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Abstract

We consider the problem of finding an accurate representation of neuron shapes,
extracting sub-cellular features, and classifying neurons based on neuron shapes.

In neuroscience research, the skeleton representation is often used as a compact

and abstract representation of neuron shapes. However, existing methods are lim-

ited to getting and analyzing “curve” skeletons which can only be applied for tubular
shapes. This paper presents a 3D neuron morphology analysis method for more
general and complex neuron shapes. First, we introduce the concept of skeleton mesh
to represent general neuron shapes and propose a novel method for computing
mesh representations from 3D surface point clouds. A skeleton graph is then obtained
from skeleton mesh and is used to extract sub-cellular features. Finally, an unsupervised
learning method is used to embed the skeleton graph for neuron classification. Exten-
sive experiment results are provided and demonstrate the robustness of our method
to analyze neuron morphology.

Keywords: 3D neuron morphology, Skeleton mesh, Graph, Sub-cellular features,
Embedding, Classification

Introduction

The importance of neuronal morphology has been recognized from the early days of
neuroscience [1]. There are three obstacles in automatic neuron morphology analysis.
First, we need to have a good shape representation of each neuron. Skeleton represen-
tations are widely used in neuroscience [2-5] as they provide a compact and abstract
shape representation. Mathematically, skeletonization or medial axis transform (MAT)
has a rigorous definition for arbitrary shapes. The skeleton of a shape is defined as a col-
lection of interior points that have at least two closest points on the surface of the shape.
We refer to those interior points as skeleton points and each skeleton point is associ-
ated with a radius. Figure 1 shows an example of MAT. However, in reality, it is not an
easy task to get skeleton representation directly from images. Most automatic or manual
segmentation methods output a cloud of surface points. Thus, we need to compute the
3D neuron skeleton from 3D surface point clouds. The skeleton representation further

©The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05482-y&domain=pdf

Jiang et al. BMC Bioinformatics (2023) 24:366 Page 2 of 19

surface ‘
medial axis

(skeleton)
\ =
///

skeleton sphere

4

|
/ ‘radius

Fig. 1 lllustration of MAT by using a 2D shape example

enables computing sub-cellular features such as length and number of branches of neu-
rons as well as classification of neurons.

The main contribution of this paper is a robust and efficient method for computing a
skeleton representation from a set of 3D surface points. This 3D skeleton representation
can be used for a quantitative analysis of neuronal cell structures, including sub-cellular
feature calculations and for neuron type classification based on 3D shapes.

There is an extensive literature on neuron skeleton extraction [3, 6, 7]. In [3], the skel-
eton representation is computed from a 3D mesh by using a traditional morphological
thinning algorithm [8]. This method has two main drawbacks. First, the thinning algo-
rithm is sensitive to noise of 3D mesh. Second, in reality, we usually get discrete 3D
surface points of neurons from the segmentation step, and constructing 3D mesh from
those discrete 3D surface points will introduce additional noise. To make the skeleton
extraction model more robust, Ref. [7] proposes to use deep learning network to learn
skeleton representation. The main idea of the paper is to use the deep learning net-
work to predict skeletons from features of multiple spatial scale layers. This model still
takes a continuous surface as input, as opposed to discrete surface points. Further, this
is a supervised method and it requires training samples. In [6], they propose extract-
ing skeleton representations directly from discrete surface points by using a 3D discrete
distance transform. However, this only works well for curve skeletons and only tubu-
lar structures have curve skeletons. General 3D shapes will result in surface skeletons
as shown in Fig. 2. In practice, skeleton mesh is used to represent the surface skeleton.
There is no existing method to extract skeleton mesh from surface point clouds for neu-
ron morphology analysis.

