-

mum number of leaves and tree depth, respectively. OSLOT nodes

𝑥𝑑 [𝑖] at depth 𝑑, 0 ≤ 𝑑 ≤ 𝐷 , for index 𝑖, 0 ≤ 𝑖 < 2
𝑑
, are computed

as:

𝑥𝑑 [𝑖] =
{
𝐻0 (𝑥𝑑−1 [⌊ 𝑖2 ⌋]), if 𝑖 ≡ 0 mod 2

𝐻1 (𝑥𝑑−1 [⌊ 𝑖2 ⌋]), if 𝑖 ≡ 1 mod 2

Disclosed Seeds (DS) is a hash table structure. It maintains the

disclosed nodes as values and their coordinates (i.e., depth 𝑑 , index

𝑖) as keys. Formally, it is presented as follows: DS : (𝑑, 𝑖𝑑 ) →
𝑥𝑑 [𝑖𝑑 ], where 0 ≤ 𝑑 ≤ 𝐷 and 0 ≤ 𝑖𝑑 ≤ 2

𝑑 − 1.
The SeedManagement Functions (SMF) are formalized in Fig. 2: (i)

Seed Computation (SC) takes the source node 𝑥𝑑0 [𝑖0] and computes

the requested child 𝑥𝑑 [𝑖] by traversing OSLOT tree. (ii) Seed Storage
Optimizer (SSO) discloses ancestor nodes progressively when the

logger completes a given number of epochs. Given leaf index 𝑖 and

the OSLOT root 𝑥0 [1], it outputs a compact DS𝑖 . SSO seeks the seeds
that share the same ancestor, thereby ensuring at most O(log𝐿1)
storage. (iii) Seed Retrieval (SR) returns the seed 𝑥𝐷 [𝑖] ifDS contains
an ancestor for leaf of index 𝑖 .

An instance of OSLOT is provided in Fig. 3a, where (𝐿1 = 2
3, 𝐿2 =

2
8). It shows the OSLOT status after completing the 6

th
epoch. The

seeds, to be disclosed, are highlighted. They can be determined by

running SSO algorithm. The SSO output is: DS6 ← SSO(𝑥0 [1], 6)
where DS6 = {(1, 0) : 𝑥1 [0]; (2, 2) : 𝑥2 [2]; (3, 6) : 𝑥3 [6]}.
The advantage of OSLOT seed management is apparent over the

linear disclosure of one-time commitments in Schnorr-like schemes.
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Figure 1: A high-level illustration of OSLO system model and algorithms

𝑥𝑑 [𝑖 ] ← SC(𝑥𝑑
0
[𝑖0 ], 𝑑0, 𝑖0, 𝑑, 𝑖 ) :

1: Set 𝑥𝑝 ← 𝑥𝑑
0
[𝑖0 ] and 𝑖 ← 𝑖𝑑 − (𝑖0 − 1) · 2𝑑−𝑑0

2: for 𝑗 = 𝑑 − 𝑑0 − 1, . . . , 0 do

3: 𝑥𝑝 =

{
𝐻0 (𝑥𝑝 ), if ⌊𝑖/2𝑗 ⌋ ≡ 0 mod 2

𝐻1 (𝑥𝑝 ), if ⌊𝑖/2𝑗 ⌋ ≡ 1 mod 2

4: return (𝑥𝑑 [𝑖 ] ← 𝑥𝑝 )

DS𝑖 ← SSO(𝑥0 [0], 𝑖 ) :

1: Let 𝛽 = (𝛽1, . . . , 𝛽𝐷 ) be the binary representation of 𝑖

2: 𝐽 ← { 𝑗, 𝑗 ∈ {0, . . . , 𝐷 } \ 𝛽 𝑗 = 0}, DS𝑖 ← {} and counter 𝑙 ← 0

3: for 𝑗 ∈ 𝐽 do
4: 𝑑 ← 𝐷 − 𝑗 ; 𝑖𝑑 ← ⌊𝑙/2𝑗 ⌋
5: 𝑥𝑑 [𝑖𝑑 ] ← SC(𝑥0 [0], 0, 0, 𝑑, 𝑖𝑑 )
6: Add { (𝑑, 𝑖𝑑 ) : 𝑥𝑑 [𝑖𝑑 ] } to DS𝑖 and increment 𝑙 ← 𝑙 + 2𝑗
7: return DS𝑖

𝑥𝐷 [𝑖 ] ← SR(DS, 𝑖 ) :

1: if ∃(𝑑, 𝑖𝑑 ) ∈ DS, where 𝑥𝑑 [𝑖𝑑 ] is an ancestor node of 𝑥𝐷 [𝑖 ] then
2: 𝑥𝐷 [𝑖 ] ← SC(𝑥𝑑 [𝑖𝑑 ], 𝑑, 𝑖𝑑 , 𝐷, 𝑖 )
3: else 𝑥𝐷 [𝑖 ] ← ⊥
4: return 𝑥𝐷 [𝑖 ]

Figure 2: Seed Management Functions (SMF)

It transforms O(𝑇 ) of both logger transmission and verifier stor-

age into (at most) O(log𝐿1). Upon finishing all epochs, the logger

discloses the OSLOT root 𝑥0 [1], enabling O(1) verifier storage.

4.2 Signer-Optimal Coarse-grained OSLO
(SOCOSLO)

SOCOSLO offers a near-optimal signing efficiency in terms of both

computational and storage overhead. It offloads an aggregate tag

upon signing an epoch of individual log entries. Unlike previous

EC-based signature designs, SOCOSLO pre-stores a O(𝐿1) sublinear
number of public commitments (𝑅) at the verifier side, and compact

them after receiving the authenticated logs from IoT devices. In the

following, we explain the formal description of SOCOSLO routines.
SOCOSLO Digital Signature Algorithms: We give the aggre-

gate signature functions of SOCOSLO in Fig. 4a.

In SOCOSLO.Kg(.), for a given 𝑇 , we first select the number of

epochs and items to be signed in an epoch as 𝐿1 and 𝐿2, respectively

(Step 1). We then generate the initial ephemeral randomness 𝑟0
and the root of OSLOT tree 𝑥0 [0] (Step 2). These values will be

used to generate ephemeral public commitments (𝑅) and one-time

randomness (𝑥) for a given epoch state St : (𝑖). We generate EC-

based parameters (𝑝, 𝑞, 𝛼) and private/public key pair (𝑦,𝑌 ) (Step
3-4). SOCOSLO is coarse-grained, and therefore we combine the

commitments for each epoch as in Step (5-7), which results in

initial O(𝐿1) and final O(1) storage at the verifier via aggregation.
The private/public key and parameters are as in Steps (8-9).

SOCOSLO.Agg(.) is a keyless signature aggregate function with

a dual signature combination mode. That is, given tag element

𝑠 ∈ 𝜎 or 𝑅 ∈ 𝜎 , it performs additive or multiplication aggregation,

respectively.

SOCOSLO.ASig(.) is an aggregate signature generation that signs
each entry and sequentially aggregates into a single umbrella sig-

nature (i.e., the tag representing all items in the given epoch). The

seed 𝑥𝐷 [𝑖] is computed once per epoch 𝑖 (Step 1) and used to derive

one-time seeds 𝑥
𝑗
𝑖
(Step 4). The aggregate signature 𝑠

1, 𝑗
𝑖

is computed

with only a few hash calls and modular additions plus a modular

multiplication (Step 3-5). This makes SOCOSLO the most signer ef-

ficient alternative. At the end of epoch 𝑖 , the logger determines a

set of disclosed seeds DS𝑖 via SSO, updates its internal state (Step
6), and outputs the condensed signature 𝜎

1,𝐿2
𝑖

(Step 6-7).

