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Kuznetsov’s Fano threefold conjecture via

K3 categories and enhanced group actions

By Arend Bayer at Edinburgh and Alexander Perry at Ann Arbor

Abstract. We settle the last open case of Kuznetsov’s conjecture on the derived cate-

gories of Fano threefolds. Contrary to the original conjecture, we prove the Kuznetsov compo-

nents of quartic double solids and Gushel–Mukai threefolds are never equivalent, as recently

shown independently by Zhang. On the other hand, we prove the modified conjecture asserting

their deformation equivalence. Our proof of nonequivalence combines a categorical Enriques-

K3 correspondence with the Hodge theory of categories. Along the way, we obtain a categorical

description of the periods of Gushel–Mukai varieties, which we use to resolve a conjecture of

Kuznetsov and the second author on the birational categorical Torelli problem, as well as to give

a simple proof of a theorem of Debarre and Kuznetsov on the fibers of the period map. Our

proof of deformation equivalence relies on results of independent interest about obstructions to

enhancing group actions on categories.

1. Introduction

We work over the complex numbers. If V is a smooth Fano threefold of Picard number

1 with ample generator H 2 Pic.V /, then the index of V is the integer i such that KV D �iH

and the degree is the integer d D H 3. The classification of Fano threefolds [22] shows that if

i D 4 then V Š P
3, if i D 3 then V is a quadric, if i D 2 then 1 � d � 5, and if i D 1 then d is

even, d ¤ 20, and 2 � d � 22. Moreover, for any pair .i; d/ satisfying these restrictions, there

is a unique and explicitly described deformation class of Fano threefolds with these numerics.

For instance:

� Fano threefolds Y of Picard number 1, index 2, and degree 2 are quartic double solids,

i.e. double covers Y ! P
3 branched along a quartic surface.

� Fano threefolds X of Picard number 1, index 1, and degree 10 are Gushel–Mukai (GM)

threefolds, i.e. either intersections X D Gr.2; 5/ \ P
7 \ Q of the Grassmannian Gr.2; 5/
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with a codimension 2 linear subspace and a quadric in the Plücker embedding (in which
case X is called ordinary), or double covers X ! Gr.2; 5/ \ P6 of a codimension 3
linear section branched along a quadric section (in which case X is called special).

There are some curious classical “coincidences” between the families with numerical
invariants .i D 2; d/ and .i D 1; 4d C 2/. For instance, the rationality of a (generic) Fano
threefold in a given family is preserved under this correspondence (see [5]). At the level of
Hodge theory, the dimensions of the intermediate Jacobians on each side also match, except
for d D 1 (see Remark 1.3 below).

1.1. Kuznetsov’s conjecture. In [29] Kuznetsov suggested an intrinsic explanation for
these coincidences, in terms of bounded derived categories of coherent sheaves. If Y is a Fano
threefold of Picard number 1 and index 2, there is a semiorthogonal decomposition

Db.Y / D hKu.Y /;OY ;OY .H/i;

where Ku.Y / is the subcategory – now known as the Kuznetsov component – defined by

(1.1) Ku.Y / D ¹F 2 Db.Y / j Ext�.OY ; F / D Ext�.OY .H/; F / D 0º:

If X is a Fano threefold of Picard number 1, index 1, and degree d , then d D 2g � 2 for an
integer g � 2 known as the genus of X . If g � 6 is even, there is a semiorthogonal decompo-
sition

Db.X/ D hKu.X/;E;OX i;

where E is a canonical exceptional rank 2 vector bundle on X constructed by Mukai (see
[4, Theorem 6.2]), and

(1.2) Ku.X/ D ¹F 2 Db.X/ j Ext�.OX ; F / D Ext�.E; F / D 0º:

For example, if X is a GM threefold, then g D 6 and E is the pullback of the tautological rank
2 subbundle on Gr.2; 5/.

Kuznetsov conjectured the categories Ku.Y / for Y of index 2 and degree d can be
realized as Ku.X/ for X of index 1 and degree 4d C 2. More precisely, let M

i
d

denote the
moduli stack of Fano threefolds of Picard number 1, index i , and degree d ; this is a smooth
irreducible stack of finite type (see [25]).

Conjecture 1.1 ([29]). For 1 � d � 5 there exists a correspondence

Z � M
2
d � M

1
4dC2

that is dominant over each factor and such that for any point .Y;X/ 2 Z there is an equivalence
of categories Ku.Y / ' Ku.X/.

Remark 1.2. In this paper, we work with enhanced triangulated categories (see Sec-
tion 1.6), so by an equivalence Ku.Y / ' Ku.X/ we mean an equivalence of such enhanced
categories; this amounts to Ku.Y /' Ku.X/ being given by a Fourier–Mukai kernel on Y �X .
Technically, Kuznetsov’s conjecture as stated in [29] only requires the existence of a trian-
gulated equivalence Ku.Y / ' Ku.X/, but a different conjecture of Kuznetsov [28, Conjec-
ture 3.7] implies any such equivalence is of Fourier–Mukai type. In fact, in the cases of interest
in this paper, the Fourier–Mukai-type conjecture was recently proved in [41], so our assumption
that all equivalences are enhanced is harmless.
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As evidence, Kuznetsov [29] proved Conjecture 1.1 for d D 3; 4; 5.

Remark 1.3. For d D 1 the conjecture fails, for the following reason. If V is a Fano
threefold and A � Db.V / is any semiorthogonal component defined as the orthogonal to an
exceptional sequence, then the HKR isomorphism and additivity of Hochschild homology
gives an isomorphism HH1.A/ Š H1;2.V /. Thus, for .Y;X/ 2 M

2
d

� M
1
4dC2

, a necessary
condition for the existence of an equivalence

Ku.Y / ' Ku.X/

is that h1;2.Y / D h1;2.X/. This equality holds for d D 2; 3; 4; 5, but it fails for d D 1, as then
h1;2.Y / D 21 while h1;2.X/ D 20. In fact, for d D 1 there is some subtlety in even defining
Ku.X/ – note that in (1.2) we excluded the case g D 4 – but this argument applies to any
possible definition of Ku.X/. Instead, in an article in preparation Kuznetsov and Shinder show
that Ku.X/ and Ku.Y / are related by a degeneration and resolution: there exists a smooth
proper family of categories with generic fiber Ku.X/ and special fiber a categorical resolution
of Ku.Y / for a nodal Y .

Bernardara and Tabuada [8] observed that Conjecture 1.1 also fails for d D 2, essentially
for dimension reasons: the categories Ku.X/ of GM threefolds vary in a 20-dimensional fam-
ily, while M

2
2 is only 19-dimensional. Thus, if Z � M

2
2 � M

1
10 is a correspondence parameter-

izing Fano threefolds with equivalent Kuznetsov components, then Z does not dominate M
1
10.

This left open the question of whether there could be such a correspondence dominating M
2
2 ,

as suggested by the dimension count.

1.2. Main results. Our first main result says that, somewhat surprisingly, there does not
even exist a nonempty correspondence Z � M

2
2 � M

1
10 parameterizing equivalent Kuznetsov

components, and thus Conjecture 1.1 fails maximally for d D 2.

Theorem 1.4. Let Y be a quartic double solid, and let X be a GM threefold. Then

Ku.Y / and Ku.X/ are not equivalent.

Remark 1.5. This result was also recently shown by Zhang [62], via a completely dif-
ferent method, using uniqueness of (Serre-invariant) Bridgeland stability conditions and moduli
spaces of stable objects.

In view of the failure of Conjecture 1.1 for d D 2, Kuznetsov suggested a weakening of
the conjecture, which asserts that the categories Ku.Y / and Ku.X/ are “deformation equiva-
lent”. Theorem 1.4 can be thought of as a negative result in this direction, as the simplest way
the modified conjecture could be true is if Ku.Y / ' Ku.X/ for some .Y;X/ 2 M

2
2 � M

1
10.

Nonetheless, our second main result confirms Kuznetsov’s modified conjecture.

Theorem 1.6. There exists a smooth pointed curve .B; o/ and a smooth properB-linear

category C such that:

(1) The fiber Co is equivalent to Ku.Y / for a quartic double solid Y .

(2) For b 2 B n ¹oº, the fiber Cb is equivalent to Ku.Xb/ for a GM threefold Xb .
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We expect this result to be a useful tool for relating Bridgeland moduli spaces of objects
in Kuznetsov components of quartic double solids and GM threefolds.

Remark 1.7. See Section 2.1 for a summary onB-linear categories. In general, aB-lin-
ear category should be thought of as a “family of categories parameterized by B”; there is
a well-behaved notion of base change for such categories, which in particular gives rise to
a �.b/-linear fiber category Cb for any b 2 B . Theorem 1.6 thus informally says that the
Kuznetsov components of GM threefolds smoothly specialize to those of quartic double solids.

Our method of proof of Theorem 1.4 naturally leads to our third main result, concerning
the “categorical Torelli problem”. Namely, the intermediate Jacobian of a Fano threefold X is
determined by its Kuznetsov component [54], and hence the association X 7! Ku.X/ can be
thought of as a categorical lift of the period map. The categorical Torelli problem then asks
to what extent X is determined by Ku.X/. Positive answers are known in many situations;
see [58] for a recent survey and references. One particularly interesting open case is that of
GM threefolds, for which the 3-dimensional case of a conjecture of Kuznetsov and the second
author predicts the following.

Conjecture 1.8 ([38, Conjecture 1.7]). If X1 and X2 are GM threefolds such that there
is an equivalence Ku.X1/ ' Ku.X2/, then X1 and X2 are birational.

We note that by the duality conjecture [37, Conjecture 3.7] proved in [38], there are
indeed 2-dimensional families of birational GM threefolds with equivalent Kuznetsov com-
ponent. More precisely, [13] introduces a notion of period partnership and duality for GM
varieties (see Section 5.3 for definitions), shows that these relations imply birationality, and
explicitly describes the locus of period partners and duals of a given GM variety in terms of an
associated EPW sextic (the locus being 2-dimensional for a GM threefold), while the duality
conjecture implies that the Kuznetsov components of period partners or duals are equivalent.
We show that this is in fact the only way for GM threefolds to have equivalent Kuznetsov com-
ponents, and therefore resolve Conjecture 1.8 while simultaneously computing the fiber of the
“categorical period map”:

Theorem 1.9. Let X1 and X2 be GM threefolds. Then

Ku.X1/ ' Ku.X2/

if and only if X1 and X2 are period partners or duals. In particular, if Ku.X1/ ' Ku.X2/,

then X1 and X2 are birational.

One of the appeals of Theorem 1.9 is that the expected corresponding result for the
ordinary period map, i.e. with Kuznetsov components replaced by intermediate Jacobians,
is currently unknown. This illustrates the utility of the extra structure provided by working
categorically.

Remark 1.10. Under a genericity assumption, the birationality of X1 and X2 above
was recently shown in [23], via a completely different method, and without the genericity
assumption in the upcoming [24].
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The proofs of Theorems 1.4, 1.6, and 1.9 involve ideas of independent interest, sketched
below.

Categorical Enriques-K3 correspondence. The Kuznetsov components of quartic
double solids and GM threefolds are Enriques categories, in the sense that their Serre func-
tors are of the form � ı Œ2� where � is a nontrivial involution generating a Z=2-action. To any
Enriques category, there is an associated 2-Calabi–Yau (CY2) cover, defined as the invariant
category for the Z=2-action. By [36], if Y ! P3 is a quartic double solid with branch locus
a quartic K3 surface Ybr � P3, then the CY2 cover of Ku.Y / is Db.Ybr/, while if X is a GM
threefold, the CY2 cover of Ku.X/ is the Kuznetsov component of the “opposite” GM vari-
ety Xop (a Fano fourfold if X is ordinary or a K3 surface if X is special, see Definition 4.12);
these CY2 categories are called K3 categories because their Hochschild homology agrees with
that of a K3 surface.

As reviewed in Section 4, the CY2 cover of an Enriques category admits a residual

Z=2-action, which should be thought of as an analogue of the covering involution of a K3
surface over an Enriques surface; in the case of Db.Ybr/ and Ku.Xop/ these actions can be
described explicitly, see Theorem 4.15. One of our key observations is that two Enriques
categories are equivalent if and only if their CY2 covers are Z=2-equivariantly equivalent
(Lemma 4.9). This is useful as K3 categories are often easier to understand.

Outline of the proof of Theorem 1.4. In particular, Theorem 1.4 reduces to proving the
nonexistence of a Z=2-equivariant equivalence Db.Ybr/ ' Ku.Xop/. To rule out such an equiv-
alence, we study the induced Z=2-equivariant isometry eH.Ybr;Z/ Š eH.Ku.Xop/;Z/ between
their Mukai Hodge structures, whose definitions are reviewed in Section 5.1. This leads to a
contradiction to constraints on the periods of GM fourfolds whenX is ordinary (Theorem 7.1),
and those of GM surfaces when X is special (Lemma 7.3).

Enhanced group actions. The above discussion elided a subtlety about Z=2-actions.
In general, if G is a finite group, then there are several possible notions of an action of G on
a category C. Naively, one might consider a homomorphism � from G to the group of auto-
equivalences modulo isomorphisms of functors. However, more structure is needed to define
a reasonable category CG of G-equivariant objects in C; namely, following Deligne [16], we
need to specify suitably compatible isomorphisms of functors �.g/ ı �.g0/ Š �.g � g/. This
suffices if C is an ordinary category, but if C is triangulated then in general CG need not be (see
[17, Theorem 6.9] for a sufficient condition).

To correct this, we instead work with an enhanced triangulated category C – we use
1-categorical enhancements, see Section 1.6 – and consider 1-categorical group actions on C.
Then there is a well-behaved category CG of invariants, but the price we pay is that it is a pri-
ori much harder to specify a group action of G on C, as it requires an infinite hierarchy of
data. At the first two levels, if hC denotes the triangulated homotopy category of C, then an
1-categorical action on C determines both a naive G-action on hC given by a homomor-
phism � as above, as well as a G-action on hC in the sense of Deligne; we call the former
a 1-categorical action on C, and the latter a 2-categorical action. We study obstructions to
and uniqueness of lifts of 1- and 2-categorical actions to 1-categorical ones. In particular, we
show that if C satisfies a connectivity hypothesis on Hochschild cohomology (which holds for
most categories of interest), then given a 1-categorical action there is a single obstruction to the
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existence of an 1-categorical lift, and the set of lifts form a torsor over an explicit cohomol-
ogy group (Corollary 3.4); moreover, this obstruction and torsor are the exact same as those
controlling 2-categorical lifts. This in particular answers a question raised in [17]. In the spe-
cial case where C is the derived category of a variety, the result is the following enhancement
of [6, Theorem 2.1].

Theorem 1.11. Let X be a connected smooth proper variety over a field k. Let G be

a finite group with a group homomorphism � to the group of autoequivalences of Db.X/.

Then there is a canonical obstruction class ob.�/ 2 H3.BG; k�/, where the G-action on k�

is trivial, such that an 1-categorical lift of � exists if and only if ob.�/ D 0, in which case the

set of equivalence classes of such lifts is an H2.BG; k�/-torsor.

The complete result in Corollary 3.4 applies in the relative setting where we consider
categories C that are linear over a base scheme, instead of merely a field. An important technical
result is that the vanishing of the obstruction mentioned above is an open condition in the étale
topology of the base (Proposition 3.9).

