
VeriEdge: Verifying and Enforcing Service Level
Agreements for Pervasive Edge Computing

Xiaojian Wang, Ruozhou Yu, Dejun Yang, Huayue Gu, Zhouyu Li

Abstract—Edge computing gained popularity for its promises
of low latency and high-quality computing services to users.
However, it has also introduced the challenge of mutual untrust
between user and edge devices for service level agreement
(SLA) compliance. This obstacle hampers wide adoption of edge
computing, especially in pervasive edge computing (PEC) where
edge devices can freely enter or exit the market, which makes
verifying and enforcing SLAs significantly more challenging. In
this paper, we propose a framework for verifying and enforcing
SLAs in PEC, allowing a user to assess SLA compliance of an
edge service and ensure correctness of the service results. Our
solution, called VeriEdge, employs a verifiable delayed sampling
approach to sample a small number of computation steps, and
relies on randomly selected verifiers to verify correctness of the
computation results. To make sure the verification process is
non-manipulable, we employ verifiable random functions to post-
select the verifier(s). A dispute protocol is designed to resolve
disputes for potential misbehavior. Rigorous security analysis
demonstrates that VeriEdge achieves a high probability of detect-
ing SLA violation with a minimal overhead. Experimental results
indicate that VeriEdge is lightweight, practical, and efficient.

Index Terms—Edge computing, service-level agreement, veri-
fiable computing, service verification, lightweight

I. INTRODUCTION

With key benefits in low latency and network traffic reduction
over the cloud, edge computing enables many real-time ser-
vices such as metaverse [1], [2], autonomous driving [3], and
cloud gaming [4]. Pervasive Edge Computing (PEC) [5] is an
emerging paradigm that utilizes diverse distributed devices as
edge devices. Device owners can receive monetary compen-
sation by offering their devices for computing services.

However, due to device heterogeneity and dynamicity, uti-
lizing PEC brings new performance and security concerns. The
mutual untrust between users and edge devices necessitates a
solution to help users verify compliance with service level
agreements (SLAs) [6]–[9] and provide assurance to edge
devices against service disputes. Limited user resources hinder
independent computation and necessitate reliance on external
verifiers to assist in computing verification. Yet, selecting a
reliable verifier is also a complex task since the verifiers are
commonly driven by financial interests and can be untrusted as
well. In addition, fairly opportunities for verifier participation
are vital for market stability, long-term viability, and prevent-
ing dominance or collusion by resource-intensive devices.

Existing work on SLA monitoring [10], [11] mainly focuses
on cloud computing, where only one or two entities (cloud

Wang, Yu, Gu, Li ({xwang244, ryu5, hgu5, zli85}@ncsu.edu) are with
NC State University, Raleigh, NC 27606. Yang (djyang@mines.edu) is with
Colorado School of Mines, Golden, CO 80401. This research was supported
in part by NSF grants 2045539, 2007391, 2008056 and 2008935. The
information reported here does not reflect the position or the policy of the
federal government.

providers) need to be monitored instead of many as in PEC.
Cryptographic approaches such as verifiable computation [12]
are not suitable for PEC due to their high overhead. Incentive-
based solutions make assumptions on verifiers’ financial in-
terests to ensure correctness [13]. Lightweight execution cor-
rectness checking schemes are only for specific tasks [14].
In general, there lacks a framework that addresses SLA com-
pliance for general stateful applications, specifically in PEC
environments characterized by heterogeneity and dynamicity.
Motivating example: An example PEC application is large-
scale security surveillance using many distributed sensors
(traffic cams or vehicle dash cams), assisted by heterogeneous
PEC devices for continuous video processing such as object
detection, recognition and tracking [15]. A PEC device may
not faithfully process the offloading video data while still
trying to claim the service reward. To guarantee accountability
and reliability of surveillance, monitoring SLA becomes im-
perative. Other similar scenarios include demand response dur-
ing sports events [16], edge-assisted autonomous driving [17],
etc., which can benefit from PEC, but need SLA assurance to
ensure acceptable application or user performance.

To improve overall quality and reliability of services pro-
vided in PEC, we propose VeriEdge, a framework for general
SLA verification and enforcement in PEC. VeriEdge enables
lightweight execution verification via delayed sampling and
replay. Using commitments and verifiable random functions
(VRFs), the sampling, verifier selection and verification pro-
cess can be fully verified by an external party such as a service
provider or trusted third-party arbitrator. VeriEdge allows a
wide range of devices to become candidates for verification,
and ensures honest parties prevail in disputes. By opportunis-
tically verifying computational results via randomly selected
verifiers, user can gain confidence in an edge device’s service
without a high verification overhead, or detect misbehavior
such as free riding, malicious output, or collusion.

Our main contributions are summarized as follows:

• We propose the VeriEdge framework for SLA verification
and enforcement in dynamic PEC environments with
untrusted edge devices, which ensures SLA compliance,
non-manipulable verification, and fair dispute resolution.

• We design a commit-then-sample procedure to perform
lightweight sampling and verification of intermediate
computation results with non-repudiability.

• We propose a verifier selection and computation verifica-
tion procedure based on VRFs, which ensures verifiable
fairness and a high probability for misbehavior detection.

• We perform rigorous security analysis to show that Ver-

djyang@mines.edu

iEdge can achieve high assurance of SLA verification.
• We implement a prototype of VeriEdge on a stateful

object tracking application on commodity edge devices
to demonstrate its superior efficiency and scalability.

Organization. §II reviews related work. §III introduces pre-
liminary building blocks. §IV introduces our system model,
threat model, and problem statement. §V gives an overview
of VeriEdge. §VI presents the detailed design of VeriEdge.
§VII presents security analysis of VeriEdge. §VIII shows the
performance of VeriEdge. §IX concludes the paper.

II. RELATED WORK

Many have studied SLA monitoring in cloud computing [18].
Dong et al. [11] designed smart contracts to enforce faithful
cloud execution by cross-checking the result from two clouds.
Khan et al. [10] studied scalability of blockchain-based SLA
monitoring for cloud services. Badshah et al. [19] proposed an
SLA monitoring framework to offer online monitoring services
by a third party. SLA monitoring for cloud is usually limited
to monitoring a few fixed cloud entities, relying on a resource-
intensive blockchain or assuming the user maintains a service
reference implementation [20], impractical for PEC scaling.

Verifiable computation can be used to ensure the correctness
of computation results [21], [22]. However, it may suffer from
significant overhead due to reliance on expensive cryptography
such as fully homomorphic encryption [23], short probabilis-
tically checkable proof (PCPs) [24], and/or succinct argu-
ments [25]. Some lightweight execution correctness checking
schemes target specific services [12] such as polynomial
delegation [26] and matrix inverse [14].

Incentive-based solutions can help ensure honest task execu-
tion. Zhao et al. [27] proposed a framework that employs edge
tampering detection and edge honesty incentives to effectively
detect the authenticity of edge’s results and identify dishonest
edge nodes. Küpçü et al. [13] proposed a scheme that ensures
correct execution of outsourced jobs by combining game the-
ory and cryptography. This scheme assumes that the majority
of outsourced parties are rational and checks computation
results’ correctness through complete re-execution.

Recently, a commit-then-selection method is proposed for
verifier selection in an edge computing marketplace [28], but
it relies on a static verifier list agreed by user and edge server,
and lacks verifiability and fairness among market participants.
Other existing work overlooks the verifier selection, resulting
in lack of a comprehensive framework for SLA compliance
monitoring for general stateful applications.

III. PRELIMINARIES

A. Verifiable Random Function

A verifiable random function (VRF) [29] is a public-key pseu-
dorandom function that can prove correctness of its outputs,
and consists of three algorithms as follows:

1) VRFKeyGen(1k)→(SK,PK): It takes security param-
eter k as input, and outputs a (SK,PK) key pair.

2) VRFProve(SK, x)→(y, π): It takes secret key SK and
an input x, and generates an output y and its proof π.

Edge Server

Edge Server

Edge
Server

Registration

Payment Claim

Offloading

Base
Station

User

Verifier

Executor

Communication link

Executor candidates

Verifier market

Base
Station

User

Verifier

Executor

Communication link

Executor candidates

Verifier market

Base
Station

User

Verifier

Executor

Communication link

Executor candidates

Verifier market

Trust Third
Party

Base
station

User

Verifier

Executor

Communication link

Executor candidates

Verifier market

Trust third
party

Base
station

User

Verifier

Executor

Communication link

Potential executor area

Potential verifier area

Trust third
party

Fig. 1. System architecture and network topology.

3) VRFVerify(PK, x, y, π)→{0, 1}. It takes the public key
PK, input x, output y and proof π as input, and outputs
1 if (y, π)=VRFProve(SK, x) and 0 otherwise.

A VRF must satisfy three properties: (i) Uniqueness: It is
infeasible for a probabilistic polynomial time (PPT) adversary
to find a pair of values y1, y2 with proofs π1, π2 such that
VRFVerify(PK, x, y1, π1)=VRFVerify(PK, x, y2, π2) when
y1 ̸= y2. (ii) Provability: If (y, π) = VRFProve(SK, x), then
VRFVerify(PK, x, y, π) = 1. (iii) Pseudorandomness: The
output y is indistinguishable from a random string by anyone
who does not know the secret key SK.

B. Commitment

A commitment conceals a statement and allows for later
revelation [30]. The commitment has two phases, commit and
open, which correspond to two algorithms (Com,Verify):

1) Com(x, r) → c: It takes a statement x and a random
value r as input, and outputs a commitment c.

2) Verify(c, x, r) → {0, 1}: It takes a commitment c, a
statement x and a random value r as input, and outputs
1 if c = Com(x, r), and 0 otherwise.

Briefly, a commitment scheme must satisfy two properties:
(i) Binding: A committer cannot change the statement after
the commit phase. (ii) Hiding: Only the committer knows the
plaintext of the statement before the verify phase begins.

