This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2023.3324887

IEEE DESIGN & TEST, VOL. X, NO. Y, DECEMBER 2022

SAFER: Safety Assurances For Emergent Behavior

Caio Batista de Melo, Marzieh Ashrafiamiri, Minjun Seo, Fadi Kurdahi, Fellow, IEEE, Nikil Dutt, Fellow, IEEE

Abstract—Emergent behavior haunts the reliability and safety
of complex software systems. Such behavior consists of un-
expected operations that can arise at runtime and lead the
system to potentially unsafe conditions. The SAFER framework
allows users to model systems using Periodic State Machines
and automatically generates code from a specification. It then
creates a model that learns safe execution based on execution
traces from the code. The applicability of SAFER is demon-
strated through four case studies: Producer-Consumer, Collision
Avoidance, Integer Overflow, and Stack Overflow. These case
studies showcase the framework’s ability to deal with emergent
behaviors for different classes of applications.

Index Terms—System modeling, runtime emergent behavior
detection, runtime system recovery.

I. INTRODUCTION

MERGENT behavior often means complex systems op-

erating in unexpected ways that are not easily predictable
from the behavior of components [1]. This happens not
only in components at different levels of abstraction such
as hardware, software, operating systems, and computer net-
working, but also in fully-integrated computer systems, as
well as unforeseen interactions between them. For example,
protocols/controllers such as SCSI provide various techniques
optimized for stability in the operation of a large number of
physical drives in datacenters, but the vibrations generated
by adjacent drives adversely affect the stability of the entire
system. In another example, well-known issues such as priority
inversion in operating systems can result in blocking of higher-
priority tasks because they require resources held by low-
priority tasks, which can also be considered as emergent
behavior.

These problems are exacerbated when computer systems
are integrated into Cyber-Physical Systems (CPS) that sense
environmental signals and perform computations and control
for actuations in the physical world. Furthermore, CPS are
often systems-of-systems, resulting in a complex interplay of
individual system behaviors that open the door for many yet-
unseen emergent behaviors. As such, emergent behavior is
almost impossible to detect by checking only the isolated parts
of the system, and this requires a holistic system-level analysis.

A CPS is a non-terminating system continuously reacting to
external inputs and usually operates within stringent safety and
security constraints. With increasing complexity, an executing
CPS can — maliciously or inadvertently — steer system behavior
in unanticipated ways through emergent behaviors that have
the potential to affect lives and compromise large investments
or critical assets. Emergent behaviors could result from several
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factors [2], such as incomplete verification, inadequate model-
ing, hardware or software failures, or by malicious agents (i.e.,
an adversary or an insider) and attacks that can compromise
the safety and integrity of these systems.

The CPS must address not only the issues of emergent
behaviors of computer systems but also external influences,
such as sensors and actuators that affect the system. The bigger
problem is that CPS such as autonomous vehicles and medical
devices have an overall impact on human life and safety.
Besides insufficient system-level analysis, malicious attacks
also contribute to the occurrence of emergent behaviors such
as cyber-physical (e.g., side-channel) attacks, which can often
cause irreversible damage in system execution.

Since emergent behavior manifests through a complex ex-
ecution profile of the system, formal verification techniques
such as model checking and runtime verification (RV) can be
deployed to check system correctness. In model checking, a
complete model allows you to take into account any location
of the trace. On the other hand, RV — especially when dealing
with online monitoring — takes into account finite executions
of increasing size. For this, the monitor must be designed to
take into account the execution in an incremental way. RV can
respond nicely to predefined and predictable system states but
may pose difficulty in detecting emergent behaviors.

Anomaly detection (AD) techniques can find an anomaly
or outlier that is significantly different from the remaining
data, and thus flag anomalous execution in computer systems.
For example, network intrusion detection, credit card fraud
detection, sensor network error detection, medical diagnostics,
and many other fields are well-known areas utilizing the
AD technique [3]. AD can be particularly useful at runtime
to detect an execution out of the normal range, and thus
can play a significant role in detecting emergent behavior.
However, since the important system state is not preserved
and is only determined based on stateless input values, further
optimization and backtracking of the system state are almost
impossible by use of AD alone.