SOCOSLO.AVer(.) receives the public key PK , a set of messages

−→
𝑀 , and their corresponding aggregate signature 𝜎 as input. The

verifier checks if messages comply with the epoch size, and then

identifies the format of the aggregate signature to choose com-

ponent 𝑅 (Step 1). SOCOSLO.AVer(.) can be invoked by the edge

cloud or CSS as the final verifier. This difference dictates if the

aggregate commitment 𝑅 is included in the initial public key PK or

the aggregate signature 𝜎 . Below, we will elaborate further that

the SOCOSLO.Distill(.) function can be used to verify the entries

and then compact them according to a granularity parameter 𝜌 .

Hence, if the verification is done during the distillation, the verifier

already has 𝑅
1,𝐿2
𝑖
∈ −→𝑅 as part of PK and this value is used in the

verification (Step 8). Otherwise, if the verification is run by the CSS ,
then “𝑅” can be found as a part of the signature in CCD. The verifier
retrieves the seeds in the given epoch (Step 4) and then computes

the aggregate hash component 𝑒 (Steps 2-7). Finally, the aggregate

signature is verified (Step 8). Fig 3b depicts the mechanism for seed

retrieval. It consists of the verifier’s view after finishing 6
th

epoch.

It illustrates the request to retrieve the seed of the 3
rd

epoch.

SOCOSLODistillation and Selective Batch Verification: The
verification involves two entities of our system model (as in Section

3) (i) Distiller (ii) Cold Storage Server (CSS ). The cryptographic data
structure (CCD) is maintained by CSS and updated by distillers.

Fig. 4b formally describes the distillation and batch verification pro-

cesses. First, both entities initialize CCD as empty sets of signatures.

SOCOSLO.Distill(.) updates CCD structure by aggregating valid

signatures in CCD𝑉
(Step 2-12). It keeps valid tags according to the

granularity parameter 𝜌 . Hence, CSS maintains a condensed tag 𝜎𝐴 ,

set of umbrella signatures CCD𝑈
, and individual invalid signatures

CCD𝐼
(Step 17). SOCOSLO.SeBVer(.) is a selective batch verification

routine that can be run in three modes: (i) Mode “V” verify the valid

set which consists of one aggregate signature for all valid entries
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Figure 3: Illustration of tree-based seed management functionalities

(𝐼 , sk, PK ) ← SOCOSLO.Kg(1𝜅 ,𝑇 ) :

1: Select integers (𝐿1, 𝐿2 ) such that 𝐿1 · 𝐿2 = 𝑇 and 𝐿1 is a power of 2

2: 𝑥0 [0]
$← {0, 1}𝜅 ; 𝑟0

$← Z∗𝑞 ; 𝐷 ← log (𝐿1 ) ; 𝜌
$← [0, 1]

3: Generate large primes 𝑞 and 𝑝 > 𝑞 such that 𝑞 | (𝑝 − 1) . Select a generator 𝛼 of the subgroup

𝐺 of order 𝑞 in Z∗𝑞 .

4: 𝑦
$← Z∗𝑞 ; 𝑌 ← 𝛼𝑦

mod 𝑝

5: for 𝑖 = 0, . . . , 𝐿1 − 1 do

6: 𝑟
1,𝐿

2

𝑖
← ∑𝐿

2

𝑗=1
𝑟
𝑗
𝑖
mod 𝑞, where 𝑟

𝑗
𝑖
← 𝐻0 (𝑟0 ∥ 𝑖 ∥ 𝑗 )

7: 𝑅
1,𝐿

2

𝑖
← 𝛼

𝑟
1,𝐿

2

𝑖 mod 𝑝

8: sk ← (𝑦, 𝑟0, 𝑥0 [0] ) ; PK ← (𝑌,
−→
𝑅 ) , where −→𝑅 ← {𝑅1,𝐿2

𝑖
}𝐿1−1
𝑖=0

9: The system-wide param 𝐼 ← (𝑝,𝑞, 𝛼, 𝐿1, 𝐿2,𝑇 , 𝐷, St : (𝑖 = 0) )
10: return (𝐼 , sk, PK )

𝛿1,𝑢 ← SOCOSLO.Agg({𝛿 𝑗 ∈ 𝜎 𝑗 }𝑢𝑗=1 ) :

1: if 𝛿 ∈ Z∗𝑞 then 𝛿1,𝑢 ←
∑𝑢

𝑗=1
𝛿 𝑗 mod 𝑞 else 𝛿1,𝑢 ←

∏𝑢
𝑗=1

𝛿 𝑗 mod 𝑝

2: return 𝛿1,𝑢

𝜎
1,𝐿

2

𝑖
← SOCOSLO.ASig(sk, −→𝑀𝑖 ) : require 𝑖 < 𝐿1 and

−→
𝑀𝑖 = {𝑀 𝑗

𝑖
}𝐿2
𝑗=1

1: 𝑥𝐷 [𝑖 ] ← SC(𝑥0 [0], 0, 0, 𝐷, 𝑖 ) and 𝑠0,0
𝑖
← 0

2: for 𝑗 = 1, . . . , 𝐿2 do
3: 𝑟

𝑗
𝑖
← 𝐻0 (𝑟0 ∥ 𝑖 ∥ 𝑗 ) mod 𝑞

4: 𝑒
𝑗
𝑖
← 𝐻0 (𝑀 𝑗

𝑖
∥ 𝑥 𝑗

𝑖
) mod 𝑞, where 𝑥

𝑗
𝑖
← 𝐻0 (𝑥𝐷 [𝑖 ] ∥ 𝑗 )

5: 𝑠
1, 𝑗
𝑖
← SOCOSLO.Agg(𝑠1, 𝑗−1

𝑖
, 𝑠

𝑗
𝑖
) , where 𝑠 𝑗

𝑖
← 𝑟

𝑗
𝑖
− 𝑒 𝑗

𝑖
· 𝑦 mod 𝑞

6: 𝜎
1,𝐿

2

𝑖
← ⟨𝑠1,𝐿2

𝑖
, DS𝑖 ← SSO(𝑥0 [0], 𝑖 ) ⟩ and St : (𝑖 ← 𝑖 + 1)

7: return 𝜎
1,𝐿

2

𝑖

𝑏 ← SOCOSLO.AVer(PK, −→𝑀,𝜎 ) : Set of messages

−→
𝑀 = {−→𝑀𝑖 }

𝑖∈−→𝑖 and require |−→𝑀𝑖 | ≡ 0 mod

𝐿2, ∀𝑖 ∈
−→
𝑖

1: if 𝑅 ∉ 𝜎 then 𝑅 ← SOCOSLO.Agg({𝑅1,𝐿2
𝑖
∈ PK }

𝑖∈−→𝑖 )
2: 𝑒 ← 0

3: for 𝑖 ∈ −→𝑖 do
4: 𝑥𝐷 [𝑖 ] ← SR(DS, 𝑖 )
5: for 𝑗 = 1, . . . , 𝐿2 do
6: 𝑥

𝑗
𝑖
← 𝐻0 (𝑥𝐷 [𝑖 ] ∥ 𝑗 )

7: 𝑒 ← 𝑒 +𝐻0 (𝑀 𝑗
𝑖
∥ 𝑥 𝑗

𝑖
) mod 𝑞

8: if 𝑅 = 𝑌𝑒 · 𝛼𝑠 mod 𝑝 then return 𝑏 = 1 else return 𝑏 = 0

(a) Digital signature algorithms

CCD𝑖 ← SOCOSLO.Distill(PK,CCD𝑖−1,
−→
𝑀𝑖 , 𝜎

1,𝐿
2

𝑖
) : Initialize 𝑠𝑑 = 0 and 𝑅𝑑 = 1

1: 𝑏𝑖 ← SOCOSLO.AVer(PK, −→𝑀𝑖 , 𝜎
1,𝐿

2

𝑖
)

2: if 𝑏𝑖 = 1 then

3: 𝑠𝑑 ← SOCOSLO.Agg(𝑠𝑑 , 𝑠
1,𝐿

2

𝑖
)

4: 𝑅𝑑 ← SOCOSLO.Agg(𝑅𝑑 , 𝑅
1,𝐿

2

𝑖
)

