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Abstract—Edge computing promises to bring low-latency and
high-throughput computing, but the limited edge resources may
cause frequent congestion and lead to unstable and unpredictable
performance. To ensure performance guarantee, application own-
ers can establish Service-Level Agreements (SLAs) with the edge
provider for resource reservation or priority usage. But it is
cost-inefficient for application owners to lease long-term SLAs
based on peak demands, as demands can fluctuate, and the leased
resources may be idle or underutilized at most times.

This paper studies market mechanism design for short-term
edge SLA leases, focusing on real-time big data applications
with throughput and latency goals. Applications submit short-
term SLA requests to serve users with guaranteed performance
during peak hours. As SLA requests arrive over time, the edge
provider dynamically provisions edge resources to fulfill the
requests, while charging application owners based on the current
demands. We design EA-Market, an online combinatorial auction
mechanism that achieves a competitive social welfare, while
guaranteeing truthfulness, budget balance, individual rationality,
and computational efficiency. Notably, our mechanism enables
each application owner to bid without knowledge of the edge
infrastructure, and gives edge provider full control over resource
provisioning to fulfill the requests. We perform theoretical anal-
ysis and simulations to evaluate the efficacy of our mechanism.

Index Terms—Edge Computing, Resource Provisioning, Com-
petitive Analysis, Network Economics

I. INTRODUCTION

Edge computing brings high-throughput low-latency comput-
ing to applications with strict performance requirements, such
as virtual/augmented reality (VR/AR) [1], [2], smart retail [3],
etc. However, edge computing has limited computing and
network resources. The edge infrastructure may be over-
utilized, and users may suffer from unstable and unpredictable
performance, causing profit loss to both the edge provider (EP)
and application owners (AOs).

To ensure performance, an AO can establish Service-Level
Agreements (SLAs) with the EP. An SLA specifies the quality-
of-service (QoS) requirements of the application such as la-
tency and throughput, which must be satisfied during the time
when the SLA is active. The traditional long-term SLAs, how-
ever, are cost-inefficient to AOs or the EP. Specifically, edge
demands are commonly geo-distributed and time-varying [4],
and provisioning long-term SLAs based on peak demands can
lead to resource under-utilization at most times.

In this case, short-term SLA leases are most suitable for
many applications. An AO can purchase SLAs only during
peak hours or based on user demands, and adjust SLA terms
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when demand distribution changes. This reduces the AO’s cost
for paying for under-utilized resources. Meanwhile, the EP can
dynamically price the SLAs based on demand and supply to
improve its own revenue.

This paper studies market mechanism design for short-term
edge SLA leases, AOs submit their SLA requests dynamically,
and the EP provisions network and computing resources to
fulfill requests subject to resource capacities. We specifically
focus on real-time big data applications, which process data
streams from distributed data sources with throughput and
real-time requirements [4], [5]. We formulate mechanism
design as online social welfare maximization that involves both
resource provisioning and pricing.

While there exists a rich literature on edge resource mech-
anism design (see Sec. II), existing work falls short on two
key aspects. First, many consider computing resources only,
or assume over-simplified network models such as single-hop
wireless links or static bandwidth. They fail to capture the
complex edge network topology and the resulting network
bottlenecks. Second and more importantly, many auctions rely
on the AOs to pick and bid for combinations of resources (such
as virtual machines or bandwidth) to satisfy their own demands
and goals. While this simplifies mechanism design, it pushes
the burden of picking the most suitable resources to AOs, and
risks exposing critical infrastructure information (e.g., topol-
ogy or resources) which could incur security vulnerabilities.
We aim to design a mechanism to avoid these issues.

Our main contribution is an online auction mechanism for
short-term SLA leases, called EA-Market, which avoids these
issues. The mechanism further efficiently achieves a social
welfare within a competitive ratio of the optimal offline value,
while ensuring that no AO has an incentive to misreport her
valuation, and that every party has a non-negative utility.
Notably, our mechanism allows each owner to succinctly
specify her application’s demands, QoS requirements (e.g.,
throughput and latency) and valuation, instead of obtaining
system details and picking resources by herself. The EP has
full control over provisioning of actual resources to satisfy
the requests. The core of our design lies combination of two
key techniques: a primal-dual-inspired online resource auction
framework that achieves the desired economic properties in-
cluding competitiveness, and an approximation scheme for the
NP-hard one-shot provisioning problem. We perform rigorous
theoretical analysis of the economic properties, and conduct
extensive simulations for evaluation. Our main contributions
are summarized as follows:

• We formulate mechanism design for three types of real-
time big data applications (asynchronous, synchronous
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and centralized) in a general edge network as a social wel-
fare maximization problem, and prove its NP-hardness.

• We propose an online mechanism called EA-Market,
which achieves competitiveness in social welfare, truth-
fulness, individual rationality, budget balance, and com-
putational efficiency for all three types of applications.

• Our mechanism implies the best known bound for offline
social welfare maximizing auction under the same setting.

• We conducted extensive simulation experiments to vali-
date the performance and efficiency of our mechanism.

In the following, Sec. II introduces the background and
related work. Sec. III presents our system, application and
provisioning models. Sec. IV details our mechanism design,
analysis, and discussions. Sec. V shows evaluation results.
Sec. VI concludes this paper.

II. BACKGROUND AND RELATED WORK

A. Resource Auctions in Cloud and Edge

Dynamic pricing has been used in public clouds such as Ama-
zon EC2 [6], but real-world pricing schemes lack desirable
economic properties such as truthfulness, leading to a rich
literature on truthful cloud resource auctions [7]–[13]. Cloud
auctions typically neglect or over-simplify the network model
due to the regular network structure and abundant bandwidth
in the cloud. Compared to the cloud, edge computing has
limited computing and bandwidth resources, and hence both
must be accounted for in resource auctions, such as in [14]–
[16]. To tackle the added complexity of network structures and
constraints, many have focused on specific network scenarios,
such as single-hop wireless/backhaul communications [14],
[16]–[19], multi-tier tree/line networks [15], [20], networks
with static end-to-end bandwidth and/or delays [21], etc.