As such, RV and AD are useful in their respective domains
but previously have not been used in combination effectively
to detect emergent behaviors. This work proposes SAFER:
a novel methodology that complements runtime verification,
anomaly detection, and system recovery resulting in success-
ful emergent behavior detection and resolution. The SAFER
methodology is illustrated through four case studies, including
a life/safety-critical example — a collision avoidance imple-
mentation of autonomous vehicles.

II. CORRECTNESS VS. NORMALNESS

Our work distinguishes between correct vs. incorrect and
normal vs. anomalous behaviors using the dichotomy shown
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Fig. 1. Classifying a Cyber-Physical System’s Behavior.
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in Figure 1. Consequently, it is essential to distinguish between
correct-normal and emergent behaviors of a system.

Any software component can be represented as a Finite
State Machine (FSM). The FSM used to represent the software
shows the input and output needed for each state of the
program. Also, the transition between the states is illustrated
with the FSM. Besides all the expected states of each software
execution, some meaningless weird states can occur uninten-
tionally. If we reach one of these weird states, we need a new
computing device, also named as a weird machine [2], to sneak
away from the unexpected states and move back to safe and
predictable states.

We can classify the states occurring for a system’s FSM into
two categories: predicted (i.e., normal behavior) and unpre-
dicted (i.e., anomalous behavior) [2]; and we may observe both
desired (i.e., correct) and undesired (i.e., incorrect) behaviors
for each category. The predicted desired behaviors are the
ones included in the system’s design (i.e., correct-normal). The
predicted undesired category is the behaviors known to the
designer as the existing problems (i.e., incorrect-normal). The
unpredicted desired behaviors show a lack in the specification
of the designed system (i.e., correct-anomalous). It is worth
understanding why the system is acting in a way that it
was not designed to. The last category is the unpredictable
undesired behavior, which may cause severe problems for
the system, and is also the source of unexpected behaviors
of the system (i.e., incorrect-anomalous). Thus, we define an
emergent behavior to be any system behavior that is incorrect
or anomalous.

III. ANOMALY DETECTION

A promising approach to detect emergent behaviors is
through anomaly detection. Anomaly detection techniques
can be split into three categories [3]: (i) statistical-based
methods, (ii) proximity-based methods, and (iii) deviation-
based methods.

Statistical-based techniques represent the input data as a
statistical distribution; Proximity-based methods try to find
whether a data is close to the majority of input data or not;
and Deviation-based methods use dimensionality reduction as
a first step to reduce the size of the input data, then use the
reduced data to reconstruct the original data and calculate
the reconstruction error between the original data and its
reconstructed version.
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Fig. 2. Overview of SAFER methodology for (a) design-time, and (b) runtime.

Out of these three categories, deviation-based anomaly
detection methods have recently received significant attention
in the research community with promising results. In particu-
lar, autoencoder based anomaly detection methods have been
enhanced using a more sophisticated neural network model
called Variational AutoEncoders (VAE) [4]. VAEs can detect
anomalies by first doing a dimensionality reduction, where the
dataset is compressed to have a smaller number of features,
called the latent space. Next, it tries to recreate the original
dataset from the latent space using its system knowledge from
training. Finally, it can find the probability that this original
dataset depicts normal system behavior.

The two advantages of using VAE are: (i) it reduces the
dimensions in a probabilistically sound way; and, (ii) the def-
inition of anomaly score is related to the probability measure
rather than reconstruction error.For instance, a recent VAE-
based anomaly detection scheme [4] uses normal instances
and applies the semi-supervised method using a probabilistic
encoder and decoder. For testing the generated model, some
samples are obtained from the probabilistic encoder, then fed
to the probabilistic decoder to gain the required parameter.
Then, the average probability of original data generated from
the distribution is calculated as the reconstruction probability.