Outline of the proof of Theorem 1.6. By our discussion above, if X is a special GM
threefold and Y is a quartic double solid, then the CY2 covers of their Kuznetsov components
are Db.Xop/ and Db.Ybr/, where Xop is a GM K3 surface and Ybr is a quartic K3 surface,
and the Kuznetsov components can be recovered as the invariant categories for the residual
Z=2-actions. The idea of the proof of Theorem 1.6 is thus to find a specialization of Xop to
a quartic K3, with a Z=2-action that restricts on fibers to the residual Z=2-actions. To do so,
we first construct such a specialization with a 1-categorical action on the family of derived
categories of the K3 surfaces, and then use the general results discussed above to lift this
to an 1-categorical action. Passing to invariant categories gives the category C promised by
Theorem 1.6, which is smooth and proper by a general result (Proposition 3.15) that we prove.

The role of derived algebraic geometry. We briefly explain the role played by derived
algebraic geometry, more specifically stable 1-categories, in this paper. We need the notion
of a category linear over a base B , along with base change. Sometimes, one considers such
categories as admissible B-linear subcategories of Dperf.X/ for a scheme X over B; this is
e.g. the approach taken in [3]. However, we know of no such embedding of the category C in
Theorem 1.6.

Instead, as explained above C is constructed as the invariant category for a Z=2-action on
the derived category Dperf.S/ of the total space S of a family of K3 surfaces over B . A result
of Elagin [17, Corollary 6.10] allows to construct from a 2-categorical action on Dperf.S/ a tri-
angulated structure on the invariant category, but it does not come with a natural B-linear
structure that satisfies base change. Instead, our results in Section 3 show that the Z=2-action
on the triangulated Dperf.S/ lifts to an action on its enhancement as a 1-category; then the
desired properties of the invariant category are automatic.

Categorical description of periods. As a byproduct of our proof of Theorem 1.4, we
obtain a categorical description of the periods of even-dimensional GM varieties. GM vari-
eties are generalizations of GM threefolds to dimensions 2 � n � 6, with similarly defined
Kuznetsov components (see Definition 4.11 and equation (4.1)). If W is such a variety of
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dimension 4 or 6, then Ku.W / is canonically the CY2 cover of an Enriques category (gener-
alizing the discussion above forW D Xop), and hence carries a canonical residual Z=2-action.
If n D dim.W /, the period map assigns to W the Hodge structure Hn.W;Z/0 given as the
orthogonal to the sublattice Hn.Gr.2; 5/;Z/ � Hn.W;Z/.

Proposition 1.12. LetW be a GM variety of dimension n D 4 or 6. LeteH.Ku.W /;Z/0
denote the orthogonal to the invariant sublattice eH.Ku.W /;Z/Z=2 � eH.Ku.W /;Z/ for the

residual Z=2-action. Then there is an isometry of weight 2 Hodge structures

eH.Ku.W /;Z/0 Š Hn.W;Z/0.
n
2

� 1/;

where .n
2

� 1/ on the right denotes a Tate twist.

Our main application, to Theorem 1.9, is explained below. As another application, we
give a simple proof of a recent result of Debarre and Kuznetsov [14], which identifies the
periods of even-dimensional GM varieties that are “generalized partners or duals” (Theo-
rem 5.11), and implies the period map factors through the moduli space of double EPW
sextics.

Remark 1.13. In the work [54], canonical weight 0 and �1 Hodge structures Ktop
0 .A/

and Ktop
1 .A/ are constructed for any admissible subcategory A of the derived category of

a smooth proper variety, which can be thought of as versions of even and odd degree cohomol-
ogy of A. If A D Ku.W / for an even-dimensional GM variety, then Ktop

0 .A/ is up to Tate
twist the Mukai Hodge structure. For many odd-dimensional Fano varieties (including GM
varieties), if A is taken to be an appropriate Kuznetsov component, then Ktop

1 .A/ recovers the
middle Hodge structure of W on the nose. In this way, the categorical description of periods in
even dimensions is more subtle than in odd dimensions.

Outline of the proof of Theorem 1.9. If X1 and X2 are GM threefolds with

Ku.X1/ ' Ku.X2/;

then passing to CY2 covers we obtain an equivalence

Ku.X
op
1 / ' Ku.X

op
2 /

equivariant for the residual Z=2-actions. By a trick one can reduce to the case whereX1 andX2

are ordinary, so thatXop
1 andXop

2 are GM fourfolds. Then Proposition 1.12 implies an isometry
of Hodge structures

H4.X
op
1 ;Z/0 Š H4.X

op
2 ;Z/0:

Theorem 1.9 then follows by combining this with the factorization of the period map through
the moduli space of double EPW sextics (mentioned above) and the injectivity of the period
map for double EPW sextics (by Verbitsky’s Torelli theorem). The moral of this argument is
that passing to CY2 covers allows us to leverage Torelli theorems for hyperkähler fourfolds.

1.3. Further conjectures and questions. We highlight several further directions sug-
gested by our work.
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Birational geometry and intermediate Jacobians of the threefolds. Heuristic rela-
tions between derived categories and birational geometry [33] suggest that if Y were a quartic
double solid which is birational to a GM threefold X , then Ku.Y / ' Ku.X/. Together with
Theorem 1.4, this leads to the following conjecture.

Conjecture 1.14. Let Y be a quartic double solid, and let X be a GM threefold. Then
Y is not birational to X .

Motivated by this, we also propose:

Conjecture 1.15. Let Y be a quartic double solid, and let X be a GM threefold. Then
the intermediate Jacobian J.Y / is not isomorphic to J.X/ as a principally polarized abelian
variety.

We note that J.X/ and J.Y / are both 10-dimensional. One could hope to address Con-
jecture 1.15 by proving a description for the singular locus of the theta divisor of J.X/ in
terms of Bridgeland moduli spaces for Ku.X/. Our main interest in Conjecture 1.15 is that it
explains both Theorem 1.4 and Conjecture 1.14.

Conjecture 1.15 ) Theorem 1.4. By [54, Lemma 5.30] (cf. Remark 1.13) an equiva-
lence Ku.Y / ' Ku.X/ would imply an isomorphism J.Y / Š J.X/ of principally polarized
abelian varieties.

Conjecture 1.15 ) Conjecture 1.14. For a Fano threefold W , the Clemens–Griffiths
component JCG.W / – defined as the product of the principally polarized factors of J.W /
that are not Jacobians of curves – is a birational invariant (see [9]). It follows from [61] that
JCG.Y / D J.Y /, so if Y is birational to X then we must have J.Y / Š J.X/.

Remark 1.16. Conjecture 1.15, and hence Conjecture 1.14, are shown for a generic

GM threefold X in [11, Corollary 7.6].

Loci of equivalent Kuznetsov components. Conjecture 1.1 motivates studying in gen-
eral the locus where Kuznetsov components are equivalent in families of Fano varieties. We
note the following consequence of work of Anel and Toën [2, Corollaire 3.3].

Theorem 1.17. For j D 1; 2, let Cj be a smooth, proper, connected Sj -linear cate-

gory for a scheme Sj . Then the locus Z � S1 � S2 of points .s1; s2/ 2 S1 � S2 such that

.C1/s1
' .C2/s2

is a countable union of locally closed subspaces.

In Section 2, we review the notion of connectedness for a linear category, and explain
a useful criterion (Corollary 2.11) for checking it based on [32]. The criterion applies to the
Kuznetsov components of many Fano varieties, including those of Fano threefolds of Picard
number 1 and of cubic fourfolds [30].1) By Theorem 1.17 the locus where connected Kuznetsov

1) See [4, Section 6] for a (somewhat ad hoc) definition of the Kuznetsov component without restrictions on
the degree.
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components become equivalent in the product of two moduli spaces is a countable union of
locally closed subspaces. We believe such loci deserve further study. For instance:

Question 1.18. When do equivalences between Kuznetsov components specialize, i.e.
when are the locally closed subspaces above actually closed?

This specialization property holds in the setting of Conjecture 1.1: for d D 3; 4; 5 by
the results of [29] combined with the categorical Torelli theorems for Fano threefolds Y of
Picard number 1, index 2, and degree d D 3; 4; 5; for d D 2 by Theorem 1.4; and for d D 1

by Remark 1.3. For cubic fourfolds, the results of [3] give a partial answer to Question 1.18:
they imply that derived equivalences between Kuznetsov components of cubic fourfolds and
K3 surfaces specialize, as they are given by 2-dimensional moduli spaces of stable objects.

1.4. Related work. There are alternative approaches to some of our results: Theo-
rem 1.4 was proved independently by Zhang in [62], based on a study of Bridgeland moduli
spaces, while Theorem 1.6 was proved independently by Kuznetsov and Shinder in work in
preparation [39] (see also [35, Section 5.4]), based on a degeneration argument and a theory of
“absorption of singularities”. Our paper and these two use completely different methods, which
we believe are interesting in their own right.

After posting the first version of this paper, we learned that Zoë Schroot has obtained
results similar to ours in Section 3 on enhancing group actions on categories.

We also note that some of the ideas in this paper are used in the upcoming [56] to
describe Bridgeland moduli spaces for Enriques categories, like the Kuznetsov components
of GM threefolds or quartic double solids.

1.5. Organization of the paper. In Section 2 we review the formalism of enhanced
triangulated categories linear over a base scheme, as well as their Hochschild cohomology. In
Section 3 we discuss 1-categorical group actions on (linear) categories, and in particular study
the obstruction to lifting an action on the homotopy category to the 1-level. In Section 4 we
explain the correspondence between Enriques categories and their CY2 covers. In Section 5 we
review Mukai Hodge structures and prove Proposition 1.12. In Section 6 we prove Theorem 1.9,
in Section 7 we prove Theorem 1.4, and finally in Section 8 we prove Theorem 1.6.

1.6. Conventions. Schemes are tacitly assumed to be quasi-compact and quasi-sepa-
rated. A variety over a field k is an integral scheme which is separated and of finite type over k.
Fano varieties are smooth by convention.

For a scheme X , Dperf.X/ denotes the category of perfect complexes, Dqc.X/ denotes
the unbounded derived category of quasi-coherent sheaves, and Db.X/ denotes the bounded
derived category of coherent sheaves. (In fact, in all cases where we consider Db.X/ in this
paper, Db.X/ D Dperf.X/, so it is just a matter of notation.) All functors are derived by con-
vention. In particular, for a morphism f WX ! Y of schemes we write f� and f � for the
derived pushforward and pullback functors, and for E;F 2 Dperf.X/ we write E ˝ F for the
derived tensor product.

For technical convenience all categories in the paper are considered as enhanced cate-
gories. More precisely, instead of k-linear triangulated categories we consider k-linear cat-
egories and functors between them in the sense of [52], i.e. we consider small idempotent-
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complete stable 1-categories equipped with a module structure over Db.Spec.k// (or equiv-
alently, when char.k/ D 0, DG categories over k). In particular, for a variety X over k we
regard Db.X/ as such a category; its homotopy category hDb.X/ is the classical triangulated
derived category. We note that giving a semiorthogonal decomposition of Db.X/ is equivalent
to giving one of hDb.X/, and by the results of [7] and [31] if C � Db.X/ and D � Db.Y / are
semiorthogonal components of smooth proper varieties, then any functor C ! D of k-linear
categories is induced by a Fourier–Mukai kernel on X � Y .

If C is a k-linear category, we use the notation Homk.E; F / 2 Dqc.Spec.k// for the map-
ping object between objectsE;F 2 C, see Section 2.1; in case C � Db.X/ is a semiorthogonal
component of the derived category of a variety, then Homk.E; F / coincides with the classical
derived Hom complex RHom.E; F /.

In several places, we also need the general notion of categories linear over a base scheme,
briefly reviewed in Section 2.1.

As stated in the introduction, our main results are over the complex numbers, and corre-
spondingly in Section 5-Section 8 we work in this setting. However, in the foundational part of
the paper, Section 2-Section 4, we work over more general bases, as explained there.

Acknowledgement. We thank Sasha Kuznetsov, Laura Pertusi, and Xiaolei Zhao for
helpful discussions about this work. We are especially grateful to Bhargav Bhatt for explaining
to us the proof of Lemma 3.10 and suggesting Example 3.12, and to Sasha Kuznetsov for
carefully reading a preliminary version of this paper. We also thank the referee for their careful
reading.

2. Hochschild cohomology of linear categories

In this section we discuss categories linear over a base scheme and their Hochschild
cohomology. In Section 2.1 we recall some of the basic formalism of linear categories, in Sec-
tion 2.2 we define Hochschild cohomology and review some of its properties, and in Section 2.3
we define the notion of connectedness of a linear category (which appears as a hypothesis in
Theorem 1.17) and explain a convenient method for checking it in practice.

2.1. Linear categories. Fix a base scheme S . We use the notion of S -linear cate-
gories as in [52]. Namely, the derived category Dperf.S/ is a commutative algebra object in
the 1-category of small idempotent-complete stable 1-categories, and an S -linear category

is a module object over Dperf.S/; in particular, an S -linear category C is equipped with an
action functor Dperf.S/ � C ! C.

There is a well-behaved base change operation along any morphism T ! S which pro-
duces a T -linear category

CT D C ˝Dperf.S/ Dperf.T /:

This construction is compatible with semiorthogonal decompositions in the following sense.
We say a semiorthogonal decomposition C D hC1; : : : ;Cni is S -linear if the Dperf.S/-action
preserves each of the components Ci , in which case Ci inherits the structure of an S -linear
category. Then for any morphism T ! S , there is an induced T -linear semiorthogonal decom-
position

CT D h.C1/T ; : : : ; .Cm/T i:
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For a point s 2 S , we use the following terminology. The fiber Cs of C over s is the
base change along Spec.�.s// ! S . Similarly, if F WC ! D is a functor between S -linear
categories, its fiber over s is the functor FsWCs ! Ds obtained by base change.

We also recall that for objectsE;F 2 C, there is a mapping object HomS .E; F /2 Dqc.S/

characterized by equivalences

(2.1) MapDqc.S/.G;HomS .E; F // ' MapC.E ˝G;F /;

where Map.�;�/ denotes the space of maps in an 1-category.

Example 2.1. Let f WX ! S be a morphism of schemes. Then Dperf.X/ is naturally an
S -linear category. By [7], for T ! S the base changed category Dperf.X/T recovers Dperf.XT /,
where XT is the derived base change (which agrees with the classical base change if, for
example, X ! S is flat) of X along T ! S . Further, if E;F 2 Dperf.X/, then

HomS .E; F / ' f�HomX .E; F /;

where HomX .E; F / 2 Dqc.X/ denotes the derived sheaf Hom on X .

2.2. Hochschild cohomology. Recall that given two S -linear categories C and D, there
is a natural S -linear category FunS .C;D/ whose objects are the S -linear functors C ! D.

Definition 2.2. Let C be an S -linear category. The sheafy Hochschild cohomology over

S of C is

(2.2) HH
�.C=S/ WD HomS .idC; idC/ 2 Dqc.S/;

i.e. the endomorphism object of idC regarded as an object of FunS .C;C/. The Hochschild

cohomology over S of C is the derived global sections

HH�.C=S/ WD R�.HH
�.C=S// 2 D.Mod�.S;OS //

For i 2 Z denote by HH
i .C=S/ the i -th cohomology sheaf of HH

�.C=S/, and by HHi .C=S/

the i -th cohomology module of HH�.C=S/. When C D Dperf.X/ for a morphism of schemes
X ! S , we use the simplified notation HH

�.X=S/ and HH�.X=S/ for Hochschild cohomol-
ogy.