IV. MODELS AND PROBLEM STATEMENT

In this section, we introduce the system model of VeriEdge,
including the parties involved and the interactions among
them, the threat model, and the problem formulation.

A. System Model

In PEC, a user outsources computing tasks to an edge de-
vice. The service provided to the user must satisfy certain
requirements in order for the edge device to be paid. These
requirements are collectively defined in the SLA. For example,
the user may require continuous service from the edge device
(availability), each task to be completed within a certain time
frame (responsiveness), all computation steps to be faithfully
executed (soundness), and the computation result to be accu-
rate (correctness). To ensure that the edge device meets the
pre-agreed SLA, user has the right to verify SLA compliance
during or after the service. If the user suspects SLA violation,
she can initiate a dispute with a Trusted Third Party (TTP).

Fig. 1 shows the involved parties and their interactions.
1) User. A user is the client of an edge computing service.

User submits tasks to the executor (below) and receives

User
Trust Third

Party

Edge Server
(Executor)

Edge Server
(Executor)

③ Dispute
Resolustion

Edge Server
(Verifier)

Edge Server
(Verifier) Verifier

Market

① Task
Offloading

② Intermediate
State Verification

Edge Server
(Executor)

Edge Server
(Executor)

③ Dispute
Resolustion

① Task
Outsourcing

 Task
Verification

Edge Servers
(Verifiers)

Edge Servers
(Verifiers) Verifier

Market

Edge Servers
(Verifiers) Verifier

Market

Trust Third
Party

Trust Third
Party

②

UserUser

Edge server
(Executor)

Edge server
(Executor)

③ Dispute
resolustion

① Task
outsourcing

 Task
verification

Edge servers
(Verifiers)

Edge servers
(Verifiers) Verifier

market

Edge servers
(Verifiers) Verifier

market

Trust third
party

Trust third
party

②

UserUser

Edge server
(Executor)

Edge server
(Executor)

③ Dispute resolustion① Task outsourcing

Trust third
party

Trust third
party

UserUser

② Task verification

Selected
verifier

Selected
verifier

Verifier
market

Edge server
(Executor)

Edge server
(Executor)

③ Dispute resolustion① Task outsourcing

Trust third
party

Trust third
party

UserUser

② Task verification

Edge servers
(Verifiers)

Edge servers
(Verifiers)

Verifier
market

Edge server
(Executor)

Edge server
(Executor)

③ Dispute resolustion① Task outsourcing

Trust third
party

Trust third
party

UserUser

② Task verification

Edge servers
(Verifiers)

Edge servers
(Verifiers)

Verifier
pool

Fig. 2. Overview of VeriEdge.

the results, and wants to make sure that the executor ex-
ecutes the tasks faithfully and returns the correct results.

2) Executor. Executor is the edge device that primarily
provides a computing service to a user and receives
service payment. The executor receives a continuous
stream of tasks with user-supplied inputs, executes the
tasks based on inputs and internal states, and returns final
computation results to the user. In PEC, the executor is
typically located close to the user to provide low-latency
and high-quality services, such as being connected to the
same or a nearby base station as the user. For tasks
with stringent real-time requirements, the executor is
commonly chosen to be a more powerful edge device
to meet the requirements, such as one equipped with
advanced CPU, GPU, RAM and/or specialized software.

3) Verifier. Many edge devices can voluntarily join the
verifier pool to work as verifiers. By participating in this
pool, the verifier helps users confirm correct processing
of their tasks, and can receive verification payments from
users for the verification service. Verifiers can be edge
devices that are located farther away from the users,
and/or with potentially lower computational capabilities
while still being capable of executing verification tasks.
For example, verifiers can be cost-efficient but resource-
limited devices like smartphones, tablets, etc.

4) Base station. The main role of base station is to support
communication between user and the edge devices, and
provide essential network information to the user such as
the lists of available executors and verifiers in the vicinity.

5) TTP. TTP is a trusted third party that is only responsible
for resolving disputes between users and edge devices,
as well as payment settlement. TTP is not involved in
the actual task outsourcing and verification process and
it can vary in forms, not limited to a physical entity. For
example, it can be a smart contract on a blockchain [31].

Fig. 2 shows the interactions involved in the SLA verifica-
tion and enforcement process, which consists of three stages:

1) Task outsourcing. The user submits tasks (inputs) to an
executor and receives the computation results (outputs).

2) Task verification. After one or many tasks are completed,
a user can request intermediate states from executor,
and submit the states to one or multiple verifiers for
verification. If results from the verifier(s) match the result
from the executor, user assumes correctness of executor’s
execution; otherwise a user may initiate a dispute.

3) Dispute resolution. In case of inconsistent results be-
tween the verifier(s) and the executor, the user can file a
dispute with the TTP. The TTP then resolves the dispute
based on submitted evidence, including checking validity

of all processes based on the evidence and checking
majority vote on the results from executor and verifiers.
Payment or punishment can then be settled accordingly.

B. Threat Model and Security Goals

Our threat model primarily considers untrusted or malicious
edge devices who try to obtain service or verification payments
without faithfully executing the computing tasks, as well as
malicious users who want to exploit the dispute process to
hamper honest edge devices from receiving proper payments.

Both executors and verifiers are assumed to be untrusted.
Executors have the incentive to bypass or guess the results
of certain computation steps in the task execution process,
aiming to conserve resources, minimize service cost, or avoid
violating real-time requirement. For instance, an executor
hosting a security surveillance service may only process a
small fraction of video frames sent from user device to
alleviate its workload, which breaks the user-executor SLA
for faithful computation. When user wants to verify the service
results, the executor may collude with the verifier to cheat the
user. To cheat the user, a verifier colluding with the executor
would always return the same (though possibly fake) result
for whatever verification task of the user. At any time when
a user decides to start or continue outsourcing, we assume
there is a sufficiently large set of available verifiers meeting
the user’s security requirement. We consider a static corruption
model following existing work [32], [33], where any collusion
between parties is formed before the protocol starts.

A malicious user may manipulate the TTP’s judgment dur-
ing the dispute resolution process to receive services without
payment. The user may achieve this by providing different
inputs to the verifier(s) and executor, supplying incorrect
intermediate states from the executor to the verifier(s), or
colluding with certain verifiers to submit fake verification
results that are inconsistent with the executor’s results.

Base station and TTP are trusted parties performing specific
functions. Base station maintains a catalog of local devices
and facilitates executor/verifier discovery. TTP resolves dis-
pute based on user-submitted evidences (execution/verification
results), but does not perform actual computation for indepen-
dent verification. We assume they have no ability or incentive
to carry out computing verification for users; otherwise bottle-
necks and single points of failure may occur, as well as non-
trivial overhead to these parties for a large number of users.
All parties communicate via authenticated secure channels.

The security goal of VeriEdge is to ensure executor’s SLA
compliance via dispute-based deterrence, while preventing a
malicious user from using dispute as a tool to tamper with
an honest executor’s service payment. To achieve these goals,
VeriEdge needs to ensure the following properties:

1) SLA compliance. An edge device cannot forge the proof
of services provided to a user without being discovered
with a high probability. Continuation of the outsourcing
service without termination or dispute by the user indi-
cates satisfaction of all SLA requirements: availability,
responsiveness, soundness and correctness.

Service

Epoch 1 Epoch 2 Epoch n
Sample

... Task

Epoch 1 Epoch 2 Epoch n
Sample

... Task

Service

Epoch 1 Epoch 2 Epoch n
Sample

... Task

Fig. 3. n epochs with epoch length lϱi = 5 tasks. Sampling rate ηs = 0.2.

2) Non-manipulable verification. No entity can manipulate
the verifier selection or verification processes, in order to
undetectably misbehave or unjustifiably win a dispute.

3) Dispute resolution. An honest user can provide valid
evidence to win a dispute for detected executor/verifier
misbehavior, while a malicious user cannot win a dispute
by submitting forged or invalid evidence. The faithful
executor and/or verifier(s) can secure the payments even-
tually, while any malicious executor or verifier faces
detection and/or punishment through a dispute or prompt
collaboration termination. The user can stop the ongoing
work with minimal loss, limited to one round of payment
at most, ensuring honest service continuity throughout the
long-term incremental service outsourcing process.

C. Service Model and Problem Formulation

We first define the SLA verification and enforcement problem
in PEC. Consider a user who wants to use a service s offered
by an executor e. A service consists of computation tasks to
be executed over time. Each task needs to be completed based
on user-supplied inputs and the intermediate state generated
from executing the previous tasks, in the meantime updating
the intermediate state and/or generating an output to the
user. The user’s goal is to verify that each task is faithfully
executed, based on the correct input and intermediate state,
and the received output is correct. If task execution by an edge
device does not fulfill availability or responsiveness, user will
terminate the service and seek alternative services such as from
another edge device. However, the user has no computation
power or does not own the proprietary software that the edge
hosts, to verify the soundness or correctness by herself.

To verify the execution, user can request some or all tasks
to be verified by external verifiers. Specifically, sampling
only a subset of tasks for verification reduces the verification
overhead and cost incurred in a full replay of all tasks [13].
Verification tasks are sampled in epochs, each epoch consisting
of a set of consecutive task executions. The user can specify
which tasks to sample in each epoch, and the executor must
return the required input/output states of each sampled task for
verification. A special case of our model is a stateless service
where tasks are independently executed with no intermediate
state, which can simplify the verification process. However, we
do not restrict a service to be stateless in our model. Fig. 3
shows the relationship among service, task, epoch, and sample.