Few considered a general network topology in cloud/edge
auctions, such as [9], [15], [22]. This problem falls under
the realm of combinatorial auction design (see Sec. II-B),
where existing work assumes AO’s full knowledge about all
available resources (cloud/edge nodes and network links),
and can pick the best bundle of resources by herself. This
is problematic in reality: 1) AOs have increased cognitive
overhead to obtain such knowledge and run algorithms to
decide their preferred resources; 2) EP has limited flexibility in
the provisioning process; and 3) exposing system information
such as topology or resources to external parties causes
security concerns to the EP. Some auctions leverage properties
of specific scenarios, such as machine learning [23], [24],
blockchain [25], video streaming [14], healthcare [17], or
device-to-device communications [26], etc. A comprehensive
survey of auction and mechanisms in edge computing can be
found in [27], confirming some of the above issues. In general,
there lacks a mechanism that enables QoS-aware edge resource
provisioning for general real-time big data applications, in
general and heterogeneous edge networks.

B. Combinatorial Auction Design

Combinatorial auctions [28] have been extensively studied in
many scenarios. A difficulty in combinatorial auction design is

how to let a buyer express her utility over all bundles of items
she wants to purchase, e.g., all combinations of edge resources
to satisfy an application’s demands. Given N resources, there
can be Θ(2N ) combinations that need to be specified, which is
impractical. Existing designs address this by either assuming
restricted spaces of the bundles, or letting the buyer specify
the subset of bundles that she is interested in (in the simplest
case, single-minded buyers [29]). In edge/cloud auctions, the
former corresponds to the simplified network models, in which
case the bundle of resources to satisfy each application’s need
is well-defined and usually unique [14]–[18], [21]. The latter
means assuming that AO has knowledge over the cloud/edge
infrastructure and can pick the best resources to include in
her bid, leaving the burden to the owner herself [9]. We
follow the principle of algorithmic mechanism design [30], and
novelly address the difficulty without incurring issues brought
by the above methods. Specifically, our mechanism takes
polynomial-sized bids describing only properties (QoS goals)
of the desired bundles, while searching an exponential space
of bundles (resource allocation) per buyer with a competitive
social welfare. To our knowledge, no truthful mechanism has
been designed that achieves a competitive social welfare in
this case. Our mechanism avoids pushing buyers to consider
the exponential bidding strategy space, as required by existing
combinatorial auctions [28]. Our design can open up new win-
dows to the design of efficient and competitive/approximate
mechanisms for scenarios other than edge computing.

III. SYSTEM MODEL

Table I summarizes key notations used in this paper.

A. Edge Network Model

Consider an edge network modeled as a directed graph G =
(N ,L), where N is the set of network nodes, and L is the
set of physical links. S ⊆ N denotes the access points (APs)
via which data generating devices (sources) are connected.
F ⊆ N denotes nodes equipped with edge servers (i.e., edge
nodes). Note that S and F may not be disjoint, i.e., some edge
servers may be associated with APs. Computing resources on
edge node h ∈ F are denoted by a capacity vector Ch =
(ch1 , . . . , c

h
K), where K is the number of resources such as

CPU, GPU, memory, etc. Each link l ∈ L has a bandwidth
bl > 0 and a delay dl > 0. An EP manages all resources
including computational resources and link bandwidth.

B. Application Model

The EP hosts applications in edge network to earn revenue.
We focus on real-time big data processing, representing a
broad range of applications in Internet-of-Things (IoT), social
media, and mobile computing [31]. Many applications have
stringent QoS requirements w.r.t. throughput and latency, and
can greatly benefit from leasing SLA guarantees during peak
hours or congested periods.

Formally, let A = {A1, . . . , AJ} be a set of SLA requests
submitted by AOs. We use the words “request” and “ap-
plication” interchangeably, as an AO with multiple requests
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TABLE I: Notation Table
System Model
G = (N ,L) Edge network with nodes and links
S,F⊆N Source APs, edge servers (edge nodes)
Ch = (ch1 , . . . , c

h
K) Computing resources of edge node h ∈ F

bl, dl, dp Bandwidth, delay of link l ∈ L or path p
A={A1, . . . , AJ} Set of SLA requests (online arrival)
Sj ⊆S Set of source APs for application Aj

Rj =(rj1, . . . , r
j
K) Unit resource consumption of request Aj

Bj : Sj 7→ R+ Data rates of source APs of request Aj

Bj ,Dj Sum data rate and delay bound of Aj

Pj
s,h,P

j
s ,Pj Feasible path sets between s and h, from

s to all h, and for all s-h pairs of Aj

Auction Model
T = {T} Set of all time slots
T start
j , T end

j Start and end times of request Aj

Tj , Tmax Duration of Aj , and max duration in A
τ(T, j) Whether Aj is active in slot T or not
γj , vj Bid, and private value, of request Aj

Variables
ψj =(Pj , fj) A provisioning scheme with paths Pj and

demand allocation function fj : Pj 7→ R∗

xj(s, h) Demand from source s allocated to h
yj(h) Demand from all sources of Aj to h
Z = {ζj | j} Whether each request Aj is accepted
Π = {πj | j} Payment price of each request Aj

uj , u0 Utility functions of Aj , and auctioneer
S(Z,Π) or S(Z) Social welfare of an auction
Other
F, µ Constants used in Assumptions 1 and 2
σT
l , σ

T
h,k, σ Internal cost of a link, a node resource, or

cost function of a provisioning scheme
ξ(l, T ), ξ(h, k, T ) Utilization ratio of a link or node resource

can be regarded as different applications; we use j to index
requests. Hereafter we use R+ and R∗ to denote positive and
non-negative real numbers respectively, and [X] to denote the
set {1, 2, . . . ,X}. Each SLA request Aj ∈ A is represented
by a 4-tuple: Aj = (Sj , Bj , Rj ,Dj), where Sj ⊆ S is the
set of source APs from which data sources are connected,
Bj : Sj 7→ R+ denotes the demand (data generation rate)
entering from each source AP, Rj =(rj1, . . . , r

j
K) denotes the

resource needed to process unit demand for Aj , and Dj ∈R+

is the application-wide delay bound for all data sources1.
We use Bj ≜

∑
s∈Sj

Bj(s) to denote the total input demand
from all source APs. Our model is similar to that in [5]; the
difference is that we explicitly model the computing resource
requirement of an application with Rj .
Example 1 (Social VR/AR): A social VR/AR application
(e.g., AR games like Pokémon GO [1] or VR teleconferencing
with Horizon Workrooms [2]) processes real-time data such
as user actions or video captures at a central server, and
then sends processed states to user devices distributed in the
network. A game or meeting may last for a period of time,

1QoS requirements other than throughput and delay can also be considered,
such as cost, reliability, delay jitter, etc. Our mechanism and analysis can be
extended to any additive QoS attribute, powered by existing approximation
algorithms for Multi-Constrained Path [32] to replace the approximate
DCLC-Path used in our Algorithm 2. We omit the details due to page limit.

during which strict throughput and real-time bounds need to be
satisfied to provide acceptable VR/AR experiences. A short-
term SLA lease can provide guaranteed performance paid by
the users, or the AO based on user membership statuses.
Demands, resources and delay are set based on each user’s
update frequency, data size, and latency bound for VR/AR.
Example 2 (Mobile Advertisement): Location-based mobile
advertisement [3] dynamically pushes ad content to users’
mobile devices based on location. Central or distributed servers
continuously process updates on user locations and preferences
to accurately recommend stores near each user’s location.
During peak hours (e.g., weekends or special sales events),
short-term edge computing leases can help ad providers reach
more users faster, hence increasing revenue. In this case, an
ad provider leases bandwidth/resources based on estimated or
desired number of customers to track and push to, and sets
delay bounds based on type of ad and user mobility.