5: if 𝑖 mod 𝜌 · 𝐿1 = 0 then
6: 𝑠𝐴 ← SOCOSLO.Agg(𝑠𝐴, 𝑠𝑑 )
7: 𝑅𝐴 ← SOCOSLO.Agg(𝑅𝐴, 𝑅𝑑 )
8: 𝜎𝐴 ← ⟨𝑠𝐴, 𝑅𝐴 ⟩
9: 𝜎𝑢 = ⟨𝑠𝑑 , 𝑅𝑑 ⟩
10: Reset (𝜎𝑑 = 0 , 𝑅𝑑 = 1)
11: CCD𝑉

𝑖
← {𝜎𝐴 }

12: CCD𝑈
𝑖
← CCD𝑈

𝑖
∪ {𝜎𝑢 , ⌊ 𝑖

𝜌 ·𝐿
1

⌋ }
13: else
14: 𝜎

1,𝐿
2

𝑖
← ⟨𝑠1,𝐿2

𝑖
, 𝑅

1,𝐿
2

𝑖
⟩

15: CCD𝐼
𝑖
← CCD𝐼

𝑖−1 ∪ {𝜎
1,𝐿

2

𝑖
, 𝑖 }

16: Delete 𝑅
1,𝐿

2

𝑖
from PK

17: CCD𝑖 ← (CCD𝑉𝑖 ,CCD𝑈
𝑖
,CCD𝐼

𝑖
,DS𝑖 )

18: return CCD𝑖

−→
𝑏 ← SOCOSLO.SeBVer(PK, −→𝑀,CCD, 𝜇 ) : require |−→𝑀 | ≡ 0 mod 𝐿2

1: Attach DS to every signature 𝜎 to be verified

2: switch (𝜇 )
3: case “V”:
4:

−→
𝑀 ← {−→𝑀𝑖 }

𝑖∈−→𝑖 \CCD𝐼

5: 𝑏𝑉 ← SOCOSLO.AVer(PK, −→𝑀,𝜎𝐴 )
6:

−→
𝑏 = 𝑏𝑉

7: case “U”:
8: for (𝜎ℓ , 𝑖ℓ ) ∈ CCD𝑈 do

9:

−→
𝑀 ← {−→𝑀𝑖 }

𝑖∈−→𝑖 \CCD𝐼

10: 𝑏𝑈
ℓ
← SOCOSLO.AVer(PK, −→𝑀,𝜎ℓ )

11:

−→
𝑏 = {𝑏𝑈

ℓ
}
ℓ ∈|CCD𝑈 |

12: case “I”:
13: for (𝜎ℓ , 𝑖ℓ ) ∈ CCD𝐼 do

14: 𝑏𝐼
ℓ
← SOCOSLO.AVer(PK, −−→𝑀𝑖ℓ

, 𝜎ℓ )
15:

−→
𝑏 = {𝑏𝐼

ℓ
}
ℓ ∈|CCD𝐼 |

16: return
−→
𝑏

(b) Distillation and selective batch verification

Figure 4: Signer-Optimal Coarse-grained OSLO (SOCOSLO)

(ii) Mode “U” checks partial umbrella signatures in case the overall

authentication (mode “V”) is failed. Depending on the application

requirements, CCD𝑈
storage overhead can be adjusted according

to the granularity parameter 𝜌 . (iii) Mode “I” checks the invalid set

by verifying separately each entry. The generic SOCOSLO.AVer(.)
enables both the verifier and CSS to use it in the distillation and

verification processes, respectively.

4.3 FIne-grained Public-key OSLO (FIPOSLO)
FIPOSLO employs BPV pre-computation [5] to pre-store a constant

size of one-time commitments at the logger. Previous works [21]

have shown that the incurred storage is negligible for low-end IoT.

This is important for immediate and fine-grained verification at

the distiller. More importantly, it enables CSS to authenticate log

entries individually, thereby achieving accurate investigation and
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(𝐼 , sk, PK ) ← FIPOSLO.Kg(1𝜅 ,𝑇 ) : Step 1-4 are identical to SOCOSLO.Kg, the rest is

as follows:

1: (Γ, 𝑣, 𝑘 ) ← BPV.Offline(1𝜅 , 𝑝, 𝑞, 𝛼 )
2: sk ← (𝑦, 𝑥0 [0], 𝑟0, Γ) ; PK ← 𝑌

3: The system-wide param 𝐼 ← (𝑝,𝑞, 𝛼, 𝑣, 𝑘, 𝐿1, 𝐿2,𝑇 , 𝐷, 𝜌, St : (𝑡 = 1) )
4: return (𝐼 , sk, PK )

𝜎𝑙 ← FIPOSLO.Sig(sk, 𝑀𝑡 ) : require 𝑡 ≤ 𝑇

1: 𝑖 ← ⌊ 𝑡
𝐿
2

⌋ ; 𝑗 ← 𝑡 mod 𝐿2

2: if 𝑗 = 1 then 𝑥𝐷 [𝑖 ] ← SC(𝑥0 [0], 0, 0, 𝐷, 𝑖 )
3: 𝑥𝑡 ← 𝐻0 (𝑥𝐷 [𝑖 ] ∥ 𝑗 )
4: (𝑟𝑡 , 𝑅𝑡 ) ← BPV.Online(Γ, 𝑣, 𝑘 )
5: 𝑒𝑡 ← 𝐻0 (𝑀𝑡 ∥ 𝑥𝑡 ) mod 𝑞

6: 𝑠𝑡 ← 𝑟𝑡 − 𝑒𝑡 · 𝑦 mod 𝑞

7: if 𝑗 = 𝐿2 then 𝜎𝑙 ← (𝑠𝑡 , 𝑅𝑡 , 𝑥𝑡 ,DS𝑡 ← SSO(𝑥0 [0], 𝑖 ) )
8: else 𝜎𝑙 ← (𝑠𝑡 , 𝑅𝑡 , 𝑥𝑡 )
9: St ← 𝑡 + 1
10: return 𝜎𝑡

𝑏 ← FIPOSLO.AVer(PK, −→𝑀,𝜎 ) :
1: if |−→𝑀 | = 1 then 𝑒 ← 𝐻 (𝑀 ∥ 𝑥 ) mod 𝑞, where

−→
𝑀 = 𝑀

2: else execute SOCOSLO.AVer steps 3-8
3: if 𝑅 = 𝑌𝑒 · 𝛼𝑠 mod 𝑝 then return 𝑏 = 1 else return 𝑏 = 0

Figure 5: FIne-grained Public-key OSLO (FIPOSLO)

optimal recovery. We describe our fine-grained variant (FIPOSLO)
in Fig. 5.

FIPOSLO provides various performance advantages at the dis-

tiller side. For instance, it offers an immediate verification of each

message within an epoch by attaching the seed 𝑥
𝑗
𝑖
to the signature

as shown in FIPOSLO.Sig(.) (Step 7). Unlike SOCOSLO, it permits

a O(1) public-key storage at the distiller. That is, the signer gen-

erates commitment value 𝑅𝑡 via BPV (Step 4) and includes it in

the signature (Step 8). Therefore, by introducing the BPV generator,

FIPOSLO eliminates the initial O(𝐿1) public key storage and enables
the highest level of granularity by verifying signatures individually.

The distillation and selective batch verification functionalities

are similar to SOCOSLOwith minor differences and therefore are not

repeated. Indeed, the verifier aggregate every signature separately.

Thereby, the invalid set CCD𝐼
contains individual signatures (high-

est granularity) making CSS verify each invalid entry separately.

As such, FIPOSLO offer better verification precision than SOCOSLO,
but with slightly slower verification time.

5 SECURITY ANALYSIS
We prove that OSLO schemes are A-EU-CMA signature schemes in

Theorem 5.1 (in the random oracle model [13]) and Lemma 5.1. We

ignore terms that are negligible in terms of 𝜅.