We use an example object tracking service to provide
definitions and give further explanations. In an object tracking
service s, a user uploads a series of consecutive frames from
a video clip or stream to the executor to detect and track all
objects contained in the video. Each frame can be considered
as a task. Assuming the user has a total of k frames to
process, the task set is {t1, t2, . . . , tk}. The tasks within a
certain interval form an epoch ϱi ≜ {ti,1, ti,2, . . . , ti,lϱi }.
The epoch length lϱi depends on the service and is not

necessarily uniform. The user expects to receive an object
tracking result for every frame, every few frames, or once per
epoch. To track the objects, the service runs an object tracking
algorithm Φs that maintains an internal state corresponding to
the set of objects tracked so far after executing each frame. To
verify the service SLA, the user can sample a subset of tasks
after each epoch and verify them with external verifiers. The
sampling rate of tasks in each epoch is denoted as ηs ∈ (0, 1].
At any time, the verifier pool Vs consists of m verifiers
Vs ≜ {v1, v2, . . . , vm} with m ≥ 3.

In Definition 1, we define the concept of a q-Algorithm
following [13], [28], which forms the strategy of either an
honest or a malicious executor or verifier.

Definition 1. q-Algorithm: An executor/verifier executes the
correct algorithm Φs and returns the correct result with
probability q, and executes an arbitrary algorithm and returns
potentially fake or malicious result with probability 1− q. An
honest executor/verifier always executes a 1-algorithm.

To model collusion between executor and verifiers, we
define pre-collusion ratio δs < 1 as the ratio of verifiers in
Vs which are colluding with e. We similarly define the user-
verifier pre-collusion ratio as δu<1.

For a stateful service with executor algorithm Φs, we have
Φs(Θi,j , Ii,j) = (Θi,j+1, Oi,j), where Θi,j is the state of Φs

before executing task j of epoch i, Ii,j is the user input of
task j, and Oi,j is the output to user after executing j. Note
that “=” indicates equality not assignment. However, it may
not always be possible to verify the exact state or output of an
execution, such as due to randomness in Φs or restriction to
run Φs on a verifier device. In this case, we also define a pre-
negotiated verification algorithm Ψs and a correctness check-
ing function Cs. Ψs has the same input/output format as Φs

(and can be Φs itself if applicable), and Cs((Θ̂, Ô), (Θ̃, Õ))→
{0, 1} outputs 1 iff (Θ̂, Ô) matches (Θ̃, Õ). Without loss of
generality, we assume Cs(Φs(Θi,j , Ii,j),Ψs(Θi,j , Ii,j)) = 1
always holds. We define correctness by verification as follows:

Definition 2. Correctness by verification: Given a stateful or
stateless service with executor algorithm Φs, a pre-negotiated
verification algorithm Ψs, and a correctness checking function
Cs, along with the verification input (Θi,j , Ii,j), the execution
of the executor which output (Θe

i,j+1, O
e
i,j) is correct-by-

verification if the following condition is satisfied:
Cs((Θ

e
i,j+1, O

e
i,j),Ψs(Θi,j , Ii,j)) = 1.

An honest user would immediately terminate outsourcing
to an executor when she finds that the correct-by-verification
property does not hold for any task. In other words, continuity
of service without interruption or termination indicates that the
executor fulfills execution faithfulness by being available, re-
sponsive, sound and correct in the execution process. However,
as the user cannot even be sure that any verifier she picks will
honestly execute the verification algorithm Ψs and/or return
the faithful result, she would require a probabilistic guarantee
for her confidence in the executor’s service. We now define
(probabilistic) SLA compliance as follows:

ExecutorExecutor

Epoch i

Service
Requests Intermediate

States
Commitment

Final Result
+

Epoch i
Epoch i
Sample

Requirement

Intermediate
States

Proofs of
Samples

+

Epoch i Epoch i+1

Commitment + H(Intermediate States) =
?
=
? Proofs

User

①

②
③

④

⑤

Executor

Epoch i

Service
Requests Intermediate

States
Commitment

Final Result
+

Epoch i
Epoch i
Sample

Requirement

Intermediate
States

Proofs of
Samples

+

Epoch i After Epoch i

Commitment + H(Intermediate States) =
?
=
? Proofs

User

①

②
③

④

⑤

Executor

Service
requests

Epoch i
output

+

Epoch i

Epoch i
Samples

+

Epoch i After Epoch i

Commitment + H(Intermediate States) =
?
=
? Proofs

User

①

②
③

④

⑤

Commitment
of Epoch i

Sampled
input/output

intermediate states

Commitment
proofs

Executor

Service
requests

Epoch i
output

+

Epoch i

Epoch i
Samples

+

Epoch i After Epoch i

User

①

②
③

④

Commitment
of Epoch i

Sampled
input/output

intermediate states

Commitment
proofs

+ H() =
?
=
? Commitment

proofs
⑤ Commitment input/output

intermediate states

Executor

Service
requests

Epoch i
output

+

Epoch i
Epoch i
Samples

+

Epoch i After Epoch i

User

①

②

③
④

Commitment
of Epoch i Sampled input/output

intermediate states

Commitment
proofs

+ H() =
?
=
? Commitment

proofs
⑤ Commitment input/output

intermediate states

Executor

Service
requests

epoch i
output

+

Epoch i
Epoch i
sample
request +

Epoch i After epoch i

User

①

②
③

④
Commitment

of epoch i sampled input/output
intermediate states

commitment
proofs

+ H() =
?
=
? Commitment

proofs
⑤ Commitment input/output

intermediate states

Fig. 4. Verifiable sampling workflow. At epoch i, (1) User sends service
requests to executor; (2) Executor sends commitment and output of epoch i
back to user; After epoch i, (3) User sends sample request for epoch i to
executor; (4) Executor returns the input/output and intermediate states along
with commitment proofs corresponding to the sample request to user; (5) User
checks whether the commitment proof is correct.

Definition 3. (Probabilistic) SLA compliance: Given an ex-
ecutor using q-algorithm with q<1, for any pre-collusion ratio
δs and sampling rate ηs, unterminated outsourcing indicates
that user’s SLA requirements are met with probability

Pr[executor is faithful] > 1− ϵ(n),
where ϵ(n) is a negligible function in the number of epochs
n, i.e., for all constants c, there exists an integer N such that
for all n>N , |ϵ(n) |< 1

nc .
Our goal is to define an edge outsourcing and verification

framework which ensures the above property is satisfied for
any executor and verifier algorithms and pre-colluding ratios
satisfying our system and threat models above.

V. VERIEDGE OVERVIEW

Considering the unique characteristics of edge computing
such as heterogeneity, untrustworthiness, limited resources,
and dynamicity, we propose VeriEdge, a verifiable SLA verifi-
cation and enforcement framework for general edge computing
services. As shown in Fig. 2, VeriEdge consists of three
components: verifiable sampling for sampling the outsourced
tasks to be verified; VRF-based verifier selection for selecting
verifiers to verify the sampled tasks; and dispute resolution
for resolving disputes between user and executor/verifier(s).
Verifiable sampling. Since users are unable to verify all
intermediate results due to limited resources, they need to em-
ploy a sampling-based approach that is verifiable for dispute.
The goal of verifiable sampling is two-fold: (i) the executor
cannot know which tasks will be sampled before executing the
tasks and returning the results, to avoid the executor cheating
by only faithfully serving the tasks to be sampled; (ii) the
executor cannot return wrong intermediate states of a sampled
task to mislead verification and evade being detected of its
misbehavior. To achieve these goals, the verifiable sampling
process has two stages: commitment and verification. By first
letting the executor commit on all intermediate states and
task outputs during execution, our process allows the user
to post-select random tasks to be checked, and verify that
the intermediate states and outputs returned by the executor
are the same as being executed. Meanwhile, to counteract the
possibility of a malicious user attempting to dispute for refund
after receiving the service, we require the user to collect and
provide valid evidence that cannot be manipulated by her to
initiate a dispute. This ensures faithful dispute resolution by
TTP. The verifiable sampling process is illustrated in Fig. 4.

User

Selected
Verifier
Selected
Verifier Verifier

market

①
VRFKeyGen(1k)

→(SK,PK)

② Publish
(H(Tv), type,duration)

③
VRFProve(SK,H(Tv))

→(PK,y,π)

④ Find the target y, check

VRFVerify(PK,H(Tv),π)→{0,1}

⑤ Executor
Intermediate States

⑥
Verification
Response

Tv

+

User

Selected
Verifier
Selected
Verifier Verifier

market

①
VRFKeyGen(1k)

→(SK,PK)

② Publish (H(Tv), type,duration)

③
VRFProve(SK,H(Tv))

→(PK,y,π)

④ Find the target y, check VRFVerify(PK,H(Tv),π)→{0,1}

⑤ Executor
Intermediate States

⑥
Verification
Response

Tv

+

User

Selected
Verifier
Selected
Verifier Verifier

market

① Publish verification task

(PK1,y1,π1)

④
Verification
Response

② Verifiers join in market

Public Key Output Proof

PK1 y1 π1

PK2 y2 π2

PK3 y3 π3

PK4 y4 π4③ Executor
Intermediate States

Task content
+

③ Executor
Intermediate States

Task content
+

(PK1) (PK2)(PK3)

(PK4)

User

Selected
Verifier
Selected
Verifier Verifier

market

① Publish verification task

④
Verification
Response

② Verifiers join in market

Public Key Output Proof

PK1 y1 π1

PK2 y2 π2

PK3 y3 π3

PK4 y4 π4

③ Executor
Intermediate States

Task content
+

③ Executor
Intermediate States

Task content
+

(PK1) (PK2)(PK3)

(PK4)

User

Selected
Verifier
Selected
Verifier Verifier

market

① Publish verification task

④
Verification
Response

② Verifiers join in market

Public Key Output Proof

PK1 y1 π1

PK2 y2 π2

PK4 y4 π4

③ Executor
Intermediate States

Task content
+

③ Executor
Intermediate States

Task content
+

(PK1) (PK2)(PK3)