C. SLA Provisioning Model

To fulfill an SLA, the EP needs to 1) host the application
on one or more edge nodes with sufficient resources, and 2)
reserve communication channels from sources to application
instance(s) with throughput and delay guarantee. Let p be a
path, and define dp =

∑
l∈p dl as the delay of p. We then

define the feasible path set from a source s ∈ Sj to an arbitrary
edge node h ∈ F , as Pj

s,h ≜ {p | p is an (s, h)-path, dp ≤
Dj} for each request j; we use Pj

s ≜
⋃

h∈F P
j
s,h to denote

feasible paths from s to all edge nodes, and Pj ≜
⋃

s∈Sj
Pj
s

to denote such paths from all sources. Then we can define an
allocation, or a provisioning scheme, of an SLA request:

Definition 1. Given G, a provisioning scheme for request Aj

is defined as ψj ≜ (Pj , fj), where Pj =
⋃

s P
j
s , P j

s ⊆Pj
s is a

subset of paths selected for source s∈Sj , and fj : Pj 7→R∗ is
the corresponding demand allocation on each path.
Remark: Definition 1 defines basic elements of the EP’s pro-
visioning plan for an SLA request. Path set Pj defines 1) the
edge node(s) selected to deploy the application (destination(s)
of the paths), and 2) data routes from sources to the edge
node(s). The function fj further defines the demand allocated
to each path, and implicitly the input demand to be processed
by each edge node. For simplicity, we can expand fj(·) to Pj

and let fj(p)=0 for p∈Pj\Pj . Hence Pj is implicitly defined
as Pj={p ∈ Pj |fj(p)>0}. We further define auxiliary func-
tions xj : Sj×F 7→ [0, 1] where xj(s, h)= 1

Bj(s)

∑
p∈Pj

s,h
fj(p)

is the fraction of input demand from source s∈Sj allocated
to edge node h∈F for processing, and yj : F 7→ [0, 1] where
yj(h)=

1
Bj

∑
s∈Sj

Bj(s)xj(s, h) is the fraction of total input
demand allocated to h. Note that xj and yj can be computed
from ψj , and hence are used only for explanation. We call a
node h∈F a selected node when yj(h)>0.

A typical provisioning scenario is in Fig. 1. A traditional
application is usually deployed as a central entity processing
all input streams. This aligns with the centralized computing
provided by the cloud. Recent advances in serverless and
network function virtualization enable distributed processing at
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Application

Data Sources (Fixed APs)

B, R, D

AP Edge Node Router

Fig. 1: Basic application provisioning in the edge network.
Source APs are fixed, but routing and edge node are flexible.

the network edge, with improved flexibility and performance.
We thus consider three scenarios, some also studied in [5]:

• Asynchronous: An asynchronous application can be de-
ployed as multiple distributed instances, each processing
a fraction of demand from any source. Examples include
stateless sensor fusion and analytics, serverless applica-
tions, or virtual network functions such as intrusion detec-
tion. A feasible provisioning scheme for an asynchronous
application is simply one that satisfies all the demands:∑

h∈F

yj(h) ≥ 1; or
∑
h∈F

xj(s, h) ≥ 1, ∀s ∈ Sj . (1)

• Synchronous: A synchronous application can be dis-
tributed over multiple instances as well, but requires each
instance to process the same portion of demands from all
sources at any time. For instance, a social-aware mobile
AR app needs to receive and process simultaneous data
generated from multiple locations at the same instance,
but data generated at different times may be distributed
across instances. Eq. (2) combined with Eq. (1) expresses
the feasibility criteria for a synchronous application:

yj(h) = xj(s, h), ∀h ∈ F , s ∈ Sj . (2)
• Centralized: A centralized application has to be imple-

mented as a single instance on one edge node. Most tra-
ditional applications fall into this category. An integrality
constraint as follows plus Eq. (1) expresses the feasibility
criteria for a centralized application:

yj(h) ∈ {0, 1}, ∀h ∈ F . (3)

IV. EA-MARKET: ONLINE MECHANISM DESIGN

A. Online Mechanism Preliminaries
We consider an online resource auction scenario from the view
of the EP. The SLA requests A = {A1, . . . , AJ} arrive over
time. Each request belongs to one of three categories: Aasync

for asynchronous applications, Async for synchronous applica-
tions, and Acent for centralized applications. An AO (bidder)
submits request Aj along with a tuple Γj =(γj , T

start
j , T end

j ),
where γj > 0 is the bid value, and T start

j and T end
j are

the arrival (start) and departure (end) times of the requested
service, respectively. Essentially, the AO indicates that she is
willing to pay up to γj to have guaranteed throughput and
delay between T start

j and T end
j . For simplicity, we assume a

system with uniform time slots T =(1, 2, . . . ,T); this is not a
restriction of our design, which can be trivially extended to the
case with continuous time, as shown in our simulations. We
use Tj to denote an SLA request’s duration, Tmax=maxj{Tj}
to denote the maximum duration, and τ(T, j) ∈ {0, 1} to
indicate if Aj is active in time T .

We assume source APs and demands are static during the
duration of an SLA request. User mobility is handled by the

APs seamlessly, and adding resource redundancy at near-by
APs for mobility handling is at the discretion (and cost) of the
AO. The AO knows the amount of resources that she needs to
request to serve the expected demands from all sources, and/or
to handle potential demand surges. The resources needed to
serve unit demand can be obtained via profiling in a controlled
environment.

Each AO asks for an all-or-nothing deal: either she pays no
more than γj to have guarantees for all demands, or she pays 0
for no reservation at all; partial provisioning is not acceptable
due to potential fairness issues when some users are served
with guarantees but others are not. The AO also asks for an
immediate decision, i.e., EP must either accept or reject the
request at once without waiting for other requests to arrive.

