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ABSTRACT

Species in the genus Tuber are ascomycetous fungi that produce hypogeous fruiting bodies
commonly called truffles. These fungi are ecologically relevant owing to the ectomycorrhizal
symbiosis they establish with plants. One of the most speciose lineages within Tuber is the
Rufum clade, which is widely distributed throughout Asia, Europe, and North America and is
estimated to include more than 43 species. Most species in this clade have spiny spores, and phylogenetics; Rufum clade;
many still have not been formally described. Here, we describe T. rugosum based on multigene truffles; Tuberaceae; 1 new
phylogenetic analysis and its unique morphological characters. Tuber rugosum (previously desig- taxon

nated in literature as Tuber sp. 69) has been collected throughout the Midwest, USA, and Quebec,

Canada, and is an ectomycorrhizal symbiont of Quercus trees, as confirmed through morphological

and molecular analyses of root tips presented here. We also present a novel method for preparing

Tuber ascospores for scanning electron microscope imaging that includes feeding, digestion, and

spore excretion by the slug Arion subfuscus. Following this method, spores become free from ascus

and other mycelial debris that could obscure morphological traits during their passage through the

snail gut while maintaining ornamentation. Finally, we report the fatty acid analysis, a fungicolous
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species association, and we provide an updated taxonomic key of the Rufum clade.

INTRODUCTION

Although first described in 1780, truffles in the genus
Tuber have a much longer history of being sought after
due to their culinary value (Wang and Marcone 2011),
which can be attributed to their unique aroma (Martin
et al. 2010). The white truffle T. magnatum Picco and
the black truffle T. melanosporum Vittad, for example,
are amongst the most well-known and highly prized
fungal species with unique aromas (Pelusio et al.
1995). Beyond their aroma, truffles are rich in carbohy-
drates, proteins, and unsaturated fatty acids (Bouatia
et al. 2018; Yan et al. 2017), but it is still unknown
how variable these traits are between Tuber species. In
addition, the ecology and microbiology few Tuber spe-
cies has been extensively studied (Splivallo et al. 2011),
often linking fungivory by animals to the aromatic lure
produced by a mature ascocarp (Hochberg et al. 2003;
Maser et al. 2008).

Successful truffle spore dispersal relies on mycopha-
gous animals detecting, consuming, and defecating
mature sporocarps, as hypogeous fungi are not able to

actively discharge their spores. Numerous studies have
highlighted Tuber spores found in animal scat, includ-
ing that of pika (Cazares and Trappe 1994), northern
flying squirrels (Gabel et al. 2010), crested porcupines
(Ori et al. 2018), and wild boar (Piattoni et al. 2013).
Passage of spores through animal digestive tracts such as
the crested porcupine removes asci, may lead to some
degradation of the ornamentation, and often will pro-
mote spore germination (Ori et al. 2018). Observations
made while collecting specimens for this study indicated
slugs, which are known to be mycophagous (Beyer and
Saari 1978; McGraw et al. 2002), regularly consume
truffles and other fungi that grow beneath the leaf litter
of the forest floor. These observations led to the ques-
tion of whether slugs could be used as an alternative to
chemical preparations (e.g., Puliga et al. 2020) to obtain
clean ascospores for unobstructed and improved scan-
ning electron imaging.

Further field observations of truffles as they matured
in situ led to observations of fungal infections. In 2017,
Leonardi et al. reported on fungi living within eight
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species of Tuber where they found 58.6% were infected
by Clonostachys rosea (Link) Schroers, Samuels, Seifert
& W. Gams (= Bionectria ochroleuca (Schwein.)
Schroers & Samuels) (Leonardi et al., 2018). Other stu-
dies have indicated that yeasts including Candida sai-
toana Nakase & M. Suzuki, Rhodotorula mucilaginosa
(A. Jorg.) F.C. Harrison, and Trichosporon moniliiforme
E. Guého & M.T. Sm. isolated from Tuber melanos-
porum and Tuber magnatum ascomata produce, and
may contribute to, the characteristic aroma profile of
the truffles in which they are found (Buzzini et al. 2005).
Myecelial fungi such as Trichopezizella nidulus (].C.
Schmidt & Kunze) Raitv., Absidia cylindrospora
Hagem, and Peniophora cinerea (Pers.) Cooke are also
known to be associated with truffle fruiting bodies
(Pacioni et al. 2007). Additionally, Aspergillus,
Cladosporium, Fusarium, Penicillium, and Trichoderma
have been isolated from other truffle taxa, such as Tuber
aestivum Vittad. and Tuber melanosporum ascomata
(Rivera et al. 2010). Some mycoparasites are known to
produce mycotoxins; thus, precautionary care should be
taken to avoid consuming parasitized truffles. It has
been suggested that truffles exposed on the surface of
the soil are more prone to disease, although moisture
levels in the environment likely play an equally impor-
tant role in completing this disease triangle (Eslick
2012). In concurrence with Eslick (2012), ascomata of
the species that we describe here, T. rugosum, sp. nov.,
observed with disease was subhypogeous.