(PK4) PK3 y3 π3

User

Selected
verifier

Selected
verifier Verifier

market

① Publish verification task

④
Verification

response

Public Key Output Proof

PK1 y1 π1

PK2 y2 π2

PK4 y4 π4

Executor's
intermediate states

Task input
+

Executor's
intermediate states

Task input
+

(PK1) (PK2)(PK3)

(PK4) PK3 y3 π3

② Verifiers generate verifiable
random numbers

③

Base
Station

① Verifier list request

② Verifier list

User

Selected
verifier

Selected
verifier Verifier

market

③ Publish verification task

⑥
Verification

response

Public Key Output Proof

PK1 y1 π1

PK2 y2 π2

PK4 y4 π4

Executor's
intermediate states

Task input
+

Executor's
intermediate states

Task input
+

(PK1) (PK2)(PK3)

(PK4) PK3 y3 π3

④ Verifiers generate verifiable
random numbers

Base
Station

① Verifier list request

② Verifier list

⑤

User

Selected
verifier

Selected
verifier Verifier

market

③ Publish verification task

Verification

response

Public Key Output Proof

PK1 y1 π1

PK2 y2 π2

PK4 y4 π4

Executor's
intermediate states

Task input + Executor's intermediate states
+

Executor's
intermediate states

Task input + Executor's intermediate states
+

(PK1) (PK2)(PK3)

(PK4) PK3 y3 π3

④ Verifiers generate verifiable
random numbers

Base
Station

① Verifier list request

② Verifier list

⑤

UserBase
Station

① Verifier list
request

Verifiers generate verifiable
random numbers

Public Key Output Proof

PK1 y1 π1

PK2 y2 π2

PK4 y4 π4

PK3 y3 π3

Public Key Output Proof

PK1 y1 π1

PK2 y2 π2

PK4 y4 π4

PK3 y3 π3

Selected
verifier

Selected
verifier Verifier

market

(PK1) (PK2)(PK3)

(PK4)

Selected
verifier Verifier

market

(PK1) (PK2)(PK3)

(PK4)Task input +
Executor's

intermediate states
⑤

② Verifier list

④

⑥

③ Publish verification task

Verification
response

UserBase
Station

① Verifier list
request

Verifiers generate
verifiable random
numbers

Public Key Output Proof

PK1 y1 π1

PK2 y2 π2

PK4 y4 π4

PK3 y3 π3

Public Key Output Proof

PK1 y1 π1

PK2 y2 π2

PK4 y4 π4

PK3 y3 π3

Selected
verifier

Selected
verifier Verifier

market

(PK1) (PK2)(PK3)

(PK4)

Selected
verifier Verifier

market

(PK1) (PK2)(PK3)

(PK4)Task input +
Executor's

intermediate states
⑤

② Verifier list

④

⑥

③ Publish verification task

Verification
response

UserBase
Station

① Verifier list
request

Verifiers generate
verifiable random
numbers

Public Key

Output

Proof

PK1

y1

π1

PK2

y2

π2

PK4

y4

π4

PK3

y3

π3

Selected
verifier

Selected
verifier Verifier

market

(PK1) (PK2)(PK3)

(PK4)

Selected
verifier Verifier

market

(PK1) (PK2)(PK3)

(PK4)Task input +
Executor's

intermediate states
⑤

② Verifier list

④

⑥

Verification
response

User
① Verifier list

request

Verifiers generate
verifiable random
numbers

Public Key

Output

Proof

PK1

y1

π1

PK2

y2

π2

PK4

y4

π4

PK3

y3

π3

Selected
verifier

Selected
verifier Verifier

market

(PK1) (PK2)(PK3)

(PK4)

Selected
verifier Verifier

market

(PK1) (PK2)(PK3)

(PK4)Task input +
 Executor's intermediate states
⑤

② Verifier list ⑥

④

③ Publish verification task

Verification
response

User
① Verifier list

request

Verifiers generate
verifiable random
numbers

Public Key

Output

Proof

PK1

y1

π1

PK2

y2

π2

PK4

y4

π4

PK3

y3

π3

Selected
verifier

Selected
verifier Verifier

market

(PK1) (PK2)(PK3)

(PK4)

Selected
verifier Verifier

market

(PK1) (PK2)(PK3)

(PK4)Task input +
 Executor's intermediate states
⑤

② Verifier list ⑥

④

Base
Station

③ Publish verification task

Verification
response

User
 Verifier list

request

Verifiers generate
verifiable random
numbers

Public Key

Output

Proof

PK1

y1

π1

PK2

y2

π2

PK4

y4

π4

PK3

y3

π3

Selected
verifier

Selected
verifier Verifier

market

(PK1) (PK2)(PK3)

(PK4)

Selected
verifier Verifier

market

(PK1) (PK2)(PK3)

(PK4)Task input +
 Executor's intermediate states
⑤

② Verifier list ⑥

④

Base
station①

③ Publish verification task

Verification
response

User
 Verifier list

request

Verifiers generate
verifiable random
numbers

Public Key

Output

Proof

PK1

y1

π1

PK2

y2

π2

PK4

y4

π4

PK3

y3

π3

Selected
verifier

Selected
verifier Verifier

market

(PK1) (PK2)(PK3)

(PK4)

Selected
verifier Verifier

market

(PK1) (PK2)(PK3)

(PK4)Task input +
 Executor's intermediate states
⑤

② Verifier list ⑥

④

Base
station①

③ Publish verification task

Verification
response

User
 Verifier list

request

Verifiers generate
verifiable random
numbers

Selected
verifier Verifier

market

(PK1) (PK2)(PK3)

(PK4)Task input +
 Executor's intermediate states
⑤

② Verifier list ⑥

④

Base
station①

Public Key

Output

Proof

PK1

y1

π1

PK2

y2

π2

PK4

y4

π4

PK3

y3

π3

Public Key

Output

Proof

PK1

y1

π1

PK2

y2

π2

PK4

y4

π4

PK3

y3

π3

③ Publish verification task

Verification
response

User
 Verifier list

request

Verifiers generate
verifiable random
numbers

Selected
verifier Verifier

market

(PK1) (PK2)(PK3)

(PK4)Task input +
 Executor's intermediate states
⑤

② Verifier list ⑥

④

Base
station①

Public Key

Output

Proof

PK1

y1

π1

PK2

y2

π2

PK3

y3

π3

PK3

y3

π3

PK4

y4

π4

PK4

y4

π4

PK3

y3

π3

PK4

y4

π4

③ Publish verification task

Verification
response

User
 Verifier list

request

Verifiers generate
verifiable random
numbers

Selected
verifier Verifier

market

(PK1) (PK2)(PK3)

(PK4)Task input +
 Executor's intermediate states
⑤

② Verifier list ⑥

④

Base
station①

Public Key

Output

Proof

PK1

y1

π1

PK2

y2

π2

PK3

y3

π3

PK3

y3

π3

PK4

y4

π4

PK4

y4

π4

PK3

y3

π3

PK4

y4

π4

③ Publish verification task

Verification
response

User
 Verifier list

request

Verifiers generate
verifiable random
numbers

Selected
verifier Verifier

pool

(PK1) (PK2)(PK3)

(PK4)Task input +
 Executor's intermediate states
⑤

② Verifier list ⑥

④

Base
station①

Public Key

Output

Proof

PK1

y1

π1

PK2

y2

π2

PK3

y3

π3

PK3

y3

π3

PK4

y4

π4

PK4

y4

π4

PK3

y3

π3

PK4

y4

π4

Fig. 5. VRF-based verifier selection workflow. (1) User sends verifier list
request to base station; (2) Base station sends available verifier list to user; (3)
User publishes the verification task to the verifier pool; (4) Verifiers generate
verifiable random numbers to compete for the verification task; (5) User finds
the winner in the verifier pool as the selected verifier and sends the task input
and executor’s intermediate states to the selected verifier; (6) User gets the
verification response from the selected verifier.

User

Trust Third
Party

Verifier 1

② Dispute Resolution and
Payments Settlement

Results from Executor
Results from Verifier 1
Results from Verifier 2

Verifier 2

①

Executor

User

Trust Third Party

Verifier 1

 Dispute Arbitration and
Payments Settlement

Verifier 2

①

Executor

②

Results from Executor
Results from Verifier 1
Results from Verifier 2

…

User

Trust third
party

Verifier 1

 Dispute arbitration and
payments settlement

① Executor

②

Verifier 2

...

Results from Executor
Results from Verifier 1
Results from Verifier 2

…

User
Trust third

party

Verifier 1

Dispute arbitration and
payments settlement

①

Executor②

Verifier 2

...

Results from Executor
Results from Verifier 1
Results from Verifier 2

…

User
Trust third

party

Verifier 1

Dispute arbitration and
payments settlement

①

Executor②

Verifier 2

...

Evidence from Executor
Evidence from Verifier 1
Evidence from Verifier 2

…

User
Trust third

party

Verifier 1

Dispute arbitration and
payments settlement

①

Executor②

Verifier 2

...

Evidence from Executor
Evidence from Verifier 1
Evidence from Verifier 2
…

User
Trust third

party

Verifier 1

Dispute arbitration and
payments settlement

①

Executor②

Verifier 2

...

Fig. 6. Dispute resolution workflow. (1) User sends the dispute evidence to
TTP; (2) TTP resolves the dispute and settles payment.