Motivated by successful applications of VAEs, we deploy a
VAE-based anomaly detection method as a part of our SAFER
methodology described next.

IV. SAFER METHODOLOGY

The SAFER (Safety Assurances For Emergent Behavior)
methodology shown in Figure 2 consists of (a) a design-time
methodology, and (b) online monitoring using non-intrusive
hardware or software instrumentation.

The design-time methodology (Figure 2 (a)) first develops a
state-based model using Periodic State Machines (PSMs) (1).
The state-based model automatically implements the skeleton
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of the system (e.g., PSM code) and key functions (e.g.,
import/export) and includes instrumentation. It provides the
user with complete source code, and all that is required
is for the user to complete the body of the functions they
defined. The compiled binary contains instrumentation based
annotations, and running it on a real machine produces one
or more sets of execution traces (2). The state-based model
(1) performs formal model construction. This constructs a
runtime verification model (3), which is platform-independent,
as its output. The execution trace (2) and the RV model (3)
cross-reference each other to perform AD and model updates,
respectively. This gives a golden model for online monitoring,
including monitorable properties.

The online monitoring methodology (Figure 2 (b)) performs
RV based on the golden model. The monitor can be non-
intrusive hardware-based such as TAL hardware [5], NUVA
hardware [5], or intrusive middleware. Finally, we enable
the system to trigger recovery techniques when an emergent
behavior is detected through our analysis.

A. Periodic State Machines

SAFER allows users to model systems using Periodic State
Machines (PSMs). PSMs integrate the concepts of periodic
finite state machines with explicit definitions of data com-
munication and synchronization between state machines in
hardware and between hardware and software components.
SAFER uses a conceptually simplified PSM model compared
to [6]; the PSM model used in SAFER is defined below.

A periodic state machine (PSM) is a tuple G =<
P, S,Sy,0,IM, EX > where:

e P is the period at which the state machine executes. The

period P is defined as an explicit time unit, e.g., 200 ns.

e S is a finite and non-empty set of vertices, where each

vertex represents a state. A state is fired at multiples of
P time units.

e Sy is an initial state, an element of S.

o ¢ is the state-transition function: where ¥ is a transition

condition.

e IM is a set of shared variables from other PSMs that are

imported into this PSM.

e EX is a set of shared variables that are exported from

this PSM that can be imported to other PSMs.

A state S in a PSM G is a tuple S =< V;, A, V., > where:

o V; is a shared variable that can be imported, V; € I M;

o A is a set of actions (statements) executed in state S;

o V. is a shared variable that can be exported, V, € EX.

B. Runtime Monitorable Properties

Runtime verification handles verification techniques that can
check whether the execution of the system being monitored
satisfies or violates given properties [7]. Based on the PSM
definition and architecture, SAFER can verify that the PSM
specification is executing correctly by using RV to check the
following properties at runtime:

P1 Only one state can be executed in a PSM.

P2 Export statement queues value of the variable into

message queue.

P3 Import statement waits until message queue has a
relevant Export variable.

P4 Execution time in a state in a PSM cannot exceed
time defined in period p.

P5 Each state will evaluate transition condition(s) every
period p.

P6 Each state in different PSMs can be executed simul-
taneously.

P7 Execution of statement(s) in a state must be done
within period p.

P8 A state S must be moved to one of state(s) in (S,
*) after transition, where * = any.

P9 Variable used in a PSM must be allocated locally and
cannot be used outside of the PSM.

The above properties are divided into two categories: safety
properties and liveness properties. A safety property (P1, P3,
P4, P5, P7, P8, and P9) states that the attribute must be true
for all paths for the system to work safely. A liveness property
(P2, P3, and P5) ensure the progress of the workflow. Note that
P3 and P5 exhibit both safety and liveness properties. These
properties allow SAFER to check all PSM-designs with the
same set of properties, i.e., the deployed RV model checks
only for the properties listed above. As a proof of concept,
SAFER uses a Python framework called pyModelChecking!
to verify the RV properties outlined above.

