2022 IEEE International Conference on Networking, Architecture and Storage (NAS) | 978-1-6654-5408-7/22/$31.00 ©2022 IEEE | DOI: 10.1109/NAS55553.2022.9925330

ProSwap: Period-aware Proactive Swapping to
Maximize Embedded Application Performance

Dongjoo Seo', Biswadip Maity', Ping-Xiang Chen', Dukyoung Yun?, Bryan Donyanavard?, Nikil Dutt!
! University of California, Irvine, > Samsung Electronics, > San Diego State University
{dseo3, maityb, p.x.chen, dutt} @uci.edu, dukyoung.yun@samsung.com, bdonyanavard @sdsu.edu

Abstract—Linux prevents errors due to physical memory
limits by swapping out active application memory from main
memory to secondary storage. Swapping degrades application
performance due to swap-in/out latency overhead. To mitigate the
swapping overhead in periodic applications, we present ProSwap:
a period-aware proactive and adaptive swapping policy for em-
bedded systems. ProSwap exploits application periodic behavior
to proactively swap-out rarely-used physical memory pages,
creating more space for active processes. A flexible memory
reclamation time-window enables adaptation to memory limita-
tions that vary between applications. We demonstrate ProSwap’s
efficacy for an autonomous vehicle application scenario executing
multi-application pipelines, and show that our policy achieves up
to 1.26 x performance gain via proactive swapping.

Index Terms—Swap system, Periodic application, memory
reclamation

I. INTRODUCTION

Modern embedded systems typically execute diverse appli-
cations on a single device, concurrently, with performance
constraints for each application [1]. Shared hardware re-
source contention between applications at runtime adds un-
predictable overhead and negatively impacts application per-
formance [2]. Even with sophisticated resource management
schemes, degraded application performance can be observed
from memory-pressure-induced critical errors due to complex
concurrent resource usage and dynamic application updates.
Thus, careful runtime management of hardware resources
is required to deliver acceptable performance while meeting
latency constraints.

Main memory is a key shared hardware resource under
contention by concurrent applications. Memory becomes over-
committed when the virtual memory requirements of ap-
plications and operating system are no longer satisfied by
the physical memory, leading to unpredictable delays. Such
unpredictable delays can lead to performance degradation in
end-to-end application pipelines with periodically executing
applications. Figure 1 shows an embedded autonomous vehicle
computational pipeline with periodically executing applica-
tions, where the swapping-in/out overhead from overcommit-
ted memory results in performance degradation that can lead
to acute slowdowns, and even fatal errors.

The Linux swap system dynamically swaps-out rarely used
physical memory pages to a disk device when memory is
overcommitted, and swaps-in previously swapped-out pages
as needed. Swapping prevents out-of-memory (OOM) crashes

O Ao ed et TR ROy A% b

| > Application latency ||. Swap overhead|

| Camera || Object detectionl |Lane detectionl |Path Planning| |Steer|

Meets performance constraint:.

Over-committed

j |Performance degradation|.

«can lead to fatal er_rrors_ :

Fig. 1: Simplified end-to-end application pipeline. When mem-
ory is overcommitted, unpredictable delays from swapping can
lead to acute slowdowns, and fatal errors.

at the expense of swap-in/out performance overhead. There
is a rich history of research that attempts to (a) reduce the
swap overhead by optimizing the swap policy, or (b) prevent
physical memory overcommitment. Examples include domain-
specific optimizations in mobile applications [3], DNN appli-
cations [4], and hypervisor or cloud applications [5]. These
techniques are platform- or application-specific, or require
modification of kernel or swap scheme. No existing techniques
target periodic applications. An effective mechanism to handle
overcommitted memory for periodic applications must adapt
at runtime to various concurrent application sets and different
degrees of memory pressure.

We propose ProSwap, an adaptive policy to proactively
swap-out pages for periodic applications on embedded sys-
tems. ProSwap reduces swap penalty by proactively identi-
fying memory pages to swap-out based on memory phasic
behavior. The policy works in conjunction with the default
Linux swap system without kernel modification, and can adapt
to diverse concurrent applications with different periods.

The main contributions of this paper are:

e ProSwap: a proactive memory reclamation policy to
identify memory pages to swap-out at runtime, and adap-
tively change the reclamation-window based on periodic
application behavior.

o An implementation of ProSwap as a user-level swapping
policy using eBPF (extended Berkeley Packet Filter) [6]
for periodic applications that does not require source-code
or kernel modifications.

*"Access paid by The UC Irvine Libraries. Downloaded on January 19,2024 at 22:21:23 UTC from IEEE Xplore. Restrictions apply.

o An experimental case study that demonstrates the effi-
cacy of ProSwap for an autonomous vehicle application
scenario, showing performance gains of up to 1.26x for
a representative end-to-end application pipeline.