VRF-based verifier selection. To verify the sampled tasks are
faithfully executed, the user selects from the set of available
verifiers to carry out verification. The main goal of verifier
selection is to ensure that the selection process is faithful
and verifiably random, which serves to guarantee that: (i)
the executor cannot be colluding with the same verifier(s)
and continuously cheat the user; (ii) similarly the user cannot
be colluding with the same verifier(s) to cheat the executor;
(iii) all verifiers have an equal chance to ensure fairness of
their competition for verification payments. To achieve this,
each verifier generates an unpredictable random number as its
competition token for each task using a VRF, which cannot
be manipulated but can be verified. Fig. 5 depicts the process.
Dispute resolution. When results from the executor and (some
of) the verifiers do not match, the user can initiate a dispute
to the TTP for arbitration. The user provides the evidence
from executor and all selected verifiers, containing the inputs,
outputs, and intermediate states of samples, along with the
supplementary information for verifiable verifier selection, to
initiate a dispute. TTP assesses the evidence, and determines,
regulates and/or punishes the responsible party with financial
or regulation means. See Fig. 6 for the dispute process.

VI. VERIEDGE DESIGN

In this section, we present the detailed design of VeriEdge.

A. Task Execution and Verifiable Sampling

In PEC, the lack of mutual trust between the executor and
the user necessitates the need to not only ensure that a
malicious executor cannot evade detection of misbehavior, but
also prevent malicious users from attacking an honest executor
by manipulating dispute results. This differs significantly from
a similar problem in middlebox verification [20], where the
“user” is assumed to be fully trusted. To address this, we
first devise a novel sampling, verification and aborting process

Algorithm 1: Task execution and verifiable sampling

/* During epoch i */
1 Executor initiates γi ← ∅ and Ii ← ∅;
2 for task ti,j in epoch ϱi do
3 User sends (Ii,j)u to executor;
4 Executor saves Ii,j in Ii;
5 Executor runs algorithm Φs on Ii,j , and stores

Si,j ≜ (H(Ii,j),Θi,j ,Θi,j+1, Oi,j) in γi;
6 Executor sends (H(Ii,j), Oi,j)e to user;

7 Executor constructs Merkle tree Mi with all Si,j ∈γi;
8 Executor sends the root of Mi to user;
/* After epoch i */

9 User sends executor a sample request νi ≜ (epoch i,
{H(Ii,k) | k ∈ Ki}, H(ri))u, where Ki contains
sample indices for epoch i and ri is a random number;

10 Executor generates evidence Ee,i≜
({(H(Ii,k),Θi,k,Θi,k+1, Oi,k) |k∈Ki}, H(ri))e
based on the request νi and proof of evidence χi

from Mi, and sends χi and Ee,i to user;
11 (Optionally) Executor can delete local Ii, γi and Mi;
12 for sample H(Ii,k) in νi do
13 if Ee,i.H(Ii,k) = H(Ii,k) and proof of H(Ii,k) in

χi is valid for (H(Ii,k),Θi,k,Θi,k+1, Oi,k) of
Ee,i then User can continue using the service;

14 else User aborts the service.

based on proofs and digital signatures to ensure truthful
evidence collection for later dispute resolution, as in Fig. 4.

At the start of the service, user selects an edge device as
the executor. The executor can be chosen using various exist-
ing computation offloading schemes, e.g., resource-allocation
based [34]–[36], game theory based [37], crowdsourcing
based [38], learning based approaches [39]. User then submits
the task inputs to executor as a sequence in each epoch. To
ensure that executor cannot manipulate the outsourcing and
verification process, the executor is required to commit to
each and every task’s before and after states and input/output
values. All commitments in each epoch are then organized in a
Merkle tree, with each leaf node representing the execution of
a task. The Merkle tree root is sent to the user upon completion
of each epoch. After an epoch, the user will sample random
tasks from the completed epoch, ask the executor to provide
input/output and intermediate states of the tasks, along with
Merkle tree proofs for verification. The proofs ensure that the
returned input/output and intermediate states correspond to the
sampled tasks’ execution as committed in the Merkle tree.

An implicit step in our protocol design (including in sub-
sequent subsections) is that all messages are signed and im-
mediately checked upon reception to make sure the signatures
are valid. This ensures authenticity of the messages, especially
when they are presented as evidence for dispute resolution. We
use (·)u, (·)e, (·)v , and (·)bs to represent a message signed by
the user, executor, verifier, and base station, respectively.

Algorithm 1 describes the verifiable sampling process.
When epoch i starts, user submits signed tasks to executor.

User

Selected
Verifier
Selected
Verifier Verifier

market

①
VRFKeyGen(1k)

→(SK,PK)

② Publish
(H(Tv), type,duration)

③
VRFProve(SK,H(Tv))

→(PK,y,π)

④ Find the target y, check

VRFVerify(PK,H(Tv),π)→{0,1}

⑤ Executor
Intermediate States

⑥
Verification
Response

Tv

+

User

Selected
Verifier
Selected
Verifier Verifier

market

①
VRFKeyGen(1k)

→(SK,PK)

② Publish (H(Tv), type)

③
VRFProve(SK,H(Tv))

→(PK,y,π)

⑤ Executor
Intermediate States

⑥
Verification
Response

Tv

+

④ Find the target y, check

VRFVerify(PK,H(Tv),π)→{0,1}

User

Selected
Verifier
Selected
Verifier Verifier

market

①
VRFKeyGen(1k)

→(SK,PK)

② Publish (H(Tv), type,duration)

③
VRFProve(SK,H(Tv))

→(PK,y,π)

⑤ Executor
Intermediate States

⑥
Verification
Response

Tv

+

④ Find the target y, check

VRFVerify(PK,H(Tv),π)→{0,1}

User

Selected
verifier
Selected
verifier Verifier

market

①
VRFKeyGen(1k)

→(SK,PK)

② Publish (H(Tv), type)

③
VRFProve(SK,H(Tv))

→(PK,y,π)

⑥
Verification

response

④ Find the target y, check

VRFVerify(PK,H(Tv),π)→{0,1}

Tv + Executor's
intermediate states ⑤

User

Selected
verifier
Selected
verifier Verifier

market

① VRFKeyGen(1k)→(SK,PK)

② Publish (H(Tv), type)

③ VRFProve(SK,H(Tv))→(PK,y,π)

④ Find target y,
check VRFVerify(PK,H(Tv),π)→{0,1}

Tv + Executor's
intermediate states ⑤
Tv + Executor's
intermediate states ⑤

Verification

response⑥

Verification

response⑥

User

Selected
verifier
Selected
verifier Verifier

market

① VRFKeyGen(1k)→(SK,PK)

② Publish (H(Tv), type)

③ VRFProve(SK,H(Tv))→(PK,y,π)

④ Find target y, check VRFVerify(PK,H(Tv),π)→{0,1}

Tv + Executor's
intermediate states ⑤
Tv + Executor's
intermediate states ⑤

Verification

response⑥

Verification

response⑥

User

Selected
verifier
Selected
verifier

Verifier
market

① VRFKeyGen(1k)→(SK,PK)

③ VRFProve(SK,H(Tv))→(PK,y,π)

Tv + Executor's
intermediate states ⑤

Verification

response⑥ ② Publish
(H(Tv), type)④ Find target y,

check VRFVerify(PK,H(Tv),π)→{0,1}

User

Selected
verifier
Selected
verifier

Verifier
market

① VRFKeyGen(1k)→(SK,PK)

③ VRFProve(SK,H(Tv))→(PK,y,π)

Tv + Executor's
intermediate states ⑤

Verification

response
⑥

 Publish
(H(Tv), type)

④ Find target y,
check VRFVerify(PK,H(Tv),π)→{0,1} ②

User

Selected
verifier
Selected
verifier

Verifier
market

① VRFKeyGen(1k)→(SK,PK)

③ VRFProve(SK,H(Tv))→(PK,y,π)

Tv + Executor's
intermediate states ⑤

Verification

response
⑥

 Publish (H(Tv),
service type)

④ Find target y,
check VRFVerify(PK,H(Tv),π)→{0,1} ②

User

Selected
verifier
Selected
verifier

Verifier
market

① VRFKeyGen(1k)→(SK,PK)

③ VRFProve(SK,H(Ee,i‖ Tv,i))→(y,π)

Tv,i + Executor's
intermediate states ⑤

Verification

response
⑥

Publish
(epoch i, H(Ee,i‖ Tv,i),
service name)

④ Find target y, check
VRFVerify(PK,H(Ee,i‖ Tv,i),y,π)→{0,1} ②

User

Selected
verifier
Selected
verifier

Verifier
pool

① VRFKeyGen(1k)→(SK,PK)

③ VRFProve(SK,H(Ee,i‖ri))→(y,π)

Verification task inputs +
Executor's intermediate states ⑤

Verification

response
⑥

Publish
(epoch i, H(Ee,i‖ri),
service name)

④ Find target y, check
VRFVerify(PK,H(Ee,i‖ri),y,π)→{0,1} ②

User

Selected
verifier
Selected
verifier

Verifier
pool

① VRFKeyGen(1k)→(SK,PK)

③ VRFProve(SK,H(Tv,i))→(y,π)

Tv,i + Executor's
intermediate states ⑤

Verification

response
⑥

Publish
(epoch i, H(Tv,i),
service name)

②

User

Selected
verifier
Selected
verifier

Verifier
pool

① VRFKeyGen(1k)→(SKv,PKv)

③ VRFProve(SKv,H(Ee,i‖ri))→(yv,πv)

Verification task inputs +
Executor's intermediate states ⑤

Verification

response
⑥

Publish
(epoch i, H(Ee,i‖ri),
service name)

④ Find minimum yv, check
VRFVerify(PKv,H(Ee,i‖ri),yv,πv)→{0,1} ②

Fig. 7. VRF-based verifier selection mechanism. (1) Verifiers generate VRF
public-secret key pair; (2) User publishes verification tasks to the verifiers in
verifier pool; (3) Verifiers generate VRF output and its corresponding proof
based on the verification task; (4) User finds the minimum output among
all the outputs and checks the correctness of the proof, then chooses the
corresponding verifier as the selected verifier; (5) User sends the task input
and the intermediate states from executor to the selected verifier; (6) User
gets the verification response from the selected verifier.