Theorem 5.1. AdvA-EU-CMA
SOCOSLO(𝑝,𝑞,𝛼 ) (𝑡,𝑇

′,𝑇 ) ≤ AdvDL
𝐺,𝛼
(𝑡 ′), where

𝑡 ′ = 𝑂 (𝑡) +𝑂 (𝑇 · (𝜅3 + 𝑅𝑁𝐺)).

Proof: Let A be a SOCOSLO attacker. We construct a DL-attacker

F that uses A as a sub-routine. That is, we set (𝑏 $← Z∗𝑞, 𝐵 ←
𝛼𝑏 mod 𝑝) as defined in DL-experiment (i.e., Definition 2.2) and

then run the simulator F by Definition 3.1 (i.e., A-EU-CMA experi-
ment) as follows:

Algorithm 𝐹 (𝐵)
Setup: F maintains LH , LM, and LS to keep track of

query results in the duration of the experiment. LH is a

hash list in form of tuples (𝑀𝑙 , ℎ𝑙 , 𝑘), where 𝑀𝑙 and ℎ𝑙 de-

note the 𝑙 th data item queried to RO(.) and its corresponding
RO(.) answer, respectively, while 𝑘 ∈ {0, 1} refers to the

selected cryptographic hash function 𝐻𝑘 . LH[𝑙, 0, 𝑘] and
LH[𝑙, 1, 𝑘] denote the access to the element𝑀𝑙 , ℎ𝑙 , respec-

tively via the hash function 𝐻𝑘 . LM is a list of messages,

in which each of its elements LM[𝑖] is a message set

−→
𝑀𝑖

(i.e., the 𝑖th batch query). LS is a signature list that is used

to record answers given by SOCOSLO.ASig𝑠𝑘 .
• F creates a simulated SOCOSLO public key PK as follows:

a) 𝑌 ← 𝐵 and 𝑥0 [1]
$← {0, 1}𝜅

b) for 𝑙 = 1, . . . ,𝑇 do

i) 𝑅𝑙 ← 𝑌𝑒𝑙 · 𝛼𝑠𝑙 mod 𝑝 where (𝑠𝑙 , 𝑒𝑙 )
$← Z∗𝑞

c) for 𝑖 = 1, . . . , 𝐿1 do
i) 𝑅1,𝐿2

𝑖
← ∏𝐿2

𝑗=1
𝑅 (𝑖−1) ·𝐿1+𝑗 mod 𝑝

d) Set (𝐿1, 𝐿2, 𝜌) as in SOCOSLO.Kg(.).
e) Set PK ← (𝑌,−→𝑅 ), where −→𝑅 ← {𝑅1,𝐿2

𝑖
}𝐿1
𝑖=1

f) Set 𝐼 ← (𝑝, 𝑞, 𝛼, 𝐿1, 𝐿2,𝑇 , 𝐷 = log𝐿1) and init 𝑙 ←
0, 𝑖 ← 0

Execute ARO (.),SOCOSLO.ASig𝑠𝑘 (.) (PK):
- Queries: A queries the SOCOSLO.ASig𝑠𝑘 (.) oracle on 𝑇
messages of her choice. It also queries RO(.) oracle on up

to 𝑇 ′ messages of her choice. These queries are handled

as follows:

• How to Handle RO(.) Queries: F implements a function

H -Sim(𝛿, 𝑘) that works as RO(.) as follows: If ∃𝑙 ′ : 𝛿 ∈
LH [𝑙 ′, 0, 𝑖] then return LH[𝑙 ′, 1, 𝑖]. Otherwise, return
ℎ

$← Z∗𝑞 as the answer for 𝐻𝑘 , insert new tuple (𝛿, ℎ)
to LH as (LH [𝑙, 0, 𝑘] ← 𝛿,LH[𝑙, 1, 𝑘] ← ℎ) and then

update 𝑙 ← 𝑙 + 1 . That is, cryptographic hash functions

𝐻𝑘=0,1 used in SOCOSLO are modeled as random oracles.

When A queries RO(.) on a message 𝑀𝑙 , F returns

ℎ𝑙 ← H -Sim(𝑀𝑙 , 𝑘) as described above. Any call for

SC or SSO functions invoke 𝐻0 call to traverse OSLOT tree

(per Fig. 2) that are all simulated via H -Sim as described.

• How to respond to SOCOSLO.ASig𝑠𝑘 (.) Queries:
- For each batch query

−→
𝑀𝑖 , A queries

SOCOSLO.ASig(.) on {𝑀 𝑗
𝑖
}𝐿2
𝑗=1

of her choice. If

𝑖 > 𝐿1 F rejects the query (i.e., the query limit is

exceeded), else F continues as follows:

a) F computes 𝑥𝐷 [𝑖] ← SC(𝑥0 [1], 0, 1, 𝐷, 𝑖).
b) Initialize 𝑠

1,0
𝑖
← 0

c) for 𝑗 = 1, . . . , 𝐿2 do
i) F sets 𝑥

𝑗
𝑖
← H -Sim(𝑥𝐷 [𝑖] ∥ 𝑗, 0), if (𝑀 𝑗

𝑖
∥ 𝑥 𝑗

𝑖
) ∈

LH then F aborts, else inserts (𝑀 𝑗
𝑖
∥ 𝑥 𝑗

𝑖
, 0) to LH .

ii) F computes 𝑠
1, 𝑗
𝑖
← SOCOSLO.Agg(𝑠1, 𝑗−1

𝑖
, 𝑠

𝑗
𝑖
)

d) F sets 𝜎𝑖 ← ⟨𝑠1,𝐿2
𝑖

,DS𝑖 = SSO(𝑥0 [1], 𝑖)⟩, inserts
(−→𝑀𝑖 , 𝜎𝑖 ) to (LM,LS) and 𝑖 ← 𝑖 + 1.
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- Forgery of A : Eventually, A outputs a forgery on

PK as (−→𝑀∗, 𝜎∗), where −→𝑀∗ = {
−−→
𝑀∗
𝑖
}
𝑖∈−→𝑖 and 𝜎∗ =

(𝑠∗,DS∗). By definition 3.1, A wins A-EU-CMA exper-

iment for SOCOSLO if SOCOSLO.AVer(PK,
−−→
𝑀∗, 𝜎∗) = 1

and

−−→
𝑀∗ ∉ LM hold. If these conditions hold, A re-

turns 1, else, returns 0.

- Forgery of F : If A loses in the A-EU-CMA experiment for

SOCOSLO, F also loses in the DL experiment, and there-

fore F aborts and returns 0. Otherwise, if

−−→
𝑀∗ ∈ LH then

F aborts and returns 0 (i.e., A wins the experiment with-

out querying RO(.) oracle). Otherwise, F continues as

follows:

𝑅 ≡ 𝑌𝑒 · 𝛼𝑠 mod 𝑝 holds for the aggregated variables

(𝑅, 𝑒, 𝑠). That is, given the indices of corresponding pre-

vious messages

−→
𝑖 , F retrieves (𝑠𝑖 , 𝑟𝑖 ) from (LS,LH),

and then computes 𝑒 =
∑
𝑖∈−→𝑖

∑𝐿2
𝑗=1

𝑒 (𝑖−1) ·𝐿1+𝑗 mod

𝑞 and 𝑠 = SOCOSLO.Agg({𝑠1,𝐿2
𝑖
}
𝑖∈−→𝑖 ). Moreover,

SOCOSLO.AVer(PK,
−−→
𝑀∗, 𝜎∗) = 1 holds, and therefore 𝑅 ≡

𝑌𝑒
∗ · 𝛼𝑠∗ mod 𝑝 also holds. Note that A queries F on 𝐿1

batches and 𝑇 messages in total. Hence, F disclosed the

root of OSLOT tree, from which required seeds can be de-

rived.F calls𝑥𝑖 [𝐷] ← SR(DS∗, 𝑖), ∀𝑖 ∈ −→𝑖 , where SR func-
tion invoke SC which already simulated via H -Sim. It then

computes 𝑒∗ =
∑
𝑖∈−→𝑖

∑𝐿2
𝑗=1

H -Sim(𝑀 𝑗∗
𝑖
∥ 𝑥 𝑗∗

𝑖
, 0) where

𝑥
𝑗
𝑖
← H -Sim(𝑥𝑖 [𝐷] ∥ 𝑗, 0) . Thus, the following equations

hold: 𝑅 ≡ 𝑌𝑒 ·𝛼𝑠 mod 𝑝, 𝑅 ≡ 𝑌𝑒∗ ·𝛼𝑠∗ mod 𝑝,

F then extracts 𝑦′ = 𝑏 by solving the below modular

linear equations (note that only unknowns are 𝑦 and 𝑟 ),

where 𝑌 = 𝐵 as defined in the public key simulation:

