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The increasing computing demands of autonomous driving applications have driven the adoption of multi-

core processors in real-time systems, which in turn renders energy optimizations critical for reducing battery

capacity and vehicle weight. A typical energy optimization method targeting traditional real-time systems

finds a critical speed under a static deadline, resulting in conservative energy savings that are unable to

exploit dynamic changes in the system and environment. We capture emerging dynamic deadlines arising

from the vehicle’s change in velocity and driving context for an additional energy optimization opportu-

nity. In this article, we extend the preliminary work for uniprocessors [66] to multicore processors, which

introduces several challenges. We use the state-of-the-art real-time gang scheduling [5] to mitigate some of

the challenges. However, it entails an NP-hard combinatorial problem in that tasks need to be grouped into

gangs of tasks, gang formation, which could significantly affect the energy saving result. As such, we present

EASYR, an adaptive system optimization and reconfiguration approach that generates gangs of tasks from

a given directed acyclic graph for multicore processors and dynamically adapts the scheduling parameters

and processor speeds to satisfy dynamic deadlines while consuming as little energy as possible. The timing

constraints are also satisfied between system reconfigurations through our proposed safe mode change proto-

col. Our extensive experiments with randomly generated task graphs show that our gang formation heuristic

performs 32% better than the state-of-the-art one. Using an autonomous driving task set from Bosch and real-

world driving data, our experiments show that EASYR achieves energy reductions of up to 30.3% on average

in typical driving scenarios compared with a conventional energy optimizationmethodwith the current state-

of-the-art gang formation heuristic in real-time systems, demonstrating great potential for dynamic energy

optimization gains by exploiting dynamic deadlines.
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1 INTRODUCTION

Due to the enormous amount of computing required for autonomous vehicles, their inherent high

energy consumption has become one of the major hurdles when designing such computing sys-

tems. For example, Gawron et al. [35] transformed a commercial Electric Vehicle (EV) into a

Connected and Automated Vehicle (CAV) by installing sensors such as camera, radar, and

LiDAR in addition to computers and a short-range communication device to evaluate the energy

consumption and greenhouse gas emission of the future CAVs. According to their report, the com-

puter system is taking 80% of the added power consumption. The computer system of a CAV

composed of multiple Central Processing Units (CPUs) and graphics processing units report-

edly consumes more than 2 kW of energy, reducing an EV’s driving range up to 12% [50]. The

current energy consumption of EVs is around 200 Wh/km on average of a total of 245 cars [27].

That is 10-kW energy consumption at the speed of 50 km/hour (about 30 mph). Therefore, even

though the current CAV has not reached full automation, its computer system can consume up

to 20 % of the vehicle’s power consumption. As autonomous driving technologies evolve, more

sensors will be added, requiring more processing and computing power, so the portion of com-

puting systems in energy consumption is expected to increase. In addition to that, according to

a recent article regarding vehicle computing [52], the U.S. national energy consumption of EVs

is approximately equal to the total energy consumption of 15 representative technology compa-

nies’ data centers, each of which can consume 12 terawatt-hours, taking the significant portion

of the overall energy consumption. Since the volume of EV energy consumption is huge, even

a small improvement would be meaningful in terms of global carbon emission reduction. With

this challenge, some energy optimization methods have been proposed that simultaneously try to

satisfy the stringent real-time requirements of automotive systems [47, 63]. However, since they

commonly assume just (fixed) static deadlines, they do not reflect recent autonomous driving ap-

plications with time-varying dynamic deadlines. Such applications include the localization system

with its dynamic latency constraint as a function of velocity [56] and the truck platooning system

where its control response times are adjustable to varying driving conditions [30].

With the preceding motivation, we aim to develop an energy-efficient software optimization

method and a runtime framework that can specifically exploit the dynamic nature of deadlines

found in many autonomous driving applications. This study focuses on minimizing CPU en-

ergy consumption using dynamic voltage and frequency scaling (DVFS). Although conven-

tional automotive microcontrollers often lack such features, recent application processors for au-

tonomous driving mostly support DVFS.

To demonstrate our basic idea, Figure 1 shows an example time history of a vehicle’s velocity

and its corresponding dynamic deadline, assuming a velocity-deadline mapping function

d (v ) =
−v +

√
v2 + 2λamax

amax
, (1)

which represents the minimum time for a vehicle at its initial velocityv to advance a fixed distance

λ assuming its maximum acceleration amax . It is especially useful in truck platooning where trucks

maintain a fixed longitudinal gap between them across various driving velocities [29] such that
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Fig. 1. Example dynamic deadlines.

safe control decisions can be made more efficiently in terms of a maximum travel distance (i.e.,

λ) between sensing and actuation rather than by a rigid timing constraint. Hence, in the figure,

the faster the vehicle runs, the shorter the deadline gets. The minimum deadline depicted by a

red line is determined by the maximum velocity enforced by traffic regulations. Here, our basic

idea is to trade the area between the time-varying dynamic deadline and the minimum deadline to

reduce energy consumption by adaptively slowing down the CPU to the extent that guarantees the

dynamic deadline, rather than adhering to the static deadline [47, 63] as in the traditional energy

optimization methods.

In the automotive industry, complex control applications composed of multiple independent

real-time tasks are commonly modeled with Directed Acyclic Graphs (DAGs) whose nodes are

periodic tasks, and edges are read-write dependencies between tasks. Figure 2(a) shows an exam-

ple DAG from Bosch [39] for their reference autonomous driving system from sensors to actuators.

Upon such a DAG, its dynamic deadlines are imposed by its worst-case end-to-end latency from

sources to sinks, which is collectively decided by the periods of individual tasks. Then, our objec-

tive is to minimize the average power consumption while guaranteeing such dynamic deadlines.

When doing that, we must satisfy (i) the system schedulability constraint (i.e., task periods) as well

as (ii) the end-to-end deadline constraint. At first, we solve the problem by assuming a static dead-

line constraint. For that, we formulate it as aGeometric Programming (GP) problem [18], which

is a special form of non-convex optimization that can be efficiently solved by a transformation into

a convex problem.

To extend the preceding optimization method to time-varying dynamic deadlines, we partition

the feasible deadline range into a number of discrete modes, where the system is separately op-

timized for each mode, assuming each mode’s shortest deadline, respectively. Then, our runtime

framework provides a safe mode change protocol that changes each task’s period when the vehicle

slows down or speeds up crossing across different modes. Our mode change protocol is designed

not to miss any deadline if the mode change is from a shorter deadline to a longer one. However,

we found that extra delays are unavoidable in the opposite direction (i.e., longer to shorter dead-

lines). Even in that case, however, we provide a mode change delay analysis method from which

we can reserve enough safety margins to hide away the extra delays while guaranteeing safety.

The basic formulation for uniprocessors was done in our previous work [66]. In this work, we

achieve the same goal inmulticore processors withVoltage-Frequency Island (VFI) architecture,

where all CPU cores in the same island share the same voltage-frequency level. VFI ismost common

in commercial processors because the complex design for supporting per-core DVFS cannot justify

the potential energy gain [41].

Transitioning from single-core to multicore introduces several challenges: inter-core interfer-

ence and multicore real-time schedulability. In addition to the NP-hard task-to-core assignment,

the inter-core interferences and complex architecture ofmulticore processorsmake timing analysis

notoriously difficult. Because of that, it led to strict timing constraints based on a highly pessimistic

estimation of Worst-Case Execution Time (WCET), resulting in less number of schedulable
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tasks and low system utilization. Recently,Real-TimeGang (RT-Gang) scheduling was proposed

to address the inter-core interference and schedulability issues. In RT-Gang, the tasks are grouped

into a gang which is the smallest scheduling unit. It enforces a one-gang-at-a-time policy, which

makes the interference smaller and manageable since only a predefined set (i.e., a gang) of tasks

can occupy the processor at a time.

Moreover, it enables the use of well-studied unicore timing analysis and real-time schedulers

to increase system schedulability. Even though RT-Gang’s strict policies hinder exploiting the full

capacity of hardware, we choose RT-Gang as it improves predictability and schedulability which

are crucial in a real-time systems context.

However, it entails another problem: gang formation. It can be described as partitioning a DAG

of tasks into multiple gangs, which decides the minimum end-to-end delay of a given DAG. Min-

imizing end-to-end delay is important because the shorter the delay, the more room for slow-

ing down the processor until the end-to-end delay meets the deadline. The gang formation is an

NP-hard combinatorial problem, and thus we developed a greedy heuristic to handle it.