The genus Tuber contains over 200 species, with
most species diversity residing within the Rufum,
Puberulum, and Maculatum clades (Bonito et al.
2010; Healy et al. 2016). Many species within these
clades have yet to be formally described (Bonito et al.
2010; Healy et al. 2016). Truffles in the Rufum clade
can be distinguished from those in other lineages by
their smooth to slightly verrucose pale to reddish-
colored peridium, stemmed ascus, and the often
spiny or spinose-reticulate ornamentation of their
ascospores (Healy et al. 2016). Another unique facet
of the Rufum clade is the absence of cystidia on the
mycorrhizal mantle they form (Healy et al. 2016).
Spore ornamentation, size, shape, and dimension
remain the cornerstone morphological characteristics
used to describe Tuber species.

From 2009 through 2021, we collected truffles with
morphological characteristics of those in the Rufum
clade. An internal transcribed spacer (ITS) meta-
analysis of Tuber has provided a framework by which
many new species have been described (Bonito et al.
2010). Sequences of the ITS region from our specimens
matched with the sequence Bonito et al. (2010) desig-
nated in the literature as Tuber sp. 69 (GenBank
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HM485428), which we formally describe here as Tuber
rugosum, sp. nov. In support of this new species to
science, we provide (i) multigene phylogenies based on
the ITS, the elongation factor la (EFla), and
the second-largest subunit of RNA polymerase II
(RPB2) genes; (ii) a morphological comparison of its
peridium, gleba, and  spores; and  (iii)
a characterization of its fatty acid profile. Further, we
describe an improved method for preparing spores for
scanning electron microscopy (SEM) study, we identify
a fungicolous species found on T. rugosum, sp. nov., and
present a dichotomous key for the Rufum clade.

MATERIALS AND METHODS

Collection and isolation.—Truffles were collected

with the aid of a hand-held four-pronged garden culti-
vator to remove leaf litter and explore within the upper
10 cm of forest soils. Photographs and field notes,
including date, location, habitat, and fresh attributes,
were made for each specimen. Specimens were stored
at 4 C for a maximum of 24 h prior to morphological
observations and pure culture isolation. Using forceps
and sterile technique, small pieces of freshly exposed
internal gleba hyphae from younger specimen were
sampled and submerged into an agar medium com-
posed of 8.0 g/L agar, 5.0 g/L potato dextrose broth,
1.5 g/L malt extract, 5.0 mL/L glycerol, and 0.82 g/L
calcium nitrate. Prior to autoclaving, the pH was
adjusted to 7.5 with 5.0 M sodium hydroxide. Once
the postautoclave temperature fell below 50 C, 1.0 mL/
L biotin (0.5 g/L stock), 1.0 mL/L chloramphenicol
(60.0 mg/mL stock), and 1.0 mL/L ampicillin
(50.0 mg/mL stock) were added. After initial growth
on antibiotic-containing medium, a subculture was
made on the same medium lacking antibiotics. These
cultures were incubated at room temperature (20-22 C).

Morphological analyses.—Analysis of truffle micro-
morphological characters was conducted under
a compound light microscope (Leica model DM750;
Buffalo Grove, Illinois). Ascospores were collected by
scraping a razor blade across the gleba and mounting
the fungal tissue collected on the blade on
a microscope slide with 3% KOH. In total, 85 spores
from 33 asci were measured and imaged at 400x mag-
nification against the long and short axes, excluding
ornamentation (Leica Application Suite 4.0). Length,
width, and Q (length:width) measurements of the
spores were then calculated, as these metrics have
been informative in distinguishing species of Oregon
white truffles (Bonito et al. 2010).
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One immature Tuber sp. 69 (RH999) ascocarp used for
recording developmental characters was sectioned in quar-
ters and fixed for 2 h (4 C) in 2% glutaraldehyde + 2%
paraformaldehyde in 0.1 M sodium cacodylate buffer (pH
7.2); rinsed three times in 0.1 M sodium cacodylate buffer
for 20 min each; postfixed for 1 h (4 C) in 1% osmium
tetroxide in 0.1 M sodium cacodylate buffer; rinsed in fresh
buffer followed by three changes of deionized water for
10 min each; dehydrated in a graded ethanol series (25%,
50%, 75%, 95%, and 100%, 3x for 1 h each); infiltrated in
Spurr’s resin (Spurr 1969) and embedded in an aluminum
dish; and polymerized for 2 days at 74 C. Sections 2 pm
thick were cut with a glass knife and placed on a drop of
water on a clean glass microscope slide on a warming tray.
After drying, sections were stained with 0.5% toluidine blue
O and preserved with a drop of per mount and a drop of
xylene and a cover glass was placed on top. Images were
digitally captured on a Nikon Optiphot compound micro-
scope (Tokyo, Japan) mounted with a QImaging
MicroPublisher 3.3 RTV camera (British Columbia,
Canada).

Hollowed out ascocarps in close proximity to abundant
slug populations of the dusky arion slug, Arion subfuscus,
were observed. To test whether the slugs would consume
truffles, we placed a single slug in a plastic container with
a fresh truffle sporocarp for two sessions each lasting 4 h
prior to observation. Frass contents collected from slugs
that had consumed truffles were observed with
a compound light microscope (Leica model DM750,
Buffalo Grove, Illinois) to assess ascospore morphology.
To prepare ascospores for scanning electron microscopy
(SEM), slugs were maintained in a plastic box for 24 h and
frass was observed after the complete T. rugosum, sp. nov.,
ascocarp had been consumed (SUPPLEMENTARY
FIG. 1). The Arion frass was collected and visualized
under a compound microscope. The ascospore-
containing frass was dried at room temperature and then
rinsed with phosphate-buffered saline (PBS). Ascospores
not subjected to slug digestion were collected by scraping
a scalpel blade across dried and rehydrated gleba and
rinsed with PBS. Both sets of samples were fixed in a 4%
(v/v) glutaraldehyde solution, dried with a critical point
dryer (Balzers model 010; Balzers Union), and then
mounted on aluminum stubs using high-vacuum carbon
tabs (SPI Supplies, West Chester, PA). After the samples
were coated with osmium using NEOC-AT osmium coater
(Meiwafosis, Osaka, Japa), the samples were observed
using a JSM-7500 F scanning electron microscope (Japan
Electron Optics Laboratories (JEOL) USA, Peabody,
Massachusetts).