𝑟 ≡ 𝑦′ · 𝑒 + 𝑠 mod 𝑞, 𝑟 ≡ 𝑦′ · 𝑒∗ + 𝑠∗ mod 𝑞

𝐵′ ≡ 𝛼𝑏 mod 𝑝 holds, since A ’s forgery is valid and non-

trivial on 𝐵′ = 𝐵. By Def. 2.2, F wins the DL-experiment.

The execution time and probability analysis are as follows:

Execution Time Analysis: In this experiment, the runtime of F is

that of A plus the time it takes to respond RO(.) queries.
• Setup phase: F draws 2𝑇 + 1 random numbers, performs

2𝑇 modular exponentiations and multiplications. Hence, the

total cost of this phase is (2𝑇 )·O(𝜅3+𝜅2)+(2𝑇+1)·RNG, where
O(𝜅3) and O(𝜅2) denote the cost of modular exponentiation

and modular multiplication, respectively. RNG denotes the

cost of drawing a random number.

• Query phase: F draws 𝐿1 · log𝐿1 · RNG to compute the epoch

seeds and 𝑇 · RNG to derive one-time random keys. It also

draws𝑇 ·RNG to handleA ’s RO(.) queries. The cost of query
phase is bounded as O(𝑇 ) · RNG.

Therefore, the approximate total running time of F is 𝑡 ′ = 𝑂 (𝑡) +
𝑂 (𝑇 · (𝜅3 + 𝑅𝑁𝐺)).

Success Probability Analysis: F succeeds if all below events occur.

- E1: F does not abort during the query phase.

- E2: A wins the A-EU-CMA experiment for SOCOSLO.

- E3: F does not abort after A ’s forgery.

- Win: F wins the A-EU-CMA experiment for DL-experiment.
- 𝑃𝑟 [Win] = 𝑃𝑟 [E1] · 𝑃𝑟 [E2 |E1] · 𝑃𝑟 [E3 |E1 ∧ E2]
• The probability that event E1 occurs: During the query phase,

F aborts if (𝑀 𝑗
𝑖
| |𝑥 𝑗

𝑖
) ∈ LH , 1 ≤ 𝑖 ≤ 𝐿1, 1 ≤ 𝑗 ≤ 𝐿2 holds, before

F inserts (𝑀 𝑗
𝑖
∥ 𝑥 𝑗

𝑖
) into LH . This occurs if A guesses 𝑥

𝑗
𝑖
(before

it is released) and then queries (𝑀 𝑗
𝑖
∥𝑥 𝑗

𝑖
) to RO(.) before querying it

to SOCOSLO.ASig(.). The probability that this occurs is
1

2
𝜅 , which

is negligible in terms of 𝜅. Hence, 𝑃𝑟 [E1] = (1 − 1

2
𝜅 ) ≈ 1.

• The probability that event E2 occurs: If F does not abort,A also

does not abort since the A ’s simulated view is indistinguishable
from A ’s real view (see the indistinguishability analysis). Thus,

𝑃𝑟 [E2 |E1] = AdvA-EU-CMA
SOCOSLO(𝑝,𝑞,𝛼 ) (𝑡,𝑇

′,𝑇 ).
• The probability that event E3 occurs: F does not abort if the

following conditions are satisfied: (i) A wins the A-EU-CMA experi-

ment for SOCOSLO on a message 𝑀∗ by querying it to RO(.). The
probability thatA wins without querying𝑀∗ to RO(.) is as difficult

as a random guess. (ii) After F extracts 𝑦′ = 𝑏 by solving modular

linear equations, the probability that 𝑌 ′ . 𝛼𝑦
′
mod 𝑝 is negligible

in terms 𝜅 , since (𝑌 = 𝐵) ∈ PK and SOCOSLO.AVer(PK, 𝑀∗, 𝜎∗) = 1.

Hence, 𝑃𝑟 [E3 |E1 ∧ E2] = AdvA-EU-CMA
SOCOSLO(𝑝,𝑞,𝛼 ) (𝑡,𝑇

′,𝑇 ). Omitting

the terms that are negligible in terms of 𝜅, the upper bound on

A-EU-CMA-advantage of SOCOSLO is as follows:

AdvA-EU-CMASOCOSLO(𝑝,𝑞,𝛼 ) (𝑡,𝑇
′,𝑇 ) ≤ AdvDL𝐺,𝛼 (𝑡

′),

Indistinguishability Argument: The real-view of

−→
𝐴 real is com-

prised of the public key PK , parameters 𝐼 , the answers of

SOCOSLO.ASig𝑠𝑘 (.) (recorded in LS by F ) and the answer of

RO(.) (recorded in LH by F ). All these values are generated by

SOCOSLO algorithms as in the real system, where 𝑠𝑘 = (𝑥0 [1], 𝑟0, 𝑦)
serves as the initial randomness. The joint probability distribution

of

−→
𝐴 real is random uniform as that of sk.
The simulated view of A is as

−→
𝐴 sim, and it is equivalent to

−→
𝐴 real except that in the simulation, values (𝑠𝑙 , 𝑒𝑙 ) for 𝑙 = 1, . . . ,𝑇

are randomly selected from Z∗𝑞 . This then dictates the selection of

𝑅𝑙 for 𝑙 = 1, . . . ,𝑇 as random via the public key simulation (step

c)-ii). Note that the joint probability distribution of these variables

is also random uniformly distributed and is identical to the original

signature and hash outputs (since 𝐻0,1 is modeled as RO(.) via
H -Sim). SOCOSLO.Distill(.) and SOCOSLO.SeBVer(, ) use

SOCOSLO.Agg(.) and SOCOSLO.AVer(.), which are invoked in

the signature simulation and forgery/extraction phases. Since

CCD only contains the values produced in the simulation,

−→
𝐴 sim for SOCOSLO.Distill(.) and SOCOSLO.SeBVer(.) are

indistinguishable from that of

−→
𝐴 real . □

Lemma 5.1. FIPOSLO is as secure as SOCOSLO.

Proof: In the sketch proof, we first show that FIPOSLO public key and
signature simulations produce random uniformly distributed values

as in SOCOSLO. We then show that the forgery and extraction phases

in A-EU-CMA experiment for both variants are identical. Finally,

we provide an indistinguishability argument for the A-EU-CMA for

FIPOSLO.
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• Public Key Simulation: FIPOSLO.Kg(.) Step 1-4 are identical

to that of SOCOSLO, except commitment value 𝑅 are generated via

BPV generator. Therefore, F runs the public key simulation as in

SOCOSLO, expect
−→
𝑅 is not pre-stored as a part of the public key. All

{𝑠𝑙 , 𝑅𝑙 , 𝑒𝑙 }𝑇𝑙=1 values are as in SOCOSLO simulation.

• Signature Simulation: F sets (𝜎𝑙 = ⟨𝑠𝑙 , 𝑅𝑙 , 𝑥𝑙 ⟩), where (𝑠𝑙 , 𝑅𝑙 )
are as defined above, and (𝑒𝑙 , 𝑥𝑙 ) are obtained through RO(.) as in
SOCOSLO via H -Sim function. FIPOSLO.Sig(.) queries are individ-
ual, and therefore 𝜎𝑙 is not aggregated via SOCOSLO.Agg(.). The
abort conditions in both SOCOSLO and FIPOSLO are the same.