Executor runs Φs on each task and stores the hash of the input
H(Ii,j), intermediate states Θi,j ,Θi,j+1 and output Oi,j in its
local memory γi (lines 2−5). It then sends the hashed task
input plus the output to user with its signature (line 6). At the
end of epoch i, the executor constructs a Merkle tree Mi using
the saved data and obtains the root of Mi (line 7). The executor
then returns this root as a commitment to the user (line 8).
After epoch i, the user forms a set Ki by specifying desired
sample indices for epoch i, and sends a signed sample request
νi to the executor (line 9). The request also contains hash of a
user selected random number ri, which will be combined with
the sample response from the executor for verifiable verifier
selection (Algorithm 2). The executor then constructs proofs
by traversing the Merkle tree Mi and extracting the sibling
nodes of the requested samples. The executor also retrieves
the corresponding input/output and the intermediate states both
before and after each sample from its local memory γi. Then
the executor returns proof χi and signed evidence Ee,i to the
user for verification (line 10). This completes the executor’s
duty for epoch i (except in possible dispute), and the executor
can claim its service payment by providing a user’s signed
sampling request and its signed response as a billing invoice.
Optionally, the executor can delete the locally stored data of
epoch i to conserve storage space (line 11). Upon receiving
the χi and Ee,i from the executor, user verifies proofs and
Ee,i contents for each sample, and continues the service if
they match, or terminates the service if not (lines 12−14).

B. VRF-based Verifier Selection
Considering the high dynamicity of edge devices in the PEC
scenario, where new edge devices can join at any time and
existing ones can leave, maintaining a static verifier pool
is impractical. Furthermore, the willingness of edge devices
to participate in specific types of tasks can vary over time.
For example, their inclination to participate may change with
workload or they may be more interested in certain types
of tasks. Hence, a dynamic mechanism is needed to select
verifiers while ensuring that every willing verifier has a fair
chance of being selected and earning rewards from performing
verification. This motivates them to remain engaged and
contributes to sustaining the entire ecosystem. Meanwhile, the
verifier selection process should be verifiable, meaning that
the TTP can verify that the selection process is fair and not
manipulated. This prevents users from intentionally selecting

Algorithm 2: VRF-based verifier selection

1 Base station maintains an active verifier list Vs;
2 User sends a verifier list request ϖu,i ≜ (epoch i,

H(Ee,i||ri), sname)u to base station and gets the
signed verifier list Bu,i ≜ (ϖu,i,Vs)bs;

3 User sends ϖu,i to all the verifiers in Vs;
4 Each verifier v runs VRFProve(SKv, H(Ee,i||ri))→

(yv, πv) and sends Pv,i ≜ (PKv, yv, πv)v to user;
5 Upon receiving all the Pv,i from verifiers, user

constructs a proof list Pi ≜ {Pv,i | v ∈ Vs};
6 User finds the verifier v∗ ← argmin{yv | v ∈ Pi};
7 User verifies selected verifier’s legitimacy by invoking

VRFVerify(PKv∗ , H(Ee,i||ri), yv∗ , πv∗)→{0, 1};
8 User sends ({(Θi,k, Ii,k) |k∈Ki})u to v∗;
9 Selected verifier v∗ processes the verification task and

sends the verifier evidence Ev,i ≜ ({(H(Ii,k),Θi,k,
Θi,k+1, Oi,k) | k ∈ Ki})v back to user.

colluding verifiers to cheat the executor via malicious disputes.
To achieve these, we propose a VRF-based verifier selection
mechanism, as shown in Fig. 7. See Algorithm 2 for details.

Verifiers interested in verification tasks of s can join the
verifier pool via the base station. The base station maintains
an active verifier list Vs, which includes the identities of all
verifiers willing to participate (line 1). To get the verifier list
from base station, user sends a signed verifier list request
ϖu,i to base station and gets the signed verifier list in
return (line 2). According to this verifier list, the user then
publishes ϖu,i to the verifiers in the verifier pool and waits
for their responses (line 3). Note that ϖu,i contains random
number ri which is not manipulable by the executor (since
the executor only knows the hash of it), and Ee,i constructed
by the executor which is not manipulable by the user. The
hash H(Ee,i∥ri) thus serves as a publicly verifiable coin
guaranteeing randomness of the verifier selection result for
both the user and the executor. Each verifier v that receives
ϖu,i calculates VRFProve(SKv, H(Ee,i||ri))→(yv, πv) and
sends Pv,i ≜ (PKv, yv, πv)v back to user (line 4), where
PKv represents verifier v’s public key, yv denotes its VRF
output, and πv represents the proof of yv . Upon receiving
responses from all verifiers in Vs, user constructs a proof list
Pi≜{Pv,i |v∈Vs}, and finds the verifier v∗ with the smallest
yv in Pi (lines 5−6) as the selected verifier. Note that this
step can be extended to randomly select any V > 1 verifiers
with V smallest values of yv , as used in Algorithm 3. The
user checks the correctness of the output and proof from the
selected verifier and sends the inputs and intermediate states
of the verification task to the selected verifier (lines 7−8).
Then the selected verifier processes the tasks and generates
the signed verifier evidence and sends it back to user (line 9).

C. Dispute Resolution

Let V be the number of verifier results per sample required
to initiate a dispute, pre-negotiated for the service. To obtain
enough evidence for dispute, user may sequentially or batch
select a set of verifiers Vs,i to independently verify samples

Algorithm 3: Dispute resolution

/* User initiates dispute */
1 User initiates Vs,i ← {first selected verifier};
2 while |Vs,i| < V do
3 User selects verifier v with the next smallest yv

and gets new evidence from v according to
lines 6−9 in Algorithm 2, and inserts v to Vs,i;

4 User sends evidences Ee,i, {Ev,i |v ∈ Vs,i} and Eu,i ≜
(epoch i, Bu,i,Pi, {H(Ii,k) | k ∈ Ki)}, ri)u to TTP;
/* TTP starts dispute resolution */

5 (1) TTP checks that all signatures in Ee,i, Eu,i, and
{Ev,i | v ∈ Vs,i} (including signatures of messages
included in each evidence) are valid;

6 (2) TTP verifies VRF-based verifier selection process
for all selected verifiers in Vs,i according to Bu,i;

7 (3) For any sample H(Ii,k) in Eu,i, TTP checks if
executor’s and verifiers’ evidences also contain H(Ii,k);

8 if any of (1)−(3) fails then return “Malicious user”;
9 for sample H(Ii,k) in Eu,i do

10 TTP performs majority vote on all executor/verifiers’
results Xi,k, and gets X∗

i,k≜argmax
X∈Xi,k

{
∑

X′∈Xi,k

Cs(X,X ′)};

11 if
∑

X′∈Xi,k
Cs(X

∗
i,k, X

′) > V+1
2 and executor

result Xe
i,k gives Cs(X

e
i,k, X

∗
i,k) = 0 then

12 return “Malicious executor”;

13 return “No malicious behavior detected”.

in epoch i using Algorithm 2. In the sequential method, user
selects the rest V −1 verifiers only when the first verifier’s
result does not match with the executor’s, while in the batch
method user directly selects V verifiers in first round. Since
the sequential method incurs lower cost when both parties are
honest, we assume the sequential method is used to save cost.

Algorithm 3 describes the dispute resolution process. If
there is a discrepancy between results provided by the first
verifier and the executor, user repeatedly selects V −1 verifiers
from the verifier pool to perform independent verifications
(line 3). Next, the user constructs evidence Eu,i, which in-
cludes the epoch i for the dispute, the verifier list signed by
base station Bu,i, the proof list Pi containing outputs and
proofs from all verifiers in epoch i, the hash values of all
samples’ inputs, and the random number ri. The user signs
Eu,i and sends it along with the evidence from the executor
and evidence from verifiers to the TTP for resolution (line 4).

In dispute resolution, TTP first verifies validity of all sub-
mitted evidence, including: (1) all signatures of evidences are
valid (line 5), (2) verifier selection is faithful based on the valid
H(Ee,i∥ri) and all available verifiers’ random numbers that
match the base station-signed verifier list (line 6), and (3) all
execution and verification results are claimed to be generated
from the same user input and input state (line 7). If any of these
checks fail, TTP considers the user as malicious (line 8). TTP
checks result consistency from executor and verifiers using
majority voting (lines 9−12). Let Xi,k = {(Θi,k+1, Oi,k)}
denote the set of all outputs for task k in epoch i from the

executor and all selected verifiers. Specifically, for each sample
in the user’s evidence, TTP first calculates the “most common”
result X∗

i,k ∈ Xi,k for the sample utilizing the Cs function.
Then TTP checks if the result X∗

i,k constitutes a majority vote.
If so, and yet the executor’s result does not match with X∗

i,k,
the executor is flagged as malicious. If no majority can be
formed, additional verification is needed by utilizing the cloud
for a full replay, and/or involving the service provider. Payment
or punishment settlement then depends on the dispute result.

VII. SECURITY ANALYSIS

Sound and correct execution. The soundness of execution
and correctness of the results are ensured through two key
mechanisms. Firstly, the commitment ensures that the interme-
diate states have not been tampered with by the executor after
execution. Secondly, matching the task inputs and intermediate
states from both the executor and verifiers serves to verify the
correctness of the verification inputs. This ensures that the
verification inputs are consistent with the execution.

Given the commitment, a user can immediately detect an
executor who modifies the execution trace to try to evade
detection of misbehavior such as lazy execution.

For correctness by verification, first consider a single epoch.
Based on our model, the probability that all samples in epoch
i are processed faithfully is qlϱiηs . In this case, the executor
will remain undetected regardless of the verifier’s behavior.