Due to scarcity and costs of edge resources, the EP runs a
resource auction to allocate computing and network resources
and serve requests with the highest values. We assume each
AO has a private value vj for her request, which may differ
from her bid γj , and is independent from AOs’ requests or
valuation. Let outcome of the auction be denoted by Z={ζj ∈
{0, 1} |Aj ∈A} (reject or accept for each Aj), and let the price
each AO needs to pay be denoted by Π= {πj ≥ 0 |Aj ∈A}.
The utility of an AO is defined as:

uj(ζj , πj) ≜ (vj − πj) · ζj . (4)
The utility of the auctioneer (EP) is defined as:

u0(Z,Π) ≜
∑

Aj∈A
πj · ζj . (5)

The social welfare is then the sum of utilities of all parties,
which is also the aggregate value of all accepted SLA request:
S(Z,Π) ≜

∑
Aj∈A

uj(ζj , πj) + u0(Z,Π) =
∑

Aj∈A
vj · ζj . (6)

Note that the social welfare is independent of the payments
Π, and hence we will write it simply as S(Z) subsequently.

The EP has the following goals as the auctioneer:
• Social welfare: The EP seeks to maximize social welfare
S(Z). Social welfare maximization has been regarded
as a way of maximizing long-term user satisfaction and
thus revenue, which suits the EP’s role as a long-term
infrastructure provider. It has been used in other similar
scenarios such as Facebook’s advertisement auction [33].

• Truthfulness: An auction is truthful iff no bidder can
increase her utility by bidding γj ̸= vj , i.e., bidding
γj = vj is a dominant strategy of any AO. Truthfulness
is critical because 1) it simplifies each AO’s strategy to
simply reporting its true valuation, and 2) it allows the
EP to maximize its objective (social welfare in our case)
without guessing the true valuations of the AOs.

• Individual rationality, budget balance: In participating,
each AO requires her utility to be non-negative (individual
rationality). Likewise, the EP cannot have a negative
utility for running the auction (budget balance).

• Computational efficiency: The auction should run in
polynomial time for both the EP and each AO.

B. Offline Social Welfare Maximization

We first define the offline social welfare maximization prob-
lem, assuming all requests and bids are known and truthful.
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Definition 2. Given network G and SLA requests A, the offline
social welfare maximization problem can be formulated as:
max
Φ,Z

S(Z) =
∑

j
vj · ζj (7)

s.t.
∑

h∈F
xj(s, h) ≥ ζj , ∀j, s ∈ Sj ; (7a)∑

j

∑
p∈Pl∩Pj

τ(T, j) · fj(p) ≤ bl, ∀l ∈ L, T ∈ T ; (7b)

∑
j
τ(T, j) ·Bj · rjk · yj(h) ≤ c

h
k ,

∀h ∈ F , k ∈ [K], T ∈ T ;
(7c)

(2) for ∀Aj ∈ Async; (3) for ∀Aj ∈ Acent. (7d)
Here Φ = {fj |Aj ∈ A} and Pl = {p ∈

⋃
j Pj | l ∈ p},

and recall that xj(s, h) = 1
Bj(s)

∑
p∈Pj

s
fj(p) and yj(h) =

1
Bj

∑
s∈Sj

Bj(s)xj(s, h) as defined in Sec. III-C.

Explanation: Objective maximizes social welfare in Eq. (6).
Constraint (7a) echos Eq. (1) for every accepted SLA request.
Constraints (7b) and (7c) limit the demand carried on each
link and processed at each node by bandwidth and computing
capacities. Constraint (7d) applies based on application’s cat-
egory. The program does not involve the payments Π, which
will be addressed independently to ensure truthfulness.

Theorem 1. Maximizing social welfare is NP-hard.

Proof. The hardness is multi-fold. First, with one edge node
h ∈ F and one SLA request Aj ∈ A with one data source,
the problem becomes Multi-Path routing with Bandwidth and
Delay constraints (MPBD), which is NP-hard [34]. Second,
when the network has infinite bandwidth, the accept/reject
problem can be viewed as a 0-1 Multi-Dimensional Knapsack
(MDK) problem, which is NP-hard and even APX-hard [35].
Third, when the applications are centralized, with just one type
of computational resource and infinite bandwidth, the problem
is a 0-1 Multiple Knapsack (MK) problem, which is again NP-
hard [36]. The combined problem generalizes all three.

C. Online Auction for Edge Provisioning

In the online scenario, EP has no knowledge of requests ar-
riving in the future. We utilize the widely adopted competitive
analysis framework to design and theoretically analyze our
mechanism. Let Sopt be the maximum offline social welfare.

Definition 3. A θ-competitive mechanism achieves at least
Sopt/θ in social welfare, while satisfying all constraints.

We design an online mechanism with a polylogarithmic ratio
in social welfare. We follow a primal-dual framework [37],
[38], which maintains an internal cost for each resource
(including bandwidth). Cost is set exponentially to level of
resource utilization when a request arrives. To set the cost, we
make two assumptions on demands and AOs’ valuations.

Assumption 1. (|N | + K)Bj ≤ γj/Tj ≤ FBj(s), ∀Aj ∈
A, s ∈ Sj , where F is a constant.

Assumption 2. Bj ≤ min{{bl | l ∈ L} ∪ {chk/r
j
k |h ∈ F , k ∈

[K]}}/ log µ, ∀Aj ∈ A, where µ ≜ 2(FTmax + 1).

Algorithm 1: EA-Market: Online Provisioning Mechanism
Input: Network G, arriving SLA request Aj

Output: Decision ζj , provisioning scheme ψj = (Pj , fj),
payment πj

1 Set σl and σn,k based on current ξ(l, T ) and ξ(h, k, T );

2 (P ∗
j , f

∗
j )← argmin{σ(Pj , fj)}; // Algorithm 2

3 if (P ∗
j , f

∗
j ) ̸= (∅, ∅) and σ(P ∗

j , f
∗
j ) ≤ γj then

4 for ∀p ∈ P ∗
j , and ∀T ∈ [T start

j , T end
j ] do

5 ξ(l, T )← ξ(l, T ) + f∗j (p)/bl, ∀l ∈ p;
6 ξ(hp, k, T )←ξ(hp, k, T )+r

j
k ·f∗j (p)/c

hp

k , ∀k∈ [K];

7 return Accept (ζj=1), ψj=(P ∗
j , f

∗
j ), πj=σ(P

∗
j , f

∗
j ).