There are also methods to analyze neuron shapes using the skeleton representa-
tion. For skeleton classification task, [3, 9-13] use predefined handcrafted features
to represent neuron morphology and classify neurons based on those representa-
tions. [3] proposes to compare similarity of skeletons by using local skeleton features.
It breaks a neuron skeleton into short segments and characterize segments by loca-
tion and direction of segments. Similarly, compared to [3, 11] provides a more robust
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Fig. 2 Visualization of a 3D ellipsoid shape and its surface skeleton from two points of view. Yellow triangle
mesh represents object surface. Black contour represents the outline of the skeleton surface. Magenta and
Cyan line segments represent two closest surface points from the skeleton point. Two colors are used to
differentiate different directions

method to find branches of neuron which do not have many local fluctuations. Refer-
ence [9, 10] extract other cellular and sub-cellular features, such as length of neu-
ron, the surface area of soma, dendritic length from “curve” skeletons to represent
neuron morphology. Reference [12] models the skeleton as a graph and uses paths
in the graph as the feature to represent neuron morphology. Reference [13] defines a
specific descriptor function to capture global and local information from the skeleton.
The main drawback of the handcrafted feature is its limited representation capability.
To solve the problem of handcrafted feature, several learning based methods [14—16]
have been proposed recently to classify neuron skeletons. References [14, 15] project
3D skeletons back to 2D images and use convolution neural networks to get skeleton
representation from 2D images. However, 3D shape information is lost when project-
ing onto 2D images even with multi-view projections like [14]. To avoid projecting 3D
skeletons into 2D images, Ref. [16] models the neuron skeleton as a graph directly and
proposes a contrastive graph neural network (GNN) learning framework to represent
the neuron. Similar to all above mentioned methods, Ref. [16] only works for “curve”
skeletons but not for surface skeletons. There are fundamental differences between
curve skeletons and skeleton meshes. For example, there are no cycles in curve skele-
tons but that is not the case in skeleton meshes. Ref. [17] can handle skeleton meshes.
However, they only consider features from skeleton points for the classification and it
does not fully utilize the skeleton mesh information.

To analyze general neuron shapes, this paper presents a robust 3D neuron mor-
phology analysis framework based on the surface skeleton representation of neurons.
In [18], the authors propose an unsupervised deep learning skeleton mesh extrac-
tion method. However, this method does not work well when neurons have concave
shapes. Our skeleton mesh extraction method is built upon [18], and by using esti-

mated surface norm of point clouds as part of the optimization function, we address
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this drawback. Next the skeleton mesh is converted to an undirected graph called
skeleton graph. Inspired by [19], we embed the skeleton graph by maximizing mutual
information, and then classify neurons based on the embedding of each skeleton. To
compute cellular/sub-cellular features of neurons from the skeleton representation,
we also utilize the skeleton graph. A simple but effective recursive algorithm is pro-
posed to get number of branches and length of neurons.

We apply our neuron morphology analysis method to classify Ciona neurons. The
Ciona sea squirt is one of the widely studied tunicates in neuroscience [20]. Its brain is
closely related to vertebrates with a much simpler neuronal structure. In a single Ciona
larva, it has only about 187 neurons with about 6600 synapses [20]. Studying the Ciona
brain in depth can reveal the general principles behind the mechanism of how vertebrate
brains work [21]. We also present our results on the NeuroMorpho[22] dataset. In sum-

mary, the main contribution of our paper include

+ A robust and efficient skeleton mesh extraction method with novel cost function by
using properties of MAT. To the best of our knowledge, this is the first one to use
skeleton mesh instead of the curve skeleton to analyze neuronal shapes

+ A 3D Ciona neuron dataset that can be used for neuron morphology analysis.

Method

Figure 3 illustrates our overall neuron morphology analysis method. Given a set of sur-
face point clouds as input, we introduce an unsupervised deep learning method to get
the skeleton mesh representation of each neuron. This is achieved by using the proper-
ties of the traditional medial axis transform (MAT). The skeleton mesh representation
includes skeleton points with radii as well as the connection of those skeleton points
as shown in Fig. 3. Second, the skeleton representation of each neuron is transformed
into a skeleton graph. Each node in the skeleton graph represents a skeleton point. If
there is an edge between two nodes, it means those two skeleton points are connected.
The weight of the edge represents distance between the two skeleton points. Radii as
well as the location of each skeleton point are attributes of each node. Next, length and
number of branches of neurons are computed from the skeleton graph. To compare dif-
ferent shapes of neurons, a graph level representation learning method is used to embed
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Mesh ¥ eature
Representation ' Skeleton Graph Skeleton Graph Example extraction
from 3D Surface A from Skeleton t - |:>
Points f Mesh 02 % I
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Fig. 3 Overview of our proposed neuron morphology analysis pipeline. Given a surface point cloud as
input, we extract the skeleton mesh. The skeleton mesh includes skeleton points with their radii as well as
the connection of skeleton points. Then we construct the skeleton graph. Each node in a skeleton graph
represents a skeleton point, and edge in the graph represents the connection between skeleton points.
Next, we propose a graph analysis method to get length and number of branches of neurons based on the
skeleton graph. We also use the skeleton graph for classification task by embedding it into a fixed length
vector
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the skeleton graph. The representation learning method is an unsupervised method that