After primary character data collection commenced,
specimens were cut into sections and dried with activated
silica beads. Curated holotype and paratype collections

have been deposited in the Michigan State University
(MSU) Herbarium, with the MSU collection accession
numbers MSC408482-MSC408486. These data have also
been deposited into Mycobank MB838884.

Fungicolous species isolation.—Tissue supporting
orange conidia growing from infected specimens of
T. rugosum, sp. nov., was photographed with a Canon
EOS Rebel T6 camera (Canon Inc., Tokyo, Japan) with
the Laowa 24 mm /14 2x Macro Probe lens (Venus
Optics, Hefei, China) in the field prior to further proces-
sing. Photographs were taken with a shallow depth of field
and were imported, aligned, and blended using Adobe
Photoshop (Adobe Inc 2019b) for FIG. 3A. The fungal
growth supporting the orange conidia was then placed in
malt extract agar (MEA) medium composed of 10.0 g/L
agar, 10.0 g/L malt extract, and 1.0 g/L yeast extract with
1.0 mL/L chloramphenicol (60.0 mg/mL stock), 1.0 mL/L
streptomycin  (100.0 mg/mL stock), and rifampicin
(50.0 mg/mL stock). This isolate (BR428b) was incubated
at room temperatures (20-22 C) and maintained on MEA
with no antibiotics.

Confocal microscopy.—Confocal microscopy was per-
formed to visualize lipid droplets within the ascocarp.
Samples were sliced with a surgical scalpel and stained
with 10.0 ug mL™" BODIPY 493/503 (Thermo Fisher
Scientific, Pittsburgh, USA) in a phosphate-buffered saline
(PBS) buffer for 2 days at 23 C. After two washes with a PBS
buffer, the samples were then observed using an Olympus
FV10i microscope (Olympus Scientific Solutions
Americas, Waltham, Massachusetts). An argon (488 nm)
laser was used for BODIPY (emission: 510-530 nm).

Lipid extraction and analysis.—Mycelium was incu-

bated on the agar medium described above until 40.0 mm
(50% colonization of Petri dish) of growth from the
inoculation point was reached. The total lipid fraction
was extracted from the mycelium by placing methanol-
chloroform-88% formic acid (1:2:0.1 by volume) in glass
tubes, followed by a wash with half volume of 1.0 M KCl
and 0.2 M H3PO,. After phase separation by centrifuga-
tion (2000 x g for 3 min), total lipids were collected to
prepare fatty acid methyl esters (FAMEs) with 1.0 M
methanolic HCI at 80 C for 25 min. FAMEs were then
extracted with hexane and analyzed by gas chromatogra-
phy and flame ionization detection (Agilent, CA, USA).

Molecular analyses.—DNA was extracted from all
specimens and isolated using a rapid alkaline extraction



method (Liber et al. 2022), as previously described.
Ascocarp DNA was extracted by removing a small
amount of the peridium and placing a 1.0-mm? piece of
sterile gleba into 40.0 pL extraction solution (ES).
Colonized root tips were imaged, rinsed with deionized
(DI) H,0, and placed into 20 pL ES and crushed using
a pipette tip. Samples were then placed into
a thermocycler set to 95 C for 10 min to lyse the cells.
Following lysis, bovine serum albumin (BSA) was added
at a rate of 3 times the volume of ES to help neutralize and
suspend the DNA extraction. One microliter of the
extracted DNA was used as template for subsequent
polymerase chain reaction (PCR) amplification reactions.

Fungal rDNA was amplified with universal fungal
primers ITS1F and LR3 (TABLE 1). Tuber-specific pri-
mers were used to amplify protein-coding genes, includ-
ing the second-largest subunit of RNA polymerase II
(RPB2_Tuber_f, RPB2_Tuber_r) and elongation factor
la (EFla_Tuber_f, EF1a_Tuber_r) (TABLE 1) follow-
ing methods of Bonito et al. (2010, 2013).

Amplicon products were Sanger sequenced bidirec-
tionally at the Research Technology Support Facility
(RTSF) Genomics Core at Michigan State University
on the Applied Biosystems 3730XL capillary sequencer
(Waltham, Massachusetts). Sequences were trimmed
with SnapGene 4.3.7 to remove low-quality regions
(GSL Biotech, Chicago, Illinois). Sequences were then
compared with others in the National Center for
Biotechnology Information (NCBI) database with the
BLASTn algorithm to verify that they were Tuber and
to identify other entries of this taxon in the database.