8 return Reject (ζj = 0), ψj = (∅, ∅), πj = 0.

Assumption 1 assumes that the number of sources of a
request and the per-unit time-demand valuation of each AO
are bounded. Assumption 2 assumes that the demand of each
request is relatively small compared to resources or link
bandwidth in the network. µ is used below to set the cost
of each link or node resource, and later used to reason about
the competitiveness of the online mechanism.

Remark: Constants F and Tmax can be estimated from past
request data and dynamically adjusted (see Sec. IV-F).

When an SLA request Aj arrives at the time T start
j , for any

T ∈ [T start
j , T end

j ], let ξ(l, T ) and ξ(h, k, T ) be the resource
utilization ratio for link l’s bandwidth and node h’s type-
k resource, respectively, defined as the consumption of all
accepted and active SLAs over the corresponding capacity at
time T . Initially all ξ(l, 0) and ξ(n, k, 0) are set to 0 when no
SLA request has arrived. The internal cost of l ∈ L for time
slot T at Aj’s arrival is then set as

σT
l = bl · (µξ(l,T ) − 1), (8)

and the cost of type-k resource on node h ∈ F at time T is
σT
h,k = chk · (µξ(h,k,T ) − 1). (9)

From a primal-dual viewpoint, internal costs σT
l and σT

h,k

are dual variables of constraints (7b) and (7c). In general,
our algorithm utilizes the internal (dual) costs to enforce (7b)
and (7c), while relying on a primal method to enforce the rest
constraints in Program (7). As the dual of (7) is only used
to enforce (7b)–(7c) in our mechanism, we omit describing
the entire dual program, and refer the reader to [37], [38] for
general descriptions of the primal-dual framework.

Let (Pj , fj) be a provisioning scheme for Aj . The cost of
(Pj , fj) is defined as the total cost of all consumed bandwidth
and computing resources over Aj’s entire active period:

σ(Pj , fj) ≜
∑

T∈[T start
j ,T end

j ]

∑
p∈Pj

fj(p)

∑
l∈p

σT
l

bl
+
∑
k

σT
hp,k
· rjk

c
hp

k

 ,

(10)
where hp ∈ F is the edge node that path p leads to. Let

σj(p) ≜
∑

T∈[T start
j ,T end

j ]

(∑
l∈p

σT
l

bl
+
∑

k σ
T
hp,k
· r

j
k

c
hp
k

)
be the

cost of path p summed over the entire active period of Aj .
Our algorithm for processing an in-coming request is shown
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in Algorithm 1. When an SLA request arrives, the EP tries to
find a provisioning scheme (satisfying Eq. (1) for any applica-
tion type, and (2) for synchronous or (3) for centralized) with
the minimum cost (Line 2). The request is accepted if such a
provisioning scheme exists and has cost σ(P ∗

j , f
∗
j ) bounded

by the AO’s bid γj , and the payment of the AO is set to exactly
σ(P ∗

j , f
∗
j ); otherwise, the request is rejected and the AO pays

0. Then, the utilization ratios are updated with the accepted
SLA request’s provisioning scheme within its entire duration.

D. Approximation Scheme for One-Shot Provisioning

The core step in Algorithm 1 is to find a provisioning scheme
satisfying the cost bound (Line 2). This one-shot step turns out
to be non-trivial as well. For simplicity, we assume working on
asynchronous applications hereafter (without the constraints in
Eq. (2) or (3)), until Sec. IV-F where we extend our result to
synchronous and centralized cases. Let us formulate this step:

minfj≥0 σ(Pj , fj) =
∑

p∈Pj
fj(p) · σj(p) (11)

s.t.
∑

h∈F
xj(s, h) ≥ 1, s ∈ Sj . (11a)

Note that Program (11) does not involve capacity con-
straints, since those are enforced implicitly via the internal cost
function as will be shown later. Below, we present a simple yet
important lemma that is at the core of our design and analysis:

Lemma 1. If Program (11) is feasible, then there is always
an optimal solution to (11) with only one path p ∈ Pj

s that
has positive fj(p) for each s ∈ Sj .

Proof. An optimal solution routes all demand from s ∈ Sj to
any h ∈ F via a minimum-cost (w.r.t. σj(p)), delay-bounded
path. If multiple min-cost paths exists for an s, one can always
shift all demands onto one path to satisfy Lemma 1.

Remark: The shifting does not violate any capacity, which is
guaranteed by the dual costs as shown in Sec. IV-E.

Theorem 2. Program (11) is NP-hard.

Proof. From Lemma 1, solving (11) is equal to finding one
path for each source, such that the total demand-weighted cost
of all paths is minimized. With just one s ∈ Sj and one h ∈
F , this is equal to finding a Delay-Constrained Least Cost
(DCLC) path, which is NP-hard [32]. Theorem 2 follows.

The best known algorithm for DCLC is a fully polynomial-
time approximation schemes (FPTAS) [32] which guarantees
a (1+ ϵ)-approximation of the DCLC path with an arbitrarily
small ϵ and has time complexity polynomial to the input size
and 1/ϵ. Utilizing this, we can find an approximate solution to
Program (11), by finding an approximate DCLC path for each
source s ∈ Sj to carry its entire demand. The approximation
scheme is shown in Algorithm 2. DCLC-Path implements the
FPTAS from [32] for finding an approximate DCLC path that
is within (1+ ϵ) times the minimum cost, while strictly satis-
fying the delay constraints on the paths. The subroutine runs
in O(|N ||L|(log log log |N | + 1/ϵ)) time. Algorithm 2 thus
runs in O(maxj{|Sj |}|N ||L|(log log log |N |+1/ϵ)) time. The
following theorem is intuitive based on the FPTAS subroutine.

Algorithm 2: FPTAS to Program (11)
Input: Network G, application Aj , costs {σ}, tolerance ϵ
Output: Provisioning scheme ψj = (Pj , fj)

1 Construct G′ by adding node ĥ that is connected from
every edge node h ∈ F with a 0-cost 0-delay link;

2 for s ∈ Sj do
3 p← DCLC-Path(G′, s, ĥ,Dj , {σ}, ϵ);
4 if p does not exist then return (∅, ∅);
5 Pj ← Pj ∪ {p}, and fj(p)← Bj(s);

6 return ψj = (Pj , fj).

Theorem 3. Algorithm 2 is an FPTAS to Program (11).

Inserting Algorithm 2 into Algorithm 1 (Line 2) yields a
well-defined online mechanism, which we next analyze.