maximizes mutual information of the skeleton graph.

Skeleton mesh from 3D surface point cloud

Our unsupervised 3D neuron skeleton extraction method is built upon the method in
[18] as illustrated in Fig. 4. Given a 3D surface point cloud as input, PointNet++ [23] is
used as the encoder to obtain the sampled surface points with features. Next, a multi-
layer-perceptron (MLP) is used to learn the geometric transformation to predict the
skeleton points with their radii using linear combination of the MLP input points. Com-
pared to [18], we propose to use properties of skeleton points as the prior knowledge
to make the geometric transformation learning process more robust to general shapes.
After getting skeleton points with radii, a graph auto-encoder is used to predict links

between skeleton points.

Skeleton points prediction

RMx3 where M is a number of

Mathematically, given a set of 3D surface points P €
points, we want to predict N skeleton spheres s; =< ¢;, r; > where ¢; is the center of each
sphere and r; is the radius of each sphere.

As illustrated in Fig. 4, we first use PointNet++ [23] as the encoder to obtain a set of
sampled input points P’ € RM'*3 and their associated contextual features F € RM *D,
M'(M' < M) is the number of feature points after PointNet++ and D is the feature dimen-
sion of each feature point. PointNet-+-+ groups points and extract point features hierarchi-
cally. It contains a number of set abstraction levels. For each set abstraction level, there are
three layers: Sampling layer, Grouping layer, and PointNet layer. For the first set abstraction
level, the input is P, a set of M number of 3D surface points. Next, Sampling layer is applied.
The iterative farthest point sampling (FPS) [23] is used to get M’ sampled points. In the
grouping layer, those M’ sampled points are used as the centroid points. Then for each cen-
troid, all M points within a radius are viewed as neighbor points and are grouped into that
local region. Therefore, each centroid has K neighbors and K can vary for different groups.
After Sampling and Grouping layers, PointNet [24] layer is used to extract features for each
local region. The sampling layer, grouping layer, and PointNet layer consists one set abstrac-

tion level, and we stack such abstraction levels to form a hierarchical architecture to get
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Fig. 4 Overview of neuron skeleton representation method. Given 3D surface point cloud as input,
PointNet++ [23] is used to extract features of the input point cloud. Then a geometric transformation
learned by MLP will predict the skeleton points location with their radii. After skeleton points prediction, two
simple priors are used to initially connect some skeleton points, and a graph auto-encoder is used to predict
all links that connect skeleton points
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features at different spatial scales. Next, multi-scale grouping is applied to concatenate the
features from different spatial scales.

A Multi-Layer Perceptron (MLP) is used to estimate the geometrical transformation to
get a set of skeleton spheres’ center points C, {c1, €2, ..., cx'}. The geometric transformation
we use is a convex combination of input points P’. MLP with softmax function is used to
estimate the weight W € R XN of the convex combination in Eq. 1.

M
C=W'P'  subjectto  Vje({l.,N} > W;=1 (1)
i=1

As shown in [18], the same weight matrix W can be used to compute r(c) € R using
Eq.2

R=WID (2)

where D € RM *1 is a vector of d(p’,C). d(p’,C) is the closest distance of one surface
point p’ to all skeleton points C and is defined as d(p’, C) = mincec ||p’ — cll2

A set of loss functions are defined in [18] to train the MLP. The loss function includes
sampling loss L, point-to-sphere loss Ly, and radius regularizer loss L,. The first two losses
are based on the recoverability of skeleton representation. The last loss term is to encourage
larger radii to avoid instability induced by surface noise.