• Forgery and Extraction: SOCOSLO and FIPOSLO verifications are
identical except for the first step, which identifies if the signature

is on a single or batch of messages. If the forgery is an aggregate

signature on a batch message, FIPOSLO.AVer(.) verifies it by per-

forming aggregation as in SOCOSLO.AVer(.). Hence, the forgery

and extraction are identical, wherein A might return a batch or

individual forgery (𝜎∗, 𝑀∗). F retrieves (𝑠, 𝑅, 𝑒) from LS since 𝑅

components are the part of signatures but not PK (unlike SOCOSLO).

• Indistinguishability Argument:
−→
𝐴 real of FIPOSLO is as in

SOCOSLO except that {𝑅}𝑇
𝑙=1

(generated via BPV) are not part of

PK but in individual signatures {𝜎𝑙 = (⟨𝑠𝑙 , 𝑅𝑙 ,DS𝑙 ⟩}𝑇𝑙=1. The joint
probability distribution of the values in

−→
𝐴 real are random uni-

formly distributed as all derived from sk (as in SOCOSLO). Remark

that each 𝑅𝑙 is also random uniform because the distribution of

BPV output 𝑟𝑙 is statistically close to the uniform random distribu-

tion with an appropriate choice of parameters (𝑣, 𝑘) [5]. −→𝐴 sim is

identical to

−→
𝐴 real since public key and signature simulations pro-

duce random uniformly distributed values with equal size to

−→
𝐴 real .

As in SOCOSLO, FIPOSLO.Distill(.) and FIPOSLO.SeBVer(.) call
FIPOSLO.Agg(.) and FIPOSLO.AVer(.), in which CCD values are

produced by FIPOSLO.Sig(.) and H -Sim. □

6 PERFORMANCE ANALYSIS
In this section, we give a detailed performance comparison of

OSLO schemes with that of their counterparts.

6.1 Evaluation Metrics and Experimental Setup
Evaluation Metrics: We compare OSLO schemes and their counter-

parts in terms of (i) logger’s energy usage, (ii) private/public key
sizes and signature size, (iii) batch verification time and crypto-

graphic cloud storage,

We select our main counterparts such that they reflect the per-

formance of primary families of aggregate signatures (ASs) (i)
Factorization-based: C-RSA [29] is a AS scheme with a near-optimal

signature verification. (ii) ECDLP-based: SchnorrQ [6] is one of

the fastest EC-based signature (compared to ECDSA/Ed25519 [3])

with a high-performance on embedded devices. FI-BAF [31] is a

signer-optimal FAS scheme, which is our closest logger-efficient.

(iii) Pairing-based: BLS [4] is a multi-user AS scheme that relies on

bilinear maps. It is the most compact-storage alternative. Also, we

observe BLS is the most deployed signature in recent AS schemes

with extended properties (e.g., [16, 26]) in the IoT networks, thereby

inheriting similar efficiency advantage of OSLO over BLS.

Parameter Selection:We set the security parameter as 𝜅 = 128. We

used FourQ curve [6] and set |𝑞 | = 256 for the EC-based schemes.

The BPV parameters are (𝑣, 𝑘) = (1024, 16). The composite modulo

size in C-RSA is |𝑛 | = 2048.

Hardware/Software Configuration: We fully implemented OSLO, for

the signer and verifier sides, on a desktop equipped with an Intel

i9-9900K@3.6 GHz processor and 64 GB of RAM. On the logger, we

implemented OSLO on a low-end device, AVR ATMega 2560 micro-

controller, due to its low energy consumption and extensive use

in practice. It is equipped with 256KB flash memory, 8KB SRAM,

and 4KB EEPROM, with a clock frequency of 16MHz. Our compar-

isons are based on the following software libraries: (i)MIRACL
3
for

C-RSA [29] and BLS [4]. (ii) FourQlib4 for the EC-based schemes

(i.e., SchnorrQ [6], FI-BAF [31], and OSLO schemes). (iii) We used

OpenSSL
5
to implement the cryptographic hash functions 𝐻𝑖=0,1

via SHA-256. We open source our implementation for public testing

purposes (see Section 1.2).

6.2 Performance Evaluation and Comparison
In this section, we give a performance comparison of OSLO with its

counterparts analytically and experimentally.

6.2.1 Analytical Performance Comparison. We present an analyti-

cal performance analysis of our schemes with their counterparts. In

Table 2, we give the overhead of the main signature functions at the

signer and distiller sides w.r.t our metrics. It also provides the distil-

lation cost w.r.t the failure rate. In Table 3, we provide an analytical

comparison for the CSS cost w.r.t the cryptographic storage and the

batch verification. We highlight takeaways from our analysis below.

• Seed Management Overhead Analysis: One of OSLO’s contribu-
tions is the seed management (see Section 4.1) that enable both

near-optimal signer efficiency and O(1) storage at the CSS and dis-

tiller. The amortized seed management overhead of OSLO signing al-
gorithms across𝑇 messages is on average one hash call based on the

derivation and disclosure of seeds by SC and SSO algorithms, respec-

tively. The resulting average amortized cost is ( log𝐿1 · (4+log𝐿1 )
4𝐿2

·𝐻 ),
which corresponds to less than a single hash call, and therefore we

conservatively accept it as 𝐻 in our analysis.

The average seed storage is O( log𝐿1
𝐿2
) at CSS . At the end of last

epoch, the signer disclosed the OSLOT root, with which the CSS can

verify any prior log entry-signature pair with O(1) final storage.
• Logger (signer): Table 2 show that the SOCOSLO signature gen-

eration only requires 3 hash calls (in average), two and one modular

additions and multiplication, respectively. This makes it as light-

weight as its most signer efficient counterpart FI-BAF, but with

vastly superior performance at CSS . SOCOSLO is significantly more

logger efficient than all other alternatives in terms of runtime, with

a highly compact signature and small key sizes. FIPOSLO is the

second most signer efficient alternative requiring constant number

(e.g., 16) of 𝐸𝐴𝑑𝑑 operations. It relies on a pre-computed BPV table,

which increases its private key size in exchange for better signing ef-

ficiency. Note that the use of BPV can be avoided by accepting single
𝐸𝑀𝑢𝑙 , which makes FIPOSLO signing cost equal to that of SchnorrQ.
We remind that FIPOSLO accepts extra signing/verification cost over
SOCOSLO in exchange for finer granularity.

3
https://github.com/miracl/MIRACL

4
https://github.com/microsoft/FourQlib

5
https://github.com/openssl/openssl
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Table 2: Private/public key and signature sizes, and signature generation/verification costs of OSLO and its counterparts

Scheme Logger (Signer) Verifier
Sig Gen Private Key Sig Size Public Key Sig Ver (×𝐿) Distill & Agg (×𝜏𝑆 · 𝐿)

SchnorrQ [6] 2𝐻 +𝐴𝑑𝑑𝑞 +𝑀𝑢𝑙𝑞 + 𝐸𝑀𝑢𝑙 |𝑞 | 2 |𝑞 | |𝑞 | 𝐻 + 1.3 · 𝐸𝑀𝑢𝑙 N/A

FI-BAF [31] 3𝐻 + 2𝐴𝑑𝑑𝑞 +𝑀𝑢𝑙𝑞 2 · ( |𝑞 | + 𝜅 ) |𝑞 | + 𝜅 2𝐿 · ( |𝑞 | + 𝜅 )2 · (𝐻 +𝐴𝑑𝑑𝑞 ) + 2.3 · 𝐸𝑀𝑢𝑙 𝐴𝑑𝑑𝑞