Our experimental results show that our gang formation heuristic performs 32% better on av-

erage than the state-of-the-art heuristic. Our multi-mode optimization reduces the average total

energy consumption by up to 54.9% in various real-world driving scenarios compared with the

maximum energy consumption configuration and 30.3% compared with the conventional method

using Dynamic Power Management (DPM). Moreover, our extensive simulation experienced

no deadline miss due to our safe mode change protocol and delay analysis method. To the best

of our knowledge, our work is one of the first attempts to optimize the energy consumption in

multicore systems for autonomous driving, explicitly focusing on dynamic deadlines.

This study’s contributions can be summarized as follows:

• We developed a greedy heuristic to obtain gang formation that could lead to better energy

savings.

• We formulate an optimization problem for energy-efficient autonomous driving systems

with time-varying dynamic deadlines equipped with a multicore processor and provide a

GP-based optimal solution.

• We provide a safe mode change protocol that guarantees analyzable (if any) overheads,

which can be safely manipulated in the design time.

• Our experiments use a realistic autonomous driving task set from industry and actual

measurements from the target computing system in addition to randomly generated task

sets for extensive analysis for comparison with conventional real-time energy optimization

methods.

The rest of the article is organized as follows. Section 2 describes the background and our prob-

lem. Section 3 describes our gang formation heuristic. Section 4 presents our offline system opti-

mization method. Section 5 explains the dynamic system reconfiguration approach. Section 6 pro-

vides the evaluation results. Section 7 presents related work. Finally, Section 8 concludes the article.

2 BACKGROUND AND PROBLEM DESCRIPTION

2.1 System Model

This study assumes a multicore processor withm homogeneous cores and VFI architecture. The

CPU clock frequency is shared across the cores, which is expressed as a speed factor S in the range

of

0 < Smin ≤ S ≤ 1, (2)

where Smin denotes the minimum speed factor used for the CPU idle time, whereas the upper

bound 1 (i.e., 100%) indicates the maximum processing speed. The system executes a set of n
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Fig. 2. A DAG from Bosch as a reference autonomous driving system in the WATERS Industrial Challenge

2019 [39].

implicit-deadline periodic gangs of tasks

V = {w1,w2, . . . ,wn }, (3)

where each gang contains a minimum of one tom tasks such that every gang member will have at

least one dedicated CPU core to avoid scheduling inside gangs [5]. The read-write dependencies

between gangs are inherited from the gang members. For instance, Figure 2(a) shows a DAG with

10 tasks from sensors to actuators, where its nodes and directed edges represent the task set and

dependencies, respectively. Then, Figure 2(b) shows an example of five gangs and their inherited

dependencies. Tasks communicatewith each otherwith asynchronousmessage passing. Due to the

multi-rate nature, oversampling or undersampling can happen to communication buffers, where

newly arrived data always overwrite existing ones. This task model has been commonly used in

many studies for automotive systems [28, 33].

Depending on how tasks are grouped into gangs, so-called a gang formation, the end-to-end

latency may vary because the dependency between gangs also changes. Finding a gang formation

with the minimum end-to-end latency is known to be NP-hard and will be discussed in later

sections.

Given a gang formation, each gang wi is characterized by its period Pi , per-gang speed factor

Si , and WCET function Ei :

wi = (Pi , Si ,Ei ), (4)
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where a gang of tasks shares the same Pi and maintains Si for Ei period of time. The speed of

processor can only be changed at context switching between gangs to avoid energy and timing

overhead of excessive frequency transitions [11]. This inter-task DVFS is typically known to have

negligible latency overhead due to the small number of switchings. Therefore, we do not consider

DVFS overhead in this work. For Ei , it takes an input Si and outputs the maximumWCET among

gang members at a given speed factor:

Ei (Si ) = max

(
emem
x +

e
comp
x

Si

)
,∀x ∈ wi , (5)

where emem
x is a speed-independent portion of WCET of gang member x , and e

comp
x is the portion

that scales inverse-linearly with Si . Many studies assume the entire WCET to be inverse-linearly

proportional to Si [16] since it provides a safe upper bound. However, it can be largely inaccurate

[12] because memory and I/O operations are less affected by Si . Thus, we use the task model from

the work of Aydin et al. [8], which considers speed-independent components into account. For

notational convenience, we define speed-independent ratio ri as follows for discussions in later

sections.

ri = emem/(ecomp + emem ) (6)

Among gang parameters in Equation (4), only Pi and Si are design variables of our optimization

problem. Thus, we define system configuration Π as

Π = ((P1, S1), . . . , (Pn , Sn )), (7)

which is a vector of tuples of each gang’s period and speed factor. There could exist multiple

system configurations under various deadline constraints, which will be further discussed in the

next section.

Finally, we use the Earliest Deadline First (EDF) scheduling with the one-gang-at-a-time pol-

icy [5] such that the scheduling unit is a gang instead of a task. In other words, a DAG of tasks

is transformed into another graph where each node is a gang by using gang formation algorithm.

Then each gang is assigned its period and scheduled dynamically based on their implicit deadline

with a preemptive EDF scheduler, occupying the entire multicore processor at a time. The L&L

utilization bound [51] can be used to test the system schedulability whether all the gangs can be

scheduled without violating their respective implicit deadline (i.e., before the next period starts).

With the preceding gang WCET model, our L&L utilization bound is as follows:

U (Π) =
n∑
i=1

Ei (Si )

Pi
≤ 100%, (8)

where the sum of gang utilizations (the gang WCET over period) should not exceed the upper

bound 100%. The upper bound can vary depending on the scheduler used.

2.2 Dynamic Deadlines

In our system model, when referring to deadlines, they always mean the end-to-end deadlines from

sensors to actuators, not the implicit deadlines that are equal to periods. Thus, even when the sys-

tem is schedulable, satisfying every gang’s Pi , it does not mean that deadlines will be guaranteed.

To formally define our notion of deadlines, let us assume ns sensor tasks (i.e., source nodes) and na
actuator tasks (i.e., sink nodes) inG. Then we say there are ns ×na unique flows, each of which has

at least one path that is a sequence of adjacent tasks fully connecting a flow. The set of paths inG
is denoted by

P = {δ1,δ2, . . . ,δ |P | }, (9)
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Fig. 3. Dynamic deadlines with discrete mode changes.

where each path δi denotes an ordered set of task (or gang) indices following the path. For example,

in Figure 2(a), the original DAG has three (3 × 1) flows and eight paths. Similarly, for the corre-

sponding gang formation in Figure 2(b), there exists a linear ordering of gangs that preserves task

dependency for each path δ from the original DAG. Then deadlines are imposed upon the paths

such that newly arrived sensor data at time t1 propagates through the DAG until it first gets out of

an actuator task at time t2 within a given deadline d (i.e., t2 − t1 ≤ d). In the automotive industry,

the preceding notion is commonly referred to as reaction time constraints [6].

Figure 3 shows continuous dynamic deadlines as the vehicle velocity changes, where vertical

dashed lines depict discrete sensor arrivals. At each k-th sensor data arrival at time t[k], its
dynamic deadline d[k] is decided as a red point by the vehicle velocity v[k] with a given

mapping function (e.g., d (v ) in Equation (1)). Thus, each sensor data arrival can be denoted

by (t[k],d[k]) for k ≥ 1. Although many variables representing other physical states can be

considered, this study focuses on the velocity-dependent deadlines as an initial effort toward a

more general framework.

To efficiently manage dynamic deadlines, we employ a multi-mode approach, where a feasible

deadline range is partitioned into m discrete modes, where each mode guarantees the shortest

deadline within its deadline range. For notational convenience, the modes are denoted by the per-

mode shortest deadlines

{d1,d2, . . . ,dm }. (10)

In Figure 3, its deadline domain is partitioned into six equal-length modes, and at each sensor

data arrival, the system mode is decided, possibly triggering mode changes. While the system is in

a particular mode, the mode’s shortest deadline is guaranteed, as depicted by the thick blue line.

The mode’s shortest deadline is the minimum end-to-end latency from sensors to actuators and

is formally defined as follows. We borrow a widely used model from Davare et al. [28], which

expresses the worst-case delay of a path δ as an accumulation of periods (Pi s) and worst-case

response times (WCRTs) of every task in δ , like the rightmost part in

Dδ (Π) =
∑
i ∈δ

2Pi ≈
∑
i ∈δ

(Pi +WCRTi ), (11)

whereDδ (Π) denotes the approximated worst-case delay of a path δ assuming a system configura-

tion Π. We approximate the original delay model to a linear form
∑

i ∈δ 2Pi for simplicity. Among

the per-gang delay components 2Pi , one Pi is for the waiting time until the task reads the sensor

data (waiting delay) and the other is for processing the data (processing delay). Then, given tasks

and gang formation, the end-to-end latency is defined as the longest Dδ among paths in P.