For the sampling loss L;, we sample points on the surface of each skeleton sphere and
measure the Chamfer Distance (CD) between the set of sampled sphere points T and the
set of sampled surface points from PointNet++ P’ as in Eq. 3:

Ly = min ||p’ — t|]2 + min ||t — p’
‘ Z min [|p’ — /]2 Zp,ep,ll P'll2 3)
p’epP’ teT

Point-to-sphere loss L, measures the reconstruction error by explicitly optimizing the
coordinate of skeleton points and their radii:

_ . /o o min . i _
Ly=>_ (rpelgnp cllz = r(cy >>+§(§glg||c P'll2 r(c)) (4)

peP’

where C is a set of predicted skeleton points, 7(c) is a radius of skeleton point ¢, and CZ,IM
is the cloest skeleton points to a point p’.

Radius regularizer loss L, is defined in Eq. 5 where r(c) is a radius of the skeleton point
c. By minimizing this loss, it encourages large radii of skeleton points to make the skeleton

points prediction more stable.

L, = —Zr(c) )

ceC

However, based on above three losses, predicted skeleton points can be outside of a
shape if the shape is concave. Therefore, we introduce the skeleton-to-surface norm loss
L, to encourage the skeleton points to be inside the shape. L, is a term to measure the
reconstruction error by utilizing the property of spoke direction in MAT. Figure 5 illus-
trates a spoke of a skeleton point in MAT. The length of a spoke of the skeleton point c
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Fig. 5 Spoke is a vector connecting a skeleton point and that skeleton point’s one of two closest surface
points. The vector points from the skeleton point to the surface point. Green dashed lines represent the
implicit surface of an object, blue dot is one skeleton point, orange dots represent surface points, and the
arrow represents a spoke. Spoke is perpendicular to the object surface at the surface point

is 7(c). This is also one of our main contribution compared to [18] for skeleton points
prediction. In theory, the direction of the spoke should be perpendicular to the object
surface at the surface point [17]. Also the spoke direction should be pointing outside of a
shape. To capture this property, we define L,;:

[ ’ min
pcmm —c P — Cp/
L, = l_n’min' T + l1-n,- ———
n E < P, ||Pcmm _ C||2 § : p _ CW/IWIHZ (6)

’
ceC p'eP’ | |P P

p;”‘i” is the closest surface point to the skeleton point ¢ and i is the estimated surface

norm of the surface point. The “-” denotes the dot product between two vectors. To esti-
mate the norm of each point in the 3D surface points, the adjacent points are found first
and then principal axis of the adjacent points using covariance analysis are calculated.
More details of the norm estimation of each surface point are described in [25]. L,
encourages the skeleton points to be located within a shape even the shape is concave.

Links prediction

After predicting skeleton points, our target is to predict links to connect skeleton points
to form the skeleton mesh. In theory, for any pair of skeleton points, if all points that are
on the line connecting the two skeleton points are also on the skeleton surface, there
should be links between those two points. We adapt the graph auto encoder (GAE) as
used in [18] to predict links between skeleton points. GAE takes input the initialized
adjacency matrix A;y; of the skeleton mesh graph G, and the skeleton points’ features.
The skeleton points’ features is concatenation of C, R, and WTF. C are coordinates of
skeleton points, R are radii of skeleton points, W is the learned weights from the MLP,
and F is the contextual features of the surface points from PointNet++. GAE outputs
the estimated adjacency matrix A of Gesn- The loss function is a Masked Balanced
Cross-Entropy (MBCE) loss as proposed in [26].

Sub-cellular feature extraction from the skeleton graph

Skeleton model can be represented as the skeleton graph G(V, E) where V represents all
skeleton points and E represents connection between skeleton points. The weight of the
edge represents distance between skeleton points.
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Neuron length computation from skeleton graph

We formulate the neuron length computation problem as finding the longest simple
path in the skeleton graph G. A simple path in the graph is a path that does not have
repeat nodes. In G, the length of the path is the sum of all edges’ weights along the
path. Note that our skeleton graph can have loops. To solve this problem, for each
node, we find the longest simple path from that node and denote as path(i) for node
i. To avoid getting stuck during the loop, we mark any node when we visits as shown
in the algorithm below. Next, we find i* that maximizes path. We use the following
recurrent algorithm to find the longest simple path from one node in the skeleton
graph.