Phylogenetic analyses.—Sequence alignments of taxa
in the Rufum clade were made with the MUSCLE align-
ment algorithm (Edgar 2004) within Mesquite
(Maddison and Maddison 2019). Sequence ends and
highly ambiguous regions of ITS1 were excluded to
eliminate ambiguous regions in the alignment. Aligned
sequences were used to infer the phylogeny with max-
imum likelihood (ML) and Bayesian inference (BI). All
ML searches were generated with Randomized
Axelerated Maximum Likelihood (RAXxML), and 1000
bootstrap replicates were carried out with the
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GTRGAMMA nucleotide substitution model on the
CIPRES Science Gateway (Miller et al. 2010;
Stamatakis 2014). All BI searches were generated utiliz-
ing MrBayes on the CIPRES Science Gateway
(Huelsenbeck and Ronquis 2001; Ronquist and
Huelsenbeck 2003). The Markov chain Monte Carlo
(MCMC) ran for 40 000 000 generations with the
Metropolis-coupled Markov Chain Monte Carlo
(MCMCMC) set to run four chains in parallel, sampled
every 1000 cycles, and had a burn-in rate of 25% for
each BI search (Geyer 1991). The model for among-site
rate variation was set to INVGAMMA (inverse gamma
distribution). Character sets for the ITS BI search were
based on an alignment made to an annotated Tuber
brumale Vittad. (GenBank AF106880) sequence extend-
ing from the 18S ribosomal RNA gene to the 28S ribo-
somal gene. The quality of the BI search was verified
using MCMC files viewed with Tracer 1.7 to ensure
parallel runs converge and to quantify the effective
sample size (Rambaut et al. 2018). Visualization of the
phylogenetic trees was performed using FigTree 1.4.4
(FigTree 2018) updated to reflect the ML bootstrap
support value and BI posterior probability within
Adobe Illustrator (Adobe Inc 2019a).

Dichotomous key.—A dichotomous key of described
species in the Rufum clade was generated based on
available species descriptions used in TABLE 3
(Butters 1903; Cao et al. 2011; Vittadini 1831; Chen
et al. 2005; Deng et al. 2009; Eberhart et al. 2020;
Elliott et al. 2016; Lancellotti et al. 2016; Fan et al.
2012, 2013; Frank et al. 2006; Granetti et al. 1988;
Grunow and Rabenhorst 1884; Harkness 1899; Hu and
Wang 2005; Leonardi et al. 2019; Suwannarach et al.
2016; Trappe et al. 1996; Uecker and Burdsall 1977;
Wang 1988; Yan et al. 2018).

RESULTS

Scanning electron microscopy.—Spores that had
passed through the digestive tract of the Dusky slug
(Arion sp.) were free of nearly all of the asci remnants,

Table 1. List of primers and sequences used in this study for phylogenetic

analyses.

Primer Sequence (5" — 3') First reported
ITS1-F CTTGGTCATTTAGAGGAAGTAA Gardes and Bruns (1993)
LR3 CCGTGTTTCAAGACGGG Vilgalys and Hester (1990)
EF1a Tuber_f AGCGTGAGCGTGGTATCAC Bonito et al. (2013)

EF1a Tuber_r GAGACGTTCTTGACGTTGAAG Bonito et al. (2013)

RPB2 Tuber_f YAAYCTGACYTTRGCYGTYAA Bonito et al. (2013)

RPB2 Tuber_r CRGTTTCCTGYTCAATCTCA Bonito et al. (2013)
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leaving relatively clean and intact ascospores for ima-
ging. SUPPLEMENTARY FIG. 1 shows clean, ascus-
free T. rugosum, sp. nov., spores after passage through
the slug digestive tract. As seen in FIG. 5, the delicate
uncinulate spines are well preserved through this diges-
tive process, which is an improved process for obtaining
high-quality SEM opportunities.

Confocal microscopy, lipid extraction and analysis.—
Confocal microscopy revealed that Tuber rugosum, sp.
nov., BR64 and T. floridanum A. Grupe, Sulzbacher &
M.E. Sm. contain spores that are rich in lipid droplets
(green fluorescence by BODIPY staining, FIG. 4A, B).
This staining made visualizing the high lipid content of
the spores respective to the surrounding hyphae of the
gleba evident. Further fatty acid analyses of in vitro
mycelial growth showed that T. rugosum, sp. nov.
(BR64, holotype), has about 60% of polyunsaturated
fatty acids (18:2 and 18:3; FIG. 4C), whereas T. lyonii
Butters has the highest content of unsaturated fatty
acids, including 29% 18:1 (oleic acid), 34% 18:2, and
10% 20:4 (arachidonic acid) (FIG. 4D).

Molecular analyses.— Tuber rugosum, sp. nov., DNA
sequences, including for ITS, elongation factor la, and
RNA polymerase II have been deposited into NCBI
GenBank; see TABLE 4 for accession numbers.

Phylogenetic analyses.—The ITS (FIG. 6), elongation
factor la (FIG. 7A), and RNA polymerase II (FIG. 7B)
phylogenetic trees all place T. rugosum, sp. nov., within
the Rufum clade as one of the more early-divergent species.
The ITS rDNA data suggest that T. rugosum, sp. nov., is
a sister species to T. spinoreticulatum Uecker & Burds. with
a maximum likelihood score of 91 and a Bayesian posterior
probability score of 98.9 (FIG. 6). Both the elongation
factor la and the RNA polymerase II phylogenetic trees
show the distinct placement of Tuber rugosum, sp. nov.,
near T. spinoreticulatum and more basal to the other taxa in
the Rufum clade (FIG. 7). The elongation factor 1a phylo-
genetic data provide a maximum likelihood score of 75 for
the placement of T. rugosum, sp. nov. (FIG. 7A), and the
RNA polymerase II data fall below the threshold of signifi-
cance with a score of 69 (FIG. 7B).