2.3 Gang Formation

Gang scheduling in real-time systems brings many benefits, such as mitigating inter-core inter-

ference, tighter WCET estimation, and increased system utilization so that the system can accept
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more tasks given end-to-end deadlines. However, it entails another NP-hard integer programming

problem: the gang formation. This can be described as grouping tasks into multiple gangs while

minimizing the end-to-end latency in Equation (11). We employ the state-of-the-art gang schedul-

ing [5] that enforces one-gang-at-a-time policy and restricts co-scheduling inside a gang (i.e., the

number of tasks in a gang does not exceed the number of cores) for minimizing inter-core inter-

ference. Depending on how gangs are formed, they may not fully utilize the multicore processor

(e.g., the shorter task creates a core idle period until the longer task finishes), which leads to an

increased delay and failure to meet the end-to-end deadline. More importantly, in our dynamic

deadline context, the minimum end-to-end latency decided by a gang formation is closely related

to power savings, as the gap between the delay and the deadline provides opportunities to slow

down the CPU. Therefore, it is important to create a gang formation that minimizes the makespan,

and a couple of heuristics have been proposed [3, 4].

2.4 Power Model

We use the following single-core power model from Bambagini et al. [11] and Bhuiyan et al. [15] as

a base for the multicore model:

P (S ) = Ps + Pd (S ) = β + αSγ , (12)

where Ps is the static power and Pd (S ) is the dynamic power parameterized by a speed factor

S . The static power is expressed as β , independent of other parameters, whereas the dynamic

power depends on S while α and γ ∈ [2, 3] are CPU-dependent parameters. In this work, we do

not utilize CPU sleep states to reduce the static power, so our focus is to minimize the average

dynamic power by minimizing S as long as the dynamic deadlines are satisfied, although we also

include and compare static power in the evaluation.

For that, the average dynamic power can be calculated as follows: for each gang wi , its instan-

taneous dynamic power αS
γ
i is maintained during gang WCET (Equation (5)). Since the power

pattern repeats by its period Pi , the average power consumed in a unit time while executing wi

can be calculated as

Pi (Pi , Si ) = αS
γ
i ×

Ei (Si )

Pi
, (13)

which is a function of Pi and Si . Then, by summing upn such average powers and the idle-time CPU

power at Smin , the average dynamic power of corek is given as a function of a system configuration

Π as

Pk (Π) = α
n∑
i=1

S
γ
i

Ei (Si )

Pi
+ αS

γ
min

�
�
1 −

n∑
i=1

Ei (Si )

Pi
�
�
. (14)

For the homogeneous multicore processors, the total average power consumption can be de-

scribed as the sum of individual core’s power consumption as in the work of Basmadjian and de

Meer [14]:

P (Π) =
m∑
k

Pk (Π), (15)

wherem is the number of cores in the homogeneous multicore processor.

2.5 Problem Description

Given a DAGG of n periodic tasks andm discrete deadline constraints, our problem is decomposed

into three parts: (i) gang formation, (ii) period and speed factor optimization, and (iii) safe mode

change protocol. First, we obtain a gang formationW = {w1,w2, . . . ,wk } that can minimize the

end-to-end latency of the given DAG considering task WCET and dependency. Second, given a
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Fig. 4. Gang formation problem space. A shorter end-to-end latency results in a lower power consumption.

gang formation, we find the gang periods and speed factors that minimize average power con-

sumption while satisfying the end-to-end deadline constraint for each mode. The solution can be

described by following two matrices:

����
�

P1
1 P1

2 · · · P1
k

...
...
. . .

...
Pm1 Pm2 · · · Pm

k

����
�

and
����
�

S11 S12 · · · S1
k

...
...
. . .

...
Sm1 Sm2 · · · Sm

k

����
�

, (16)

where P ji and S
j
i represent gang i’s optimal period and speed factor at the j-thmode, respectively. In

other words, each row represents mode j with system configuration Πj that guarantees the end-to-

end latency shorter than dj in Equation (10). Finally, the solution should satisfy safe mode changes

such that the system can freely go back and forth between modes without violating the dynamic

deadline requirements. For that, a safe runtime mode change protocol is proposed in Section 5.

3 GANG FORMATION HEURISTIC

Given a DAG of n tasks, their WCETs, and homogeneousm cores, we want to group tasks into an

arbitrary number of gangs while minimizing the end-to-end latency defined in Equation (11). The

reason for minimizing end-to-end latency here is that it is closely related to minimizing power. In

Figure 4, we exhaustively searched gang formation space for an example five-task DAG. All possi-

ble gang formations are sorted by their minimum end-to-end latency and numbered sequentially

over the x-axis. The average power consumption on the right y-axis is calculated using the period

optimization in the next section, under the same end-to-end deadline for all gang formations. We

discovered that the power consumption increases monotonically as the minimum end-to-end la-

tency increases. This is because the bigger the gap between the minimum end-to-end latency and

the deadline, the more room for the CPU to slow down, resulting in smaller power consumption.

Intuitively, to get better gang formation, it is desirable to pack gangs as densely as possible to

fully utilizem cores while trying to avoid grouping dependent tasks to the same gang. If tasks in

dependency constraints are in the same gang, the gang has to be repeated to propagate data to

the consumer task which was not possible in the previous execution because it is synchronized

to start with the provider task by gang scheduling. This adds an additional delay to the overall

end-to-end latency.

The gang formation proves an NP-hard integer programming problem [3] like bin packing.

Therefore, Ali et al. [4] proposed the Virtual Gang Heuristic (VGH). In VGH, a DAG consists

of tasks onm homogeneous cores and is partitioned into multiple gangs minimizing the comple-

tion time of all the gangs. It introduces the notion of family to avoid grouping dependent tasks. A

family of tasks τi consists of all tasks that are connected with τi ’s ancestor or descendant. VGH
strongly restricts grouping tasks in a family relationship to avoid the repetition of gang execution.
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Fig. 5. Gang formation example with different objectives (total completion time vs. minimum end-to-end

latency).

However, VGH does not fit well for our problem because it has a different objective. It minimizes

the total completion time of gangs that is equal to the sum of gangWCETs along the paths. Yet our

objective is to minimize end-to-end latency considering the worst data propagation pattern, which

is analyzed in Equation (11). A simple two-task example is depicted in Figure 5. In the example,

tasks A and B are in a dependency constraint. For VGH, it makes sense to avoid packing A and

B together in the same gang because it would increase the total completion time. However, the

gang periods tend to increase significantly as we add more gangs because of the utilization bound

in Equation (8). Basically, the utilization bound implies that the period should be large enough to

have time for the execution of other gangs. In this case, A’s period (34.1 ms) is significantly greater

than its WCET (20 ms) to give task B (10 ms) a chance to execute. Therefore, for the minimum

end-to-end latency that is based on gang periods, it is beneficial to pack A and B together despite

the dependency relationship.

Moreover, VGH does not consider WCET changes over processor speed, especially with the

speed-independent ratio ri defined in Equation (6). Specifically, the gang WCET is defined as the

longest task’s WCET in the gang, and if its ri is high, the dominant task can be changed to another

one as depicted in Figure 6. As the speed factor increases, task 1’s WCET shrinks slower than task

2’s and task 1 becomes the dominant task in the gang. In worse cases, the gap between the grouped

tasks’ WCETs becomes big enough to significantly decrease the multicore utilization, which can

be deemed as the quality degradation of gang formation over Si changes. This would not happen

without ri , as the tasks will scale at the same ratio. At certain Si , the gang WCET might change

significantly and the gang formation obtained at Si = 1may not performwell. To address this issue,

we try to find the base speed factor (Sbase ) and obtain a gang formation from the scaled taskWCETs

that minimizes the degradation of the gang formation quality over Si changes. For example, the

gang formation with Sbase = 0.5 might degrade less than the one with Sbase = 1.0 as the possible
Si change is smaller (0.5-smin vs. 1.0-smin ).

As a result, VGH can be improved in three ways for our problem. First, the strict family concept

should be alleviated, as there are advantageous cases when tasks in dependency constraints are in

the same gang, as we have seen in the previous example. Second, an estimation of gang periods

must be taken into account, as our objective is calculated based on periods, not WCETs. Third,

the gang WCET changes over Si should be considered, as the heuristic solution may perform

significantly worse at different Si .
We developed a greedy heuristic, Dynamic Deadline Gang Heuristic (DDGH), as shown in

Algorithm 1. Line 1 scales the task WCETs with the base speed factor (Sbase ). Line 2 sorts tasks

by its WCET in descending order. Sorting tasks helps to group tasks with similar WCETs, trying

to fully utilize all of the cores during gang execution. Line 3 initializes an empty gang formation.