Algorithm 1 Find the longest simple path from node i

D[j] represents the longest path from j to i. Initially, D[j]=0 for all j
function LONGESTPATH(i, currLength)
if Node i is visited then
return
end if
change i status to visited
if D[i] <currLength then
Dli]=currLength
end if
for all nodes j that is connected to i do
LongestPath(j, currLength+edgeweight[i,j])
end for
change i status to not visited
end function

Algorithm 1 Find the longest simple path from node i

Neuron branch calculation

After finding the longest simple path, we are able to identify a set of nodes on that
path. Those nodes are possible branching nodes. We name a set containing all pos-
sible branching nodes as B For each node i € B, we find the longest simple path from
that node i which does not contain any other nodes in B. Therefore, the branch is
identified as the longest simple path.

Skeleton model comparison

We cluster neuron morphology by comparing different skeleton graphs. Specifically,
we embed the skeleton graphs and then cluster neurons based on their embeddings.
We embed the skeleton graph based on InfoGraph [19] as illustrated in Fig. 6. The
embedding process is in an unsupervised manner.

First, graph convolutional layers are used to generate node features which we refer
to as patch representation hé (i is the skeleton graph index and j is the node index of
the skeleton graph 7). Then graph-level pooling is used on all patch representations to
get the graph level representation (global representation) H;. The mutual information
(MI) estimator on global-patch pairs over the given graph dataset G is defined as:

M=y % S, Hy )

iek jeG;

where K is the total number of graphs in the dataset and G; € G.
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Fig. 6 We use two example skeleton graphs (blue and orange) to demonstrate how we embed the skeleton
graph. Each node of a skeleton graph is encoded into a feature vector by using graph convolution layers. A
fixed length graph level feature vector (global representation) is obtained by graph-level pooling operation of
each node feature vector. The discriminator takes inputs both global representation and patch representation
to decide whether they are from the same skeleton graph. In this toy example, there will be 14 global-patch
pairs

MI is the mutual information estimator modeled by the discriminator 7. The
Jensen-Shannon MI estimator proposed in [19] is

I(W,H;)) =E [—sp(—T(hjf,Hi)} —-E {—SP(—T(h/,:/»Hi)] (8)

where E is the expectation (here it is just average operation) and sp(z) = log(1 + €°).
i and i’ denote two graph samples from the dataset G. The discriminator T estimates
global-patch representation pairs by passing two representations to different non-linear
transformations and then takes the dot product of the two transformed representations.
Both non-linear transformations consist 3 linear layers with ReLU activation functions.
Therefore, the discriminator will output a score between [0, o0) to represent whether the
input patch (node) is from the input graph. If the input global/patch pairs are from the
same graph, we refer to them as positive samples, otherwise negative samples. We ran-
domly sample pairs as input to the discriminator.

Dataset

Ciona neuron EM dataset

The first dataset (Dataset 1) contains two Ciona larva 3D TEM images [20]. The sec-
tion thickness for TEM images varies between 35 nm and 100 nm. For each section,
xy resolution is 3.85x3.85 nm. Animal 1 contains 7671 sections and animal 2 contains
about 8000 sections. In each Ciona larva, 187 neurons are annotated. Those 187 neurons
can be grouped into 31 types. For animal 2, Ciona neuron skeletons are traced using
TrackEM2 [27], an Image] [28] plugin. This dataset is summarized in Table 1, and we
refer to [20] for more details.

C.elegans Neuron dataset from NeuroMorpho

NeuronMorpho [22] is a publicly available dataset that is used for neuron morphology
research. It has dozens of different animals’ neurons. So far, it is the largest neuron skel-
etons dataset with associated metadata. In this paper, we take a subset of C.elegans data-
set (Dataset 2) from the whole NeuroMorpho dataset to verify our sub-cellular feature



Jiang et al. BMC Bioinformatics (2023) 24:366 Page 10 of 19

Table 1 Details of Ciona Dataset

Animal xy resolution (nm) Section thickness Number of Annotations
(nm) sections
Animal 1 3.85%x3.85 35-100 7671 3D surface
point cloud of
neurons are
provided
Animal 2 3.85%x3.85 35-100 6928 3D neuron skel-

etons without
skeleton points’
radii

It contains two Ciona animals, one with surface point cloud annotated and one with skeleton annotated

extraction method and neuron skeleton comparison method. Dataset 2 consists of 1240
neuron skeletons (with radii) and it is classified into 3 different types. Each neuron with

detailed metadata information such as number of branches and length of neuron.