Warning 2.3. Sometimes different notation is used for Hochschild cohomology; for
instance, in [54] which we shall reference several times below, sheafy Hochschild cohomology
is denoted by HH�.C=S/.

Example 2.4. Let X ! S be a morphism of schemes. Then there is an equivalence

HH
�.X=S/ ' HomS .O�;O�/

where O� 2 Dqc.X �S X/ is the structure sheaf of the diagonal � � X �S X . Indeed, we
can compute HH

�.X=S/ as the Hochschild cohomology of the presentable S -linear cate-
gory Dqc.X/ D Ind.Dperf.X// (see [54, Remark 4.2]), and then the claim follows from the
equivalence Dqc.X �S X/ ' FunS .Dqc.X/;Dqc.X// of [7] which sends O� to idDqc.X/.
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Remark 2.5. Sheafy Hochschild cohomology satisfies a base change formula: if C is
an S -linear category and gWT ! S is a morphism, then there is a natural equivalence

(2.3) g�
HH

�.C=S/ ��! HH
�.CT =T /:

This morphism is constructed as follows. The base change formalism gives a functor

FunS .C;C/˝Dperf.S/ Dperf.T / ! FunT .CT ;CT /;

which induces a morphism on mapping objects

g�
HH

�.C=S/ ' HomT .idC � OT ; idC � OT / ! HomT .idCT
; idCT

/ D HH
�.CT =T /;

where the first equivalence is the Künneth formula for mapping objects [52, Lemma 2.10]. That
this morphism is an equivalence is proved (in a more general context) in [54, Lemma 4.3].

Base change also induces maps on Hochschild cohomology. Namely, taking R�.�/ of
the adjoint of the map (2.3) gives a natural map

HH�.C=S/ ! HH�.CT =T /

(which is usually not an equivalence).

We will be concerned with the case of smooth proper S -linear categories. We refer to
[52, Section 4] for background on this notion. In particular, we note that if C is an S -linear
semiorthogonal component of Dperf.X/ where X ! S is a smooth proper morphism, then C

is a smooth proper S -linear category [52, Lemma 4.9]. Although not strictly necessary for
our purposes, we observe that in the smooth proper case Hochschild cohomology satisfies the
following finiteness property.

Lemma 2.6. Let C be a smooth proper S -linear category. Then HH
�.C=S/ 2 Dperf.S/

is a perfect complex.

Proof. By definition, it suffices to show the functor category FunS .C;C/ is proper. In
fact, it is smooth and proper. Indeed, an S -linear category is smooth and proper if and only if it
is dualizable, in which case the dual is given by the opposite category Cop ([52, Lemma 4.8]).
Thus there is an equivalence FunS .C;C/ ' Cop ˝Dperf.S/ C, and it follows that FunS .C;C/ is
dualizable, being the tensor product of such categories.

2.3. Connected linear categories. Note that for any S -linear category C, by the defi-
nition of HH

�.C=S/ there is a canonical morphism OS ! HH
0.C=S/.

Definition 2.7. Let C be an S -linear category. We say C is connected (over S ) if for
every morphism of schemes T ! S , we have

� HH
i .CT =T / D 0 for i < 0, and

� OT ! HH
0.CT =T / is an isomorphism.

Remark 2.8. By base change for sheafy Hochschild cohomology (Remark 2.5), it suf-
fices to consider only affine schemes T in the definition of connectedness.
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The source of this terminology is the following example.

Example 2.9. Let f WX ! S be a morphism of schemes. It follows from Example 2.4
that HH

i .X=S/ D 0 for i < 0 and HH
0.X=S/ ' R0f�OX . If f WX ! S is a flat proper

surjective morphism with geometrically reduced and connected fibers, then the morphism
OS ! R0f�OX is an isomorphism. It follows that in this case, Dperf.X/ is a connected S -linear
category.

The above example can sometimes be leveraged to deduce connectivity of a semiorthog-
onal component of Dperf.X/. Recall that if C ! Dperf.X/ is the embedding of an S -linear
semiorthogonal component, then there is a restriction morphism

HH
�.X=S/ ! HH

�.C=S/:

Kuznetsov [32] introduced a general method for controlling the cocone of this morphism,
which is particularly effective when C is defined as the orthogonal to an exceptional collec-
tion. In [32] everything is done relative to a base field, but the arguments work similarly over
a base ring, which is the case we will need. We recall the result below after introducing some
notation.

Let f WX ! S be a smooth proper morphism of schemes with S D Spec.A/ affine. Let
E1; : : : ; En 2 Dperf.X/ be a relative exceptional collection, i.e. Ext�A.Ei ; Ej / D 0 for i > j
and Ext�A.Ei ; Ei / D AŒ0� for all i . Then there is an S -linear semiorthogonal decomposition

(2.4) Dperf.X/ D hC; f �Dperf.S/˝E1; : : : ; f
�Dperf.S/˝Eni:

The pseudoheight of the collection E1; : : : ; En is

ph.E1; : : : ; En/ D min
1�a0<a1<���<ap�n

�
e.Ea0

; Ea1
/C � � � C e.Eap�1

; Eap
/

C e.Eap
;S�1.Ea0

// � p
�
;

where
e.F; F 0/ D min¹k j ExtkA.E;E

0/ ¤ 0º

(defined to be C1 if Ext�A.E;E
0/ D 0) and S�1.F / D F ˝ !�1

X=S
Œ� dim.X=S/� is the inverse

of the relative Serre functor.

Proposition 2.10 ([32]). Let f WX ! S be a smooth proper morphism of schemes with

S affine, let E1; : : : ; En 2 Dperf.X/ be a relative exceptional collection, and let C be defined

by the semiorthogonal decomposition (2.4). Then the restriction morphism

HH
i .X=S/ ! HH

i .C=S/

is an isomorphism for i � ph.E1; : : : ; En/ � 2 and an injection for i D ph.E1; : : : ; En/ � 1.

Using this, we can give a simple criterion for connectedness of a semiorthogonal compo-
nent.

Corollary 2.11. Let f WX ! S be a smooth proper surjective morphism of schemes

with geometrically connected fibers. Let E1; : : : ; En be finite locally free sheaves which form

a relative exceptional collection in Dperf.X/. Let C be defined by the semiorthogonal decom-
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position (2.4). If the relative dimension satisfies dim.X=S/ � nC 1, then C is a connected

S -linear category.

Proof. All of our assumptions are preserved by base change along a morphism T ! S ,
so we may assume S is affine and must prove

� HHi .C=S/ D 0 for i < 0 and

� OS
��! HH

0.C=S/ is an isomorphism.

It follows from the definitions and the assumption that the Ei are locally free sheaves that
ph.E1; : : : ;En/� dim.X=S/� nC 1. Therefore, if dim.X=S/� nC 1, then Proposition 2.10
shows the map HH

i .X=S/ ! HH
i .C=S/ is an isomorphism for i � 0. By Example 2.9 this

finishes the proof.

Corollary 2.11 implies connectedness of many Kuznetsov components, including those
of Fano threefolds of Picard number 1 or of cubic fourfolds. Let us spell out explicitly how this
verifies the hypotheses of Theorem 1.17 in one example.

Example 2.12. Let Y ! S be a smooth family of Fano threefolds of Picard number 1
and index 2, equipped with a line bundle OY.1/ whose restriction to each geometric fiber Ys

is the ample generator of Pic.Ys/. Then OY ;OY.1/ is a relative exceptional collection (in the
sense of [3, Section 3.3], cf. [59]), and the S -linear category Ku.Y/ � Dperf.Y/ defined by

Dperf.Y/ D hKu.Y/; f �Dperf.S/; f
�Dperf.S/˝ OY.1/i

is smooth, proper, and connected over S , and satisfies Ku.Y/s ' Ku.Ys/ for every geo-
metric point s 2 S . Indeed, OY ;OY.1/ is a relative exceptional collection because this is so
fiberwise. The S -linear category Ku.Y/ is smooth and proper as Y ! S is so, connected
by Corollary 2.11, and by base change has as fibers the Kuznetsov components of the fibers
of Y ! S .

3. Group actions on categories

Throughout this section, G denotes a finite group. There are two notions of an action
of G on a triangulated category C appearing in the literature. The first one, often considered in
mirror symmetry, is simply a group homomorphism � fromG to the group of autoequivalences,
considered up to natural transformations. A second, finer notion was originally introduced by
Deligne in [16] and requires a choice of natural transformations

�.g/ ı �.g0/ Š �.g � g0/

compatible with triple compositions. This finer notion is necessary for the definition ofG-equi-
variant objects; we refer to [6] for a recent account, including of the obstruction to lifting the
former notion to the latter.

In this section, we consider actions on the homotopy category hD of an 1-category D

that lift to an action on D. In this context, the first and second notion above correspond to
1-categorical and 2-categorical group actions on D .
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First in Section 3.1 we discuss some generalities on group actions, focusing on obstruc-
tions to lifting 1-categorical group actions to 1-categorical actions. In Section 3.2 we spe-
cialize to the case of group actions on linear categories, and show that for connected linear
categories over a base scheme there is a single obstruction, whose vanishing is an open con-
dition in the étale topology of the base (Proposition 3.9). Finally, in Section 3.3 we study the
category of (co)invariants for a group action on a linear category; this is the 1-categorical
analogue of Elagin’s notion [17] of the triangulated category of G-equivariant objects. In par-
ticular, we show that if the order of the group is invertible on the base scheme, then invariants
commute with base change (Lemma 3.14) and preserve the property of being smooth and
proper (Proposition 3.15).

3.1. Group actions 1-categorically. We freely use the language of 1-categories, as
developed in [42]. We often think of 1-groupoids interchangeably as topological spaces,
under the standard correspondence (given by passage to geometric realizations and singular
simplicial sets).

We denote by BG the classifying space of G. When regarded as an 1-groupoid, BG is
the nerve of the ordinary category with a single object whose endomorphisms are G. We write
� 2 BG for the unique object.

Definition 3.1. Let D be an 1-category, and let X 2 D be an object. An action of G
on X is a functor �WBG ! D such that �.�/ D X .

Let us relate this 1-categorical definition to some more classical notions.

3.1.1. 1-categorical actions. Suppose that D is an 1-category. For such a category, we
denote by N.D/ its nerve, which is an 1-category. Let .BG/1 denote the 1-category with
a single object � whose endomorphisms are G, so that N..BG/1/ D BG by definition. Recall
[43, Tag 002Y] the nerve construction induces a bijection

Hom..BG/1;D/ Š Hom.BG;N.D//;

where the left side is the set of all functors of 1-categories .BG/1 ! D and the right is the
set of all functors of 1-categories BG ! N.D/. Note that a functor .BG/1 ! D taking �

to an object X 2 D is equivalent to the data of a homomorphism G ! AutX to the group
of automorphisms of X ; we call this a 1-categorical action of G on X . Thus under the nerve
construction, Definition 3.1 recovers the notion of a 1-categorical action.

3.1.2. 2-categorical actions. Suppose that D is .2; 1/-category, i.e. a 2-category whose
2-morphisms are all invertible. For such a category, we denote by N.D/ its Duskin nerve
[43, Tag 009T], which is an 1-category [43, Tag 00AC]. If D is a 1-category, regarded as
a 2-category with only identity 2-morphisms, then the Duskin nerve is identified with the usual
nerve, so the notationN.D/ is unambiguous. By [43, Tag 00AU] the Duskin nerve construction
induces a bijection

HomULax..BG/1;D/ Š Hom.BG;N.D//;

where the left side denotes the set of all strictly unitary lax functors .BG/1 ! D (in the sense
of [43, Tag 008R]) and we regard .BG/1 as a 2-category with only identity 2-morphisms. For
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simplicity let us assume D is a strict .2; 1/-category; then concretely, a strictly unitary lax func-
tor .BG/1 ! D taking � to X amounts to the following data, which we call a 2-categorical

action of G on X :

� For every g 2 G, a 1-morphism �.g/WX ! X such that �.1/ D idX .

� For every pair g; f 2 G, a 2-morphism �g;f W�.g/ ı �.f / ) �.gf / such that the dia-
gram

�.h/ ı �.g/ ı �.f /
�h;g�.f /

+3

�.h/�g;f

��

�.hg/ ı �.f /

�hg;f

��

�.h/ ı �.gf /
�h;gf

+3 �.hgf /

is commutative.

3.1.3. Obstructions to 1-actions. Now suppose D is an 1-category. For an object
X 2 D, let AutX denote the space of automorphisms and let B AutX denote its classifying
space. As the sub-1-groupoid of D spanned byX is equivalent toB AutX , aG-action onX is
tantamount to the data of a functor  WBG ! B AutX . We say twoG-actions �; �0WBG ! D

are equivalent if there is an equivalence � ' �0 of functors. By the previous remark, equiva-
lence classes ofG-actions on an objectX 2 D are in bijection with the set of homotopy classes
of maps from BG to B AutX .

This perspective is useful for building G-actions. Namely, consider the Postnikov tower

� � � ! ��2.B AutX/ ! ��1.B AutX/ ! ��0.B AutX/ D �

of B AutX . So �i .��n.B AutX// D 0 for i > n, the map ��n.B AutX/ ! ��n�1.B AutX/
is a fibration with fiber K.�n.B AutX/; n/, and B AutX ' lim ��n.B AutX/. (Here and
below, we typically suppress basepoints when dealing with homotopy groups.) Note that there
is an isomorphism

(3.1) �n.B AutX/ Š �n�1.AutX/I

in particular, it follows ��1.B AutX/ ' B �0.AutX/.
Now suppose we are given a map BG ! ��1.B AutX/. By the preceding observation,

such a map corresponds via taking �1 to a group homomorphism �1WG ! �0.AutX/. We
call �1 a 1-categorical action of G on X , because when X is regarded as an object of the
homotopy category hD then � is precisely a 1-categorical action in the sense of Section 3.1.1.
We say a G-action �WBG ! B AutX is an 1-lift of �1 if the composition

BG
�

�! B AutX �! ��1.B AutX/

recovers �1 (upon taking �1). It is also convenient to study an intermediate notion. Namely, we
call a map �nWBG ! ��n.B AutX/ an n-lift of �1 if the composition

BG
�n
�! ��n.B AutX/ �! ��1.B AutX/

recovers �1. We say two n-lifts are equivalent if they have the same homotopy class.
The n-lifts of �1 can be studied via obstruction theory; below we spell out the simplest

case of 2-lifts. Note that �0.AutX/ acts on �i .AutX/ for i � 1 via conjugation; under the
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identifications �0.AutX/ Š �1.B AutX/ and �i .AutX/ Š �iC1.B AutX/, this is the usual
action of the fundamental group on higher homotopy groups. In particular, a 1-categorical
action �1WG ! �0.AutX/ also induces an action of G on �i .AutX/ for i � 1.

Lemma 3.2. Let D be an 1-category, X 2 D an object, and �1WG ! �0.AutX/
a 1-categorical action of G on X . Regarding �1.AutX/ as a local system on BG via the

action of G described above, then there is a canonical obstruction class

ob.�1/ 2 H3.BG; �1.AutX//

such that a 2-lift of �1 exists if and only if ob.�1/ D 0, and in this case the set of equivalence

classes of 2-lifts is a H2.BG; �1.AutX//-torsor. If �i .AutX/ D 0 for i � 2, then the same

conclusion holds for 1-lifts.

Proof. The first claim holds by standard obstruction theory. If �i .AutX/ D 0 for i � 2,
then by (3.1) we have B AutX ' ��2.B AutX/, so 1-lifts are the same as 2-lifts.