E. Analysis of the Online Mechanism

Theorem 4. Algorithm 1 combined with Algorithm 2 yields a
(2(1 + ϵ) log µ+ 1)-competitive algorithm.

Proof. We first prove feasibility. For any link or node resource,
let us use c, ξ, σ, and r to denote its bandwidth or capacity,
utilization before allocation, cost, and the newly allocated
resource for any time T ∈ [T start

j , T end
j ] when an arbitrary Aj

arrives; for type-k node resource, we assume c and r are both
scaled by 1/rjk such that they are of the same unit as band-
width. Based on the way Algorithm 2 pushes the demands, we
have mins{Bj(s)} ≤ r ≤ Bj . If the capacity c is exceeded
for this resource, it means ξ + r/c > 1. By Assumption 2,
ξ > 1−1/ log µ. Then, σ = c(µξ−1) > c(µ/2−1) = cFTmax.
The cost on this resource is rσ/c > rFTmax ≥ γj (by
Assumption 1), which contradicts our acceptance criterion.

We next prove competitiveness. We first derive a lower
bound on the online social welfare, which we denote as Sonl,
using the final costs of link and node resources. Consider
a link or node resource, let σ−(T, j) and σ+(T, j) be its
cost at time T before and after accepting an SLA request Aj

respectively, and let σ∗(T, j) = σ+(T, j)−σ−(T, j). Based on
how the cost is computed, we have σ∗(T, j) = c(µξ(µr/c −
1)) = c(µξ(2(log µ)r/c − 1)). Since r ≤ Bj ≤ c/ log µ by
Assumption 2, we have 2(log µ)r/c−1 ≤ (log µ)r/c, and hence
σ∗(T, j) ≤ µξr log µ = (σ−(T, j)r/c + r) log µ. Now we
sum up σ∗(T, j) for all resources and all time slots (we use
subscript to denote each link/node resource), and we have∑

T

(∑
l
σ∗
l (T, j) +

∑
n

∑
k
σ∗
n,k(T, j)

)
≤ log µ

(
γj +

∑
T

∑
p∈Pj

fj(p)(|p|+K)

)
≤ 2γj log µ.

The first inequality above is due to the accepted SLA request
having total cost no more than the bid γj ; the second inequality
is due to the left-hand-side of Assumption 1. Summing up for
all accepted SLA requests (denoted as Aonl), we have∑
Aj∈Aonl

γj ≥
1

2 log µ

∑
T

(∑
l

σ+
l (T, j) +

∑
n

∑
k

σ+
n,k(T, j)

)
,

(12)
where j is the last accepted SLA request index in Aonl.
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We finally show that the offline optimal social welfare can
be (upper) bounded by the same final costs. Let Aopt be the
set of requests accepted by the offline optimal solution, and
let Adiff ≜ Aopt \ Aonl. For any Aj ∈ Adiff , let (P opt

j , foptj )
be its provisioning scheme in the optimal solution. The facts
that Aj is not accepted, and that Algorithm 2 computes
a (1 + ϵ)-approximate minimum-cost provisioning scheme,
yield that γj ≤ (1 + ϵ)σ(P opt

j , foptj ) when σ is computed at
its arrival, which, because per-time slot costs monotonically
increase with every arriving request, is further bounded by
(1+ ϵ)σ(P opt

j , foptj ) when σ is computed using the final costs
after arrival of the last request Aj ∈ Aonl. Let σ(Pj , fj , T, j) =∑

k

(
σ+
hp,k

(T, j)
fj(p)r

j
k

cnk

)
+
∑

l∈p

(
σ+
l (T, j)

fj(p)
bl

)
be the cost

of (Pj , fj) at time T , using the final costs after accepting Aj.
Summing up for Aj ∈ Adiff , we have∑
Aj∈Adiff

γj ≤ (1 + ϵ)
∑

Aj∈Adiff

∑
T

σ(P opt
j , foptj , T, j)

≤ (1 + ϵ)
∑

T

(∑
l
σ+
l (T, j)+

∑
n

∑
k
σ+
n,k(T, j)

)
,

(13)

where the second inequality is because the offline optimal
solution cannot exceed any link bandwidth or node resource
capacity constraint. Finally, combining Eqs. (12) and (13), we
can conclude that Sonl =

∑
Aj∈Aonl

γj ≥
∑

Aj∈Aopt
γj/(2(1+

ϵ) log µ+1) = Sopt/(2(1 + ϵ) log µ+ 1). The theorem follows
from the definition of the competitive ratio in Definition 3.

Corollary 1 is by-product of the above proof, showing that
F is a conservativeness parameter that can be tuned for over-
provisioning (Sec. IV-F). Proof is omitted due to page limit.

Corollary 1. If constant F in Assumption 1 is scaled by 1/ε
for ε ≥ 1, the maximum capacity violation is (1+log ε) times,
while the competitive ratio is scaled by (ε+ 1)/2ε.

Theorem 5. Algorithm 1 is truthful, individually rational,
budget-balanced, and computationally efficient.

Proof. We prove these properties in several steps.
Truthfulness: Algorithm 2 and payment πj =σ(P ∗

j , f
∗
j ) (if

accepted) are unrelated to the bid γj . If an AO i bids truthfully
as γi=vi and request Ai is accepted, her utility is ui(1, πi)=
(vj−σ(P ∗

i , f
∗
i ))≥0 as in Eq. (4). If she instead bids γ+i >vi,

Ai is still accepted with the same πj =σ(P ∗
j , f

∗
j ), leading to

the same utility based on Eq. (4). This also holds if she bids
lower and still gets accepted. Now, if the AO bids lower and
gets rejected, her utility ui(1, πi) becomes 0 as ζi becomes 0
in Eq. (4). Hence an AO who is accepted with a truthful bid
cannot improve utility by bidding higher or lower.

Now, if an AO j bids γj = vj and is rejected, her utility
is 0, and we know vj < σ(P ∗

j , f
∗
j ). If she raises bid to

γ+j > γj , she may still get rejected and receive 0 utility;
but if she gets accepted, her utility will become uj(1, πj) =
(vj − σ(P ∗

j , f
∗
j )) < 0, thus lowering her utility from 0. If the

AO bids lower, she still gets rejected and still receives 0 utility.
Hence an AO who is rejected when bidding truthfully cannot
improve her utility by either raising or lowering her bid as
well. Combining the above proves the truthfulness property.