Major type neurons from NeuroMorpho
We collect 5 major cell types from NeuromMorpho dataset (Dataset 3) including 20614
pyramidal neurons, 956 ganglion neurons, 2674 granule neurons, 1617 medium spiny
neurons, and 320 motoneurons. These neurons come from 3 species, human, rat, and
mouse.

In additional to the above datasets, we also use the benmark ShapeNet [29] and
detailed experimental results are provided in the supplemental material.

Results

Skeleton model from 3D surface point cloud

We apply our method on animal 1 neurons from Dataset 1 for the purpose of building a
shape model to analyze neuron morphology. To get the fixed number of 3D surface input
points, we use the sampling strategy described in [30]. The main idea of the sampling
strategy is to give each point a weight based on its distance to neighbor points. Then we
sample points based on the weights until we reach the number of desired points. Details
of defining the neighbor points and computing the weights are described in [30].

To evaluate our skeleton extraction method on Dataset 1, we carefully repair surface
mesh using screened poisson surface reconstruction method [31] with spherical har-
monics to smooth the surface. Figure 7 shows the qualitative comparison of our meth-
ods and other state-of-the-art methods [18, 32]. Our method has better visual results.
Reference [32] can generate unstructured skeleton points but it lacks topological con-
straint. We sample the number of points using [30] to be the same with the other meth-
ods for a fair comparison. It performs well when neuron has tube like structure but it is
not good when neuron has a more circular shape. Compared with [18], our method can
capture more detailed structures which are important for sub-cellular feature extraction,
such as branches. For a quantitative evaluation of our method on Dataset 1, we compute
the strictly defined MAT and use the handcrafted method in [18] to remove insignificant
spikes to get the simplified MAT. We sample points on the simplified MAT as the ground
truth skeleton points. Then we compute Chamfer Distance (CD) and Hausdorff distance
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Table 2 Quantitative Comparison with state-of-the-art skeleton model extraction method on

Dataset 1

CD-recon HD-recon CD-skel HD-skel vol-pct (%)
DPC[32] 0.102 0.298 0.303 0.311 10.1
Point2Skeleton [18] 0.081 0.207 0.155 0.191 8.2
Our method 0.067 0.183 0.090 0.185 56

Table 3 Sub-cellular feature evaluation results on Dataset 1, Dataset 2, and Dataset 3

len-pct on num-pct on len-pct on num-pct on len-pct on num-pct
Dataset 1 Dataset 1 Dataset 2 Dataset 2 Dataset 3 on Dataset
3
NAVIS [3] 7.1 10.5 3.3 6.5 43 5.1
Our method 55 7.6 3.6 59 3.3 3.9
A B C D

Fig. 7 The figure shows skeleton extraction results from different methods. A Input 3D surface points; B
sampled skeleton points from surface points using DPC [32]; C skeleton mesh from surface points using
Point2Skeleton [18]; D skeleton mesh from our method with surface norm cost function

(HD) between computed skeleton points and ground truth skeleton points. We refer to
them as CD-skel and HD-skel, respectively. To compute CD-skel and HD-skel, we shift
and rescale each skeleton so that the skeleton center is located at (0,0,0) and their x,y,z
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coordinates are all between —1 and 1 for every skeleton. We also measure the difference
between the shapes reconstructed from the skeletons and ground truth surface points
using CD and HD. We refer to them as CD-recon and HD-recon, respectively. Similarly,
we also shift and rescale the ground truth points so that each neuron is centered at
(0,0,0) and each neuron’s surface coordinates are between —1 and 1. Other than those
four aforementioned evaluation metrics, we also use the reconstructed neuron volume
difference as the evaluation metric, considering neuron volume as one of the important
property of a neuron. We denote it as vol — pct. Mathematically, it is defined as

vrecon—v; .
lvrecon=vel \where vrecon is the volume of the reconstructed neurons from the

vol — pct =
skeleton model, and vg is the ground truth volume. Table 2 gives the detailed results of
different methods. It shows our method has the best performance compared to other

methods on Dataset 1 in terms of all of the above evaluation metrics.