3.2. Group actions on linear categories. Let S be a base scheme. Recall that the col-
lection of all S -linear categories (with morphisms between them the exact S -linear functors)
can be organized into an 1-category CatS [52]. Thus, using the formalism of Section 3.1 we
can make sense of G-actions on S -linear categories.

3.2.1. Obstructions in terms of Hochschild cohomology. Our main observation is
that when negative Hochschild cohomology vanishes, then it is easy to classify 1-lifts of
1-categorical G-actions. For this, we need a preliminary lemma. If C is an S -linear category,
to emphasize the dependence on the S -linear structure we write Aut.C=S/ for the space of
S -linear autoequivalences of C, i.e. the automorphism space of C as an object of CatS . Note also
that HH0.C=S/ D H0.HomS .idC; idC// has a �.S;OS /-algebra structure, so we may consider
the group of units HH0.C=S/�.

Lemma 3.3. There are natural group isomorphisms

�i .Aut.C=S// Š

´
HH0.C=S/� if i D 1;

HH1�i .C=S/ if i � 2:

Proof. Note that in general, if D is an 1-groupoid and X 2 D is an object, then there
is an isomorphism

�i .D; X/ Š �i�1.AutX/ for i � 1;

where the left side denotes the homotopy group of D (thought of as a topological space) based
at the point X . Further, suppose that D ,! D0 is the sub-1-groupoid spanned by some collec-
tion of objects in an 1-category D0. If MapD0.X;X/ denotes the space of endomorphisms ofX
as an object of D0, then �0.MapD0.X;X// is a monoid, whose group of invertible elements we
denote by �0.MapD0.X;X//�. Then there are isomorphisms

�i .AutX/ Š

´
�0.MapD0.X;X//� if i D 0;

�i .MapD0.X;X// if i � 1:
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Indeed, for i D 0 this holds by the definition of AutX , while for i � 1 this holds because
k-morphisms in D0 are invertible (and hence coincide with k-morphisms in D) for k � 2.

As Aut.C=S/ is the sub-1-groupoid spanned by the autoequivalences in the 1-category
FunS .C;C/, combining the above observations shows

�i .Aut.C=S/; idC/ Š

´
�0.MapFunS .C;C/.idC; idC//

� if i D 1;

�i�1.MapFunS .C;C/.idC; idC// if i � 2:

By the characterizing property of mapping objects (2.1) and the definition (2.2) of Hochschild
cohomology, we have

MapFunS .C;C/.idC; idC/ ' MapDqc.S/.OS ;HH
�.C=S//:

Taking homotopy groups, we conclude

�i MapFunS .C;C/.idC; idC/ ' Ext�i .OS ;HH
�.C=S// D HH�i .C=S/:

All together, this proves the claimed formula for �i .Aut.C=S//.

Note that via conjugation �0.Aut.C=S// acts on the �.S;OS /-algebra HH0.C=S/, and
hence so does G for any 1-categorical action �1WG ! �0.Aut.C=S//. Combining Lemma 3.2
and Lemma 3.3 gives the following.

Corollary 3.4. Let C be an S -linear category and �1WG ! �0.Aut.C=S// a 1-cate-

gorical action of G on C. Regarding HH0.C=S/� as a local system on BG via the action of G

described above, then there is a canonical obstruction class

ob.�1/ 2 H3.BG;HH0.C=S/�/

such that a 2-lift of �1 exists if and only if ob.�1/ D 0, and in this case the set of equivalence

classes of 2-lifts is a H2.BG;HH0.C=S/�/-torsor. If HHi .C=S/ D 0 for i < 0, then the same

conclusion holds for 1-lifts.

Remark 3.5. Suppose C is an S -linear category such that �.S;OS / ! HH0.C=S/

is an isomorphism; this holds if C is a connected S -linear category, such as C D Dperf.X/

for a morphism X ! S with assumptions as in Example 2.9. Then �0.Aut.C=S// acts triv-
ially on HH0.C=S/, because the conjugation action fixes idW idC ! idC and the isomorphism
�.S;OS / ! HH0.C=S/ takes 1 to idC. Hence if this condition holds in the setup of Corol-
lary 3.4, then the obstruction class lies in H3.BG; �.S;OS /

�/, where �.S;OS /
� is a constant

local system on BG.

Remark 3.6. Let us make some comments about Aut.C=S/ for an S -linear category C.

(1) Suppose C D Dperf.X/, where X ! S is a smooth proper morphism of schemes. Then
by [7] there is an equivalence Dperf.X �S X/ ' FunS .Dperf.X/;Dperf.X// that takes
K 2 Dperf.X �S X/ to the Fourier–Mukai functor ˆK D pr2�.pr�

1.�/˝K/. Therefore,
Aut.Dperf.X/=S/ is equivalent to the sub-1-groupoid of Dperf.X �S X/ spanned by
objects K such that ˆK is an equivalence.
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(2) Suppose S D SpecA is affine. The homotopy category hC is a triangulated category
which is A-linear in the sense that it is enriched in A-modules. Let �0.Aut.hC=A// be
the group of A-linear exact autoequivalences of hC modulo isomorphisms of functors.
(Classically, this group may be denoted Aut.hC=A/, but it is more consistent with our
notation above to rather denote by Aut.hC=A/ the groupoid whose objects are A-linear
exact autoequivalences and whose morphisms are isomorphisms of functors.) There is
a natural group homomorphism

�0.Aut.C=A// ! �0.Aut.hC=A//:

The question of when this map is an isomorphism is interesting and difficult. In the case
where A D k is a field and C D Dperf.X/ for a smooth projective variety X over k,
the answer is positive; indeed, this follows from ((1)) together with the existence and
uniqueness of Fourier–Mukai kernels for triangulated equivalences [51, Theorem 2.2].

Remark 3.7. Our arguments have similar consequences for group actions on 1-cate-
gories. Let A be a ring. We use the term classical A-linear category to mean a 1-category
which is enriched inA-modules. Let Catcl

A be the strict .2; 1/-category with objects the classical
A-linear categories, 1-morphisms the A-linear functors, and 2-morphisms the isomorphisms of
functors. For any C 2 Catcl

A, we can consider the notion of a 2-categorical action on C (in the
sense of Section 3.1.2). Any such action induces a homomorphism �1WG ! �0.Aut.C=A//,
where �0.Aut.C=A// denotes the group of A-linear autoequivalences modulo isomorphisms
of functors.

Conversely, suppose we are given a homomorphism �1WG ! �0.Aut.C=A//, and we
want to understand when it lifts to a 2-categorical action. By analogy with the case of lin-
ear categories, define the A-algebra HH0.C=A/ WD Hom.idC; idC/. Then there is a canonical
obstruction class ob.�1/ 2 H3.BG;HH0.C=A/�/ such that a 2-categorical action lifting �1

exists if and only if ob.�1/ D 0, and in this case the set of equivalence classes of 1-lifts is
a H2.BG;HH0.C=S/�/-torsor. Indeed, the Duskin nerve N.Catcl

A/ is an 1-category, C can be
thought of as an object of N.Catcl

A/, and its corresponding automorphism space Aut.C=A/ has
�0 as described above, �1.Aut.C=A// Š HH0.C=A/�, and vanishing higher homotopy groups;
therefore, the claim follows from Lemma 3.2 and the correspondence between 1-categorical
actions on C 2 N.Catcl

A/ and 2-categorical actions on C 2 Catcl
A described in Section 3.1.2.

In the case where HH0.C=A/ Š A and A D C is the field of complex numbers, this
obstruction to 2-categorical actions was proved in [6, Theorem 2.1] by a hands-on cocycle argu-
ment; the advantage of our proof is that it is more conceptual and generalizes to 1-categorical
actions. We also refer to [6, Section 3.6] for some simple examples where this obstruction is
nontrivial.

3.2.2. Base change of G -actions. Let C be an S -linear category. As discussed in Sec-
tion 2.1, for any morphism of schemes T ! S we can form the base change category CT which
is linear over T . Formation of base change is functorial, i.e. gives a functor CatS ! CatT ; so,
any G-action �WBG ! CatS on C induces a base changed G-action �T WBG ! CatT on CT

by composition with this functor. Similarly, any 1-categorical action �1WG ! �0.Aut.C=S//
of G on C induces a base changed 1-categorical action .�1/T WG ! �0.Aut.CT =T // on CT ,
by composition with �0 of the map Aut.C=S/ ! Aut.CT =T /. Note also that the base change
map for group actions takes n-lifts of �1 (in the sense of Section 3.1.3) to n-lifts of .�1/T .
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By Remark 2.5, we also have a natural ring map HH0.C=S/ ! HH0.CT =T /, which is
easily seen to be compatible with the actions of �0.Aut.C=S// and �0.Aut.CT =T // under the
map �0.Aut.C=S// ! �0.Aut.CT =T //.

The next lemma follows by unwinding our construction of ob.�1/ and using functoriality
of all the constructions involved.

Lemma 3.8. Let C be an S -linear category, and let �1WG ! �0.Aut.C=S// be a 1-cat-

egorical action of G on C. Then the obstruction class of Corollary 3.4 is functorial under base

change in the sense that for any morphism T ! S , the natural map

H3.BG;HH0.C=S/�/ ! H3.BG;HH0.CT =T /
�/

takes ob.�1/ to ob..�1/T /. Moreover, the map from the set of equivalence classes of 2-lifts

of �1 to the set of those of .�1/T is compatible with the torsor structures under the map

H2.BG;HH0.C=S/�/ ! H2.BG;HH0.CT =T /
�/.

3.2.3. Vanishing of obstructions on étale neighborhoods. Recall that a ring A is
called a Grothendieck ring if it is noetherian and for every p 2 SpecA the completionAp ! cAp

of the local ring at p is a regular map of rings [60, Tag 07GG]. (This is often called a G-ring, but
we will not use that terminology to avoid confusion with the group G.) A scheme S is called
a Grothendieck scheme if for every open affine U � S the ring OS .U / is a Grothendieck ring.
This is a very mild condition, which includes all excellent schemes.

Proposition 3.9. Let S be a Grothendieck scheme and let C be a connected S -linear cat-

egory. Let �1WG ! �0.Aut.C=S// be a 1-categorical action of G on C. Let s 2 S be a point

such that the characteristic of the residue field �.s/ is prime to the order ofG, and the obstruc-

tion ob..�1/s/ 2 H3.BG; �.s/�/ vanishes. Then there exists an étale neighborhood U ! S

of s such that the obstruction ob..�1/U / 2 H3.BG; �.U;OU /
�/ vanishes, and thus the set of

equivalence classes of 1-lifts of .�1/U is a nonempty H2.BG; �.U;OU /
�/-torsor.

Proof. As C is connected, the natural map �.T;OT / ! HH0.CT =T / is an isomor-
phism for any T ! S , and G acts trivially on HH0.CT =T /

� (Remark 3.5); in particular, the
obstructions indeed lie in the stated groups. Further, as the claim is local on S , we may assume
S D SpecA is affine. By functoriality of the obstruction under base change (Lemma 3.8), the
result is then a consequence of the following lemma.

Lemma 3.10. Let A be a Grothendieck ring. Let ˛ 2 Hn.BG;A�/ where n � 1 and

A� has the trivial G-action. Let p 2 SpecA be a point such that the characteristic of �.p/ is

prime to the order of G, and such that ˛ maps to zero under Hn.BG;A�/ ! Hn.BG; �.p/�/.

Then there exists an affine étale neighborhood Spec.B/ ! Spec.A/ of p such that ˛ maps to

zero under Hn.BG;A�/ ! Hn.BG;B�/.

Before proving the result in general, we handle the case of complete local rings:

Lemma 3.11. LetA be a complete local ring with residue field � of characteristic prime

to the order of G. Then for n � 1 the map Hn.BG;A�/ ! Hn.BG; ��/ is an isomorphism,

where A� and �� have the trivial G-actions.
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Proof. First consider the case where A is artinian. Then the maximal ideal satisfies
mi

A D 0 for some i � 1, so by considering the factorization

A D A=mi
A ! A=mi�1

A ! � � � ! �;

we reduce to proving the following claim: if A ! B is a surjection of artinian local rings
whose kernel I is annihilated by mA, then for n � 1 the map Hn.BG;A�/ ! Hn.BG;B�/ is
an isomorphism. In this case, we have an exact sequence

0 ! 1C I ! A� ! B� ! 0;

and as an abelian group 1C I is isomorphic to the �-vector space I ; as jGj is invertible in �
this implies Hn.BG; 1C I / D 0 for n � 1, and hence the claim.

Now consider the case of a general complete local ring A. Then A� D limi A
�
i where

Ai D A=mi
A, so we have an exact sequence

0 ! R1 lim
i

Hn�1.BG;A�
i / ! Hn.BG;A�/ ! lim

i
Hn.BG;A�

i / ! 0:

By the artinian case handled above, it suffices to show that the first term in this sequence
vanishes. But if n � 2 then again by the artinian case the transition maps for the system
Hn�1.BG;A�

i / are isomorphisms, while if n D 1 then the transition maps are surjective; in
either case, the system is Mittag-Leffler and we conclude that their R1 limi vanishes.

Proof of Lemma 3.10. By assumption, ˛ dies in Hn.BG; �.p/�/, so by Lemma 3.11
it also dies in Hn.BG;cAp

�/. As A is a Grothendieck ring, the composition A ! Ap ! cAp

is a regular map of noetherian rings, so by Popescu’s theorem [60, Tag 07GC] we can write
cAp D colimAi as a filtered colimit of smooth ring maps A ! Ai . Then

Hn.BG;cAp
�/ D colim Hn.BG;A�

i /

as cAp
� D colimA�

i , and hence ˛ must die in Hn.BG;A�
i / for some i . As Spec.Ai /! Spec.A/

is smooth and its image contains p, we can find étale neighborhood Spec.B/ ! Spec.A/ of
p over which Spec.Ai / ! Spec.A/ has a section. In other words, the map A ! B factors
through A ! Ai , and therefore ˛ dies in Hn.BG;B�/.

Example 3.12. Observe that in the conclusion of Lemma 3.10, “étale neighborhood”
cannot be replaced by “Zariski neighborhood” in general. Indeed, let G D Z=m for m � 2,
and let A D CŒx; x�1�. Note that A� Š C� ˚ Z, with .a; b/ 2 C� ˚ Z corresponding to axb .
If n > 0 is even, then Hn.BG;C�/ D 0 and Hn.BG;Z/ D Z=m. Hence every element of
Hn.BG;A�/D Z=m is killed by the map Hn.BG;A�/! Hn.BG;C�/ induced by any closed
point Spec C ! SpecA. However, it is easy to see that for any f 2 A, the map to the localiza-
tion A ! Af induces a split injection A� ! .Af /

� on groups of units, and hence

Hn.BG;A�/ ! Hn.BG; .Af /
�/

is also a split injection. It follows that any 0 ¤ ˛ 2 Hn.BG;A�/ dies after restriction to any
closed point of SpecA, but has nonzero image in Hn.BG; �.U;OU /

�/ for any Zariski open
U � SpecA.
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3.3. Invariant categories. The (co)invariants for a group action can be formulated in
the 1-categorical setting as follows.

Definition 3.13. Let D be an 1-category, let X 2 D be an object, and let �WBG ! D

be an action of G on X . The G-invariants XG and G-coinvariants XG of the action � are
defined by

XG D lim.�/ and XG D colim.�/;

provided the displayed limit and colimit exist.