II. PROSWAP: PROACTIVE MEMORY RECLAMATION
POLICY

When memory is overcommitted, memory accesses by con-
current applications frequently experience swap-in/out over-
head. The overhead adversely affects the application’s perfor-
mance, and intensifies when many applications are running
simultaneously. We make the observation that accesses to
memory pages in periodic applications are amenable to proac-
tive swapping. Accordingly, ProSwap deploys two components
to reclaim memory in overcommitted scenarios: a memory
monitor that identifies memory pages experiencing periodic
activity, and @ a reclamation routine that proactively evicts
memory pages.

A. Memory Monitor to Identify Periodic Memory Pages

Proactive eviction must target periodically-accessed mem-
ory, because reclaiming random memory pages will lead
to additional overhead without improvement. Algorithm 1
specifies ProSwap’s memory monitor routine that identifies
periodic memory page activity. We maintain a set of virtual
page numbers in each process that are swapped out along with
the average time between consecutive swap-outs. We deploy
a simple heuristic that defines periodic memory activity as
a a page swap-out count > 2, and the time-period as the
average elapsed time between swaps. The memory monitor
is able to update the information corresponding to memory
swaps with minimal monitoring overhead by using event-
driven techniques offered by eBPF (extended Berkeley Packet
Filter) [6].

Algorithm 1 Memory Monitor routine

Hash set of swap-out statistics S: K — V

1: K = { 1d of process, virtual page number }

2: V' = { Number of swap-out, Average elapsed time }
3: if Swap-out event occurred then

4 K = event data

5: if K in S then

6: Update V' by event data

7: else

8: K[S] = event data

9: else

10: Wait for event

B. Reclamation Routine

Algorithm 2 specifies ProSwap’s reclamation routine that
performs proactive eviction of periodically accessed pages to
reclaim the memory before the next memory reference. We use
an adaptive time window with victim memory reclamation.

Adaptive time window for reclamation: We start with a
user-configurable initial time window () for reclamation that
adapts at runtime based on periodic activity. Note that while

Algorithm 2 Reclamation routine

Sleep time multiply: o
Initial timing window: ~
Hash set of swap-out statistics: S
Timing window for reclaiming: 7'
Application state: A < non-periodic
1: while True do
2 Sort S by the number of swap-outs
3 if number of swap out in S[0] >= 2 then
4: A + periodic
5: Clear pagecache
6
7
8
9

> configurable
> configurable

Disable readahead of disk
Disable page fault around size
T = S[0]’s average elapsed time

: else
10: A + non-periodic
11: Restore size of readahead and page fault arounding
12: T=v
13: while During 7' x @ do
14: if A is periodic then
15: if During 7" and
referenced bit of virtual page >= 1 then
16: Swap-out page
17: else
18: if During 7" and
referenced bit of virtual page <=1 then
19: Swap-out page

memory optimizations (e.g., readahead, page fault around)
reduce the overhead of disk activity through localization,
they create additional overhead when memory is overcommit-
ted. We therefore temporarily disable the operating system’s
memory access optimizations for periodic memory accesses,
and initialize the reclamation period for ProSwap (Lines 4-
8). The reclamation period is adapted based on the average
elapsed time of the application’s most-swapped-out page (Line
8). When periodic activity is no longer detected, we restore
memory access optimizations (Lines 10-12).

Victim memory reclaim: If the application (A) is periodic
(Lines 14-16), we swap-out the memory pages that were
already referenced in the current reclamation window, since
they will not be referenced again. If A is non-periodic (Lines
17-19), we swap-out the memory pages that were rarely
referenced by the application (number of references < 1). We
observe that rarely referenced pages are typically used during
application warm-up and not referenced throughout runtime.

In summary, ProSwap adapts its reclamation time-window
based on application phasic behavior, and uses a combination
of the monitoring and reclamation routines to proactively
swap-out less-referenced pages.

III. RESULTS

We evaluate ProSwap in three execution scenarios: 1) a
synthetic periodic workload, 2) exemplar autonomous vehicle

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 19,2024 at 22:21:23 UTC from IEEE Xplore. Restrictions apply.

= £0.75
g 5 05
5 € 0.25 -
Z& 0
default OnDemand ProSwap

Fig. 2: Synthethic workload performace with overcommitted
memory for OnDemand and ProSwap policies, normalized to
non-overcommitted scenario (default)

applications in isolation, and 3) autonomous vehicle applica-
tions in end-to-end pipelines:

1) Synthetic workload: Simple memory allocation with
periodic memory references.