Sub-cellular feature extraction from skeleton model

We apply our sub-cellular feature extraction method on Dataset 1, Dataset 2, and Data-
set 3. We define the length difference percentage (len-pct) and number of branches
difference percentage (num-pct) to measure the neuron length error and number of
branches error of the computation methods. We compare our sub-cellular feature
extraction method with the state-of-the-art sub-cellular feature extraction method pro-
posed in [3]. Table 3 gives details of sub-cellular feature computation results. len-pct and
num-pct for Dataset 1 is for both animals. Our method provides the better sub-cellu-
lar feature extraction results in most cases and the percentage error is no more than 8
percent. Also, as we see, our method is comparable to [3] on “curve” skeletons but has
better performance on the skeleton meshes (“curve” skeleton is a special case of the skel-

eton mesh).
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Fig. 8 Relationships between length and number of branches of neurons using two animals of Dataset 1.
Blue dots represent neurons from animal 1 and red dots represent neurons from animal 2
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For Dataset 1, we also analyze the relationships between length and branches of neu-
rons computed from our method. For animal 1 in Dataset 1, we first use our skeleton
extraction method to get the skeleton representation of each neuron. Next, we use
our sub-cellular feature extraction method to get length of the neuron and number of
branches of the neuron. Figure 8 shows the relationships between length and branches
of neurons. Blue dots represent neurons from animal 1 and red dots represent neurons
from animal 2. Overall, longer neurons tend to have more branches. This relationship
between neuron length and number of branches is consistent between animals 1 and 2.

Skeleton model comparison

We apply our skeleton model comparison method on Dataset 1 for the purpose of ana-
lyzing Ciona neuron morphology of different neuron types. Given the skeleton graph, we
embed it into a 100-dimension vector. Then we use K-means—++ to cluster vector repre-
sentations of skeleton graphs. For K-means++-, the number of clusters is set to be the
same as number of neuron classes. After K-means++, the cluster label is given by using
the majority vote of neuron types within the cluster. We use animal 1 neurons to train
the K-means++ model and get the cluster (neuron type) centers. Next, we use animal
2 as the test set. For each neuron in the test set, we assign the label based on its closest
cluster center. The distance metric we use is the euclidean distance in the vector embed-
ding space. Table 4 shows the comparison of clustering (classification) accuracy on both
training and test sets using different neuron classification method. The neuron classi-
fication methods include graph spectrum method, graph2vec [33], s-rep [17] and our
graph level representation method. The graph spectrum method uses the eigen values of
the graph’s adjacency matrix to form the vector representation. Similar to our method,
graph2vec method is another way to convert the skeleton graph to the graph level vector
representation. For the s-rep method, it uses the skeleton points’ features such as spoke
direction, spoke length, and skeleton points’ locations to classify neurons. From Table 4,
we observe that grouping neurons by our graph embedding provide the best classifica-
tion results on both train and test sets. It shows that neuron types are closely related to
its morphology. Also, our method is a better way to represent skeleton graphs in terms
of clustering accuracy.

Based on previous observations, we do further morphology analysis based on our
graph level representation results on Dataset 1. After we get the vector representation of
each graph, we compute euclidean distance between each pair of vectors. Then we com-
pute the inter class and intra class distance based on pairwise neuron distance as Fig. 9
shows. Diagonal entries tend to be smaller than other values, confirming a strong corre-
lation between structure and function. More specifically, neurons within a neuron type
tend to have a smaller morphological distance than neurons between different groups.
Also, two animals inter and intra distance look very similar.