As a greedy approach, a single task is picked (line 6) and then assigned to a gang (line 12) at a
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Fig. 6. An example gangWCET curve with ri = emem
i /ei . Solid lines represent the dominant task at the time.

ALGORITHM 1: Dynamic Deadline Gang Heuristic

Require: Task WCETs (e), speed-independent ratio (r ), base speed factor (Sbase ), paths in the DAG (P)

Ensure: Gang formation (дanдs)
1: new_wcet = scale_wcet_at_s f (e, r ,Sbase )
2: q = sort_task_by_wcet (new_wcet )
3: дanдs = ()
4: while not q.empty () do
5: candidates = ()
6: task = q.pop ()
7: for д ∈ {дanдs + ∅} do
8: new_дanдs = add_дanд_member (дanдs,д, task )
9: delay = calc_delay_proxy (new_дanд, e,P)
10: candidates .push(delay)

11: best_д =min(candidates )
12: дanдs = add_дanд_member (дanдs,best_д, task )

return дanдs

time. Lines 7 through 10 create a temporary gang formation (new_дanдs) to add the current task

to an existing gang for evaluation. The iteration with д = ∅ means creating a new gang with the

current task. Finally, line 11 decides the best gang (best_д) for the current task and updates the

gang formation (дanдs). The process is repeated until the queue (q) is empty.

For evaluating temporary gang formations, calc_delay_proxy function in Algorithm 2 is used

to provide a proxy of end-to-end latency. It is a proxy because it is difficult to estimate the exact

end-to-end latency, which is the optimization result in the next section. Instead, we exploit the

knowledge of optimization solution form to just estimate the relative end-to-end latencies between

different gang formations. Lines 2 and 3 calculate gang WCETs (E) for a given gang formation.

Lines 5 through 9 iterate over each path in the DAG and sum up our metric in line 8. The metric is

the core part of the heuristic and consists of gang WCET and the sum of gang WCETs. With both

terms multiplied, it acts as a proxy for the gang period, which is a basic component in end-to-end

latency. The first term, gang WCET, contributes to minimizing the individual gang’s WCET. The

period is typically proportional to WCET, so the smaller the gang WCET, the smaller the period.

The second term, the sum of gang WCETs, is another critical part to estimate the period. When a

new gang is added, one of the gang periods must be greater than the sum of gang WCETs, as there

should exist enough time for other gangs to execute. This is implied in the utilization bound in

Equation (8) (U =
∑
Ei/Pi < 1). It also increases the other gang’s period, as we have seen with the

example in Figure 5, so the heuristic is discouraged to create a new gang by this term. Therefore,

DDGH does not strictly prohibit the grouping of tasks in precedence relationships. Instead, it uses
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ALGORITHM 2: Evaluate Temporary Gang Formations

Require: Gang formation (дanдs), task WCETs (e), paths in the DAG (P)

Ensure: Proxy of end-to-end latency

1: function calc_delay_proxy(дanдs , e , P)
2: for дanд ∈ дanдs do
3: E (дanд) = дet_дanд_wcet (дanдs )

4: max_delay = 0

5: for δ ∈ P do
6: max_delay = 0

7: for task ∈ δ do

8: delay+ = E (task_to_дanд(task )) ∗ sum(E)

9: if max_delay < delay then

10: max_delay = delay
returnmax_delay

a proxy delay to assign tasks flexibly and discourages creating a new gang, so gangs are packed as

densely as possible.

4 PERIOD AND SPEED FACTOR OPTIMIZATION

This section formulates and solves the offline multi-mode system optimization problem assum-

ing that gang formation is given and fixed. We begin by finding the optimal configuration for

a single mode without considering safety constraints in the transient phase between the modes

(Section 4.1). Then, we extend the optimization method such that it can go back and forth be-

tween the modes without violating safety constraints (Section 4.2) followed by the optimization

solver we used (Section 4.3). Finally, a realistic condition of discrete CPU frequencies is discussed

(Section 4.4).

4.1 Single-Mode Formulation

This section explains how we can formulate a single-mode optimization as a baseline for multi-

mode system optimization. As the objective function, the average power in Equation (14) is used,

without the constants α and β , where Π denotes two sets of decision variables Pi s and Si s with
constrained domains as Pi > 0 and Smin ≤ Si ≤ 1, respectively. Then, we have two explicit

constraints: (i) schedulability constraint as already discussed in Equation (8), and (ii) deadline con-

straint of which we already devised an end-to-end latency analysis model in Equation (11).

Then, our single-mode formulation is given as follows:

minimize
Π

P (Π) =
n∑
i=1

S
γ
i Ei (Si )

Pi
+ S

γ
min

�
�
1 −

n∑
i=1

Ei (Si )

Pi
�
�

subject to U (Π) =
n∑
i=1

Ei (Si )

Pi
≤ 1

Dδ (Π) =
∑
i ∈δ

2Pi ≤ d (∀δ ∈ P).

(17)

4.2 Multi-Mode Formulation Considering Mode Changes

Naively, the method in Section 4.1 can be repeatedly used to find every row of the multi-mode

solution matrices in Equation (16). However, we cannot directly use this approach for a multi-

mode system since it does not guarantee a safe transition between modes. Specifically, when
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old- and new-mode gangs coexist during a mode change, schedulability violations can occur even

if each mode is schedulable in isolation [21]. Thus, we add a new constraint called utilization in-

variability, meaning that every gang’s utilization (i.e., u ji = Ei (S
j
i )/p

j
i ) is invariant across modes as

Ei (S
1
i )

P1
i

=
Ei (S

2
i )

P2
i

= · · · =
Ei (S

m
i )

Pmi
= u∗i (∀i = 1, 2, . . . ,k ), (18)

where u∗i denotes identical utilization for wi across modes. In that manner, even in the transient

interval, the system’s instantaneous utilization is maintained unchanged, which in turn guarantees

the system schedulability [1]. Now, we useu∗i s as our decision variable replacing P
j
i s with Ei (S

j
i )/u

∗
i .

Then our multi-mode optimization can be formulated as follows:

minimize
Π̂

P (Π̂) =
m∑
j=1

n∑
i=1

(S ji )
γu∗i + S

γ
min

��
�
m −

m∑
j=1

n∑
i=1

u∗i
��
�

subject to U (Π̂) =
n∑
i=1

u∗i ≤ 1,

D j

δ
(Π̂) =

∑
i ∈δ ′

2Ei (S
j
i )

u∗i
≤ d j (∀j ∈ [1,m],∀δ ′ ∈ P′),

(19)

where Π̂ denotes the newly defined multi-mode system configuration with P ji s and u∗i s. The ob-

jective function is the sum of average power in each mode, after eliminating the α and β from

Equation (14) for the notational simplicity. The first constraint is the system schedulability now

expressed by u∗i s. The second constraint is for the dynamic deadlines acrossm modes.

Note that the average power of a mode from multi-mode solution could be worse than the one

from single-mode solution. To achieve a mode’s optimal average power, each gang should freely

choose its period and speed factor. However, if we fix the utilization value across modes, the period

and speed factor are not independent anymore but constrained by the relationship u∗i = Ei (S
j
i )/p

j
i .

This adverse effect of utilization invariability is further discussed in the experiment section.

4.3 GP-Based Optimization

Our multi-mode optimization problem can be efficiently solved by GP, which is a mathematical op-

timization method for solving specially formed optimization problems through logarithmic trans-

formations into convex ones. As a result, GP always finds the (true, globally) optimal solution

when the problem is feasible [18]. To use GP, the objective function and inequality constraints

should be constructed by the special form posynomial, as in f (x ) =
∑K

k=1 ckx
a1k
1 xa2k2 · · · xankn , with

decision variables xi s, non-negative coefficients ck s, and real-valued exponents {a11, . . . ,anK }. Our
objective functions and constraints are in posynomial forms except for the idle-time CPU power

terms in the rightmost part of P (Π) in Equation (17) and P (Π̂) in Equation (19).

However, the idle power terms can be removed without affecting optimality as long as ∃Si �
Smin . The optimal solutions in such cases always have 100% system utilization without any idle

time. To prove it intuitively, assume the system utilizationU < 100%, if we pick a certain gangwi

and decrease Si , thus increasing Ei , untilU reaches 100%, the average power ofwi will decrease and

the idle power term will disappear, eventually saving more energy than the original configuration.

However, when we cannot reduce processor speeds (∀i : Si = Smin ), the optimal case would have

U < 100% as Pi increases. Such cases only occur when the deadline is extremely long after all Si s
are bounded by Smin . We are not considering such extreme cases in this work.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 52. Publication date: April 2023.