C. Source Code Generator & Trace Analyzer

PSM models can generate skeleton code that satisfies the
SAFER properties. The pthread library creates concurrent ex-
ecution threads, one for each PSM and each PSM is structured
as a switch-case statement, where we consider what state
it should execute, and statements from the PSM model as
is. Functions are generated with a boilerplate code that only
returns a random number and states add delays corresponding
to the PSM’s period. This is to (i) emulate the expected timing
after the full implementation is included in those functions,
and (ii) ensure that all states have a fair chance to execute
before the correct code is implemented.

Later, when the user implements each PSM’s full behavior,
these delays and boilerplate code can be removed, and the
generated models will still work if the expected timing was
estimated correctly.

The skeleton code is instrumented so that each PSM exports
their execution trace with its current state when that starts
executing, as well as which state it’s transitioning to after
it is done. Traces are then generated using this code, which
produces a sequence of time stamped messages indicating
which state each PSM is executing, and what is the next state
and the reason that triggered the transition to this new state
(i.e., the transition context).

Finally, the global trace is also parsed to extract a stateful
trace that contains current global state, next global state,
execution time for current state, time taken to transition to
the next state, and the context that led to the transition. The
final stateful trace is a dataset where each message from the

Uhttps://github.com/albertocasagrande/pyModelChecking
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global trace is converted into a datapoint that has five sets
of features: (1) the current global state, (2) next global state,
(3) current state execution time, (4) time to transition, (5) and
transition context (i.e., what system conditions are triggering
the next transition).

D. Anomaly Detection Runtime Model

After collecting traces from the correct software generated,
SAFER trains an anomaly detection model using the stateful
trace as input for a variational autoencoder (VAE). We use
Tensorflow 1.15.2 to create a VAE model based on the stateful
trace we extracted from the implementation model.

The goal with the use of the autoencoder is to reduce the
dimensionality from the stateful trace (which could vary based
on the global state length) into 5 dimensions. Originally, each
datapoint has 2N + 3 features, where N is the number of PSMs
of the specification: we consider the current global state, the
next global state, the execution time of the current state, the
time to transition to the next state, and the transition context.

Reducing the dimensionality of our data helps to combine
relevant information in the latent space. The model then tries to
decode the latent space variables back to the original number
of dimensions. Later, the reconstruction probability of each
state is used to determine if it is an anomalous state or not.
The reconstruction probability represents how well the state
can be recreated based on the values of the latent variables. If
this probability is below a certain threshold, then the datapoint
is considered anomalous.

Once the model is trained with the stateful traces, we embed
it into the generated code with the frugally-deep library?. A
new supervisor thread is created that can monitor the state of
the other PSMs as a whole and use this embedded model to
detect anomalies as the system executes.

E. System Recovery

The final part of the SAFER infrastructure consists of re-
covering the system after a property is violated or an anomaly
is detected. If the system is deployed with a recovery method
enabled, the supervisor thread that runs the anomaly detection
model will have access to all data from the system.

When using the Amnesia recovery method, the supervisor
thread will reset all system data to its starting values when
an anomaly is detected, effectively restarting the system to its
starting state. If using the Checkpointing recovery method, the
supervisor thread will make a copy of the current execution
context when a normal state is detected; then, when it detects
an anomaly, it will restore the stored system context from the
last successful check.

Finally, it is important to note that, due to the way the
system is instrumented from scratch, we assume that error-free
sensing of the system state is possible. This assumption might
not hold true in a real-world scenario. In such cases, it would
be possible to incorporate existing literature that can estimate
the system state [8], which can increase the robustness of the
SAFER implementation. However, these exceptional situations
are topics for future research.

Zhttps://github.com/Dobiasd/frugally-deep

V. APPLICATION CLASSES

To validate our framework’s applicability, we conducted
four case studies: Producer-Consumer, Integer Overflow,
Stack-based Overflow, and Collision Avoidance. These four
case studies highlight different aspects of the proposed
methodology. The Producer-Consumer is a small example to
demonstrate rate-based systems, i.e., systems with periodic
behavior.