We will be interested in the case where D D CatS is the 1-category of S -linear cat-
egories over some base scheme S , and G acts on an S -linear category C 2 CatS . Note that
CatS has all limits and colimits; see for instance [44, Section 2.1] where this result is explained
for Catst

1, the 1-category of small stable 1-categories, and it similarly holds for CatS . The
G-invariants CG and coinvariants CG thus always exist in this situation. A basic example to
keep in mind is that for a schemeX with aG-action, Dperf.X/

G ' Dperf.ŒX=G�/, where ŒX=G�
is the quotient stack.

3.3.1. Base change of G -(co)invariants. The operations of takingG-coinvariants com-
mutes with base change, while the same is true for G-invariants if the order of G is invertible
on the base scheme:

Lemma 3.14. Let C be an S -linear category with aG-action, and let T ! S be a mor-

phism of schemes.

(1) There is an equivalence .CG/T ' .CT /G of T -linear categories, where .CT /G denotes

the G-coinvariants for the induced G-action on the base change CT .

(2) If jGj is invertible on S , then there is an equivalence .CG/T ' .CT /
G of T -linear

categories.

Proof. (1) The base change functor CatS ! CatT , C 7! CT has a right adjoint, given
by the functor which regards a T -linear category as an S -linear category via restriction along
Dperf.S/ ! Dperf.T /, and therefore commutes with colimits.

(2) There is a canonical norm functor NmWCG ! CG , which under our assumption on
jGj is an equivalence; see [53, Proposition 3.4] where this result is stated for S a field, but the
same proof works in general. Therefore, the claim reduces to (1) proved above.

3.3.2. G -invariants of smooth proper categories. Passage to G-invariants preserves
smooth and properness of a category, as long as jGj is invertible on the base scheme:

Proposition 3.15. Let C be a smooth proper S -linear category, where jGj is invertible

on S . Then the G-invariant category CG is also smooth and proper.

Proof. Properness of CG is the assertion that for any objects E;F 2 CG their mapping
object HomS .E; F / 2 Dqc.S/ lies in Dperf.S/ (see e.g. [52, Lemma 4.7]). This mapping object
can be described by the formula

HomS .E; F / D HomS .Forg.E/;Forg.F //G ;
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where ForgWCG ! C is the forgetful functor, and the right side is the group invariants for
the induced G-action on HomS .Forg.E/;Forg.F // (see e.g. [53, Section 3.1]). The object
HomS .Forg.E/;Forg.F // is perfect by the properness of C. By our assumption on jGj the
object HomS .E; F / is a summand of HomS .Forg.E/;Forg.F //, hence also perfect. Indeed,
more generally if A 2 Dperf.S/ is an object equipped with a G-action, then AG is a summand
of A: if �g denotes the automorphism of A corresponding to g 2 G, then

1

jGj

X

g2G

�g WA ! AG

gives the splitting.
Smoothness of CG is the assertion that idInd.CG/ 2 FunS .Ind.CG/; Ind.CG// is a compact

object (see [52, Section 4] for background on ind completions and smoothness of categories).
To prove this, we use some results from [53]; we note that while results there are stated for cat-
egories linear over a field, they also hold relative to a base scheme S by the same arguments.
First we note that Ind.CG/ ' Ind.C/G ; indeed, by [53, Proposition 3.4 and Lemma 3.5], the
assertion is equivalent to the analogous statement Ind.CG/ ' Ind.C/G for coinvariant cate-
gories, which holds by [53, Lemma 2.3 (1)]. By [53, Lemma 4.7] (or rather the corresponding
result for presentable S -linear categories, see [53, Remark 4.6]), we have an equivalence

FunS .Ind.C/G ; Ind.C/G/ ' FunS .Ind.C/; Ind.C//G�G

which sends idInd.C/G to the functor
L

g2G Ind.�g/W Ind.C/ ! Ind.C/, where �g WC ! C is
the equivalence corresponding to the action of g 2 G on C. By [53, Lemma 3.7] the func-
tor

L
g2G Ind.�g/ is compact as an object of FunS .Ind.C/; Ind.C//G�G if and only if it is

compact as an object of FunS .Ind.C/; Ind.C//.
The S -linear category C, being smooth and proper, is dualizable with dual the opposite

category Cop (see [52, Lemma 4.8]), and the presentable S -linear category Ind.C/ is dualizable
with dual Ind.Cop/ (see [52, Lemma 4.3]). Thus we have equivalences

FunS .Ind.C/; Ind.C// ' Ind.Cop/˝Dqc.S/ Ind.C/

' Ind.Cop ˝Dperf.S/ C/

' Ind.FunS .C;C//;

where the second line holds by the definition of the tensor product of S -linear categories (see
[52, Section 2.3]). This shows that for a smooth proper S -linear category C, the compact objects
of FunS .Ind.C/; Ind.C// are precisely those in the image of

FunS .C;C/ ! FunS .Ind.C/; Ind.C//:

In particular, we see that the functor
L

g2G Ind.�g/ from above is compact as an object
of FunS .Ind.C/; Ind.C//, because it is the image of the object

L
g2G �g 2 FunS .C;C/. Hence

CG is smooth.

4. Enriques categories and their CY2 covers

In this section we will work over an algebraically closed field k with char.k/ ¤ 2. We
define Enriques and CY2 categories, explain the correspondence between them via residual
Z=2-actions, and describe the examples of interest for this paper.
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4.1. Definitions. Recall that a smooth proper k-linear category C admits a Serre func-

tor, i.e. an autoequivalence SC such that there are natural isomorphisms

Homk.E;SC.F // ' Homk.F;E/
_

for E;F 2 C. Recall also that if C � Db.X/ is a semiorthogonal component of the derived
category of a variety, then Homk.E; F / coincides with the classical derived Hom complex
RHom.E; F /.

Definition 4.1. Let C be a smooth proper k-linear category. We say that

(1) C is an Enriques category if it is equipped with a Z=2-action whose generator � is
a nontrivial autoequivalence of C satisfying SC ' � ı Œ2�.

(2) C is a 2-Calabi–Yau (CY2) category if SC ' Œ2�.

Remark 4.2. Let C be a k-linear category, and suppose � is an autoequivalence of C sat-
isfying � ı � ' idC. Then by Corollary 3.4 there is a class ob.�/ 2 H3.B.Z=2/;HH0.C=k/�/,
which vanishes if and only if � is the generator for a Z=2-action on C, in which case the set of
such actions is a torsor under H2.B.Z=2/;HH0.C=k/�/. If C is connected, then HH0.C=k/D k

and H3.B.Z=2/; k�/ Š Z=2 and H2.B.Z=2/; k�/ D 0 (where the Z=2-action on k� is trivial),
so a Z=2-action with � as a generator is unique if it exists. This remark applies to all of the
Enriques categories we consider in examples below, as they will all be connected.

Example 4.3. (1) If S is an Enriques surface, then Db.S/ is an Enriques category with
Z=2-action generated by tensoring by !S , cf. Example 4.8.

(2) If T is a smooth proper surface with KT D 0, i.e. T is a K3 or abelian surface, then
Db.T / is a CY2 category.

Remark 4.4. We use the term K3 category to mean a CY2 category whose Hochschild
homology agrees with that of the derived category of a K3 surface. All of the explicit examples
of CY2 categories considered in this paper will in fact be K3 categories. Note that a K3
category is automatically connected, because for a CY2 category C there is an isomorphism
HHi .C=k/ Š HH2�i .C=k/.

4.2. Enriques-CY2 correspondence. An interesting feature of invariant categories is
that they come equipped with a natural group action. In the Z=2-case, this leads to an involution
on the category of k-linear categories equipped with a Z=2-action.

Lemma 4.5. Let C be a k-linear category with a Z=2-action, and let D D CZ=2 be the

invariant category. Then there is a natural Z=2-action on D, called the residual Z=2-action,

such that there is an equivalence C ' DZ=2.

Proof. This is a special case of [17] (where the triangulated version of the result is
proved, but a similar argument also works for k-linear categories). In particular, we note that
the residual action on D D CZ=2 is given by tensoring with characters of Z=2.

Considering the invariant category of the Z=2-action on an Enriques category leads to
a correspondence between Enriques and CY2 categories.
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Lemma 4.6. Let C be an Enriques category, and let D D CZ=2 be the invariant category

for the Z=2-action. Then D is a CY2 category, called the CY2 cover of C.

Proof. The category D is smooth and proper by Proposition 3.15 and has Serre func-
tor Œ2� by [53, Lemma 6.5].

Remark 4.7. There is a natural generalization of Lemma 4.6 in which C is assumed to
be a smooth proper k-linear category whose Serre functor has the form SC D � ı Œn�, where � is
the generator of a Z=q-action. In this case, assuming the characteristic of k is coprime to q, we
get a correspondence between such categories C and n-dimensional Calabi–Yau categories D
equipped with a residual Z=q-action.

The source of the terminology “CY2 cover” in Lemma 4.6 is the following example.

Example 4.8. If S is an Enriques surface, then its canonical bundle satisfies!˝2
S Š OS .

The corresponding étale double cover T ! S is a K3 surface. For the Z=2-action generated by
the involution of T over S , we have

Db.T /Z=2 ' Db.S/:

Under this equivalence, the residual Z=2-action on Db.S/ is generated by tensoring by !S , and
we have Db.S/Z=2 ' Db.T /.

The following observation plays a key role in this paper, as it lets us translate the condition
that two Enriques categories are equivalent to a statement about their CY2 covers.

Lemma 4.9. Let C1 and C2 be connected Enriques categories, with CY2 covers D1

and D2. Then the following are equivalent:

(1) There is an equivalence C1 ' C2.

(2) There is an equivalence C1 ' C2 which is equivariant for the Z=2-actions generated by

the .�2/-shifted Serre functors.

(3) There is an equivalence D1 ' D2 which is equivariant for the residual Z=2-actions.

Proof. Any equivalence C1 ' C2 automatically commutes with Serre functors (see e.g.
[53, Lemma 5.4]) and shifts, and hence by connectedness and Remark 4.2 it is equivariant for
the Z=2-actions generated by SC1

Œ�2� and SC2
Œ�2�. This shows (1) , (2). A Z=2-equivariant

equivalence induces an equivalence of invariant categories, which is equivariant with respect
to the residual actions. This shows (2) ) (3). Finally, the implication (3) ) (1) follows from
Lemma 4.5.

Remark 4.10. Lemma 4.9 also admits an obvious generalization to the situation of
Remark 4.7.

4.3. Examples. One of the main sources of Enriques and CY2 categories in this paper
are Kuznetsov components of GM varieties. Generalizing the definition of 3-dimensional GM
varieties from the introduction, we have the following.
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Definition 4.11. An n-dimensional GM variety, 2 � n � 6, is either a smooth inter-
section

W D Gr.2; 5/ \ PnC4 \Q

of the Plücker embedded Grassmannian Gr.2; 5/ � P9 with a linear subspace PnC4 � P9 and
a quadric hypersurface Q � P9, or a smooth double cover

W ! Gr.2; 5/ \ PnC3

branched along Gr.2; 5/ \ PnC3 \Q, where PnC3 � P9 is a linear subspace and Q � P9 is
a quadric hypersurface. We say W is ordinary in the first case, and special in the second. Note
that if n D 6 then W is necessarily special.

There is a natural correspondence between GM varieties of ordinary and special types.

Definition 4.12. The opposite of an ordinary GM variety W D Gr.2; 5/ \ PnC4 \Q

of dimension n is the .nC 1/-dimensional special GM variety

W op ! Gr.2; 5/ \ PnC4

given by the double cover branched along W , while the opposite of a special GM variety
W ! Gr.2; 5/ \ PnC3 of dimension n � 3 is the .n � 1/-dimensional ordinary GM variety

W op � Gr.2; 5/ \ PnC3

given by the branch locus.

When discussing derived categories of GM varieties, we will always assume for simplic-
ity that char.k/ D 0, as this is done in the references cited below; in fact, for char.k/ sufficiently
large, all of the results still hold, but we leave the details to the interested reader. The Kuznetsov
component of a GM variety is defined by the semiorthogonal decomposition

(4.1) Db.W / D hKu.W /;UW ;OW ; : : : ;UW .dim.W / � 3/;OW .dim.W / � 3/i;

where UW and OW .1/ denote the pullbacks to W of the tautological rank 2 subbundle and
Plücker line bundle on Gr.2; 5/. These categories were extensively studied in [37]. Note that if
W is a GM threefold, this agrees with the definition from (1.2). Further, if W is a GM surface,
then W is a K3 surface of degree 10 and Ku.W / D Db.W /.

Remark 4.13. Instead of the Kuznetsov component as we have defined it, [37] studies
a category AW defined by the slightly different semiorthogonal decomposition

Db.W / D hAW ;OW ;U
_

W ; : : : ;OW .dim.W / � 3/;U_

W .dim.W / � 3/i:

There is a canonical equivalence Ku.W / ' AW given by ˆ D LOW
ı .� ˝ OW .1//, where

LOW
is the left mutation functor through OW . Indeed, if we tensor the defining semiorthogonal

decomposition (4.1) of Ku.W / by OW .1/ and mutate the object OW .dim.W / � 2/ to the far
left, we get

Db.W / D hOW ;Ku.W /˝ OW .1/;UW .1/;OW .1/; : : : ;UW .dim.W / � 2/i:
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Using that UW .1/ Š U
_

W and mutating Ku.W /˝ OW .1/ through OW , we obtain

Db.W / D hˆ.Ku.W //;OW ;U
_

W ; : : : ;OW .dim.W / � 3/;U_

W .dim.W / � 3/i;

from which the stated equivalence follows, cf. [37, Lemma 2.30]. We chose to define Ku.W /

by the decomposition (4.1) for consistency with the definition (1.2) from [29] in the case of
a GM threefold.

Recall from (1.1) the definition of the Kuznetsov component of a quartic double solid.

Proposition 4.14. The following statements hold:

(1) If Y is a quartic double solid, then Ku.Y / is a connected Enriques category.

(2) If char.k/ D 0 and X is an odd-dimensional GM variety, then Ku.X/ is a connected

Enriques category.

(3) If char.k/ D 0 and W is an even-dimensional GM variety, then Ku.W / is a connected

K3 category.

Proof. By [34] and the Hochschild homology computation in [37, Proposition 2.9], the
category Ku.W / in (3) is a K3 category, while the Serre functors in (1) and (2) are of the form
� ı Œ2� for an involution � . By [37, Proposition 2.6] the involution � is nontrivial for Ku.X/,
and the same argument applies to Ku.Y /. Thus to show that Ku.Y / and Ku.X/ are Enriques
categories, it remains to show that there is a Z=2-action with generator � . By Remark 4.2 there
is a potential obstruction to the existence of such an action; we show it vanishes by relating �
to a geometric Z=2-action.

More precisely, in case (1) or in case (2) ifX is special, [34] shows that � can be described
as the pushforward along the covering involution of Y or X ; in particular, it follows that � is
the generator of a Z=2-action. If X is ordinary, then � ' ˆX Œ�1� where ˆX is the “rotation
functor” defined in (4.2) below. Note that the Kuznetsov component Ku.Xop/ of the oppo-
site variety has a Z=2-action generated by the covering involution. By [36, Section 8.2] there
is an equivalence Ku.Xop/Z=2 ' Ku.X/ such that ˆX Œ�1� is the generator of the residual
Z=2-action on Ku.X/; in particular, � also corresponds to a Z=2-action in this case.