If at least one sample is not faithfully processed by executor,
consider two cases. First, if the executor colludes with at least
one of the selected verifiers, they will consistently return a
matched result. Since verifier selection is verifiably random,
the probability of non-detection of executor’s behavior is
related to the fraction of verifiers who participate in the
collusion, given as (1 − qlϱi ·ηs) · δs. Second, verifiers not
colluding with the executor will return unmatched results,
leading to a detection probability of 1. Overall, the prob-
ability of the executor not being caught in one epoch i is
qlϱi ·ηs + (1 − qlϱi ·ηs) · δs. The following theorem shows the
probabilistic SLA compliance against a malicious executor:
Theorem 1. The probability of a malicious executor remaining
undetected throughout n epochs, referred to as the escape
probability, is

∏n
i=1

(
qlϱi ·ηs + (1− qlϱi ·ηs) · δs

)
.

Non-manipulable dispute. Under our threat model, a user
can only try to attack the executor by maliciously issuing and
winning disputes to request refund and/or cause financial loss
to the executor. Note that this requires valid signatures of all
messages submitted as evidence; otherwise the dispute will
always fail. Evidences sent by honest executor/verifiers cannot
be forged by the user due to the need for valid signatures.

To falsely accuse an executor of misbehavior, the user must
initiate a dispute and win a majority vote from the verifiers
against the executor. However, since the verifier selection
is verifiably random with the use of VRFs, the user’s only
winning chance is to randomly select colluding verifiers as
the majority in Vs,i, which reduces with increasing V . The
following theorem shows the upper bound probability that a
malicious user can cheat the executor per epoch:

TABLE I
EVALUATION PLATFORMS

Platform CPU OS Memory
HWI-AL00

Phone
Hisilicon Kirin 960
2.36GHz, 8 cores

Android 8.0.0
(ARM) 6GB

Raspberry Pi
4 Model B

Broadcom BCM2835
700MHz, 4 cores

Ubuntu 22.10
(ARM) 3.7GB

Laptop Apple M1 Pro Ventura 13.3.1
(ARM) 16GB

Desktop AMD Ryzen 3945WX
4.0GHz, 12 cores

Ubuntu 20.04.5
LTS (x86) 256GB

Theorem 2. Assume the SLA contract requires V verifiers for
a majority vote. The probability that a malicious user can win
the dispute for an arbitrary epoch is at most δ⌊

V
2 ⌋+1

u .

VIII. PERFORMANCE EVALUATION

A. Implementation and Experiment Settings

We evaluated the performance of VeriEdge by implementing
an object tracking service on edge devices, which utilized
state-of-the-art real-time multi-object, segmentation and pose
tracking with Yolov8 [40]. The intermediate states of the ser-
vice consisted of the bounding box coordinates and the index
of each object in each frame. The pre-negotiated verification
algorithm tracks objects using executor’s intermediate states
and user’s input, while the correctness checking algorithm
verifies consistency between verifiers and executor’s object
tracking results. We tested the performance of VeriEdge on
the KITTI dataset [41]. We utilized the gRPC framework
(v1.56.0) [42] to implement the communication between par-
ties. All protocols were implemented in Python. The VRF
functionality was implemented based on the RSA Full Domain
Hash VRF [43]. We implemented the Merkle tree using the
merkletools library (v1.0.3) [44]. SHA-256 was used for
hashing, and RSA digital signature [45] for message signing.

We evaluated the performance of VeriEdge on four plat-
forms as shown in Table I. By default, the user client was
run on the Raspberry Pi, while other parties were run on the
desktop. The object tracking service ran for 100 epochs, with
each epoch consisting of 100 frames. The default setting of
VeriEdge had a verifier pool with 30 verifiers, with a pre-
defined verifier number of 2 and a sampling rate of 0.01. For
comparison, we also implemented a full replay approach (the
Baseline) without sampling, where the result of every single
task was independently verified by the verifiers.

B. Evaluation Results

1) Communication and Computation Overhead: Table II
shows the communication overhead and execution time of
VeriEdge and Baseline. Communication overhead was mea-
sured in terms of the message size exchanged between parties.
Execution time was evaluated by assessing the delay in each
step. Compared to raw application without verification, Ver-
iEdge introduced extra communication costs including Merkle
tree root, user sample request, and proofs from the executor,
which increased communication cost by 0.0028%. Regarding
execution time, compared to only returning the outputs of each
epoch, VeriEdge increased the execution time by 1.14%. Com-
pared with Baseline, VeriEdge achieved significant savings

TABLE II
COMMUNICATION COST AND EXECUTION TIME OF VERIEDGE AND BASELINE FOR ONE EPOCH

Communication Cost (bytes)* Execution Time (ms)
Description Message VeriEdge Baseline Step VeriEdge Baseline

Obtaining inputs
for verification

(verifiable sampling
in VeriEdge)

User → executor task request 86759200 86759200 Executor Merkle tree construction 0.33 0.34
Executor → user Merkle tree root 113 113 User got results from executor 2778.76 3719.26
Executor → user results 72 72 Executor generated proof 28.45 30.81
User → executor sample request 515 - User got proof response from executor 30.29 34.48
User got proof from executor 1789 70124 User validated proofs from executor 1.07 79.56

VRF-based
verifier selection

User → BS verifier list request 330 330 User got BS verifier list 61.82 90.27BS → user verifier list response 832 832

User → first verifier task request 2612023 86703281 Verifier key generation 124.27 96.21
User found first verifier 30.56 30.56

First verifier → user response 552 14160 User got results from first verifier 643.78 19762.93
User checked correctness 0.07 221.44

Dispute
resolution

User → second verifier request 2612023 86703281 User got results from second verifier 642.77 22205.78Second verifier → user response 552 14160
User → TTP dispute request 56700 104865 User got the dispute result from TTP 20.04 108.86TTP → user dispute response 16 17

* Message sizes of trivial text messages such as “success” or “fail” are omitted. The bold text highlights the steps where VeriEdge saves overhead and time
compared to Baseline. The underlined text represents the inherent overhead of the object tracking application. BS denotes base station.

Phone Raspberry Pi Laptop Desktop
Platform

0.00

0.05

0.10

0.15

Ti
m

e
(s

) 10 Verifiers
20 Verifiers
30 Verifiers

40 Verifiers
50 Verifiers

Fig. 8. VRF-based verifier selection time.

Raspberry Pi Phone Laptop Desktop
Platform

0.000
0.025
0.050
0.075

Ti
m

e
(s

) 0.1
0.2
0.3

0.4
0.5
0.6

0.7
0.8

0.9
1.0

Fig. 9. Merkle tree commitment checking time with different sampling rates.

in execution time and communication cost across verifiable
sampling, VRF-based verifier selection, and dispute resolution.

To evaluate the computation overhead on the user side, we
collected the execution time of VRF-based verifier selection
and Merkle tree commitment checking process on four differ-
ent platforms. The results are presented in Figs. 8 and 9, with
error bars representing the 95% confidence interval obtained
from running each experiment 1000 times. Fig. 8 shows the
delay of VeriEdge for selecting a verifier and verifying the
proof of the verifier for one epoch. With more verifiers in the
pool, the time taken by the user to find the final verifier with
the minimum output also increased. Additionally, platforms
with higher configurations exhibited shorter processing times.
The longest time taken was less than 150ms among the
four platforms. Fig. 9 illustrates the computation overhead
of verifying the proofs returned from executor at different
sampling rates.1As the sampling rate increased, the number
of proofs needed to be verified increased, leading to longer
checking time. Among the four platforms, the longest time
was less than 80ms even at a sampling rate of ηs = 1.

2) Security Analysis: We numerically analyzed the impact
of different honest rates, pre-collusion ratios, sampling rates,
and the number of epochs on the executor escape probability
and illustrated the results on a logarithmic scale in Fig. 10. The

1We note that the opposite comparison of VRF and Merkle tree operations
on Raspberry Pi versus Phone was caused by different performance optimiza-
tion of the same library on different operating systems.

0.2 0.4 0.6 0.8 1.0
Honest rate (q)

10 6
10 3
100

Es
ca

pe
 p

ro
b.

0.2 0.4 0.6 0.8 1.0
Pre-collusion ratio (s)

10 3

10 1

Es
ca

pe
 p

ro
b.

0.02 0.06 0.1
Sampling rate (s)

10 7
10 5
10 3

Es
ca

pe
 p

ro
b.

20 40 60 80 100
Number of epochs (n)

10 6
10 4
10 2

Es
ca

pe
 p

ro
b.

Fig. 10. Executor escape probability vs. different security parameters.

default settings are: the honest rate q=0.7 (in Definition 1),
the sampling rate ηs = 0.01, the pre-collusion ratio δs = 0.5,
the number of epochs n=30, and the epoch length lϱi =100.
With a higher honest rate, the escape probability increased as
more faithfully handled tasks were likely to be sampled. With a
higher pre-collusion ratio, the escape probability increased due
to a greater chance of the user randomly selecting a colluding
verifier. Conversely, with an increase in the sampling rate, the
escape probability decreased since it became more likely to
sample tasks that were not faithfully handled. Even with a
small sampling rate, a relatively low escape probability can
be achieved. Finally, an increase in the number of epochs
contributed to a higher probability of at least one epoch being
caught, consequently reducing the executor escape probability.

IX. CONCLUSION

This paper proposed VeriEdge, a general SLA verification and
enforcement framework for PEC. We designed a commit-then-
sample scheme to enable lightweight execution verification
with non-repudiability. Considering the heterogeneity and dy-
namicity of PEC, we proposed a VRF-based verifier selection
protocol to ensure fair and random selection of verifiers and
defend against potential collusion. A dispute resolution pro-
tocol was also proposed to ensure validity of the verification
process and deter SLA violation. Through security analysis,
we demonstrated that VeriEdge can achieve high assurance of
SLA verification. Experiments on commodity devices showed
the superior communication and computation efficiency of
VeriEdge compared to full replay-based verification.