The Integer Overflow? and Stack-based Overflow* examples
were chosen to represent real-world systems that suffer from
emergent behaviors and there are many dangerous weak-
nesses related to them, which represent systems that can have
critical unexpected behaviors. The examples were designed
as minimal working examples that suffer from the specific
weaknesses they are intended to illustrate. Additionally, the
integer overflow example showcases the need for anomaly
detection on top of runtime verification.

Lastly, the Collision Avoidance is an event-driven system,
i.e., its behavior is not periodic; instead it changes based
on specific events. It depicts a subsystem of an autonomous
vehicle’s collision avoidance logic, which represents a safety
concern if the system misbehaves. Thus, with our goal of
providing safety assurances in mind, we give more focus and
conduct further experiments for the Collision Avoidance sys-
tem due to the potentially catastrophic nature of its emergent
behaviors.

VI. EVALUATION

We conducted five experiments for each case study, wherein
each instance, we corrupted one of the stateful trace features.
That is, after training the model using the training data, we
evaluated the performance of the model using test data in
5 adversarial conditions: (1) corrupted current global state,
(2) corrupted next global state, (3) corrupted state execution
time, (4) corrupted transition time, and (5) corrupted transition
context. The corrupted data was injected directly into the AD
supervisor, i.e., we did not observe what adverse situations
could arise, instead we were interested if the AD supervisor
could identify situations where an unexpected stateful trace
was measured. However, these corruptions could indicate
problems in the system, e.g., an imminent hazard [5]. Thus,
it is vital to detect corruption in a timely manner so that
the system can respond appropriately. To achieve this, we
duplicated the test data and corrupted half of it accordingly.

Table I shows the average F1 score results we obtained
for the test data on each experiment. We chose the F1 score
as the evaluating metric, as it takes both false positives and
false negatives into account. By doing so, we consider both
normal behaviors that were incorrectly deemed anomalous and
anomalous behaviors that were not detected.

Each row on the table shows the F1 scores obtained for each
case study, where each column represents the type of anomaly
that was introduced. The last column shows the average F1
score observed for all anomaly types for each case study.
Similarly, the bottom row shows the average F1 score for

3https://cwe.mitre.org/data/definitions/190.html
“https://cwe.mitre.org/data/definitions/121.htm]
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TABLE I
F1 SCORES FOR PSM ANOMALY DETECTION EXPERIMENTS

Case Stud Current Next Execution  Transition  Transition Avers
ase study State State Time Time Context verage
Producer *g) 730, 8435  9021%  9021%  6696%  lib:
Consumer 8.57%
Integer ‘ 85.45+
Overflow 76.61%  77.25% 96.47% 96.47% 80.45% 9.09%
Stack-based N 0 B N o 90.70+
Overflow 83.29%  77.67% 97.52% 97.52% 95.52% 8.53%
Collision 76.65+
Avoidance 74.55%  75.18% 83.76% 80.73% 69.02% 513%
A 78.79+ 78.61% 91.99+ 91.23+ 78.48+ 83.82+
verage 320%  3.45% 5.51% 6.68% 1213%  9.47%

TABLE 11
COMPARISON OF ANOMALY DETECTION F1 SCORES IN OTHER DOMAINS

Approach Dataset Supervised or Unsupervised ~ F1 Score
SVM [9] KDD99 Supervised 79.11%
SVM with PCA [9] KDD99 Combination of Both 90.51%
Robust Deep AEs [10] MNIST Semi-supervised ~ 75%
Outlier Detection [11] Real-time network traffic Unsupervised 29.82%
SVM [11] Real-time network traffic Supervised 57.25%
CKNN [11] Real-time network traffic Supervised 42.99%
VAE [4] MNIST Semi-supervised ~ 40%
SAFER Real-time execution trace Semi-supervised 83.82%

each anomaly type across all case studies, and the last column
on the bottom row shows the average F1 score across all
experiments.