TAXONOMY

Tuber rugosum Rennick B., Benucci G.M.N,, Du Z,
Healy & Bonito, sp. nov. FIG. 2
MycoBank MB838884

Diagnosis: Unique to T. rugosum are highly rugose
zones across the peridium frequently with tight peridial
folds revealing exposed gleba, characteristic echinate ascos-
pores (mean Q = 1.1) that variably have hooked apices with
an occasional subreticuate framework sloping gently away
basipetally from the spines, and gene sequences.

Typification: USA. MICHIGAN: Ingham County,
Onondaga township, elevation 277 m, found in soil
between Quercus rubra and Q. alba in a mixed hard-
wood forest, 27 Aug 2018, Bryan Rennick BR64 (holo-
type MSC408483, designated here). GenBank: ITS =
MW579343; EFla = MW584660; RPB2 = MW584657.

Etymology: The proposed species name references the
wrinkly, or rugose, appearance of the ascocarp.

Morphology: Ascomata irregular to subglobose, irregu-
lar or lobate, 7.0-28.1 (X = 12.7) x 10.0-29.7 (X = 16.8) mm
diam, from opaque to translucent beige to whitish, with
faint mottled gleba in mature specimen. Glebal marbling,
white sterile veins and melanized yellowish beige fertile
tissue. Odor mild and almost nutty; flavor mild.

Peridium 267.6 + 41.6 um thick, glabrous, large zones of
rugose pellis. Pellis 139.9 + 7.5 pm thick. Outermost layer
39.5 £ 6.1 um thick-walled beige cells subtended by hyaline
cells, isodiametric to pseudoparenchymal. Subpellis 97.3 +
18.9 um thick. In immature specimen, subpellis distinct
from pellis with long, narrow, interwoven cells running
perpendicular to the peridial surface. Clavate hyaline asci,
1-7 yellow-brown ascospores, most frequently with 4
ascospores. The main ovoid section of the asci 63.3-
89.2 x 28.6-62.86 um (X = 75.7 x 42.7 um), Q = 1.2-
2.8 (X = 1.9); peduncle from which the main ovoid section
of the ascus arises 39.1-83.9 um (X = 50.3 pm) in length.

Ascospores high in lipids (FIG. 4A, B), subglobose,
covered in well-spaced, uncinulate to corniform spines,
having a low-sloping ridge extending away from the
base and variably fusing with the ridge of adjacent
spines, rarely reticulated. Ascospores in 1-spored asci
are 24-32.5 x 20.5-26.5 pm with a shape (Q) of 1.2 and
in 4-spored asci spores are 18.0-22.0 x 16.0-20.0 pm
(Q = 1.1). Additional ascospore size and shape data are
in TABLE 2. While growing in vitro, hyphae with simple
septae, common branching at right angles (FIG. 1A),

Table 2. Ascospore length, width, and shape (Q) measurements based on the number of spores per asci.

Spores per asci Spore count (n) Length (um) Width (um) QX

1 1 24-32.5(-37) (19.5-)20.5-25(-26.5) 1.1-1.5(1.2)
2 12 (19-)20.5-25(-25.5) (17-)18.5-21.5(-22) 1.0-14(1.2)
3 20 (19.5-)20-23(-24.5) (18-)18.5-20.5(-22) 1.0-1.2 (1.1)
4 20 (16-)18-22(-23) (15.5-)16-20(-22) 1.0-1.2 (1.1)
5 22 (18-)18.5-21.5(-22.5) (16.5-)17-18.5(-19) 1.0-1.3 (1.1)
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Figure 1. Tuber rugosum growth in vitro shown on the pH 7.0 adjusted medium containing 1.0 mL/L biotin as described in Materials
and Methods. A. A typical right-angled hyphal branch with simple septa. B. A hyphal coil that is seen regularly on surface growth in

cultures as they age. Bars = 20.0 um.

rarely producing hyphal coils (FIG. 1B). Hyphae have
a high content of unsaturated fats (FIG. 4B, C).

Distribution: Northeastern North America: Quebec
(GenBank HM485428), Minnesota, and Michigan (see
TABLE 4). The holotype of Tuber rugosum, sp. nov., was
found within meters of an expansive collection of
T. floridanum and T. brennemanii A. Grupe, Healy &
M.E. Sm.

Habitat, distribution, and phenology: Northeastern
North America from Michigan and Minnesota, USA,
through Quebec, Canada. Collected Jul-Nov; hypogeous
to subhypogeous in previously disturbed soil of mixed
hardwood forest dominated by Quercus rubra and Q. alba.