C-RSA [29] 𝐻 + 𝐸𝑥𝑝 |𝑑 ||𝑛 | 2 |𝑛 | |𝑛 | 2 |𝑛 | 𝐻 + 𝐸𝑥𝑝 |𝑒 ||𝑛 | 𝑀𝑢𝑙𝑛

BLS [4] 𝑀𝑡𝑃 + 𝐸𝑀𝑢𝑙 ′ |𝑞 | |𝑞 | 2 |𝑞 | 𝑀𝑡𝑃 + 𝑃𝑟 𝑀𝑢𝑙𝑞

SOCOSLO 3𝐻 + 2𝐴𝑑𝑑𝑞 +𝑀𝑢𝑙𝑞 |𝑞 | + 2𝜅 |𝑞 | 𝐿1 · |𝑞 | 3𝐻 +𝐴𝑑𝑑𝑞 + 1.3 · 𝐸𝑀𝑢𝑙/𝐿2 𝐴𝑑𝑑𝑞 + 𝐸𝐴𝑑𝑑/𝐿2
FIPOSLO

3𝐻 +𝐴𝑑𝑑𝑞 +𝑀𝑢𝑙𝑞
2 · 𝑣 · |𝑞 | + 𝜅 2 |𝑞 | + 𝜅 |𝑞 | 𝐻 + 1.3 · 𝐸𝑀𝑢𝑙 𝐴𝑑𝑑𝑞 + 𝐸𝐴𝑑𝑑+𝑘 · (𝐴𝑑𝑑𝑞 + 𝐸𝐴𝑑𝑑 )

𝐴𝑑𝑑𝑞 and𝑀𝑢𝑙𝑞 denote modular addition and multiplication, respectively, with modulus 𝑞. 𝐸𝑀𝑢𝑙 , 𝐸𝑀𝑢𝑙 ′ are EC scalar multiplication on FourQ and pairing-based curves, respectively. We used double-point

scalar multiplication (e.g., 1.3𝐸𝑀𝑢𝑙 instead of 2𝐸𝑀𝑢𝑙 for FourQ). 𝑃𝑟 is a pairing operation. 𝐸𝑥𝑝
|𝑥 |
|𝑦 | denotes modular exponentiation with exponent 𝑥 and modulus 𝑦. 𝐿 denotes the batch size of signatures.

Table 3: Storage and computation costs of OSLO variants and its counterparts at the cold storage side

Scheme

Cold Storage Server (CSS )
Cold Cryptographic Data (CCD)

Verification Valid Time Umbrella Verification SignaturesValid Storage Invalid Storage
Pub Key Sig Pub Key

SchnorrQ [6] |𝑞 | 2 · 𝜏𝑆 · 𝑇 · |𝑞 | |𝑞 | 𝜏𝑆 · 𝑇 · (𝐻 + 1.3 · 𝐸𝑀𝑢𝑙 ) 𝜏𝑆 · 𝑇 · (𝐻 + 1.3 · 𝐸𝑀𝑢𝑙 )
FI-BAF [31] 2 · 𝜏𝑆 · 𝑇 · ( |𝑞 | + 𝜅 ) |𝑞 | + 𝜅 2 · 𝜏𝐹 · 𝑇 · ( |𝑞 | + 𝜅 ) 𝜏𝑆 · 𝑇 · (2𝐻 + 2𝐴𝑑𝑑𝑞 + 1.3 · 𝐸𝑀𝑢𝑙 ′ ) + 1.3 · 𝐸𝑀𝑢𝑙 ′𝜏𝑆 · 𝑇 · (2𝐻 + 2𝐴𝑑𝑑𝑞 + 1.3 · 𝐸𝑀𝑢𝑙 ′ ) + 1

𝜌
· 𝐸𝑀𝑢𝑙 ′

C-RSA [29] 2 |𝑛 | |𝑛 | 2 |𝑛 | 𝜏𝑆 · 𝑇 · (𝐻 +𝑀𝑢𝑙𝑛 ) + 𝐸𝑥𝑝 |𝑒 ||𝑛 | 𝜏𝑆 · 𝑇 · (𝐻 +𝑀𝑢𝑙𝑛 ) + 1

𝜌
· 𝐸𝑥𝑝 |𝑒 ||𝑛 |

BLS [4] 2 |𝑞 | |𝑞 | 2 |𝑞 | 𝜏𝑆 · 𝑇 · (𝑀𝑡𝑃 +𝑀𝑢𝑙𝑞 ) + 𝑃𝑟 𝜏𝑆 · 𝑇 · (𝑀𝑡𝑃 +𝑀𝑢𝑙𝑞 ) + 1

𝜌
· 𝑃𝑟

SOCOSLO 2 |𝑞 | |𝑞 | 𝜏𝐹 · 𝐿1 · |𝑞 | 𝜏𝑆 · 𝑇 · (3𝐻 +𝐴𝑑𝑑𝑞 ) + 1.3 · 𝐸𝑀𝑢𝑙
𝜏𝑆 · 𝑇 · (3𝐻 +𝐴𝑑𝑑𝑞 ) + 1.3

𝜌
· 𝐸𝑀𝑢𝑙

FIPOSLO |𝑞 | 2 |𝑞 | |𝑞 | 𝜏𝑆 · 𝑇 · (3𝐻 +𝐴𝑑𝑑𝑞 ) + 1.3
𝜌
· 𝐸𝑀𝑢𝑙

𝐴𝑑𝑑𝑞 and𝑀𝑢𝑙𝑞 denote modular addition and multiplication, respectively, with modulus 𝑞. 𝐸𝑀𝑢𝑙 , 𝐸𝑀𝑢𝑙 ′ are EC scalar multiplication on FourQ and pairing-based curves, respectively. We used double-point

scalar multiplication (e.g., 1.3𝐸𝑀𝑢𝑙 instead of 2𝐸𝑀𝑢𝑙 for FourQ). 𝑃𝑟 is a pairing operation. 𝐸𝑥𝑝
|𝑥 |
|𝑦 | denotes modular exponentiation with exponent 𝑥 and modulus 𝑦. 𝐿 denotes the batch size of signatures.

Table 4: Bandwidth overhead and signature generation time of OSLO variants and its counterparts at the signer side

Scheme Analyticl complexity Cryptographic payload (KB) Signing (in sec)
16 32 64 128 256 (per item)

SchnorrQ [6] 2 · 𝐿2 · |𝑞 | 1 2 4 8 16 0.27

FI-BAF [31] |𝑞 | + 𝜅 0.05 0.05 0.05 0.05 0.05 0.01

C-RSA [29] |𝑛 | 0.25 0.25 0.25 0.25 0.25 83.26

BLS [4] |𝑞 | 0.03 0.03 0.03 0.03 0.03 4.08

SOCOSLO |𝑞 | + 𝜅 0.05 0.05 0.05 0.05 0.05 0.01

FIPOSLO 2 · 𝐿2 · |𝑞 | 1 2 4 8 16 0.09

The cryptographic payload is displayed under various epoch sizes to showcase the variation of the signer’s bandwidth usage.

• Verifier/CSS : Table 3 shows the overall performance of

OSLO schemes and their counterparts at the server side. The ag-

gregate signatures offer batch ver. for all valid entries (i.e., the

success rate 𝜏𝑆 = 1) and umbrella signatures. The batch ver. of all

valid entries requires only one 𝐸𝑀𝑢𝑙 , while umbrella tags are based

on granularity parameter 𝜌 . In terms of storage, the final public key

and aggregate tag sizes of OSLO schemes are as efficient as the most

compact alternative BLS, but with a faster runtime since they do not

require expensive pairing (𝑃𝑟 ) and map-to-point (𝑀𝑡𝑃) operations.

6.2.2 Experimental Evaluation. In Table 1 (see Section 1), we

outlined the experimental performance of OSLO schemes and

their counterparts at a high level. We now provide details on the

signing energy efficiency at the logger side. Then, we outline the

computational/storage performance at the cold storage (i.e., CSS ).