For all average results, we included the average F1 score +
the standard deviation across the results, e.g., the average F1
score for the Producer Consumer case study is 82.49%, and
the standard deviation for the F1 scores across the different
experiments for this case study is 8.57%.

Across all experiments, we observed an average F1 score of
over 83% when considering the best threshold for each system.
In addition, the average false positive rate across the four case
studies was approximately 16%, and the false negative rate
was approximately 18%. It is also important to note that these
results are only for the AD model. Since SAFER also has an
RV model that can detect other property violations, this result
shows that SAFER can detect up to 83% of the emergent
behaviors that are not detectable with RV only.

These results show great promise for the applicability of the
SAFER framework. The F1 scores show that this approach can
detect the desired anomalous behaviors and not erroneously
flag normal system execution. In particular, it is worth pointing
out that the transition time was the most accurate measure
overall. This makes sense since the transition time is generally
short, so our approach should straightforwardly detect an
unusually long transition.

Additionally, the execution time also proved to be a useful
metric, performing very well in all studies. This can be
related to the PSMs; since they have a defined period, a
state’s execution time should not change a lot, and it has an
upper threshold. Thus, our anomaly detection model accurately
detected the corrupted times that deviated from the expected
system behavior.

Furthermore, the average false negative rate across all case
studies when considering only Execution Time and Transition
Time anomalies was under 5%. This result reinforces our
hypothesis that, due to the time-sensitive nature of PSMs, such
anomalies would be easily detected.

Lastly, the results obtained are encouraging when compared
to existing anomaly detection techniques. Because — to the best
of our knowledge — there is no existing work that is directly
comparable to SAFER, we chose to compare anomaly detec-
tion works from other domains. Table II shows that through the
PSM modeling and stateful trace generation, SAFER is well
equipped to detect anomalies in a wide range of applications.
The only approaches that obtained comparable results [9] [10]
were geared towards, and applied to a single dataset, whereas
SAFER can demonstrably be applied to diverse systems and
still maintain a high F1 score.

Thus, these results support our hypothesis that SAFER
can achieve great anomaly detection results while providing
extreme flexibility by allowing users to define their applica-
tions. Additionally, although SAFER is semi-supervised, the
anomaly detection part of the framework is unsupervised since
it does not require any user input after the user has modeled
their custom application. In comparison, the existing work that
provides unsupervised anomaly detection [11] achieves much
lower results than our proposed approach.

VII. SAFER OVERHEAD

The SAFER methodology does incur overheads that need
to be assessed in a cost-benefit analysis. Table III shows the
overhead added by our approach in terms of binary size,
memory footprint, and performance using the two different
approaches of system recovery. For each of these metrics, we
consider three different overheads: (i) the total overhead; (ii)
the overhead added only by the anomaly detection model; and
(iii) the overhead added only by the system recovery technique
deployed. All comparisons are done to a base binary that is
generated from a PSM design and include only RV. As RV can
be achieved via software, hardware, or a combination of both,
with different levels of size and performance overheads [12],
we chose to include it in the base binary and focus on the
overhead added by the AD and recovery.

The binary size overhead for both recovery techniques is
similar at around 2.5x across all case studies. However, it
is interesting to notice that the Collision Avoidance system
had a slightly lower overhead. Further investigation showed
that the added binary size has around 2.5MB extra due to
the AD runtime model and libraries it requires. Moreover, as
the original system’s binary size grows, this extra size will
represent a smaller relative increase. Additionally, the systems
with Checkpointing also had a slightly higher overhead, as in
order to enable the system to save and restore checkpoints, it
needs to have extra copies of the variables it wants to recover,
whereas the restarting will reset variables to their start values.

The memory footprint overhead is also similar between all
case studies at around 2.7x. Since the most significant factor
in increasing memory is the anomaly detection model, the
smaller original system shows a higher overhead due to the
size of the AD model being relatively bigger. Furthermore,
the Checkpointing technique exhibits a higher overhead once
again since it needs extra memory to store checkpoints.