Additional specimens examined: USA. MINNESOTA:
Stearns County, found hypogeous in mixed conifer and
deciduous forest, 17 Oct, 2009, Rosanne Healy RH1030
(FLAS-F-61987); MICHIGAN: Ingham County, found
hypogeous in mixed hardwood dominated by Q. rubra
and Q. alba, 17 Jul 2017, Bryan Rennick BR48
(MSC408482); ibid., found subhypogeous in mixed
hardwood dominated by Q. rubra and Q. alba, 7 Aug,
2019, Bryan Rennick BR145 (MSC408484); ibid., found
hypogeous in mixed hardwood dominated by Q. rubra
and Q. alba, 18 Aug 2019, Bryan Rennick BRI159
(MSC408485); ibid., found subhypogeous in mixed
hardwood dominated by Q. rubra and Q. alba, 11
Sep 2020, Bryan Rennick BR378 (MSC408486); ibid.,
found subhypogeous in mixed hardwood dominated
by Q. rubra and Q. alba, 4 Sep 2021, Bryan Rennick
BR428a (MSC409443).

Notes: Both T. rugosum and T. spinoreticulatum share
a distinctive small cavity revealing gleba on most ascoma,
as seen in FIG. 2A. Additionally, they share similar habi-
tats among oak trees, found in northeastern North
America, with pseudoparenchyma cells forming the pellis

and interwoven cells forming the subpellis. However,
T. rugosum has a smooth, white to tan peridium surface,
whereas T. spinoreticulatum has a leathery, brownish gray
peridium. Their aroma also differs in that T. rugosum has
a nutty aroma but T. spinoreticulatum smells of rotten
cabbage (Uecker and Burdsall 1977). Finally, T. rugosum
has small, spiny ascospores at 16.1-25.7 x 15.4-22.0 pm,
but T. spinoreticulatum has larger spiny-reticulate ascos-
pores at 30-35 x 22-25 um.

On the same agar medium described in Materials and
Methods, Tuber rugosum grows vegetatively with right-
angled branching and simple septae, as shown in FIG. 1A.
In older cultures (FIG. 1B), hyphal coils can be seen once
the culture becomes stressed.

We found some collections of T. rugosum that were
infected by a fungicolous species that we identified as
Clonostachys rosea. When infected by C. rosea, the
aroma was particularly smoky and the peridium turned
a darker shade with more pronounced red-brown hues,
as shown in FIG. 3. The Clonostachys rosea isolate
(BR428b) maintained a faint smoky aroma from the
pure isolate after more than two transfers beyond the
initial isolation plate, but directed experiments will be
needed to test the impact of this mycoparasite on truffle
aroma. Cultures of the holotype (BR64) as well as
C. rosea (BR428b) are available upon request.

DISCUSSION

Here, we described a new truffle species, T. rugosum, as
supported by three independent phylogenetic markers,
as well as by morphological characters. Phylogenetic
reconstructions demonstrate this species as a novel
North American species in the Rufum clade. Tuber
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Figure 2. A. Tuber rugosum (BR64, holotype) ascocarp showing both the rugose peridium and exposed sterile gleba. B. A cross-section
of T. rugosum (BR64) showing the gleba and its marbling. C. A cross-section (stained with toluidine blue O) of T. rugosum (RH999)
showing the distinctive long, narrow cells of the immature peridium. D. Hymenium (stained with toluidine blue O) of an immature
specimen showing the developing asci and paraphyses. E. Ascii of T. rugosum (BR64) containing 1, 2, 3, 4, 5, and 7 ascospores.
F. Mantle of T. rugosum (GenBank MW579340) on the root tip of a red oak (Quercus rubra). G. SEM image of a T. rugosum ascospore
(BR64) showing the echinate surface. H. SEM image showing details of the uncinulate spines on the ascospore of T. rugosum (BR64,
holotype; GenBank MW579336). Bars: A, B = 6.0 mm; C, F = 50.0 um; D = 25.0 um; E = 30.0 pm; G = 10.0 pm; H = 2.0 um.
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Table 4. Tuber rugosum collections used in this study with their herbarium and GenBank accession numbers and collection dates.

Accession numbers

Species Collection Source Locale Date collected Herbarium ITS EFla RPB2
Tuber rugosum RH999 Ascoma USA: Minnesota 8 Aug 2009 MW584702

Tuber rugosum RH1030 Ascoma USA: Minnesota 17 Oct 2009 FLAS-F-61987 MW584701

Tuber rugosum RH1330 Ascoma USA: Minnesota 3 Sep 2011 MW584700

Tuber rugosum BR48 Ascoma USA: Michigan 17 Jul 2017 MSC408482 MW579335

Tuber rugosum BR64 Ascoma USA: Michigan 27 Aug 2018 MSC408483 MW579343 MW584660  MW584657
Tuber rugosum BR145 Ascoma USA: Michigan 7 Aug 2019 MSC408484 MW579344 MW584661 MW584658
Tuber rugosum BR159 Ascoma USA: Michigan 18 Aug 2019 MSC408485 MW579345 MW584662  MW584659
Tuber rugosum BR339 Root tip USA: Michigan 5 Aug 2020 MW579346

Tuber rugosum BR340 Root tip USA: Michigan 5 Aug 2020 MW579347

Tuber rugosum BR342 Root tip USA: Michigan 5 Aug 2020 MW579348

Tuber rugosum BR343 Root tip USA: Michigan 5 Aug 2020 MW579349

Tuber rugosum BR378 Ascoma USA: Michigan 11 Sep 2020 MSC408486 MW579975

Tuber rugosum BR428a Ascoma USA: Michigan 4 Sep 2021 MSC409443 0L438889

Clonostachys rosea BR428b Anamorph USA: Michigan 4 Sep 2021 MSC409443 0L438890

Figure 3. Tuber rugosum ascocarp found in 2021 infected with Clonostachys rosea. A. The centermost ascocarp showing the darker red-
brown peridium seen when infected by C. rosea compared with the peridium color of noninfected ascocarps. B. Orange conidia from