52:14 S. Yi et al.

4.4 Extension to Discrete CPU Frequency Levels

Our optimization method yields speed factors in the continuous range between Smin and 1. How-

ever, because most CPUs in practice support only a predefined set of discrete frequency levels,

we need to adapt the resulting speed factors to the discrete domain. One possible approach is

to emulate the exact speed factors by modulating between two neighboring discrete frequency

levels [17, 45] to obtain the near-optimal energy reduction similar to the continuous frequency

solution. However, using such intra-task DVFS entangles other practical considerations such as

extra time and energy overhead associated with excessive frequency transitions [61] and possible

transient faults [26, 67].

In light of this, we propose a more conservative but safer method that uses the closest frequency

level that is higher than the corresponding optimal speed factor. Then every task’s actual utiliza-

tion is less than or equal to the ideal utilization in accordance with the utilization invariability

constraint. Thus, even though the approximated systemwill consumemore energy than the contin-

uous one, it safely ensures schedulability and end-to-end latency constraints during mode changes.

5 SAFE MODE CHANGE FOR SYSTEM RECONFIGURATION

For safe system reconfigurations with dynamic deadlines, the following should be respected even

during mode changes:

• Periodicities: Every gang period before and after the mode change should be guaranteed,

which can be satisfied by the utilization invariability constraint introduced in Section 4.2.

• Deadlines: Unfortunately, however, the preceding periodicities do not guarantee dynamic

deadlines, which span across multiple gangs possibly with different modes during a mode

change.

Thus, this section focuses on developing a safe mode change protocol in terms of end-to-end dy-

namic deadlines based on already guaranteed per-gang periodicity.

Assume the system is switching from an old mode to a new mode, represented by each mode’s

shortest deadlines, respectively, by

dold → dnew . (20)

When dold < dnew , it is termed as relaxing deadlines and in the opposite as shrinking deadlines.

System configurations for each mode are denoted by Πold → Πnew—that is,

((P old
1 , S old

1 ), . . . , (P old
n , S old

n )) → ((P new
1 , S new

1 ), . . . , (P new
n , S new

n )) (21)

in its expansion form. The system mode change is triggered by a sensor data arrival at time t0 with
its dynamic deadline falling above or below the old range. In terms of individual gangs, their mode

changes only happen at period boundaries. In other words, when a gang period has ended and the

new one is about to start, the scheduler adjusts its internal structure to the new mode’s period and

speed factor for that gang. This is because if we change themode for a gangwhen its period has not

finished yet, the instantaneous utilization (Ei/Pi ) for the gang disturbs the overall schedulability

(Equation (8)), which defeats the purpose of utilization invariability in our optimization constraints

and may lead to a deadline violation. Then, we consider the following mode change methods, as

depicted in Figure 7:

• ALAP (As Late As Possible) individually triggers per-gang mode changes after the new data

make progress to every incoming edge of it. The actual mode changes will happen at the

nearest period boundary after the trigger.
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Fig. 7. ALAP: Tasks gradually change modes (white→ blue) as the new data progress along paths (curved

red arrows) possibly at different speeds. AEAP: The new sensor data arrival immediately triggers (straight

red arrows) every task’s mode change.

• AEAP (As Early As Possible) immediately triggers every task regardless of the new data’s

progress. The mode change completes by t0+maxi (P
old
i ) in the worst case when the longest

period of Πold began right before t0.

We deal with the following two cases: (i) relaxing and (ii) shrinking deadlines with the preceding

methods, respectively.

Case (i): Relaxing deadline. In this case, we use ALAP such that the mode changes do not ad-

versely affect the already ongoing progress of old sensor data. Besides, we need to ensure that the

new sensor data do not violate dnew . Note that the new sensor data may progress through tasks

possibly with different modes, which happens due to different speeds of different paths. For exam-

ple, in Figure 7(a), τ4 has two incoming edges, where the upper path requests the mode change

while the slower lower path still retains the old mode. Then the upper pathw1 → w2 → w4 → w5

can have a mixture of both modes while handling the new sensor data. Thus, the worst-case delay

for the new sensor data during ALAP mode changes can be calculated as in the following:

Dnew (Πold → Πnew ) = max
∀δ ∈P′

�
�

∑
i ∈δ

2 ·max(P old
i , P new

i )�
�
≤ max
∀δ ∈P′

�
�

∑
i ∈δ

2P new
i

�
�
= dnew , (22)

which is less thandnew since∀i : P old
i ≤ P new

i that is truewhen relaxing deadlines. This is because

when the gang utilization (u∗i ) is fixed across modes, if Si decreases in Equation (8), Pi should

increase to offset the change. Therefore, Pi increases monotonically to decrease S
γ
i in Equation (19),

reducing the average power in the next longer deadline mode.

Case (ii): Shrinking deadlines. In this case, which basically makes the situation more challenging,

we use AEAP to quickly finish mode changes, minimizing possible extra delays. Delays for the

old sensor data are naturally kept less than dold by the same rationale in Equation (22) since ∀i :
P old
i ≥ P new

i when shrinking deadlines. However, regarding the new sensor data, it can suffer

extra delays if any gang’s old period instance that began before the new sensor data arrival persists

long enough such that the new data’s progress is unexpectedly delayed by that persisting old gang

instance. Algorithm 3 calculates the worst-case delay considering such negative effects for each

path δ , which is an ordered set of gang indices in each path. Among the calculated delays, we can

find the longest. The algorithm gradually accumulates delays by gangs in δ . Line 1 indicates that
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Table 1. Workload Information at Maximum Speed (si = 1)

Task Cam. Grabber Lidar Grabber CAN SFM∗ Lane Det.∗ Obj Det.∗ Loc.∗ EKF∗ Planner DASM

WCET(ms) 0.25 25.7 0.6 30.6 27.1 294.8 175.5 1.6 21.0 1.9

ri 0.5 0.5 0.5 0.15 0.45 0.29 0.20 4e-9 1e-15 1e-15
∗From the Chauffeur benchmark suite [53]. WCETs of unmarked applications are derived from the work of Krawczyk

et al. [48].

ALGORITHM 3: Finding the Worst-Case Delay for AEAP

Require: {(P old
1 , . . . , P old

n ), (P new
1 , . . . , P new

n ),δ }
Ensure: The worst-case delay of new sensor data for δ

1: D ← P old
δ [1]
+ P new

δ [1]
� δ [1] denotes its first element

2:

3: for i ∈ δ \ {δ [1]} do
4: if D + 2P new

i > P old
i + P new

i then

5: D ← D + 2P new
i

6: else

7: D ← P old
i + P new

i
return D

it is unavoidable for the new sensor data to be waited by the old period at the first gang. Then we

have two cases for the remaining gangs: (i) its mode is already changed before the data progress

arrives (line 4) and (ii) an old instance persists (line 6). In the former, we simply accumulate the

new delay component 2P new
i . In the latter, the persisting old (long) period P old

i hides away the

accumulated delay up to then, resetting it to P old
i + P new

i .

By the preceding analyses, we claim that when relaxing deadlines with ALAP, there is no end-to-

end deadline miss for both the already ongoing progress and new ones. When shrinking deadlines

with AEAP, the already ongoing progress rather benefits from it, whereas new sensor data can

suffer extra delays. However, we can analyze the worst-case extra delays, which can be used when

planning appropriate safety margins in design time. For example, instead of using direct mapping

from velocities to modes, the system can change its mode a little earlier at a lower velocity to offset

the extra delays.

6 EXPERIMENTS

6.1 Experimental Setup

Workload. When we need an exemplar DAG, we use the one in Figure 2 with 10 tasks, where

their WCETs and the speed-independent ratio ri s are listed in Table 1 [48] and their gang forma-

tion in Table 2. Unfortunately, WATERS industrial challenge applications are IP protected, so we

were not able to run them and obtain ri s. We borrowed available applications from the Chauffeur

autonomous driving benchmark [53] and measured their WCETs and ris on the Nvidia Jetson TX2

platform (A57 cores). We did a frequency sweep to get ri and applied curve fitting. All ri s have
R-squared greater than 0.99 in their curve fitting. The WCETs of unmarked applications in Table 1

are derived from actual measurements on the same Jetson platform from Krawczyk et al. [48], and

we made an educated guess about their ri s.
DAG Generation. We use the GGen random graph generator [24] to generate multi-source

and -sink graphs in a layer-by-layer method: 500 DAGs for each input size n = 5, 10, 20 and edge

probability p = 0.5, 0.25, and 0.125. All generated DAGs are non-isomorphic to each other (i.e., struc-

turally different). WCETs are generated with a uniform distribution, and for eachWCET, three sets

of ri s are generated from different ranges: low [0.0, 0.5], high [0.5, 1.0], and mixed [0.0, 1.0].
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Table 2. Gang Formation of WATERS Workloads onQuad-Core CPU Using the Heuristic from Ali et al. [4]

Gang 1 2 3 4 5

Tasks SFM, Lane Det., Obj Det., Loc. Cam. Grabber, Lidar Grabber, CAN Planner DASM EKF

WCET at ∀Si = 1 294.8 25.7 21.0 1.9 1.6

ri at ∀Si = 1 0.29 0.5 1e-15 1e-15 4e-9

Power Model. We empirically found the power parameters for Equation (12), as α = 842.04, β =

232.81, and γ = 2.64, on the same hardware platform in the work of Krawczyk et al. [48].