Lastly, to compare performance overhead, we executed each
binary for a total of 1.000.000 PSM transitions and measured
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TABLE III
METHODOLOGY OVERHEAD
Overhead Amnesia Checkpointing

Producer Integer Stack-based Collision Producer Integer Stack-based Collision

Consumer  Overflow Overflow Avoidance Consumer  Overflow Overflow Avoidance

binary size 2.498x 2.501x 2.498x 2.495x 2.501x 2.502x 2.501x 2.496x
- detection 99.99% 99.88% 99.99% 99.85% 99.86% 99.86% 99.86% 99.80%

- recovery 0.01% 0.12% 0.01% 0.15% 0.14% 0.14% 0.14% 0.20%
memory footprint 2.759x 2.759x 2.758x 2.752x 2.760 2.759x 2.760x 2.753x
- detection 99.94% 99.94% 99.94% 99.88% 99.91% 99.92% 99.90% 99.83%

- recovery 0.06% 0.06% 0.06% 0.12% 0.09% 0.08% 0.10% 0.17%
performance 1.090x 1.065x 1.154x 1.041x 1.107x 1.077x 1.183x 1.113x
- detection 98.77% 97.28% 94.84% 98.25% 97.24% 96.18% 92.58% 91.91%

- recovery 1.23% 2.72% 5.16% 1.75% 2.76% 3.82% 7.42% 8.09%

how long each of them took to finish. For the performance
overhead, there is a bigger variance across the different case
studies. However, the AD model inference still appears as the
bottleneck, accounting for at least 91% of the added overhead.
Although the recovery part accounted for only a small portion
of the performance overhead, it is relevant to note that the
Checkpointing method included a higher overhead than Am-
nesia. This makes sense since Checkpointing executes before
it has to recover by taking snapshots of the system to prepare
for a rollback; whereas Amnesia only executes when it has to
recover the system.

In summary, while SAFER adds overheads to the final
system in providing emergent behavior detection and recovery
at runtime, the designer can adjust the overheads to meet
the requirements for each application. In particular, the fixed-
size overhead of binary size and memory footprint due to
the anomaly detection model embedding does not vary sig-
nificantly between different case studies; and thus can be
considered at design time. Additionally, SAFER’s performance
overhead (due to runtime anomaly detection inferencing) can
be controlled by adjusting how often the supervisor thread
should run the inference process; this enables a trade-off
between performance and safety. Overall, SAFER provides
excellent benefits in terms of safety due to emergent behavior
detection and recovery while giving users ways to adjust the
framework’s overhead to an acceptable level for their use case.

VIII. CONCLUSION

We presented the SAFER methodology to detect emer-
gent (mis)behaviors to ensure the reliability and safety of
complex systems. The emergent behaviors are unexpected
operations that can still arise at runtime and lead the system
to potentially unsafe conditions. To address this problem, we
developed a formal model, the periodic state machine (PSM),
and demonstrated how the model could be branched into
runtime verification and anomaly detection methods. These
two separate models can be integrated into one at the end to
achieve emergent behavior detection. We illustrated SAFER’s
utility through four diverse case studies, with a greater focus
on a safety-critical Collision Avoidance system. Across all
case studies and experiments, SAFER showed an average of
83.82% F1 score for PSM-guided anomaly detection. This

score is on par with the current state-of-art, with the advantage
of being applicable to diverse systems. Lastly, due to its
flexible overhead and the fact that AD models can detect
emergent behaviors early, we believe that SAFER can work as
a first line of safety checks for systems to prevent them from
reaching critical states. In such cases, systems could still have
more taxing last-case solutions in case an emergent behavior
goes undetected by the AD and RV models.

SAFER lays the groundwork for a rich set of future work,
including complex verification with anomaly detection via
unmodified open-source projects that have been affected by
Common Weakness Enumeration (CWE) issues, detection la-
tency analysis, and hardware implementation for non-intrusive
monitoring for detection.
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