REFERENCES

[1] H. Lee, J. Lee, D. Kim, S. Jana, I. Shin, and S. Son, “Adcube: Webvr ad
fraud and practical confinement of third-party ads.” in USENIX Security
Symposium, 2021, pp. 2543–2560.

[2] H. Duan, J. Li, S. Fan, Z. Lin, X. Wu, and W. Cai, “Metaverse for social
good: A university campus prototype,” in ACM MM, 2021, pp. 153–161.

[3] R. Bhardwaj, Z. Xia, G. Ananthanarayanan, J. Jiang, Y. Shu, N. Kar-
ianakis, K. Hsieh, P. Bahl, and I. Stoica, “Ekya: Continuous learning
of video analytics models on edge compute servers,” in USENIX NSDI,
2022, pp. 119–135.

[4] Z. Meng, T. Wang, Y. Shen, B. Wang, M. Xu, R. Han, H. Liu, V. Arun,
H. Hu, and X. Wei, “Enabling high quality real-time communications
with adaptive frame-rate,” in USENIX NSDI, 2023, pp. 1429–1450.

[5] Z. Ning, P. Dong, X. Wang, S. Wang, X. Hu, S. Guo, T. Qiu,
B. Hu, and R. Y. Kwok, “Distributed and dynamic service placement
in pervasive edge computing networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 32, no. 6, pp. 1277–1292, 2020.

[6] V. Narasayya and S. Chaudhuri, “Multi-tenant cloud data services: State-
of-the-art, challenges and opportunities,” in ACM SIGMOD, 2022, pp.
2465–2473.

[7] A. Habib, S. Fahmy, S. R. Avasarala, V. Prabhakar, and B. Bhargava,
“On detecting service violations and bandwidth theft in qos network
domains,” Computer Communications, vol. 26, no. 8, pp. 861–871, 2003.

[8] L. Yang, J. Cao, H. Cheng, and Y. Ji, “Multi-user computation partition-
ing for latency sensitive mobile cloud applications,” IEEE Transactions
on Computers, vol. 64, no. 8, pp. 2253–2266, 2014.

[9] A. Banchs, M. Fiore, A. Garcia-Saavedra, and M. Gramaglia, “Network
intelligence in 6g: Challenges and opportunities,” in ACM MobiArch,
2021, pp. 7–12.

[10] K. M. Khan, J. Arshad, W. Iqbal, S. Abdullah, and H. Zaib, “Blockchain-
enabled real-time sla monitoring for cloud-hosted services,” Cluster
Computing, pp. 1–23, 2022.

[11] C. Dong, Y. Wang, A. Aldweesh, P. McCorry, and A. Van Moorsel,
“Betrayal, distrust, and rationality: Smart counter-collusion contracts for
verifiable cloud computing,” in ACM CCS, 2017, pp. 211–227.

[12] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter,
M. Naehrig, B. Parno, and S. Zahur, “Geppetto: Versatile verifiable
computation,” in IEEE SP, 2015, pp. 253–270.

[13] A. Küpçü, “Incentivized outsourced computation resistant to malicious
contractors,” IEEE Transactions on Dependable and Secure Computing,
vol. 14, no. 6, pp. 633–649, 2015.

[14] C. Hu, A. Alhothaily, A. Alrawais, X. Cheng, C. Sturtivant, and
H. Liu, “A secure and verifiable outsourcing scheme for matrix inverse
computation,” in IEEE INFOCOM, 2017, pp. 1–9.

[15] T. Zhang, A. Chowdhery, P. Bahl, K. Jamieson, and S. Banerjee, “The
design and implementation of a wireless video surveillance system,” in
ACM MobiCom, 2015, pp. 426–438.

[16] J. Xing, H. Ai, L. Liu, and S. Lao, “Multiple player tracking in sports
video: A dual-mode two-way bayesian inference approach with progres-
sive observation modeling,” IEEE Transactions on Image Processing,
vol. 20, no. 6, pp. 1652–1667, 2010.

[17] X. Zhang, A. Zhang, J. Sun, X. Zhu, Y. E. Guo, F. Qian, and Z. M.
Mao, “Emp: Edge-assisted multi-vehicle perception,” in ACM MobiCom,
2021, pp. 545–558.

[18] B. Yin, Y. Cheng, L. X. Cai, and X. Cao, “Online sla-aware multi-
resource allocation for deadline sensitive jobs in edge-clouds,” in IEEE
GLOBECOM, 2017, pp. 1–6.

[19] A. Badshah, A. Jalal, U. Farooq, G.-U. Rehman, S. S. Band, and
C. Iwendi, “Service level agreement monitoring as a service: an in-
dependent monitoring service for service level agreements in clouds,”
IEEE Big Data, 2022.

[20] X. Zhang, H. Duan, C. Wang, Q. Li, and J. Wu, “Towards verifiable
performance measurement over in-the-cloud middleboxes,” in IEEE
INFOCOM, 2019, pp. 1162–1170.

[21] V. Vu, S. Setty, A. J. Blumberg, and M. Walfish, “A hybrid architecture
for interactive verifiable computation,” in IEEE SP, 2013, pp. 223–237.

[22] J. Kilian, “Improved efficient arguments: Preliminary version,” in
Springer CRYPT0, 1995, pp. 311–324.

[23] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers,” in Springer
CRYPTO, 2010, pp. 465–482.

[24] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer, “On the concrete
efficiency of probabilistically-checkable proofs,” in ACM STOC, 2013,
pp. 585–594.

[25] J. Groth, “Short pairing-based non-interactive zero-knowledge argu-
ments,” in Springer ASIACRYPT, 2010, pp. 321–340.

[26] J. Zhang, T. Xie, Y. Zhang, and D. Song, “Transparent polynomial
delegation and its applications to zero knowledge proof,” in IEEE SP,
2020, pp. 859–876.

[27] Z. Zhao, Y. Zeng, J. Wang, H. Li, H. Zhu, and L. Sun, “Detection and
incentive: A tampering detection mechanism for object detection in edge
computing,” in IEEE SRDS, 2022, pp. 166–177.

[28] C. Harth-Kitzerow and G. M. Garrido, “Verifying outsourced
computation in an edge computing marketplace,” arXiv preprint
arXiv:2203.12347, 2022.

[29] C. Peikert and J. Xu, “Classical and quantum security of elliptic curve
vrf, via relative indifferentiability,” in Springer CT-RSA, 2023, pp. 84–
112.

[30] O. Goldreich, Foundations of cryptography: volume 2, basic applica-
tions. Cambridge university press, 2009.

[31] Y. Du, Z. Wang, J. Li, L. Shi, D. N. K. Jayakody, Q. Chen, W. Chen,
and Z. Han, “Blockchain-aided edge computing market: Smart contract
and consensus mechanisms,” IEEE Transactions on Mobile Computing,
2022.

[32] J. Camenisch, A. Lehmann, G. Neven, and A. Rial, “Privacy-preserving
auditing for attribute-based credentials,” in Springer ESORICS, 2014,
pp. 109–127.

[33] V. Shoup, “Practical threshold signatures,” in Springer EUROCRYPT,
2000, pp. 207–220.

[34] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks with
mobile edge computing,” IEEE Transactions on Wireless Communica-
tions, vol. 16, no. 8, pp. 4924–4938, 2017.

[35] M. F. Pervej, R. Jin, and H. Dai, “Resource constrained vehicular edge
federated learning with highly mobile connected vehicles,” IEEE Journal
on Selected Areas in Communications, 2023.

[36] S. Misra, R. Tourani, F. Natividad, T. Mick, N. E. Majd, and H. Huang,
“Accconf: An access control framework for leveraging in-network
cached data in the icn-enabled wireless edge,” IEEE Transactions on
Dependable and Secure Computing, vol. 16, no. 1, pp. 5–17, 2017.

[37] F. Zafari, K. K. Leung, D. Towsley, P. Basu, and A. Swami, “A game-
theoretic framework for resource sharing in clouds,” in IFIP WMNC,
2019, pp. 8–15.

[38] T. Shi, Z. Cai, J. Li, and H. Gao, “Cross: A crowdsourcing based sub-
servers selection framework in d2d enhanced mec architecture,” in IEEE
ICDCS, 2020, pp. 1134–1144.

[39] F. Tütüncüoğlu, S. Jošilo, and G. Dán, “Online learning for rate-adaptive
task offloading under latency constraints in serverless edge computing,”
IEEE/ACM Transactions on Networking, 2022.

[40] “yolo tracking,” accessed 2023-07-31. [Online]. Available: https:
//github.com/mikel-brostrom/yolo tracking

[41] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in IEEE CVPR, 2012, pp.
3354–3361.

[42] “gRPC: A high performance, open-source universal RPC framework,”
accessed 2023-07-31. [Online]. Available: https://grpc.io/

[43] “RSA-VRF,” accessed 2023-07-31. [Online]. Available: https://github.
com/DreamWuGit/RSA-VRF

[44] “pymerkletools: Python tools for creating Merkle trees, generating
Merkle proofs, and verification of Merkle proofs,” accessed 2023-07-31.
[Online]. Available: https://github.com/Tierion/pymerkletools

[45] “PKCS v1.5 (RSA),” accessed 2023-07-31. [Online]. Available: https:
//pycryptodome.readthedocs.io/en/latest/src/signature/pkcs1 v1 5.html

https://github.com/mikel-brostrom/yolo_tracking
https://github.com/mikel-brostrom/yolo_tracking
https://grpc.io/
https://github.com/DreamWuGit/RSA-VRF
https://github.com/DreamWuGit/RSA-VRF
https://github.com/Tierion/pymerkletools
https://pycryptodome.readthedocs.io/en/latest/src/signature/pkcs1_v1_5.html
https://pycryptodome.readthedocs.io/en/latest/src/signature/pkcs1_v1_5.html