Discrete Frequency Levels. We use 12 evenly spaced frequencies between 345 MHz and 2 GHz

from the same hardware platform [48] for real-world driving data simulation.

Driving Scenarios. We use real-world driving scenarios from the comma.ai driving dataset [23],

where we picked ten 60-second driving logs with their velocity from 0 km/hour to 114 km/hour

as depicted in Figure 13.

Dynamic Deadlines. Each DAG has its shortest and longest end-to-end latency on the target

platform when ∀Si = 1 and ∀Si = smin , respectively. For the fair comparison between DAGs, we

converted velocities into deadlines for each DAG using Equation (1) by picking values for λ when

amax = 2.5 ms−2 such that the shortest latency of the DAG becomes the shortest deadline at the

highest velocity (114 km/hour) in our scenarios, whereas the longest latency of the DAG which

is bounded by smin = 0.17 becomes the longest deadline. Then, the number of modes is chosen

arbitrarily to 10, partitioning the range with equal length.

Optimization. For the GP solver, we use the MATLAB CVX [37] convex programming package.

On a laptop with a quad-core Intel Core i7@2.6-GHz CPU, it took 3.07, 7.97, and 23.11 seconds for

{n = 5, p = 0.5}, {n = 10, p = 0.25}, and {n = 20, p = 0.125} task sets, respectively.

Simulation. We implemented a simulator supporting the EDF scheduling and our mode change

protocol, by which we can precisely estimate the exact task schedules, end-to-end latencies, and

energy consumption. Our simulator takes 0.1-ms timesteps in each iteration and in each step the

EDF scheduler routine is invoked. Gangs are submitted to the scheduler queue at the start of the

simulation, and they resubmit themselves at the end of their period. The EDF scheduler (1) de-

creases the current gang’s remaining WCET, (2) checks if the current gang’s WCET is equal to or

below 0 and schedules a new gang from the queue if needed, (3) sets the speed factor and period

for the new gang, and finally (4) maintains a queue in the earliest deadline first order.

6.2 Evaluation

We first present gang formation results, by which we decide gang formations for each DAG for the

rest of the evaluation. For the period and speed factor optimization, we compare power savings

in individual modes with our multi-mode optimization method. Then, we vary the parameters,

such as the number of tasks, the number of edges, and the speed-independent ratio ri to evaluate

their effect on our power optimization. Our multi-mode solution is then evaluated with real-world

driving scenarios in a simulator with our safemode change protocol. Finally, the efficacy of our safe

mode change protocol is evaluated with an end-to-end deadline violation example. The following

three methods are compared in the evaluation:

• Baseline: ∀i : Si = 1.

• DPM (conventional): ∀i : Si = 1 while executing a gang, and otherwise the CPU is in sleep

state.

• Multi-mode (OURS): The method in Section 4.2.

One of the traditional methods of DVFS-based power optimization in real-time systems is to set a

static deadline, assumed to be the shortest deadline that could possibly occur, and find the critical

speed to save dynamic power consumption. The power savings of such a method largely depends
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Fig. 8. Gang formation heuristic comparison and base speed factor variation experiments.

on how far away the static deadline is from the minimum deadline that the given system is able

to handle and thus the result could be subjective. Therefore, we set the minimum deadline as

the static deadline, labeled as Baseline, representing the maximum possible power savings from

the traditional static deadline optimization methods. DPM [58] is another conventional method

that we are comparing to, which could reduce both dynamic and static power consumption. In

general, it is believed to have a better power efficiency than DVFS in periodic real-time systems

[10]. Although there are many power-efficient scheduling algorithms for DPM, they do not

consider safe mode change and thus cannot be used directly in our setting. Therefore, we use our

safety-guaranteed solution and mode change for DPM experiments. Specifically, they have the

same gang periods as our multi-mode solution such that end-to-end deadlines are guaranteed. In

each mode, a gang will be given the time for execution based on Equation (5). However, the gang

will be executed at the full speed, and the remaining slack is used for sleeping to cut off the static

power consumption. For simplicity, we do not consider the overhead of changing CPU sleep states.

6.2.1 Gang Formation Heuristics. In Figure 8(a), we evaluate three gang formation heuristics:

random, VGH, and our DDGH with 500 DAGs for each task set (n = 5, 10, 20) and mixed values of

ri s. The results are normalized to random formation results for each DAG and then averaged. The

random method randomly picks a task and assigns it to a gang, including both existing and new

gangs, with an equal probability. VGH is the current state-of-the-art method, but it aims to min-

imize the total completion time, exhibiting slight improvement for end-to-end latency compared

to the random formation. It is worse than random when a DAG is small and simple as in the n = 5

task set. When the length of paths in a DAG is not too long, it is advantageous to pack dependent

tasks together as we have seen in the example (Figure 5), which is not possible with VGH because

of the family policy. However, as the paths get longer as the number of tasks increases in n = 10

task set, VGH’s family policy takes a positive effect and performs better than the random method.

With the n = 20 task set, even though the gang formation problem becomes significantly difficult

due to combinatorial explosion, our DDGH still performs better than VGH because of its flexibility

in grouping dependent tasks and better end-to-end latency estimation. Overall, DDGH performs

32% better on average compared to VGH in all task sets.

Next, we evaluated the effect of the base speed factor (Sbase ) in Algorithm 2. In Figure 8(b), we

sampled four values of Sbase from 0.25 to 1.0 to see the trend. For each Sbase , we apply multi-mode

optimization to the gang formation to obtain power consumption in each mode. The number of

modes was set to 10, each of which has a corresponding end-to-end deadline for which all the Sbase
gang formations were optimized equally. Since it requires a holistic evaluation across modes, the

average mode power consumption is used for evaluation. Our initial hypothesis was that the sweet

spot would exist around Sbase = 0.5 so that the gang WCET curve change is minimized toward

both ends of the mode range: the shortest and the longest modes where Si changes are maximum.

However, we discovered that the lower Sbase is, the less degradation it gets by Si changes, resulting
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Fig. 9. Power optimization results including both dynamic and static power. Mode 1 has the shortest

deadline.

in a smaller average mode power. The reason is that when task WCETs are scaled to a lower Sbase
value, DDGH identifies the tasks whoseWCETs are significantly scaled up and tends to group them

together. In this way, even if there is a change in Si , the overtaking of a dominant task happens less

frequently and the quality of gang formation is maintained stable over Si changes. We measured

the smoothness of gangWCET curve in Sbase solutions for each task set. The smoothness is defined

as the ecomp differences between the two tasks when dominant task switching happens as ecomp

is the only component affected by Si . The larger the difference is, the greater the impact on gang

formation quality and the resulting end-to-end latency, so a smaller value is desired for smoothness.

For the n = 5 task set, because the DAGs are simple, gang WCET changes rarely occur, so the

smoothness did not change much and our Sbase method did not have a major impact. However,

for larger task sets, smoothness declines steeply, exhibiting a similar trend with the average mode

power consumption. As a result, for n = 10 and n = 20 with Sbase = 0.25, the power consumption

is reduced by 21.8% and 36.1%, respectively, compared to Sbase = 1.0 gang formation. Following

this trend, Sbase is set to Smin for the rest of the experiments that involve DDGH.

6.2.2 Multi-Mode Average Power Optimization. Figure 9(a) shows normalized average power

in each mode, averaged across 500 randomly generated 10-task DAGs with mixed values of ri s.
The modes are numbered in order from the shortest to the longest deadline, equally partition-

ing the range from minimum to maximum end-to-end latency of each DAG. For the comparison

between single-mode and multi-mode optimization, the only difference is the utilization invari-

ability constraint. However, as it can be seen in the figure that the two curves are almost perfectly

overlapped, showing its effect on power consumption is negligible. Even if the freedom of gang

utilization variable is limited in multi-mode optimization, the other decision variable Pi is flexibly
adjusted to lower Si as much as possible, still reaching the near-optimal power consumption. In

the first mode with the shortest deadline, both DPM and our multi-mode approach show the max-

imum power consumption, as there is no slack for slowing down nor shutting off the CPU cores.