Finally, the connectedness of the categories in (2) and (3) holds by the computation of
their Hochschild cohomology in [37, Corollary 2.11 and Proposition 2.12], and an analogous
argument applies to the categories in (1).

The CY2 covers of Kuznetsov components of quartic double solids and odd-dimensional
GM varieties can be described explicitly as follows.

Theorem 4.15 ([36]). The following statements hold:

(1) Let Y ! P3 be a quartic double solid with branch locus Ybr. Then the CY2 cover of

Ku.Y / is equivalent to Db.Ybr/. Under this equivalence the residual Z=2-action on

Db.Ybr/ is generated by the autoequivalence ˆ2
Ybr
Œ�1�, where

ˆYbr D TOYbr
ı .� ˝ OYbr.1//

and TOYbr
is the spherical twist around OYbr .
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(2) Let W be a GM variety and assume char.k/ D 0. Let

(4.2) ˆW D LUW
ı LOW

ı .� ˝ OW .1//W Ku.W / ! Ku.W /

where LUW
and LOW

are the left mutation functors through UW and OW if dim.W / � 3

(in which case these objects are exceptional), or the spherical twists around UW and OW

if dim.W / D 2 (in which case these objects are spherical). ThenˆW Œ�1� is an involutive

autoequivalence of Ku.W / such that:

� If W is special, then ˆW Œ�1� ' i�, where i is the covering involution of W .

� If dimW is odd, then ˆW Œ�1� ' � , where � D SKu.W /Œ�2�.

(3) Let W be an odd-dimensional GM variety and assume char.k/ D 0. Then the CY2 cover

of Ku.W / is equivalent to Ku.W op/. Under this equivalence the residual Z=2-action

on Ku.W op/ is generated by the autoequivalence ˆW op Œ�1�

Proof. The assertions follow from the main results of [36], as explained in [36, Sec-
tions 8.1–8.2].

Remark 4.16. In the upcoming paper [56], we will use the description of the CY2
covers in these and other examples to describe moduli spaces of Bridgeland stable objects in
Enriques categories.

5. Hodge theory via Kuznetsov components

In this section we work over the complex numbers. After reviewing some facts about
Mukai Hodge structures in Section 5.1, we prove Proposition 1.12 on the categorical descrip-
tion of GM periods in Section 5.2, and give an application to the period map in Section 5.3.

5.1. Mukai Hodge structure. As explained in [54], to any C-linear category C occur-
ring as a semiorthogonal component in the derived category of a smooth proper complex
variety, one can canonically attach a lattice equipped with a Hodge structure, which is additive
under semiorthogonal decompositions. If C is a CY2 category, then we get a weight 2 Hodge
structure eH.C;Z/, called the Mukai Hodge structure of C (see [54, Definition 6.4]), which
generalizes a construction of Addington–Thomas [1] in the case of Kuznetsov components of
cubic fourfolds. Below we explicitly describe this Hodge structure in the cases of interest for
this paper.

Example 5.1. Let T be a complex K3 surface. Then eH.Db.T /;Z/ coincides with the
classical Mukai Hodge structure, defined as

eH.T;Z/ D H0.T;Z/.�1/˚ H2.T;Z/˚ H4.T;Z/.1/;

where .�1/ and .1/ denote Tate twists, with pairing ..r; c; s/; .r 0; c0; s0// D cc0 � rs0 � r 0s.

Example 5.2. Let W be a GM fourfold. In this case, eH.Ku.W /;Z/ was originally
defined and studied in [57], and admits the following explicit description. As an abelian group,

eH.Ku.W /;Z/ D ¹v 2 Ktop
0 .W / j �top.ŒUW .i/�; v/ D �top.ŒOW .i/�; v/ D 0 for i D 0; 1º;
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where Ktop
0 .X/ denotes the complex topologicalK-theory of the space of complex pointsX.C/,

and �top denotes the topological Euler pairing. The groupeH.Ku.W /;Z/ is regarded as a lattice
with the symmetric pairing .�;�/ D ��top.�;�/. Further, the Chern character induces an
embedding

eH.Ku.W /;Z/˝ Q ! Heven.W;Q/:

By taking appropriate Tate twists, we regard

Heven.W;Q/ D

4M

kD0

H2k.X;Q/.k � 1/

as a weight 2 Hodge structure. The Hodge filtration on eH.Ku.W /;Z/˝ C is then the inter-
section of the corresponding filtration on Heven.W;C/ along the above embedding.

Example 5.3. Let W be a GM sixfold. Then there is a similar description of the Mukai
Hodge structure: as an abelian group

eH.Ku.W /;Z/ D ¹v 2 Ktop
0 .W / j �top.ŒUW .i/�; v/ D �top.ŒOW .i/�; v/ D 0 for i D 0; 1; 2; 3º;

with Hodge structure induced by the one on Heven.W;Q/.

The above description shows that for a GM fourfold or sixfold, eH.Ku.W /;Z/ is ratio-
nally quite closely related to the usual middle-degree cohomology Hdim.W /.W;Z/. We will
need the following integral relation.

Proposition 5.4 ([57]). Let W be a GM variety of dimension n D 4 or 6.

(1) There is a canonical rank 2 sublattice

A˚2
1 D

 
2 0

0 2

!
� eH.Ku.W /;Z/

which is the image of the map K0.Gr.2; 5// D Ktop
0 .Gr.2; 5// ! eH.Ku.W /;Z/ given by

pulling back classes on Gr.2; 5/ and projecting into Ku.W /.

(2) Let eH.Ku.W /;Z/0 denote the orthogonal sublattice to A˚2
1 � eH.Ku.W /;Z/, and let

Hn.W;Z/0 denote the orthogonal sublattice to Hn.Gr.2; 5/;Z/ ,! Hn.W;Z/. Then the

Chern class cn=2W Ktop
0 .W / ! Hn.W;Z/ induces an isometry of weight 2 Hodge struc-

tures
eH.Ku.W /;Z/0 Š Hn.W;Z/0.

n
2

� 1/;

where .n
2

� 1/ on the right denotes a Tate twist.

Remark 5.5. Proposition 5.7 below implies that our notation eH.Ku.W /;Z/0 above is
consistent with that of Proposition 1.12.

Proof. Part (1) follows from [37, Lemma 2.27]. Part (2) for n D 4 holds by [57, Propo-
sition 3.1], and the n D 6 case holds by an analogous argument.

For later use in Section 7, we record a lift of the isomorphism in Proposition 5.4 (2) to the
level of quotient groups. We only consider the 4-dimensional case, as that is the one we shall
need, but a similar statement holds in dimension 6.
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Proposition 5.6 ([57]). Let W be a GM fourfold. There is an isomorphism of abelian

groups
eH.Ku.W /;Z/

A˚2
1

Š
H4.W;Z/

H4.Gr.2; 5/;Z/

induced by the second Chern class c2WeH.Ku.W /;Z/! H4.W;Z/. Moreover, under the result-

ing correspondence between sublattices

H4.Gr.2; 5/;Z/ � K � H4.W;Z/ and A˚2
1 � K 0 � eH.Ku.W /;Z/

we have:

(1) K is primitive if and only if K 0 is primitive.

(2) K is non-degenerate if and only if K 0 is nondegenerate, in which case K has signature

.r; s/ if and only if K 0 has signature .s C 2; r � 2/ and disc.K/ D .�1/rkKdisc.K 0/.

(3) K � H4.W;Z/ consists of Hodge classes if and only if K 0 � eH.Ku.W /;Z/ consists of

Hodge classes.

Proof. The isomorphism is [57, Propositions 3.2], (1) and (2) hold by [57, Lemma 3.4]
(taking into account that our lattice eH.Ku.W /;Z/ is by definition the negative of the one
considered there), and (3) follows from Proposition 5.4 (2).

5.2. Proof of Proposition 1.12. Proposition 5.4 reduces Proposition 1.12 to the follow-
ing result. Note that the construction of Hodge structures for categories from [54] is functorial;
in particular, a Z=2-action on a CY2 category does indeed induce a Z=2-action on its Mukai
Hodge structure.

Proposition 5.7. Let W be a GM variety of dimension 4 or 6. Then the invariant sub-

lattice eH.Ku.W /;Z/Z=2 � eH.Ku.W /;Z/ for the residual Z=2-action equals the canonical

sublattice A˚2
1 � eH.Ku.W /;Z/.

Remark 5.8. The residual Z=2-action on eH.Ku.W /;Z/ is by isometries, and so its
�1-eigenspace must be exactly the orthogonal complement eH.Ku.W /;Z/0 of A˚2

1 . In par-
ticular, the residual Z=2-action on Ku.W / is antisymplectic, in the sense that it acts by �1

on eH2;0.Ku.W //. This induces antisymplectic involutions of Bridgeland moduli spaces of
objects in Ku.W / with class in A˚2

1 , giving a categorical interpretation for the antisymplectic
involutions from [55, Proposition 5.16] whose existence was guaranteed there lattice theoret-
ically. The geometry of the fixed loci of these involutions will be described in the upcoming
work [56].

We will prove Proposition 5.7 by showing the claim is deformation invariant, and then
checking it for a specificW where the claim is easy. For this, we will need to consider families
of GM varieties and their Kuznetsov components. By a family of GM varieties over a base S ,
we mean a smooth proper morphism � W W ! S equipped with a line bundle OW .1/ on W such
that for every point s 2 S the pair .Ws;OWs

.1// is a GM variety with the Plücker polarization.
The results of [13] show that for any family of GM varieties, there is a canonical rank 5

vector bundle V5 on S and a morphism W ! GrS .2;V5/ which on fibers recovers the usual
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map to Gr.2; 5/. We denote by UW the pullback to W of the tautological rank 2 subbundle
on GrS .2;V5/.

Lemma 5.9. Let � W W ! S be a family of n-dimensional GM varieties.

(1) There is an S -linear semiorthogonal decomposition

Dperf.W/ D hKu.W/; ��.Dperf.S//˝ UW ; �
�.Dperf.S//˝ OW ; : : :

: : : ; ��.Dperf.S//˝ UW .n � 3/; ��.Dperf.S//˝ OW .n � 3/i

such that the fiber of Ku.W/ over any point s 2 S satisfies Ku.W/s ' Ku.Ws/, where

the right side is defined by (4.1).

(2) Let

ˆW D LUW =S ı LOW =S ı .� ˝ OW .1//W Ku.W/ ! Ku.W/;

where for E D UW or OW the functor LE=S is defined by the exact triangle

��
HomS .E; F /˝E ! F ! LE=S .F /

for F 2 Dperf.W/. Then ˆW is an autoequivalence of Ku.W/, whose fiber over any

s 2 S recovers the autoequivalence ˆWs
from Theorem 4.15 (2) under the identification

Ku.W/s ' Ku.Ws/.

Remark 5.10. Note that we do not claim ˆW Œ�1� is necessarily an involution, but it is
fiberwise an involution by Theorem 4.15 (2).

Proof. The semiorthogonal decomposition in (1) follows from the decomposition (4.1)
on fibers, cf. [3, Lemmas 3.22 and 3.25] and [59], and the statement about the fibers of Ku.W/

is a consequence of the compatibility of base change with semiorthogonal decompositions. For
E D UW or OW , the functor LE=S is nothing but the left mutation through the admissible
subcategory ��.Dperf.S//˝E if n � 3, and the spherical twist around the spherical functor
Dperf.S/ ! Dperf.W/; F 7! ��.F /˝E if n D 2; it follows in particular that ˆW is indeed
an autoequivalence of Ku.W/. The final claim about the fibers of ˆW is immediate from
the definitions.

Proof of Proposition 5.7. Suppose � W W ! S is a family of GM varieties of dimension
n D 4 or 6. By [54] the Mukai Hodge structures eH.Ku.Ws/;Z/, s 2 S.C/, form the fibers of
a local systemeH.Ku.W/=S;Z/ on the analytification S an. By functoriality the autoequivalence
ˆW Œ�1� induces an automorphism of the local system eH.Ku.W/=S;Z/, which is necessarily
an involution because it is so on fibers (see Remark 5.10). Therefore, we have a Z=2-action
on the local system eH.Ku.W/=S;Z/ which fiberwise recovers the residual Z=2-action on the
Mukai Hodge structures. So it suffices to prove the proposition for any particular fiber of the
family W ! S .

We may thus assume W is a special GM variety. Then by Theorem 4.15 the residual
Z=2-action on Ku.W / is induced by the covering involution of W . Note that, by construc-
tion, eH.Ku.W /;Z/ is a summand of Ktop

0 .W /, and by the previous remark the inclusion
eH.Ku.W /;Z/ � Ktop

0 .W / is Z=2-equivariant, where Z=2 acts by the residual action on the
left and the covering involution on the right. By the description of A˚2

1 � eH.Ku.W /;Z/ from
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Proposition 5.4 (1), it follows that

A˚2
1 � eH.Ku.W /;Z/Z=2:

Moreover, as H4.Gr.2; 5/;Z/ � H4.W;Z/ is primitive by [12, Section 5.1], it follows from
Proposition 5.6 (1) that A˚2

1 � eH.Ku.W /;Z/ is also primitive. Therefore, to finish the proof
it suffices to show the inclusion A˚2

1 � eH.Ku.W /;Z/Z=2 is rationally an isomorphism. By
applying the Chern character, it is enough to show H�.Gr.2; 5/;Q/ surjects onto the invari-
ants of H�.W;Q/. If dim.W / D 6, then this is true because W ! Gr.2; 5/ is a double cover.
If dim.W / D 4, then W ! Gr.2; 5/ \ P8 is a double cover, so it is enough to observe that
H�.Gr.2; 5/;Q/ surjects onto H�.Gr.2; 5/ \ P8;Q/; this follows, for instance, from the semi-
orthogonal decompositions

Db.Gr.2; 5// D hO;U_; : : : ;O.4/;U_.4/i;

Db.Gr.2; 5/ \ P8/ D hO;U_; : : : ;O.3/;U_.3/i;

which hold by [27, Section 6.1].

5.3. Application to periods. In [13] Debarre and Kuznetsov classified GM varieties in
terms of linear algebraic data, by constructing for any GM variety W a Lagrangian data set

.V6.W /; V5.W /; A.W //, where

� V6.W / is a 6-dimensional vector space,

� V5.W / � V6.W / is a hyperplane, and

� A.W / � ^3V6.W / is a Lagrangian subspace with respect to the wedge product,

and proving that W is completely determined by its dimension and this data. Surprisingly,
many properties of W only depend on A.W /. Recall that GM varieties W1 and W2 with
dim.W1/ � dim.W2/ .mod 2/ are called generalized partners if there exists an isomorphism
V6.W1/ Š V6.W2/ identifying A.W1/ � ^3V6.W1/ with A.W2/ � ^3V6.W2/, and general-

ized duals if there exists an isomorphism V6.W1/ Š V6.W2/
_ identifyingA.W1/ � ^3V6.W1/

with A.W2/
? � ^3V6.W2/

_. In the case where dim.W1/ D dim.W2/, these definitions spe-
cialize to the notions of period partners and duals originally introduced in [13].

The main result of [14] shows that A.W / determines the period of W in dimensions 4
and 6, which implies the period map factors through the moduli space of EPW sextics studied
by O’Grady [47]. More precisely:

Theorem 5.11 ([14]). Let W1 and W2 be GM varieties of (possibly unequal) dimen-

sions n1; n2 2 ¹4; 6º. Assume W1 and W2 are generalized partners or duals. Then there is an

isometry of Hodge structures

Hn1.W1;Z/0.
n1

2
/ Š Hn2.W2;Z/0.

n2

2
/:

This is proved in [14] by intricate geometric arguments, but here we note a simple
categorical proof. This relies on the following slight enhancement of [38, Theorem 1.6].