C. rosea growing from the gleba of a T. rugosum ascocarp. Bars: A = 20.0 mm; B = 2.0 mm.

rugosum is most closely related to the North American
species T. spinoreticulatum, and as seen in TABLE 3, the
two species differ macroscopically in the color and tex-
ture of their peridium and microscopically by the size,
shape, and ornamentation of their ascospores. The two
species also have a different aroma, with Tuber spinor-
eticulatum being particularly unpleasant and originally
described as smelling like rotten cabbage (Uecker and
Burdsall 1977).

Animals play an important role in the spore dispersal
of hypogeous fungi. This has been well documented in
the case of small mammals, which consume truffles as
food (Cazares and Trappe 1994; Gabel et al. 2010). Other
animals including Diptera and Stylommatophora have
fungivorous members that have been shown to enhance
mycorrhizal spore dispersal, including that of truffles
(Kitabayashi and Tuno 2018; McGraw et al. 2002). As
documented previously, slugs in the genus Arion are
mycophagous (Beyer and Saari 1978); however, their
role in spore dispersal has not been investigated.
Although this paper did not set out to determine truffle

spore viability in slug excreta, we did demonstrate that
T. rugosum is consumed by Arion slugs and that spores
that pass through the slug digestive tract are released
from the asci in good condition for visualization. In
fact, we found this to be a useful pretreatment for cleans-
ing spores prior to preparation for SEM. Recent work by
Ori et al. (2021) demonstrated that slug digestion of
T. aestivum ascospores exhibit an altered episporial tex-
ture and increased mycorrhization of Quercus robur roots
compared with those ascospores consumed by mice or
uningested spores. Our observations that T. rugosum is
found just beneath leaf litter and is often partially con-
sumed raise questions on the role of Arion slugs and
other gastropods in truffle spore dispersal in nature.
Truffles damaged by small animals or other mechan-
ical means may also become more susceptible to infec-
tion by fungicolous organisms, which may alter its
aromatic profile (Eslick 2012). It is still unknown
whether C. rosea is a primary pathogen of truffles,
although the literature suggests that C. rosea can be
a mycoparasite of many fungal species and thus may
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Figure 4. Lipid analysis of truffle spores. A, B. Confocal microscopy of BODIPY-stained (A) Tuber rugosum (BR64) and (B) Tuber
floridanum ascospores revealing lipid content as green. C, D. FAME analysis of (C) T. rugosum and (D) T. lyonii in vitro mycelial growth
showing distinct variation in fatty acid concentrations. Bars: A = 0.5 mm, 100.0 um, 25.0 um, top to bottom; B = 0.5 mm, 100.0 um, and

30.0 um, top to bottom.

have potential use as a biocontrol against fungal crop
pathogens such as Fusarium graminearum Schwabe
(Gimeno et al. 2021). In a prior report, C. rosea was
isolated from Tuber magnatum but was not found to be
chitinolytic (Pavic et al. 2013). We were unable to
demonstrate C. rosea pathogenicity on T. rugosum, as
our in vitro assays were inconclusive. While growing
C. rosea on agar, we noted that it maintained a faint
smoky aroma, which supports the hypothesis that it

contributed to the odor profile of the ascocarps it was
found growing on. Other truffle-inhabiting organisms,
particularly a- and B-proteobacteria, have been found to
be principal contributors to sulfur-containing volatiles
characteristic of T. borchii Vittad. ascocarp aroma
(Splivallo et al. 2011). Further work is needed to ascer-
tain the involvement of other fungi and bacteria in the
aroma development and profiles of Tuber ascoma, as
well as truffle development and disease.
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Figure 5. A. SEM image of Tuber rugosum ascospore having been passed through the digestive system of the dusky arion slug. B. SEM
image of T. rugosum ascospore cleared from ascus by drying down ascocarp and scraping gleba. C. Representative cluster of
T. rugosum ascospores subjected to the slug digestive system. D. Example of remaining ascus, digestive remnants, or other unknown
tissue observed on a few of the T. rugosum ascospores SEM-imaged after slug digestion. Bars: A, B, D = 10.0 um; C = 100.0 ym.

Fatty acid profiles have been used when trying to
distinguish Tuber species within species complexes
and provide some insight into their physiology and
nutrition (Angelini et al. 2015). However, Tuber fatty
acid profiles may vary across geographic regions and
under different environmental and growth conditions
(Shah et al. 2020). To attempt to control for these
environmental variances, we obtained pure culture iso-
lates of T. rugosum and the closely related species
T. lyonii (FIG. 4), to assess and compare FAME profiles
from similarly aged mycelium grown in the same med-
ium and environment. Truffle species had distinct fatty
acid profiles from one another, with T. rugosum being
particularly reduced in 18:1 (oleic acid) and T. lyonii
enriched in 20:4 (arachidonic acid). Fatty acid profiles
are not available for most Tuber species, but they could
provide insights into variation in Tuber physiology and
nutrition.