As the deadline gets longer, the slacks also become longer. To exploit them, DPM inactivates the

CPU cores to save static power, as can be seen in Figure 9(b). Since the ratio of execution burst

at full speed to the size of slack gets smaller, the average dynamic power of DPM also decreases,

but not as fast as our multi-mode method. Even though the CPU cores are always on consuming

static power, the dynamic power reduction is much greater than DPM resulting in overall smaller

average power of 22.4% against the maximum power consumption compared to 30.8% of DPM in

the longest deadline mode.

6.2.3 Gang Parameter Details in Each Mode. Figure 10 depicts the exemplar DAG’s gang pa-

rameters in each mode after applying our multi-mode optimization. Only the first and the last
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Fig. 10. Gang parameters in each mode: gang period, WCET, speed factor, and utilization.

mode are marked for readability. Basically, each of these parameters tends to scale linearly from

the shortest mode. The gang period (Figure 10(a)) and WCET (Figure 10(b)) are positively cor-

related, as it can be seen starting from the bottom of the figures that they increase similarly as

the mode goes higher. Note that for gangs 2 and 3, their WCETs are similar, but gang 3 is more

sensitive to the speed factor due to its low speed-independent ratio ri . Eventually, in the longest

deadline mode, gang 3 has a longer WCET and period than gang 2. For speed factors (Figure 10(c)),

all gangs try to maintain a similar value. This is because the exponent (γ ) of the speed factor in

power Equation (14) is typically greater than 2, so the power is more sensitive to an increase in

speed factor than a decrease. Therefore, if all WCETs scale at the same rate with Si (i.e., all ri s
are the same across tasks), the solver cannot favor a specific Si , which may lead to an increase in

another gang’s Si and worse overall power savings. As a result, it tries to find a uniform value for

all Si s. In Figure 10(c), however, the speed factors of gangs 1 and 2 are lower than others. Given

the utilization and period, these gangs with higher ri can afford lower Si due to the low sensitivity

of WCET to Si . Finally, the gang utilization (Figure 10(d)) is maintained the same across modes in

the multi-mode solution. Note that even though the optimal gang utilization from single-mode so-

lutions depicted in dashed lines does not deviate too far from the multi-mode solution, they could

possibly violate the utilization bound during mode change. However, the effect of the deviation on

power savings is negligible, as can be seen in Figure 9.

6.2.4 Effect of the Number of Edges and Tasks. When generating random DAGs, we tried to

have a similar shape to the exemplar DAG, meaning that the ratio of the number of edges to
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Fig. 11. Power optimization results with varying numbers of tasks and edges. Mixed values of ri s are used.
The dashed lines are DPM counterparts.

Fig. 12. Power optimization results with varying speed-independent ratio ri s. The dashed lines are DPM

counterparts.

the number of nodes should be similar. This can be controlled by the edge probability parameter

provided by GGen, which resulted in different values for each task set (n = 5, 10, 20) as specified

in Section 6.1. In Figure 11(a), we first fix the number of tasks and only vary the edge parameter

to see the effect on our multi-mode optimization compared to the DPM method in dashed lines.

Each task set’s result is averaged across 100 randomly generated DAGs with mixed values of ri s.
As can be seen in the figure, the number of edges does not affect the amount of power savings

in our multi-mode approach, meaning that it is not an important parameter of our optimization.

Likewise, in Figure 11(b), we vary the number of tasks with selected edge probabilities, and they

result in the same power savings as in Figure 11(a). In both of the preceding experiments, our

multi-mode optimization achieves strictly better power savings than the DPM method.

6.2.5 Effect of Speed-Independent Ratio ri . So far, we have been using mixed values of speed-

independent ratio ri s in our experiments. This experiment investigates the effect of ri s on our

multi-mode optimization by comparing four different sets of ri s. In addition to low, high, and

mixed sets specified in Section 6.1, we added the ideal set where all ri s are set to zero. In Figure 12,

the DPM counterparts in dashed lines vary significantly with ri s, whereas our multi-mode method

shows a stable power-saving result. The power consumption of DPM increases as ri gets higher
because when ri is high, the WCET does not scale well, resulting in longer execution time and

hence more static power consumption. However, our multi-mode method can flexibly adjust the

speed of the processor to save dynamic power regardless of the ri s. It is interesting to note that
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Fig. 13. Real-world driving scenarios from the comma.ai dataset.

Fig. 14. Energy consumption with various driving scenarios.

DPM outperforms our multi-mode optimization in long deadline modes with the ideal ri set. Yet
in reality, it is unrealistic to have the ideal set of ri s. The exemplar DAG’s ri s are close to the low

ri set in the figure, which could perform equal to or better than DPM in every mode.

6.2.6 Energy Optimization with Real-World Driving Scenarios. Figure 14 shows the energy con-

sumption, including static and dynamic power, in driving scenarios using continuous and discrete

frequencies. The exemplar DAG with its ri s and our multi-mode optimization were used in this

experiment. For each driving scenario, the first three bars are the energy consumption of DPM

and multi-mode methods using VGH, whereas the latter three bars are using our DDGH. We start

our analysis with VGH solutions first and then discuss DDGH ones later. With continuous fre-

quency, although DPM VGH achieves a significant energy reduction of 40.6% on average from

baseline, the multi-mode VGH reduces further by timely utilizing lower frequencies. For discrete

frequencies, we use the frequency that is greater than or equal to the optimal one assigned to each

gang, as discussed in Section 4.4. Therefore, we expect that the energy consumption will increase

slightly in our multi-mode method, whereas the DPM method is not affected because it uses only

the maximum frequency. As a result, the energy consumption is increased by 6.2% on average

for the multi-mode solution with discrete frequencies, but it still shows a significant reduction of

20.4% from DPM VGH. Scenarios #3, #4, and #6 show relatively low energy reductions since they

maintain the vehicle within a high-velocity range most of the time, making the system remain in

the short deadline modes. On average, our multi-mode VGH method achieved 52.9% and 30.7% en-

ergy reductions compared with the baseline and the DPMVGHmethod, respectively. In the others,

more than half of the total energy was saved.

On top of that, our DDGH can minimize energy consumption further by providing shorter end-

to-end latency gang formation for bothDPM andmulti-mode optimization. The shorter end-to-end

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 52. Publication date: April 2023.



Energy-Efficient Adaptive System Reconfiguration 52:23

latency means that there is more slack from the end-to-end deadline, and thus a lower CPU fre-

quency can be used in case of multi-mode optimization, or for the longer period the core is turned

off for the DPM method. As a result, DDGH enables 27.8% and 25.5% improvement from VGH

solutions for the DPM and the multi-mode method, respectively. For high-velocity scenarios #3,

#4, and #6, the improvement by DDGH is significant because it enables the lower CPU frequen-

cies for the same deadline. For other scenarios, the improvement is relatively small because they

are already exploiting low CPU frequencies and the power consumption difference between these

modes is small as depicted in Figure 9(a). For discrete frequencies, the energy consumption is in-

creased by 0.9% on average. However, we noticed that for scenario #4, the energy consumption is

actually decreased from its continuous frequency counterpart. The high-velocity scenario #4 has

small changes in velocity, and the continuous solution utilizes a total of two modes for the entire

60 seconds. With discrete frequencies, slightly higher frequencies are mapped, which as a result

result adds one more available mode whose deadline falls into scenario #4’s deadline range. This

is an exceptional case related to the mode granularity, and if we increase the number of modes,

the discrete frequency solution will consume more energy as expected. On average, our method

achieves 54.9% and 30.3% total energy reductions compared with the baseline and the traditional

optimization with the current state-of-the-art gang formation heuristic (DPM VGH), respectively.

6.2.7 SafeMode Change. In Section 5, we analyzed that the end-to-end deadline violation could

only occur when the deadline gets shorter in shrinking deadline situations. The old instances in

longer periods can cause extra delays in response time, and we provided an algorithm to predict

the worst-case delay. To evaluate our algorithm and mode change safety, because we could not

find any violation throughout the driving scenario experiments, we generated an artificial dead-

line graph with a sharp slope as in Figure 15 in addition to worst-case EDF scheduling. It is possible

for this to happen in the real driving scenario, but it is not included in the dataset we used. The

artificial driving scenario is basically a strong acceleration for a continuous 10 seconds with the

worst data propagation patterns. The same exemplar DAG and its multi-mode solution were used

for this experiment. As the deadline changes, as depicted by the blue line, mode changes are spo-

radically triggered, depicted by the rising and falling edges of the orange line that roughly follows

the dynamic deadline. Note the small red staircase shapes at each falling edge, which depict the

extra delays when shrinking deadlines analyzed by Algorithm 3. More specifically, their height

represents the extra delay, whereas their width represents the transient interval for each mode

change. Not only should the mode deadline curve (orange) not go above the dynamic deadline

(blue) but also the extra delay curve should not (red staircase). In Figure 15(a), an end-to-end vi-

olation occurred at the end of the staircase at t = 52.1 marked with a circle. In Figure 15(b), we

shifted the mode deadline curve to the left by applying a small safety margin that triggers mode

change a little earlier such that the red staircase shape is not overlapped with the deadline curve.