Table 4 Neuron Classification Accuracy on Dataset 1 with skeleton meshes

Graph spectrum Graph2vec [33] S-rep [17] Our method

Train 0.691 0.767 0.791 0.893
Test 0.632 0.718 0.773 0.871
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Table 5 Neuron Classification Accuracy on Dataset 2 with “curve” skeleton

L-Measure [9] TMD [11] NeuroPath2Path [12] Our method
Motoneuron 0913 0.945 0.921 0.953
Interneuron 0.931 0911 0.953 0.962
Somatic 0.896 0.928 0.963 0.957
Average accuracy 0912 0.931 0.948 0.955

Table 6 Neuron Classification (animal species) Accuracy on Dataset 3 with “‘curve”skeleton

L-Measure [9] TMD [11] NeuroPath2Path [12] Our method
Human 0.852 0.854 0.877 0.883
Mouse 0.837 0.880 0.889 0.876
Rat 0.848 0.875 0.891 0.923
Average accuracy 0.845 0.876 0.890 0.898

Based on this inter and intra class distance, we do hierarchical clustering as shown in
Fig. 10. The hierarchical clustering results show that BVIN and pr-BTN RN have larger
morphology distances from other neuron types. The BVIN neurons are a broad group of
intrinsic interneurons located in the brain vesicle of Ciona. The main role of this group
is to connect the sensory neurons to other groups within the brain vesicle. The BVIN
neurons have partial subclassification based on sensory input [20]. Receiving specific
sensory information is an indication of functional role, therefore, the BVIN can be fur-
ther subdivided into different groups based on the sensory group(s) from which they
receive input. Using the sensory input as criteria, the entire group was split up into four
groups: priN if receiving photoreceptor input, antIN if receiving antenna cell input, pr-
ant IN if receiving from both, and BVIN if not receiving from either. The pr-BTN RN
only have two neurons and their functions are mostly unknown. According to the con-
nectome [20], they receive input from both the photoreceptors and the BTN neurons
(neurons involved in processing touch stimuli in the tail), so it’s possible they play a role
in integrating the two inputs. Any functional differences that may exist between the two
are currently unknown, however, the hierarchical clustering suggests that this may be
the case.

To show the generality of our skeleton model comparison method, we apply it on
Dataset 2 and Dataset 3 which both contain “curve” skeleton neurons for classification.
For Dataset 2, we try to classfiy C.elegans neurons into 3 predefined cell types (somatic,
motoneuron, and interneuron). For Dataset 3, we do two experiments. First, we classify
each type of neurons into classes based on which species they belong to. Second, we
classify neurons within same species to different neuron types. For all three experiments,
we embed each skeleton mesh into a 100-dimension vector and then use K-means++
for the classification, which is the same process for Dataset 1. We compare the perfor-
mance of our method with available state-of-the-art methods on NeuroMorpho dataset,
L-Measure [9], TMD [11], and NeuroPath2Path [12]. We use 10-fold cross validation for
our classification task. Tables 5, 6 and 7 show our method has the best performance in
most cases. Therefore, in general, our experiment shows that although our method is
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Table 7 Neuron Classification (cell types) Accuracy on Dataset 3 with “curve” skeleton

L-Measure [9] TMD [11] NeuroPath2Path [12] Our method
Pyramidal 0.876 0.887 0.902 0.916
Ganglion 0.819 0.847 0.895 0.884
Granule 0.828 0.879 0.868 0.912
Medium spiny 0.820 0.856 0.875 0.902
Motoneuron 0.838 0.843 0.874 0.912
average accuracy 0.865 0.882 0.896 0914

specifically designed for neuron skeleton mesh representation, it also has comparable
performance in terms of “curve” skeleton neuron classification.

Conclusion
In this paper, we propose a novel neuron morphology analysis pipeline. It mainly
includes three parts. First, we propose a robust shapre representation using skeleton
mesh. Next, we compute sub-cellular features from the skeleton mesh. Finally, we com-
pare different neuron shapes using skeleton mesh. To the best of knowledge, this is the
first time that such an approach is used to represent and classify neuronal shapes.

The introduction of the estimated surface norm penalty results in a robust mesh repre-
sentation that achieves the state-of-the-art performance using well defined metrics.

Based on skeleton graph, we formulate sub-cellular feature computation problem as a
longest simple path problem that can be easily computed. To compare different neuron
morphology, we use a novel unsupervised graph level representation method to get the
vector representation of each skeleton graphs. We provide detailed experimental results
to demonstrate the effectiveness of our method. Specifically, our analysis of the Ciona
dataset demonstrates that shape could be used as a significant feature for classifying
neuronal types.
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