2) Isolated representative applications: lane detection [7],
path planning [8], and object detection [9]. Their pe-
riodic behavior reflects real-world autonomous vehicle
software stack where the same computation is performed
over repeated inputs.

3) Pipelined application set: pipeline workload with four
periodic applications [8].

A. Experimental Setup

Our experimental hardware platform has an Intel i7-11700
CPU with 16GB main memory and a Crucial CT1024MX
ITB SSD. We use Linux version 5.15 and docker re-
source virtualization based on cgroup [10]. We emulate re-
source restrictions using virtual cpus (set to four cores with
—-—cpuset-cpus, ——cpus flags) and virtual main-memory
(with ——memory flag). We use eBPF for monitoring the
memory page information from the Linux kernel and Linux
DAMON for dropping the memory (reclamation).

B. Synthetic workload

To show the effectiveness of ProSwap, we use the memory
access workload in the memory access simulator MASTIM [11].
The workload allocates 200MB memory during initialization
and references the upper 100MB and lower 100MB regions
of virtual memory in an interleaved fashion.

Figure 2 shows the performance of synthetic workloads
for three cases (X-axis): (1) default (no overcommitted mem-
ory), (2) overcommitted memory with OnDemand' swap,
and (3) overcommitted memory with ProSwap. To emulate
overcommitted memory, we restrict the physical memory size
to 100MB when launching the container. The Y-axis shows
performance as the number of memory references per second
normalized to case (1). We make two key observations. First,
the performance of OnDemand (normalized to default case)
is 0.5, meaning the performance is directly proportional to
the available physical memory (100MB instead of 200MB).
Second, ProSwap improves application performance by 44%
(0.72 instead of 0.5) compared to OnDemand. The perfor-
mance enhancement comes from the reduction in swap-out
delays. We conclude that proactive swap-out is effective for
a synthetic periodic application. We note, however, that the

!OnDemand swapping is the default swap system in Linux.

Applications
Lane Detection
Path Planner
Object Detection
Steer (DASM)

Description
Detect lane by using camera input
Find the path for vehicle by using inputs
Detect object by using camera input
Drivers assistance system module to steer car

TABLE I: Application set from Chauffeur

synthetic workload tries to touch a large region of allocated
memory, whereas real-world applications touch a restricted
small memory region with diverse access patterns.

C. Representative embedded applications

As an exemplar of real pipelined periodic applications for
autonomous vehicles, we use selected applications from the
Chauffeur benchmark suite [8] shown in Table I.

Isolated: First, we evaluate the memory footprint reduction
of each Chauffeur autonomous driving application in isolation
without overcommitted memory. The result is shown in Table
II. We observe that ProSwap can reduce the average resident
memory size dramatically through proactive memory reclama-
tion. On average we reduce resident memory by 44%, and up
to 89% for object Detection. Thus, ProSwap is effective in re-
ducing memory requirements without sacrificing performance
when applications are considered in isolation by reclaiming
unused pages at runtime.

. normal resident | reduced resident .
Application name . . reduction
memory size memory size
Lane Detection 286MB 120MB -58%
Path Planner 949MB 742MB 21%
Object Detection 801MB 74MB -89%
DASM IMB 0.92MB -8%

TABLE 1II: Application resident memory reduction during
running phase with ProSwap

Pipelined: Next, we evaluate the performance of the entire
Chauffeur autonomous driving application pipeline. Figure 3
shows the performance of the end-to-end application pipeline
for different overcommitted memory scenarios. We run each
experiment for five minutes and take an average across ten
runs. The X-axis corresponds to different memory restrictions:
Low restriction (30%), Medium restriction (50%), High re-
striction (70%). The Y-axis shows how many input frames are
processed every second with ProSwap (black), and OnDemand
(gray). We make the following observations: Performance,
i.e., frames-per-second (fps), decreases when memory pressure
is increased for both OnDemand and ProSwap policies. The
performance decreases as memory pressure increases due to

12.09
o T 12 10.46 LL37 9.93
2 & 1 936 9
5 0 7.85
= @ 8
a
Low Medium High
’lIProswap 00 OnDemand ‘

Fig. 3: Comparison of pipeline performance

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 19,2024 at 22:21:23 UTC from IEEE Xplore. Restrictions apply.

141
o ~ 4.
oS v 1.2
'Egoé
L2
= 2 &

0 30 60 90 120 150 180 210 240 270 300
Time(s)

--«--Low ——Medium —s—High

Fig. 4: Adaptive reclamation window size over time for low,
medium, and high memory pressure

exacerbated swap activity. In all cases, ProSwap can increase
performance over OnDemand: 10.46—12.09 (15%) for low,
9.36—11.37 (21%) for medium, and 7.85—9.93 (26%) for
high memory pressure. This demonstrates the efficacy of
ProSwap for a real-world application pipeline under various
degrees of memory pressure. The average performance im-
provement in the real-world applications (up to 21%) is less
than the synthetic applications (44%). This is because the
synthetic workload assumes 100% memory activity with no
compute cycles. This results in a proliferated gain for the
synthetic workload, but does not reflect real-world behavior.