As a result, the end-to-end deadline violation was avoided.

7 RELATEDWORK

Dynamic deadlines. Recent studies [40, 49] presented motivating examples of dynamic deadlines

in autonomous driving, where object detection systems are commonly proposed that adapt them-

selves to varying deadlines, demonstrating the unique potential of autonomous driving systems.

More specifically, Lee and Nirjon [49] support dynamic deadlines with selective subgraph execu-

tions by considering varying time budgets. Heo et al. [40] support dynamic deadlines by selectively

executing multiple forward propagation paths of a neural network with different execution times.

Both studies trade dynamic deadlines (or slacks) for improving object detection accuracy. However,

little work has been done with dynamic deadlines for the energy optimization of autonomous

driving.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 52. Publication date: April 2023.



52:24 S. Yi et al.

Fig. 15. An example of end-to-end deadline violation with the AEAP method.

DVFS-Based Energy Optimization. There have been many efforts to develop energy-efficient

real-time systems, most of which, however, assume only static deadlines. Broadly, there are

two frequently used energy-saving approaches in hard real-time systems: DVFS and DPM. In

DVFS approaches, there is a body of literature to find speed levels through offline optimization

[11, 25, 38, 57]. These approaches try to find critical speed factors under a static deadline con-

straint, which is the lowest frequency satisfying the given static timing constraint. In contrast, our

method finds the critical speed for each deadline through multiple modes with different timing

constraints and employs a safe mode change protocol to freely go back and forth between them.

Another body of real-time DVFS approaches tries to reclaim dynamic slacks [13, 46], which is not

to be confused with our dynamic deadlines; instead, they define dynamic slacks as the difference

between the worst-case and the actual execution times. Note that dynamic slack reclaiming does

not conflict with our approach and could be used together for further energy reductions.

For multicore systems, many approaches use the partitioned EDF approach such that a set of

tasks is statically assigned to a CPU core [31, 54]. These works consider VFI, where all cores in the

same island share the same clock frequency. Then, a global frequency for all cores that meet timing

constraints is calculated for maximum energy efficiency. However, they do not consider the task

precedence or end-to-end deadline, necessitating a different optimization formulation. Previous

works on energy-efficient multicore real-time systems [9, 20, 38, 62, 68] assume that each CPU core

can operate at different frequency levels. A task can be scheduled on any core at any timewith a per-

task speed factor. Although these techniques can achieve maximum energy efficiency in theory,

they are not applicable to VFI processors due to hardware limitations. Xie et al. [64] combine

non-DVFS and DVFS methods to minimize energy in heterogeneous real-time systems. The non-

DVFS method is basically an energy-efficient scheduling algorithm for heterogeneous systems

when tasks are assigned to processors with different power characteristics. After obtaining the

schedule using the non-DVFS method, DVFS is applied to reclaim the slack. Our problem assumes

a homogeneous processor, so without the non-DVFS method, the slack reclaiming is equivalent to

a single end-to-end deadline optimization in our experiment (baseline).

DPM-Based Energy Optimization. As the static power consumption of processors has become

more significant [44] in the past decade, DPM has been attracting more attention. In DPM ap-

proaches, cores are switched off during idle periods to reduce static power consumption. It is

useful when the system is underutilized because each idle period should be large enough to off-

set the energy overhead of frequent switching. In general, however, it is known to have a better

power efficiency than the DVFS-based methods in periodic real-time systems [10]. Many schedul-

ing methods have been proposed to create large idle periods [7, 43, 59, 65]. Lee et al. [65] proposed

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 52. Publication date: April 2023.



Energy-Efficient Adaptive System Reconfiguration 52:25

leakage control EDF scheduling, but it requires additional hardware to calculate the sleep period.

This impractical assumption was avoided in the work of Awan and Petters [7] by using a simpler

sleep period calculation method and the ERTH (enhanced race-to-halt) algorithm. With ERTH,

tasks run at full speed to secure longer sleep time.

There are fewer studies on energy-efficient DPM on multicore processors because of the diffi-

culty of modeling idle intervals. Reghenzani et al. [55] study multi-level DPMwith various energy-

efficiency states. However, they also assume that the system is under a static deadline and find the

best processor sleep state depending on the length of an idle period. Chen et al. [19] combined

DPM and DVFS approaches on a multicore processor. They present a DVFS+DPM formulation for

energy optimization and solve for static scheduling under a static deadline using mixed-integer

linear programming. In addition to the scheduling under a static deadline, they assume a non-VFI

architecture, so their approach cannot be applied in our setting. Hu et al. [42] also used a com-

bined DPM and DVFS approach to minimize energy consumption while satisfying both response

time and reliability constraints. Their Processor-Merging algorithm iteratively turns off a core at

a time to minimize the number of cores used and then reclaims the remaining slack using DVFS. It

assumes a workflow execution model where a task is triggered by the preceding task, whereas we

assume multi-rate periodic execution, which is commonly used in many studies for automotive

systems. The difference in the execution model results in a different scheduler and schedulability

tests. Therefore, it cannot be directly applied to our problem.

Gang Scheduling. Traditional gang scheduling was proposed to minimize the makespan of paral-

lel tasks by reducing synchronization overheads through scheduling interacting threads together

as a gang [34]. Then, it is picked up by the real-time community to support parallel tasks because of

increasing computing demands and the need for parallel processing [2, 22, 32, 36, 60]. These early

works on real-time gang scheduling focus on schedulability improvement such that more tasks

can be accepted with minimal deadline miss. In practice, however, predictability becomes an issue

due to inter-core interference between co-running tasks that is difficult to predict. Recently, to

mitigate the interference issue, RT-Gang scheduling was proposed [5] for periodic real-time tasks.

RT-Gang is a more restrictive form of gang scheduling because of its one-gang-at-a-time policy re-

stricting the co-scheduling of gangs to prevent interference. Thus, RT-Gang scheduling can make

the interference manageable, which is suitable for real-time systems where predictability is impor-

tant. Even though RT-Gang considers task precedence and successfully minimizes the end-to-end

deadline, it does not consider energy consumption or system reconfiguration such as DVFS. Our

work combines gang scheduling and adaptive system reconfiguration for energy efficiency.

8 CONCLUSION

In this work, we presented EASYR: Energy-Efficient Adaptive System Reconfiguration for dynamic

deadlines in autonomous driving on multicore processors. Our work is motivated by emerging

autonomous driving applications with time-varying dynamic deadlines, where the computing sys-

tem’s excessive energy consumption is a major concern. Unlike traditional energy optimization

methods assuming rigid static deadlines, our EASYR approach utilizes the dynamic slack obtained

by adaptively relaxing deadlines considering the vehicle’s physical state. Toward that end, EASYR’s

GP-based optimization method proactively exploits the dynamic deadlines to find energy-efficient

multi-mode system configurations. To enable our framework on multicore processors, we use RT-

Gang scheduling to eliminate the challenges introduced by multicore processors: predictability

and schedulability, which are important in the context of real-time systems. The gang scheduling

entails the gang formation problemwhere we provided a greedy heuristic that outputs 32% shorter

end-to-end delay compared to the state of the art. Moreover, EASYR’s safe mode change protocol

enables adaptive system reconfiguration between the predefined modes. Our experimental results
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demonstrate that EASYR achieves an average of 30.3% energy reduction over the conventional

DPM method with the current state-of-the-art gang formation heuristic, demonstrating the great

potential toward energy-efficient autonomous driving systems.

Based on the theoretical foundation presented in this article, in the future we plan to extend

EASYR’s system model considering heterogeneous CPU clusters and other accelerators such as

graphics processing units. Additionally, instead of just velocity, we plan to consider other factors

that can dynamically affect end-to-end deadlines such as adaptive redundant execution for fault

tolerance. Other future extensions would be to jointly support both real-time and non-real-time

tasks, in addition to supporting other popular schedulers such as the rate-monotonic fixed-priority

scheduler with a different schedulability test and a utilization bound.
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