Theorem 5.12. Let W1 and W2 be GM varieties which are not special GM surfaces. If

W1 andW2 are generalized partners or duals, then there is an equivalence Ku.W1/' Ku.W2/

which is equivariant for the canonical Z=2-actions described in Theorem 4.15 (2).
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Proof. By [38, Theorem 1.6] there exists an equivalence Ku.W1/ ' Ku.W2/, not a pri-
ori Z=2-equivariant. If W1 and W2 are odd-dimensional, then by Lemma 4.9 this equivalence
is necessarily Z=2-equivariant. If W1 and W2 are even-dimensional, then by Theorem 4.15 (3)
combined with Lemma 4.9, it suffices to show there is an equivalence Ku.W

op
1 / ' Ku.W

op
2 /.

But by construction the Lagrangian data of a GM variety and its opposite GM variety are the
same, soW op

1 andW op
2 are odd-dimensional generalized partners or duals, and the equivalence

holds again by [38, Theorem 1.6].

Proof of Theorem 5.11. The Z=2-equivariant equivalence

Ku.W1/ ' Ku.W2/

of Theorem 5.12 induces a Z=2-equivariant isomorphism eH.Ku.W1/;Z/ Š eH.Ku.W2/;Z/,
which by Proposition 5.7 must identify the canonical copy of A˚2

1 on each side. Now the result
follows from Proposition 5.4 (2).

6. Birational categorical Torelli

In this section we work over the complex numbers. After reviewing some facts about the
period map for GM fourfolds, we prove Theorem 1.9 in Section 6.2.

6.1. The period morphism. Let N denote the moduli stack of GM fourfolds. This
is a smooth irreducible 24-dimensional Deligne–Mumford stack of finite type over C (see
[37, Proposition A.2] or [15]). We denote by

pW N ! D

the period map, where the period domain D is the 20-dimensional quasi-projective variety
classifying Hodge structures on the middle cohomology H4.W0;Z/ of a fixed GM fourfold
W0 for which the canonical rank 2 sublattice H4.Gr.2; 5/;Z/ � H4.W0;Z/ consists of Hodge
classes (see [12] for details). We note that D is equipped with a canonical involution, denoted
rD (see the discussion preceding [12, Corollary 6.3]).

We will also need to consider the related moduli space N
EPW of EPW sextics [50]. Recall

that, if we fix V6 a 6-dimensional vector space, then N
EPW is the GIT quotient by PGL.V6/

of the space of Lagrangians A � ^3V6 containing no decomposable vectors. The space N
EPW

has a natural involution rEPW, induced by sending A � ^3V6 to its orthogonal A? � ^4V _

6 .
O’Grady constructed a period morphism

pEPWW N
EPW ! D ;

sending A to the period of the associated double EPW sextic [49].
The results of [13, 15] show that there is a surjective morphism

� W N ! N
EPW;

sending a GM fourfold W to its Lagrangian A.W / (as in Section 5.3). In particular, by defini-
tion GM fourfolds W1 and W2 are period partners if and only if �.W1/ D �.W2/, and duals if
and only if �.W1/ D rEPW.�.W2//.

We will need the following two ingredients in our proof of Theorem 1.9.
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Theorem 6.1 ([14]). There is a factorization p D pEPW ı � .

Proof. This follows from [14], cf. [15, Proposition 6.1] and Theorem 5.11 above.

Theorem 6.2. The morphism pEPWW N
EPW ! D is an open embedding and commutes

with the natural involutions, i.e. pEPW ı rEPW D rD ı pEPW.

Proof. That pEPW is an open embedding follows from Verbitsky’s Torelli theorem; see
[49, Theorem 1.3] for a more precise statement. That pEPW commutes with the involutions is
proved in [48].

6.2. Proof of Theorem 1.9. By the discussion preceding the statement of Theorem 1.9,
we only need to prove the forward implication. So let X1 and X2 be GM threefolds such that
Ku.X1/ ' Ku.X2/. Note that if X is a special GM threefold, then we may find an ordinary
GM threefold X 0 which is a period partner of X (see e.g. [37, Lemma 3.8]), and hence satisfies
Ku.X/ ' Ku.X 0/ by [38, Theorem 1.6]. Therefore, we may assume that X1 and X2 are both
ordinary. By Proposition 4.14, Lemma 4.9, and Theorem 4.15, passing to CY2 covers gives
an equivalence Ku.X

op
1 / ' Ku.X

op
2 / which is equivariant for the residual Z=2-actions. This

induces a Z=2-equivariant Hodge isometry

eH.Ku.Xop
1 /;Z/

��! eH.Ku.Xop
2 /;Z/;

and hence by Proposition 1.12 a Hodge isometry H4.X
op
1 ;Z/0 Š H4.X

op
2 ;Z/0. By the defini-

tion of the period morphism, it follows that either p.Xop
1 /Dp.X

op
2 / or p.Xop

1 /D rD.p.X
op
2 //,

cf. [14, Lemma 5.26]. By Theorems 6.1 and 6.2, this means that either �.Xop
1 / D �.X

op
2 /

or �.Xop
1 / D rEPW.�.X

op
2 //, i.e. either Xop

1 and Xop
2 are period partners or duals. As these

relations are preserved under passing to opposite GM varieties, we conclude the same is true
of X1 and X2.

7. Nonexistence of equivalences

In this section we work over the complex numbers. After reviewing some restrictions on
the periods of GM fourfolds and surfaces, we prove Theorem 1.4 in Section 7.2.

7.1. Restrictions on periods. As in our discussion of the period map pW N ! D for
GM fourfolds in Section 6.1, let W0 be a fixed GM fourfold. Let K � H4.W0;Z/ be a rank 3
primitive positive definite sublattice which contains H4.Gr.2; 5/;Z/. We consider the locus
in D parameterizing Hodge structures on H4.W0;Z/ for which K � H4.W0;Z/ consists of
Hodge classes. By [12] this locus only depends on the discriminant d > 0 of K, so we denote
it by Dd . Moreover, the locus Dd is nonempty for d � 0; 2; 4 .mod 8/, an irreducible divisor
for d � 0; 4 .mod 8/, and the union of two irreducible divisors for d � 2 .mod 8/.

The following restriction on the image of the period morphism plays a crucial role in our
proof of Theorem 1.4 below.

Theorem 7.1 ([14, 49]). The image of the period morphism pW N ! D is contained in

the complement D n .D2 [ D4 [ D8/.
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Proof. By Theorem 6.1, pW N ! D factors through the period morphism for double
EPW sextics, which by [49, Theorem 1.3] has image contained in D n .D2 [ D4 [ D8/.

Remark 7.2. Conjecturally, the image of pW N ! D is exactly D n .D2 [ D4 [ D8/.
Some partial progress on this problem was made in [12], where it is shown that p is dominant
and p�1.Dd / is nonempty for d � 10.

Next we give a similar but much easier result restricting the periods of ordinary GM
surfaces. We will use this in one of two proofs given below for Theorem 1.4 in the case of
special GM threefolds.

Lemma 7.3. Let W D Gr.2; 5/ \ P6 \Q be an ordinary GM surface. Then Pic.W /
does not contain a rank two lattice with intersection form given by

 
10 1

1 0

!
or

 
10 3

3 0

!
;

with the first basis vector corresponding to the restriction of the Plücker polarization.

Proof. This is a special case of [18, Lemma 2.8]; since a direct proof is short and easy,
we give one here. In either case, the second basis vector is effective, and thus the class of
a genus 1 curve C . The Plücker polarization would restrict to a very ample divisor on C of
degree 1 or 3, respectively. This is immediately a contradiction in the first case. In the second
case, the Plücker polarization would embedC as a plane cubic curve. However, as the equations
of Gr.2; 5/ are quadratic, W would contain the entire P2 spanned by C , a contradiction.

7.2. Proof of Theorem 1.4. Let Y be a quartic double solid and X a GM threefold.
Assume for sake of contradiction that there is an equivalence Ku.Y / ' Ku.X/. Combining
Proposition 4.14, Lemma 4.9, and Theorem 4.15, we obtain an equivalence

Db.Ybr/ ' Ku.Xop/

which is equivariant for the residual Z=2-actions, where Ybr � P3 is the branch locus of Y ! P3

and Xop is the opposite GM variety. This induces a Z=2-equivariant Hodge isometry

(7.1) � WeH.Ybr;Z/
��! eH.Ku.Xop/;Z/:

To derive a contradiction, we will use a description of the Z=2-invariants on each lattice. The
case where X is ordinary so that Xop is a fourfold was already addressed in Proposition 5.7.
Note that Ybr, as well as Xop when X is special, is a K3 surface, so its Mukai lattice up to sign
is just the full integral cohomology (Example 5.1).

Lemma 7.4. The invariant sublattice eH.Ybr;Z/
Z=2, as well as eH.Xop;Z/Z=2 when X is

a special GM threefold, are isomorphic to A˚2
1 and given as follows:

(1) eH.Ybr;Z/
Z=2 D h.1;�A; 1/; .1; 0;�1/i, where A 2 Pic.Ybr/ is the degree 4 polarization.

(2) eH.Xop;Z/Z=2 D h.1;�B; 4/; .2;�B; 2/i, where B 2 Pic.Xop/ is the degree 10 Plücker

polarization.
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Proof. Recall that a spherical twist TE acts on cohomology by the reflection �v.E/,
defined by

(7.2) �v.E/.v/ D v C v.E/ � .v.E/; v/;

while tensoring with a line bundle L acts by multiplication with ch.L/. In case ((1)), this shows

(7.3) .ˆYbr/�.1;�A; 1/ D .1; 0;�1/ and .ˆYbr/�.1; 0;�1/ D �.1;�A; 1/:

Hence the two vectors are preserved by the action ofˆ2
Ybr
Œ�1�, i.e. by Theorem 4.15 (1) they are

Z=2-invariant. In case (2), we instead apply Theorem 4.15 (3); using v.UXop/ D .2;�B; 3/ it
is a straightforward computation that both classes are invariant under ˆXop Œ�1�. One also sees
immediately that Z=2 acts by �1 on the orthogonal complements of the sublattices

LYbr D H0.Ybr;Z/˚ AZ ˚ H4.Ybr;Z/ � eH.Ybr;Z/;(7.4)

LXop D H0.Xop;Z/˚ BZ ˚ H4.Xop;Z/ � eH.Xop;Z/:(7.5)

As Z=2 evidently does not act as the identity on these rank 3 sublattices, this leaves the claimed
rank 2 lattices as the only possibility for the invariants.

Now we can finish the proof of Theorem 1.4. We break the proof into two cases, depend-
ing on whether X is ordinary or special.

Assume X is ordinary. The primitive sublattice LYbr � eH.Ybr;Z/ from (7.4) has sig-
nature .2; 1/, contains the Z=2-invariant sublattice, consists of Hodge classes, and has discrim-
inant �4. Therefore, its image K 0 � eH.Ku.Xop/;Z/ under the Z=2-equivariant Hodge isom-
etry (7.1) has the same properties. By Proposition 5.7 the Z=2-invariants of eH.Ku.Xop/;Z/ is
the canonical A˚2

1 sublattice. So by Proposition 5.6, K 0 corresponds to a rank 3 primitive pos-
itive definite sublattice K � H4.Xop;Z/ which contains H4.Gr.2; 5/;Z/, consists of Hodge
classes, and has discriminant 4. This means the period of Xop lies in the divisor D4, which
contradicts Theorem 7.1.

Assume X is special. We give two proofs. The first is shorter but relies on a hard result
from [38] to reduce to the ordinary case, while the second uses only the easy Lemma 7.3 and
is the starting point for our proof of Theorem 1.6 in Section 8.

Proof 1. The description of generalized partners from [37, Lemma 3.8] shows that there
exists an ordinary GM threefold X 0 which is a generalized partner of X . Then by [38, Theo-
rem 1.6] we have an equivalence Ku.X/ ' Ku.X 0/, so we are reduced to the ordinary case
handled above.

Proof 2. The rank 3 lattices LYbr and LXop from (7.4) and (7.5) are given explicitly by
0
B@
2 0 �1

0 2 �1

�1 �1 0

1
CA and

0
B@
2 0 �1

0 2 �2

�1 �2 0

1
CA ;

where the first two basis vectors are the Z=2-invariant ones from Lemma 7.4, and the third is the
class of a point. As the isometry � in (7.1) is Z=2-equivariant, it sends the basis of the invariant
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lattice A˚2
1 � LYbr to the basis of A˚2

1 � LXop , up to sign and permutation. By (7.3), one can
precompose with an appropriate power ofˆYbr to ensure it sends the first vector to the first vec-
tor. As � respects the standard orientation of positive definite 2-planes by [20, Corollary 4.10],
it also sends the second basis vector to the second basis vector.

Thus, the rank 4 lattice ineH.Xop;Z/ generated by �.LYbr/ andLXop has intersection form
0
BBBB@

2 0 �1 �1

0 2 �2 �1

�1 �2 0 �r

�1 �1 �r 0

1
CCCCA

for some r 2 Z. The discriminant of this lattice, which has to be positive, is �4r2 � 12r C 1,
and hence the only possibilities are r D �3;�2;�1; 0. The fourth basis vector is a class of the
form .r;D; s/ with

D2 D 2rs; �s �D:B � 4r D �1 � 2s �D:B � 2r D �1:

Solving for s shows that B and D span a lattice with intersection form
 

10 1 � 6r

1 � 6r 4r2

!
:

For r D 0 this immediately contradicts Lemma 7.3. For r D �1, we get

.B �D/2 D 0 and B:.B �D/ D 3;

contradicting the second case of Lemma 7.3. Similarly, for r D �2 we have

.D � B/2 D 0 and B:.D � B/ D 3;

and for r D �3 we have

.2B �D/2 D 0 and B:.2B �D/ D 1;

in all cases contradicting Lemma 7.3.

Remark 7.5. By [54, Proposition 5.23] the Kuznetsov component Ku.Y / of a quartic
double solid determines its intermediate Jacobian J.Y /, and by the classical Torelli theorem
proved in [10], J.Y / determines Y . As a corollary, categorical Torelli holds for quartic double
solids: Ku.Y / determines Y .

The methods used in the second proof for the case where X is special above also lead
to a short direct proof of this categorical Torelli statement, which we sketch briefly. Given an
equivalence Ku.Y1/ ' Ku.Y2/, one considers the associated Z=2-equivariant Hodge isometry

� WeH.Y1;br;Z/
��! eH.Y2;br;Z/:

If � sends the class of a point to a class in the lattice LY2;br, then up to composition with the
involution induced by ˆY2;br it sends it to the class of a point; in this case, an easy argument
shows that � induces a Hodge isometry H2.Y1;br;Z/

��! H2.Y2;br;Z/ preserving the polariza-
tions. By the Torelli theorem for K3 surfaces there is a polarized isomorphism Y1;br ! Y2;br,
and thus an isomorphism Y1 Š Y2. Otherwise, one considers again the rank 4 lattice spanned by
LY2;br and the image of the class of a point; a computation exactly as in the proof above shows
that H2.Y2;br;Z/ contains a square zero class of degree 2, which cannot exist on a quartic K3.
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8. Deformation equivalence

We continue to work over the complex numbers. In this section, we prove Theorem 1.6,
which says that Kuznetsov components of quartic double solids and of GM threefolds are
deformation equivalent. The idea is based on the second proof of Theorem 1.4 in the case
where the GM threefold is special. Namely, in the case r D �1 we used the fact that there is
no GM K3 surface with Picard lattice

 
10 3

3 0

!
:

However, there is such a polarized K3 surface S – indeed, as we will see it is given by a very
general quartic containing a line.