Individual rationality and budget balance: As long as an
AO bids truthfully, its utility is always non-negative by the
acceptance and payment rules. The payment is always non-
negative, so the utility of the EP is also non-negative.

Computational efficiency: Though our formulation has T
time slots, in practice only a linear number of (non-uniform)
slots are needed, as costs only change upon request arrival or
departure; hence the input size to Algorithm 2 is polynomial
(rather than pseudo-polynomial in T). Algorithm 2 runs in
time polynomial to input size and 1/ϵ [32]. This, combined
with Algorithm 1, yields a polynomial-time complexity.

F. Centralized and Synchronous Applications

So far, Algorithm 2 and subsequently Theorem 4 only apply to
asynchronous applications. In this subsection, we show how to
extend the results to centralized and synchronous applications,
by addressing Constraints (3) and (2), respectively.

1) Centralized Applications: For a centralized application,
we need to pick exactly one edge node h ∈ F for each SLA
request Aj , and route demands from all sources of Aj to this
node. We first present the following observation:

Observation 1. Lemma 1 holds for a centralized application.

Based on Constraint (3), an optimal one-shot solution is to
find an edge node, which has the minimum traffic-weighted
cost of a delay-bounded reverse path tree. As such, we change
Algorithm 2 from finding individual paths to any edge node,
to finding such a tree to each h ∈ F . Using the same DCLC
FPTAS from [32], we can approximate the minimum-cost tree
of each h ∈ F , and then pick one with the minimum cost.
Adding this to Algorithm 1 gives the same competitive ratio,
and with at most |F| times the complexity.

2) Synchronous Applications: Regarding synchronous ap-
plications, we have the following observation:

Observation 2. Any provisioning scheme for a synchronous
application is the convex combination of up to |F| provisioning
schemes for a centralized application with the same inputs.

Combining Observations 1 and 2, it is clear that by the same
argument as in the proof of Lemma 1, we can also shift all
demands to be processed by only one edge node that has the
minimum-cost delay-bounded path tree, and hence:

Observation 3. Lemma 1 holds for a synchronous application.

In other words, the algorithm for synchronous applications
is exactly the same as the algorithm for centralized applica-
tions. By the same argument as above, the modified algorithm
yields the same performance bound as the original algorithm.

G. Discussions

Tunable parameter. Our main theorems are based on As-
sumptions 1 and 2, which may not hold in practice. Mean-
while, Corollary 1 shows that parameter F can be regarded as
a tunable conservativeness parameter, defining how conserva-
tive the EP is on estimating how much requests overlap in time
and across different resources. The competitive analysis above
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assumes a worst-case scenario, where all requests are fully
overlapping in time and must utilize the same resources. In
reality, based on historical data, the EP can estimate bounds on
the inter-arrival time of requests, as well as resources required
by a typical request, and set a different (potentially much
smaller) F value than suggested by Assumptions 1 and 2. Note
that by Corollary 1, setting a smaller F value could lead to
potential capacity violations, which must be handled carefully
by rejecting the violating requests. In evaluation, we will show
that setting a smaller F based on the specific network scenario
usually increases actual social welfare over the default value.

Implications on offline mechanism design. Comparing our
mechanism to the offline provisioning algorithm in [5], they
bear similar structures including an exponential cost function
w.r.t. resource utilization. However, the offline algorithm in [5]
is an FPTAS (for a slightly different objective), while our
mechanism only achieves a polylogarithmic competitive ratio,
due to that accommodated requests can no longer be adjusted
or rejected in the online setting. Meanwhile, although our
mechanism cannot achieve the same approximation guarantee
as an offline FPTAS, it in fact provides the best known theo-
retical guarantee for a truthful offline mechanism for edge
resource provisioning with a general edge network topology.
Specifically, trivially turning an FPTAS into a mechanism
was shown to violate truthfulness [39], and the design of
truthful FPTAS mechanisms has so far been successful only
on simple Knapsack problems and variants [39], with little
success on more complex problems such as provisioning and
orchestration. Our mechanism provides a simple and efficient
offline mechanism with theoretical guarantee, when coupled
with an arbitrary, bid-independent ordering of requests.

V. PERFORMANCE EVALUATION

A. Evaluation Method

We evaluated our mechanism with simulations. Each network
scenario had 20 mesh-connected APs, with 5 edge nodes each
attached to one AP. Links were generated in the Waxman
model [40] with α = β = 0.6, each with 1.2 Gbps capacity,
and delay uniformly in [10, 50] ms. Each edge node had K=3
types of resources (e.g., CPU, GPU, memory), with normalized
capacities uniformly in [3, 10] Gbps (in unit of in-coming data
processing). In each experiment, 1000 SLA requests arrived
in continuous time, following a Poisson distribution with rate
λarr, and the requested service times had rate λsrv. We used
the ratio λ= λarr/λsvr to characterize the overall arrival and
service process, and varied λ to evaluate under different loads.
By default λ = 300. Each request was randomly assigned to be
asynchronous, synchronous, or centralized. Each request had 5
to 10 data sources, and a delay bound uniformly in [25, 75] ms.
Data rate of each source was uniformly in [3, 10] Mbps. F was
computed based on Assumption 1, and valuations followed
a normal distribution N(γmax+γmin

2 , γmax−γmin

2 ) truncated by
[γmin, γmax], where γmax and γmin were upper and lower
bounds of γj respectively for each request in Assumption 1.

As even the one-shot problem is NP-hard, we compared
our mechanism to upper bounding and heuristic solutions in

EA Our online mechanism in Algorithms 1 and 2.
SAP Single-Application Provisioning (SAP) algorithm for

centralized applications in [5], with high complexity,
applied to each SLA request as an online heuristic.

RS Random Selection heuristic where a random candidate
edge node is selected for each SLA request, and then
shortest path routing is repeatedly applied to every
data source until sufficient bandwidth is provisioned.

NS Nearest Selection heuristic where edge node with the
minimum maximum distance from all data sources is
selected, and then shortest path routing is repeatedly
applied to every data source until enough bandwidth.

ODA Offline Delay-Agnostic algorithm solving an edge-
flow formulation (LP) that is the delay-agnostic ver-
sion of the linear relaxation of Program (7), out-
putting an upper bound of the optimal social welfare.
TABLE II: Implemented Algorithms

Table II. SAP, RS and NS will accept any request that they
have enough resources for upon arrival. We emphasize that
none of these algorithms (or any other known ones) except
EA either guarantees truthfulness or has a competitive ratio
for QoS-aware provisioning in a general edge network. As
such, we mainly evaluated in terms of a) social welfare, and
b) efficiency (running time). We set ϵ = 0.5 in our mechanism.
LPs were solved by the simplex method using Gurobi [41].
Simulations were done on a Linux PC with Octa-Core 3.6GHz
CPU and 64GB memory. Each experiment was repeated for
20 times with random inputs to average-out random noise.