Similar to previously published ITS phylogenies
(Bonito et al. 2010), T. rugosum is found on an early-
divergent branch of the Rufum clade and appears to be
sister to T. spinoreticulatum (FIG. 6). Our ITS ML- and
BI-based phylogenies also conform to more recently pub-
lished Tuber phylogenies (Yan et al. 2018), which placed
T. lishanense L. Fan & X.Y. Yan and T. piceatum L. Fan,
X.Y. Yan & M.S. Song basal to T. spinoreticulatum within
the Rufum clade. The general structure of the phyloge-
netic trees analyzed from the two protein-encoding loci
(FIG. 7) also agree with earlier studies (Bonito et al. 2013)
but with stronger support for T. rugosum within the
Rufum clade and its close relationship to
T. spinoreticulatum. However, it should be noted that
there are relatively few sequences available within the
Rufum clade for both the RPB2 and EFla protein-
encoding regions. The lack of species representation
within these protein-encoding regions is such that
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Figure 6. ITS rDNA phylogeny of the Rufum Clade. This most likely phylogenetic tree reconstructed from ITS rDNA data shows that
T. rugosum is basal in the Rufum clade and supported as sister species to T. spinoreticulatum. Maximum likelihood bootstrap support
values over 70 are shown above the nodes, whereas Bayesian posterior probabilities above 95 are shown below nodes. Tuber
regimontanum, T. indicum, and T. melanosporum were included as outgroups as identified by Bonito et al. (2010). Taxa are shown with
specimen, isolate, or collection number as listed in the NCBI database.
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concatenating and condensing the phylogenetic trees into
a single, better-supported phylogram is not possible at
this time. Further work is needed to generate these pro-
tein-encoding sequences in other Rufum clade species in
order to reconstruct a more comprehensive phylogeny.

In conclusion, we have described Tuber rugosum,
a pale, wrinkly, spiny-spored truffle endemic to north-
eastern North America, supported by morphological and
phylogenetic analyses of multiple loci. We provide the
fatty acid profile of this species, describe a fungicolous
species association, and present a method that involves
the use of slugs to assist in cleaning ascospores prior to
SEM imaging. Finally, a dichotomous key for truffles in
the Rufum clade is provided below. Together, these
results expand on the knowledge base of Tuber biodiver-
sity and microbiome diversity in North America.

A KEY TO TUBER SPP. IN THE RUFUM CLADE

1. Ascospore smooth with no ornamentation...............
T. melosporum

1'. Ascospore with ornamentation .........c.ccccoecveuneunce. 2
2. European SPecies .........uvniniiinininiceninienenenes 3
2'. Not European Species ..........cccecerurerrererererereresererenes 7
3. Peridium SMOOth ....c.ccocruveerencirecirecirecirecreecnceennes 4
3'. Peridium not SMooth ......cccccevereeireeencnneinireinenes 5

4. Peridium color reddish yellow ..............

4'. Peridium color light brown ......

5. Ascospore globose in shape .............. T. pustulatum
5'. Ascospore ellipsoid in shape ......ccccoeveveernencnnnes 6
6. Pellis cells pseudoparenchyma.................. T. rufum

6'. Pellis cells interwoven ...........c..........

7. North American SPecies ........ccceovrereverrereereureneueens 8
7', ASIAN SPECIES ..cuvvvvveriveveieieieieieieieieietseeeeeeseseeeaes 14
8. Peridium SMOOth ..o 9
8'. Peridium verrucose or leathery ........c.cccoveeuveuence 12

9. Ascospore spines not commonly curved or hooked
OO 11

10.

10'.

11.

11'.

12.

12,

13.

13".

14.

14",

15.

15".

16.

16".

17.

17",

18.

18'.

19.

19'.

20.

20'.

21.

22.

22'.

23.
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Pellis 20-40 pum thick .....ccococveevcreverccenenees
Pellis 45-150 pm thick .......cccovvveveneee

Outer pellis of pseudoparenchyma or globos cells ...
..................................................................................... 13

Outer pellis of longer Interwoven cells ..........ccveue..e.
T. quercicola

Ascospore reticulated but with distinct curved
SPINES wouvveeeeieneeeirereeeisee e tseaeeseaees T. umbilicatum
Ascospore not as above .........ccecveveeereereneereireenens 16
Ascospore alveolate-reticulate ........ T. liaotongense
Ascospore spiny-reticulate .............. T. huidongense
Pellis consisting of pseudoparenchyma .............. 18

Pellis consisting of interwoven cells ..........c.cevcereeneeee.
T. crassitunicatum

Ascospore spiny-reticulate or spiny .................. 20
Ascospore globose in shape ......c.coccoveevevercenenee 21
Ascospore ellipsoid in shape ......cccccevevrererrennee 22

Peridium color yellow brown to dark brown; 130-
260 pm thick ..cocevevcrneccreencrencrecirecnnes T. lannaense

. Peridium color yellow white; 200-250 um thick ......

T. wanglangense
Peridium thickness >300 pm .......... T. furfuraceum
Peridium thickness <300 fm .....c.ccecveveeverrercrrencnnes 23

Ascoma deeply and densely furrowed .......ccccocueueeee.
T. taiyuanense
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23", Ascoma mostly smooth with few furrows .................
........................................................... T. wenchuanense

24. Ascospore globose in shape ................ T. lishanense
24'. Ascospore ellipsoid in shape ................ T. piceatum
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