We investigate how ProSwap adapts the reclamation window
in Figure 4. For low memory pressure, the reclamation window
changes infrequently but in large steps due to limited swap
activity. For medium and high memory pressure scenarios, the
reclamation window changes soon after launching the pipeline
due to high swap activity. ProSwap can necessarily adapt its
reclamation window according to application.

We conclude that ProSwap can adapt to different mem-
ory pressures without any additional information from the
application and proactively reclaim memory for improved
performance in overcommitted memory scenarios.

IV. RELATED WORK

When a memory access causes a page fault, the page fault
handler fetches the corresponding page from disk to main
memory [12]. If physical memory is running out, the Linux
OnDemand swap system reclaims memory by maintaining a
list of inactive pages. Prior work has improved OnDemand
swap by optimizing page size, queue length, and timing prop-
erties, and proposed application-specific enhancements. Kim
et al. [3] suggest an application-behavior-based swap system
for Android. Ko [5] and Xue [4] improve the performance
by tweaking the size of each swap-out page. Park et al.
[13] use object priority to guide the swap system to improve
performance. However, it requires custom application-/OS-
level modifications, and is not applicable for concurrently
running applications.

Our ProSwap policy is the first to proactively complement
the swap system by predicting periodic behavior to maximize
performance when memory becomes overcommitted.

V. CONCLUSION

We presented ProSwap, a proactive memory reclaim policy
for periodic embedded applications. We evaluated ProSwap

for various applications sets including synthetic, single appli-
cations, as well as realistic end-to-end pipelined applications
through an exemplar autonomous driving benchmark suite.
ProSwap achieves up to 26% performance gain by proactively
swapping out memory pages for periodic memory access
applications, and dramatically decreases up to 89% of resident
physical memory size of these applications with minimal
overhead.

ACKNOWLEDGMENT

This work was partially supported by NSF grant CCF-
1704859, a research gift from Meta Platforms, Inc., and a
grant from Samsung Electronics Co., Ltd.

REFERENCES

[11 A. Malinowski and H. Yu, “Comparison of embedded
system design for industrial applications,” IEEE transac-
tions on industrial informatics, pp. 244-254, 2011.

[2] G. Xie et al., “High performance real-time scheduling
of multiple mixed-criticality functions in heterogeneous
distributed embedded systems,” Journal of Systems Ar-
chitecture, pp. 3-14, 2016.

[3] S. Kim et al., “Application-aware swapping for mobile
systems,” ACM Transactions on Embedded Computing
Systems (TECS), pp. 1-19, 2017.

[4] F. Xue et al., “Edgeld: Locally distributed deep learn-
ing inference on edge device clusters,” in 2020 IEEE
HPCC/SmartCity/DSS, 2020, pp. 613-619.

[5] S. Ko et al., “A new linux swap system for flash memory
storage devices,” in 2008 IEEE International Conference
on Computational Sciences and Its Applications, 2008,
pp. 151-156.

[6] D. Renzo and D. Michele, “Berkeley packet filter: theory,
practice and perspectives.”

[7] A. A. Assidig, O. O. Khalifa, M. R. Islam, and S. Khan,
“Real time lane detection for autonomous vehicles,” in
2008 International Conference on Computer and Com-
munication Engineering. 1EEE, 2008, pp. 82—88.

[8] B. Maity et al., “Chauffeur: Benchmark suite for de-
sign and end-to-end analysis of self-driving vehicles on
embedded systems,” ACM Transactions on Embedded
Computing Systems (TECS), pp. 1-22, 2021.

[9] M. Bjelonic, “Yolo ros: Real-time

detection for ros,” URL:

com/leggedrobotics/darknet_ros, 2018.

J. Turnbull, The Docker Book: Containerization is the

new virtualization. James Turnbull, 2014.

[11] S. Park et-al, “Memory access

https://github.com/sjp38/masim, 2021.

R. V. Riel, “Page replacement in linux 2.4 memory

management.” in USENIX Annual Technical Conference,

FREENIX Track, 2001, pp. 165-172.

S. Park et al., “Automating context-based access pattern

hint injection for system performance and swap storage

durability,” in 11th {USENIX} Workshop on Hot Topics

in Storage and File Systems (HotStorage 19), 2019.

object
https://github.

simulator,”’

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on January 19,2024 at 22:21:23 UTC from IEEE Xplore. Restrictions apply.