• Logger: Figure 7 showcases the energy usage of OSLO schemes

and their counterparts compared to that of sensors typically found

in IoT devices. Specifically, we compared the energy usage of a

single signature generation with that of sampling via pulse
6
and

pressure
7
sensors (10𝑠 per sampling time with 1𝑚𝑠𝑒𝑐 reading time).

SOCOSLO and FIPOSLO have remarkably low energy usage with

0.88% and 7.38%, respectively, compared to that of the pulse sensor.

For SOCOSLO, this translates into 4.5× and 9× lower energy usage

than the most efficient standard SchnorrQ and verifier compact

BLS, respectively. SOCOSLO is equally energy efficient to FI-BAF, but

with substantial gains on the cold storage to be further discussed

below. FIPOSLO is the second most energy-efficient alternative,

while offering a fine granularity and higher verification efficiency.

6
https://pulsesensor.com/

7
https://cdn-shop.adafruit.com/datasheets/1900_BMP183.pdf
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Traffic Variation and Bandwidth Usage: Table 1 depicts the signer
cryptographic payload, by enabling full aggregation (per epoch).

The signer-efficient variant, SOCOSLO, has equal and lesser band-

width overhead compared to the short signature scheme BLS and the

most signer-efficient counterpart FI-BAF, respectively. SOCOSLO is
the most suitable during a low-frequency upload since it has a

lightweight signature generation with a compact signature size.

For a high-frequency upload and/or more available battery lifetime,

FIPOSLO offer higher precision by uploading individual signatures

to a nearby edge cloud, to be verified and distilled separately. Ta-

ble 4 depicts the variation of the signer’s cryptographic payload

under different epoch sizes. Recall that the epoch size represents

the number of individual tags to be aggregated. That is, the low-

end devices can increase the epoch size when low bandwidth is

observed. FIPOSLO have equal cryptographic payload compared to

SchnorrQ, while having 3× faster signature generation time. Sim-

ilarly, SOCOSLO have equal bandwidth overhead compared to the

most signer-efficient counterpart FI-BAF but with constant and

flexible storage at the distiller and CSS sides. SOCOSLO is consid-

ered the best scheme to offer both low bandwidth overhead and

fast signature generation on the signer side.

One can adopt the sign-aggregate-forward approach in a hop-

by-hop setting, wherein each IoT device signs a set of log entries,

aggregates the individual signatures, and forward the resulting

tag to the next IoT device. Another possible design is to employ

a clustering approach [9] wherein the IoT devices elect a cluster

leader to communicate the authenticated log entries to the distiller.

The leader adjusts the cryptographic payload based on the network

conditions. For instance, for a set of 2
10

loggers and 2
8
of epoch

size, the bandwidth overhead for a maximum compression across

multiple signers is 16.03KB, which is 3× and 171× smaller than

single-signer agg. and non-agg. approaches, respectively.

• Distiller: The distiller storage overhead is more cumbersome

than the cold storage server, especially when the hardware is not a

resourceful device (e.g., hotspot). The latter receives sets of authen-

tication tags, from a large number of IoT devices, to be verified and

aggregated following a pre-determined policy. Thus, the authenti-

cation mechanism must have a low-cost verification algorithm and

a flexible aggregation capability. By introducing the granularity

parameter 𝜌 , the distiller can adjust the tag sizes depending on its

resource capabilities and/or the network conditions.

• CSS : Fig. 6 shows the verification time and the storage over-

head for different sizes of log entry set (each entry is 32 bytes)

and failure rates 𝜏𝐹 . Recall that 𝜏𝐹 denotes the ratio of entries with

“invalid” verification. As discussed in Sec. 3, in the vast majority

of real-world applications, the “invalid” logs (flagged events) are

expected to be only a small fraction of the entire log. Therefore,

it is preferable to not compress invalid tags, so that they can be

attested individually.

In the case of full signature aggregation (i.e., 𝜏𝐹 = 0), we refer

the reader to Table 1 that summarizes the verification time and

storage advantages of our schemes. In Fig. 6, we further investigate

the efficiency of compared schemes for varying failure (𝜏𝐹 ) and
granularity (𝜌) rates.

Specifically, we vary 𝜏𝐹 = 0, 1, 5% to observe verification time

and storage overhead in Fig. 6-([a],[b],[c]) and Fig. 6-([d],[e],[f]),

respectively. We increase the size of log entries from 64 GB (2
31

entries) to 2 TB (2
36

entries).We eliminated the counterparts, having

linear storage (i.e., SchnorrQ and FI-BAF) from the storage graphs.

In our experiments, for large logs, we processed them in small

batches and included repeated disk I/O time in our results. We

experimented with 𝜌 from 10
−7

% to 1% and we observed that it has

aminimal impact on performance in thesemargins. Further increase

mainly impacts storage with only a slight increase in verification

time.

Disk I/O and Cold Storage Cost: Considering a large IoT network

where several low-end IoT devices are offloading their authenti-

cated log entries to a remote edge cloud, and ultimately to the cold

storage server (CSS ). The overall storage at both the edge clouds

and CSS become exponentially large and costly. Recall that log

files are infrequently accessed data, and therefore it is preferred

to store them at cold line solution (e.g., Google cloud
8
), which

is relatively low-priced (i.e., $49.15/year for each Terabyte). How-

ever, we argue that OSLO is able to offer the best trade-off between

low-cost compact server storage, low disk I/O, and fast verification.

According to Table 1, SOCOSLO’s cryptographic storage overhead is

only 0.10KB for 1TB of log entries, whereas it is 3.3TB for the most

signer-efficient counterpart FI-BAF. Thus, SOCOSLO have lower disk
I/O time and cheaper storage cost since both metrics are directly

proportional to the storage overhead. Additionally, OSLO optimizes

the disk memory access time by only loading the overall aggregate

tag to verify the set of log files. In case the verification is failed, the

partially condensed signatures are loaded to locate the flagged log.

The storage cost at the distiller is more expensive than that of the

cold storage server. As the distiller represents the medium between

IoT devices and CSS , its stored data is frequently accessed since

it receives the authenticated log entries, and distill them after per-

forming the verification. Afterward, it offloads the logs along with

the associated cryptographic payload upon finishing a pre-defined

set of epochs. This fits the standard storage for data stored within

only brief periods of time. Based on the Google cloud solution, the

storage cost of one Terabyte is equal to $245.76/year. Similarly,

the disk I/O becomes a key metric since the distiller is frequently

accessing the stored data.

OSLO schemes prove excellent verification performance for both

runtime and storage. They outperform all of their counterparts in

both metrics for varying failure rates. For instance, OSLO schemes

are significantly faster than their most storage-efficient alternative

BLS and much more compact than their fastest counterpart C-

RSA with significant speed superiority. Therefore, OSLO schemes

are the most efficient alternatives for secure logging in IoT-StaaS

applications.

7 CONCLUSION
In this work, we created new series of aggregate signatures, called

OSLO, for secure logging in resource-constrained IoT networks. To

the best of our knowledge, OSLO offer the best trade-off between

security guarantees and computational/storage efficiency. OSLO em-

beds a new seed management design via tree-based structure and

post-signature disclosure of one-time commitments in EC-based

schemes. This enables a compact cryptographic data with signif-

icant speedup gains for both signing and verification, compared

8
https://cloud.google.com/storage
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Figure 6: Comparison of OSLO schemes and their counterparts at the cold storage side
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Figure 7: Energy consumption of OSLO schemes and their counterparts at the logger side

to the state-of-the-art. To avoid losing verification granularity, we

introduce an adjustable parameter to keep additional condensed

tags after the distillation. This allows more flexibility for verifiers to

control the verification precision and the cryptographic data stored

on the cold storage servers. We presented an extensive performance

analysis with state-of-the-art on both commodity hardware and

low-end IoTs. Our experiments show that OSLO represents the best

secure logging candidate for numerous recent works in the IoT

domain. We formally proved that OSLO is secure and our implemen-

tation is open-source for public testing and adaptation.
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