B. Evaluation Results

1) Competitive Ratio Analysis: In Fig. 2, we show results
validating the competitiveness of our mechanism. We show the
online-offline ratio as the ratio between the social welfare of
an online algorithm (e.g. EA), and the upper bound of offline
social welfare obtained by ODA. In all figures, increased load
leads to higher online-offline social welfare ratio, since more
competition helps fill the resource gap left by poor decisions
early on. Fig. 2(a) shows that fewer data sources per request
lead to higher online-offline ratio. This coincides with our
competitive analysis based on F in Assumption 1. In Fig. 2(b),
more network nodes lead to improved online-offline ratio, due
to increased resources and thus decreased relative load in the
network. In Fig. 2(c), we show the impact of application types.
The MIXUP algorithm processes each SLA request using its
original type, while ASYNC and SYNC/CENT each regards
all SLA requests as having the same type indicated by the
algorithm name (note that synchronous and centralized cases
have the same algorithm). ASYNC can achieve a better online-
offline ratio than MIXUP or SYNC/CENT, due to flexibility
in load balancing across edge nodes. Finally, in Fig. 2(d),
we scale parameter F by different factors Fs . Observe that
Fs = 1, meaning F fully satisfies Assumptions 1–2, is too
conservative and leads to low social welfare, while F scaled
by Fs = 10−4 can be too aggressive in over-provisioning and
lowers social welfare as well. A proper F can thus be picked
based on historical requests to balance between conservative-
ness and over-provisioning. Based on this, in comparison with
heuristics below, we scale F by Fs = 0.01.
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Fig. 2: Competitiveness analysis: online to offline social welfare ratio with varying load.
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Fig. 3: Comparison between EA and heuristics, with varying load and delay bound.
2) Comparison with Heuristics: In Fig. 3, our mechanism is

compared to heuristic solutions under varying loads and delay
bounds. In Fig. 3(a), both EA and SAP heuristic constantly
outperform NS and RS heuristics in terms of social welfare
ratio. In Fig. 3(b), EA achieved higher average value per
accepted request than all other heuristics, indicating serving
SLA requests with high valuations. Average value decreases
with increasing load, which corresponds to increasing social
welfare in Fig. 3(a); this is because more requests are accepted
when there are sufficient in-coming requests to make up for
poor rejection decisions early on. Other heuristics serve SLA
requests whenever there are available resources, and hence the
average accepted values are lower and similar to each other
(close to average valuation of all requests). The advantage of
EA diminishes as load increases, when all algorithms’ social
welfare approaches the delay-agnostic upper bound (ODA).

In Figs. 3(c)–(d) the impact of delay bound is examined,
where the delay bound of an SLA request is uniformly
in [25,Max delay bound] ms. All algorithms achieve higher
social welfare as delay bound grows, as more requests become
feasible when more edge nodes satisfy the delay bounds. EA
holds the best performance especially when the delay bound
is tighter, with 28% higher social welfare at a maximum delay
bound of 50ms over SAP (the second best), suggesting its cru-
cial advantage for requests with stringent QoS requirements.
Their results converge at higher delay bounds since both can
achieve almost the optimal social welfare (ODA upper bound).
Keep in mind, though, that SAP can be orders of magnitude
(such as 4000×) slower than EA as shown in Table III.

3) Scalability: Table III shows the running time comparison
between two well-performing algorithms: EA and SAP. Both
achieved high social welfare as in Fig. 3 although EA generally
outperformed. As in Table III, SAP’s running time was around
2000× to 4000× higher than EA in the given settings. We
found this gap to further grow with larger arrival rate, more
nodes, or a smaller ϵ. This made it difficult to compare EA

 

  
λ  100 200 300 400 500 

EA 5.62 5.66 5.68 5.62 5.55 
SAP 10110.29 11658.24 14152.57 17681.29 21985.57 

TABLE III: Running time per request (ms) for EA and SAP.

and SAP in larger-scale settings due to SAP’s high running
time. The result is not surprising, since SAP was designed
as an offline algorithm and has a high complexity as shown
in [5], several orders higher than EA asymptotically. The result
precludes SAP to be used in situations where requests come
with short intervals and need immediate accommodation.

Fig. 4 shows impact of several scalability factors. Parameter
ϵ defines trade-off between accuracy and complexity of one-
shot FPTAS. While ϵ largely impacts running time as in
Fig. 4(b), its impact on social welfare is negligible in Fig. 4(a).
There are two reasons: 1) the theoretical bound (1+ ϵ) of the
FPTAS is very conservative, and 2) even if a request runs into
a higher-than minimum cost and gets rejected, the unallocated
resources can be used by future requests to make up for the
poor decision. Hence, a loose ϵ value (e.g., 1.0) is enough
for high efficiency without sacrificing social welfare. Fig. 4(c)
examines running time with varying network sizes. With up
to 120 network nodes (APs), EA still makes a decision in
3 seconds per request, fast enough for practical scenarios.
Fig. 4(d) shows that the number of data sources has a limited
impact on efficiency. Other factors such as number of edge
nodes or resource types are similar and hence omitted.

VI. CONCLUSIONS

We proposed an online mechanism for edge SLA provisioning
with QoS guarantee, which achieves competitive social wel-
fare while ensuring truthfulness of application owners’ bids,
individual rationality, budget balance, and computational effi-
ciency. The mechanism does not assume application owners’
knowledge regarding the edge network, and allows the edge
provider to fully decide the provisioning of computing and
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Fig. 4: Scalability factors of the EA algorithm.

network resources. It achieves the best known competitive ratio
for both online and offline truthful edge resource provisioning
mechanism design. Simulations showed that our mechanism
achieved superior performance over delay-agnostic and heuris-
tic solutions in practical settings.
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[39] P. Briest, P. Krysta, and B. Vöcking, “Approximation Techniques for
Utilitarian Mechanism Design,” ACM STOC, pp. 39–48, 2005.

[40] B. M. Waxman, “Routing of Multipoint Connections,” IEEE J. Sel. Areas
Commun., vol. 6, no. 9, pp. 1617–1622, 1988.

[41] “Gurobi Optimizer.” [Online]. Available: http://www.gurobi.com/
products/gurobi-optimizer

10