This directly suggest our strategy: we extend the Z=2-action on GM K3 surfaces, given
by Theorem 4.15 (2), to one acting also on S , in such a way that it becomes conjugate with
the Z=2-action on S as a quartic K3 surface given by Theorem 4.15 (1). To construct this as
an enhanced Z=2-action in a family, we apply the general results from Section 3. Taking the
associated Z=2-invariant category then proves Theorem 1.6.

8.1. Quartics containing a line. From now on, let S � P3 be a quartic K3 surface that
is very general among quartics containing a line L � S ; in particular, S has Picard rank two.
The projection from the line induces an elliptic fibration S ! P1; let E be the class of a fiber,
a plane cubic. The Picard lattice of S is given by

 
4 3

3 0

!
;

with respect to the basis given by D, the class of the hyperplane section, and E. Both E and
the class L D D �E of the line are classes of curves that can be contracted, and so generate
extremal rays of the Mori cone. A simple computation then confirms the following result.

Lemma 8.1. The Mori cone of S is given by hE;D �Ei, and the nef cone is given by

hE; 3D �Ei.

In particular, H WD D CE is a polarization of degree 10. Moreover, with respect to the
basis H;E, the intersection matrix becomes

 
10 3

3 0

!
;

one of the possibilities we had to exclude for GM K3s in Lemma 7.3 for the second proof
of Theorem 1.4. As the general degree 10 K3 surface is obtained as a GM surface [46], S is
a degeneration of GM K3 surfaces.

8.2. Stable rank 2 bundles on S . In our arguments, we will sometimes have to show
that rank 2 bundles on S that we construct are stable. In all cases, this will follow from the
following classical lemma due to Mukai.
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Lemma 8.2 ([45, Corollary 2.8]). Let 0! F ! E ! G ! 0 be a short exact sequence

of sheaves on a K3 surface with Hom.F ;G / D 0. Then

dim Ext1.F ;F /C dim Ext1.G ;G / � dim Ext1.E;E/:

Recall from Example 5.1 the Mukai Hodge structure eH.S;Z/ associated to the K3 sur-
face S . The Mukai vector of an object E 2 Db.S/ is defined by

v.E/ D ch.E/ �
p

td.S/ 2 eH1;1.S;Z/ D H0.S;Z/˚ H1;1.S;Z/˚ H4.S;Z/:

The Mukai pairing is defined by

�
.r; c; s/; .r 0; c0; s0/

�
D cc0 � rs0 � r 0s

and satisfies
��.E;F / D .v.E/; v.F //:

Given a polarization A, we define �A-(semi)stability via the slope function

�A.E/ D
A:c1.E/

A2rk.E/
:

Proposition 8.3. Let S be a very general quartic K3 surface containing a line, and let

A be a polarization on S .

(1) Let V be a rank 2 spherical vector bundle on S . Then V is �A-stable.

(2) Let V be a rank 2 vector bundle on S such that Hom.V ;V/ D C and Ext1.V ;V/ D C2.

Assume that c1.V/ �D is divisible by 2. Then V is �A-stable unless it is destabilized

by O.B/ for

B D
c1.V/˙ .D � 2E/

2
:

If A:.D � 2E/ ¤ 0 (e.g. if A D D) and V is unstable, then more precisely the desta-

bilizing object is O.B/ where the sign is chosen such that �A.O.B// > �A.c1.V//;

moreover, in this case the spherical twist TO.B/V is a �A-stable vector bundle of the

same Mukai vector.

Proof. If V is not stable, then there is a short exact sequence

0 ! L1 ! V ! L2 ˝ IZ ! 0

where L1;L2 are line bundles with �A.L1/ � �A.L2/, and Z is a 0-dimensional subscheme
of S . As Hom.V ;V/ D C, we have L1 ¤ L2, and hence Hom.L1;L2/ D 0. Mukai’s lemma,
Lemma 8.2, shows that Z is empty in case (1), and that Z is either empty or a single point in
case (2). We write Ci D c1.Li / for i D 1; 2, and so v.Li / D .1; Ci ;

1
2
C 2

i C 1/.
From

�2 D v.L1/
2;

�2C 2 � length.Z/ D v.L2 ˝ IZ/
2;

v.V/2 D
�
v.L1/C v.L2 ˝ IZ/

�2
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we obtain

4C v.V/2 � 2 � length.Z/ D 2
�
v.L1/; v.L2 ˝ IZ/

�
(8.1)

D 2C1C2 � C 2
1 � 2 � C 2

2 � 2C 2 � length.Z/;

.C1 � C2/
2 D �8C 4 � length.Z/ � v.V/2:

We write C1 � C2 D dD C eE, which gives .C1 � C2/
2 D 4d2 C 6de.

In case (1) we have v.V/2 D �2 and length.Z/ D 0, and thus (8.1) becomes

4d2 C 6de D �6:

Hence d is divisible by 3. But then 4d2 C 6de is divisible by 9while �6 is not, a contradiction.
Now consider case (2), where v.V/2 D 0. When Z is a point, we get 4d2 C 6de D �4,

a contradiction modulo 3. Thus Z has to be empty, in which case (8.1) is equivalent to

4d2 C 6de D �8;

i.e. d.2d C 3e/ D �4. The possibilities d D ˙1;˙2;˙4 lead to

C1 � C2 D ˙.D � 2E/;˙.2D � 2E/;˙.4D � 3E/;

respectively. Since we assume that c1.V/ �D is divisible by two, the first pair of solutions is
the only one with C1 and C2 integral. This proves the first part of the claim.

Finally, if V is not stable, we have seen that its Harder–Narasimhan filtration is

0 ! O.B/ ! V ! O.c1.V/ � B/ ! 0

with Hom.O.B/;O.c1.V/ � B// D 0 and hence Hom.O.B/;V/ D C. Since V is simple, we
have Ext2.O.B/;V/ D Hom.V ;O.B//_ D 0. Using (8.1) once more, we obtain

�.O.B/;V/ D �v.O.B//2 �
�
v.O.B//; v.O.c1.V/ � B//

�
D 2 � 2 D 0:

Thus Hom�.O.B/;V/ D C ˚ CŒ�1�, which gives a 4-term short exact sequence

0 ! O.B/ ! V ! TO.B/V ! O.B/ ! 0:

This shows that TO.B/V is a rank 2 vector bundle with Hom.O.B/;TO.B/V/ D 0. Since
TO.B/ is an equivalence, it is also a simple vector bundle with Ext1.TO.B/V ;TO.B/V/ D C2.
Applying the previous results of the proposition shows that TO.B/V is stable as claimed.

Let U be the �D-stable spherical vector bundle with v.U/ D .2;�D �E; 3/, whose
existence and uniqueness were first proved in [26, Theorem 2.1] and [45, Corollary 3.5],
respectively. Then by Proposition 8.3, U is stable with respect to any polarization. Moreover:

Lemma 8.4. Let U be the slope-stable spherical vector bundle with

v.U/ D .2;�D �E; 3/:

Then the restriction of U to any fiber of the elliptic fibration induced by E is stable.

Proof. By the previous observation, U is stable with respect to the ample polarization
E C �D for � > 0, and thus at least semistable with respect to the nef polarization E. As
E:c1.U/ D �3 is odd, this means it is stable with respect to E (in the sense that any saturated
subsheaf of U has strictly smaller slope).
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Now we can follow the proof of [40, Theorem 5.2]. Assume that there is a curve C � S

of classE such that UC is unstable. Then there exists a line bundleLC on C of degree d � �2

and a surjection UC � LC . Let K be the kernel of the composition U � UC � LC . Since
c1.K/:E D c1.U/:E, it is also slope-stable with respect to E. Since v.LC / D .0; E; d/, we
have v.K/ D .2;�D � 2E; 3 � d/ and hence

v.K/2 D .D C 2E/2 � 2 � 2 � .3 � d/ D 16 � 12C 4d � �4;

a contradiction.

Remark 8.5. As pointed out by Kuznetsov, the bundle U can be described explicitly as
follows. Note that Hom.O.D/;OL.2// D C2 and the corresponding map O.D/˚2 ! OL.2/

is surjective. Let F be the vector bundle defined by the short exact sequence

0 ! F ! O.D/˚2 ! OL.2/ ! 0:

A computation shows that Hom.F ;F / D C and v.F _/ D .2;�D �E; 3/. Therefore, F
_ is

a rank 2 spherical vector bundle, and hence by Proposition 8.3.(1) it is �D-stable. We conclude
that U Š F

_.

8.3. Conjugate autoequivalences. Since we can consider S either as a quartic K3
surface, or as a degeneration of a GM K3 surface, there are two natural autoequivalences
associated to it by Theorem 4.15:

ˆquartic D .TO ı .� ˝ O.D///2Œ�1�;

ˆGM D TU ı TO ı .� ˝ O.D CE//Œ�1�;

where TO and TU are the spherical twists around O and U.
We will show that T2

O.�D/
ˆGM and ˆquartic are conjugate to each other. Since by Theo-

rem 4.15 (3) the latter generates the residual Z=2-action on Db.S/ as the CY2 cover of the
Kuznetsov component of the associated quartic double solid, it will follow that the former also
generates a Z=2-action on Db.S/.

The following lemma will allow us to prove our identity by computing the images of
skyscraper sheaves of points.

Lemma 8.6. Let S be a smooth projective K3 surface, and let F1; F2 be two autoequiv-

alences of Db.S/. Assume that:

(1) F1 and F2 have the same action on eH.S;Z/.
(2) Applying F1 and F2 to skyscraper sheaves of points gives the same set of objects

¹F1.Os/ºs2S.C/ D ¹F2.Os/ºs2S.C/:

Then F1 and F2 are isomorphic functors.

Proof. Assumption (2) implies that F�1
1 ı F2 sends skyscraper sheaves of points to

skyscraper sheaves of points. By [19, Corollary 5.23], it is the composition of the pushforward
along an automorphism f of S and tensoring with a line bundle M . By (1), F�1

1 ı F2 acts
trivially on cohomology. So F�1

1 ı F2 preserves the class v.OS / and M is trivial. But then
the action of f� on H2.S;Z/ is trivial, and thus f is the identity by the Torelli theorem for
K3 surfaces.
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Remark 8.7. Condition (2) holds automatically when the Fi .Os/ are, up to the same
shift, slope-stable vector bundles for the same polarization. Indeed, both F1 and F2 induce an
injective map from S to the moduli space of vector bundles of class Fi .Os/; since this moduli
space is 2-dimensional and irreducible, both maps are bijections on closed points.

We first prove that the actions of ˆquartic and ˆGM on cohomology are conjugate.

Lemma 8.8. Let ‰W Db.S/ ! Db.S/ be the autoequivalence given by

‰.�/ D TO.�D/.� ˝ O.�E//:

Then ˆquartic and ‰�1 ı T2
O.�D/

ˆGM ı‰ have the same action on eH.S;Z/.

Proof. The lemma follows by direct computation, similar to the proof of Lemma 7.4.
More precisely, we find that ˆquartic and ‰�1 ı T2

O.�D/
ˆGM ı‰ both act on a basis of the

algebraic part of eH.S;Z/ as follows:

.1; 0; 0/ 7! .�1;D;�2/;

.0;D; 0/ 7! .�4; 3D;�4/;

.0; E; 0/ 7! .�3; 3D �E;�3/;

.0; 0; 1/ 7! .�2;D;�1/:

Moreover, they each act by multiplication by �1 on the orthogonal complement of D and E
in H2.S;Z/, and thus they agree on all of eH.S;Z/.

Proposition 8.9. The autoequivalences ˆquartic and ‰�1 ı T2
O.�D/

ˆGM ı‰ of Db.S/

are isomorphic functors.

Proof. Since ‰�1.�/ D .� ˝ O.E// ı T�1
O.�D/

, the claim is equivalent to

.TO ı .� ˝ O.D///2 D .� ˝ O.E// ı TO.�D/ ı TU ı TO

ı .� ˝ O.D CE// ı TO.�D/ ı .� ˝ O.�E//:

(8.2)

By Lemma 8.8, the two sides have the same action oneH.S;Z/. By Lemma 8.6 and Remark 8.7,
it will thus be enough to show that applying the left-hand side and the right-hand side to
skyscraper sheaves of points yields slope-stable vector bundles.

We first consider the left-hand side of (8.2) applied to the skyscraper sheaf at s 2 S.C/.
We note that TO.Os ˝ O.D// D TO.Os/ D IsŒ1�. Since O.D/ is very ample, the sheaf Is.D/

has three sections, no higher cohomology, and is globally generated; thus the image of Os

is FsŒ2�, where Fs is defined by the short exact sequence

0 ! Fs ! O ˝ H0.Is.D// ! Is.D/ ! 0:

It is a simple rank 2 bundle with Ext1.Fs;Fs/ D Ext1.Os;Os/ D C2 and c1.Fs/ D �D. By
Proposition 8.3, Fs is �D-slope stable unless it is destabilized by

O

�
�D � .D � 2E/

2

�
D O.�L/;
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where we recall that L D D �E is the class of the line on S . Since the natural morphism

Hom.O.�L/;O ˝H 0.Is.D// D H 0.Is.D// ! Hom.O.�L/; Is.D// D H 0.Is.D C L//;

induced by multiplying with the defining section of O.L/ is injective, Hom.O.�L/;Fs/ D 0,
and thus Fs is �D-stable.

Now we consider the right-hand side of (8.2), applied to Os . After the first three steps we
reach �

TO.�D/.Os ˝ O.�E//
�

˝ O.D CE/ D Is.E/Œ1�:

Since O.E/ is globally generated and has two sections (inducing the elliptic fibration), there is
a unique section of Is.E/ vanishing at the elliptic fiber Es containing s; thus

TO.Is.E/Œ1�/ D Is=Es
Œ1�;

where Is=Es
denotes the image of the composition Is ! OS ! OEs

. By Lemma 8.4, UjEs
is

a stable vector bundle on the elliptic curve Es of rank two and degree �3. By Serre duality,

Ext1S .U; Is=Es
/ D Ext1Es

.UjEs
; Is=Es

/ D HomEs
.Is=Es

;UjEs
/_ D 0;

and therefore by Riemann–Roch Hom.U; Is=Es
/ D C. Using stability of UjEs

once more, we
see that this map must be surjective. Therefore,

TU

�
Is=Es

Œ1�/ D VsŒ2�;

where the vector bundle Vs with v.Vs/ D .2;�D � 2E; 4/ is defined by the following short
exact sequence:

(8.3) 0 ! Vs ! U ! Is=Es
! 0:

By Proposition 8.3, Vs is �D-stable unless it is destabilized by

O

�
�D � 2E � .D � 2E/

2

�
D O.�D/:

We claim that Hom.O.�D/;VsŒi �/ D 0 for all i if s … L, and Hom.O.�D/;Vs/ ¤ 0 if s 2 L.
To prove the claim, first note that by stability

Ext2.O.�D/;U/ D Hom.U;O.�D//_ D 0:

Moreover, Ext1.O.�D/;U/ D Ext1.U;O.�D//_ D 0; otherwise, the corresponding exten-
sion would define �D-stable vector bundle of Mukai vector .3;�2D �E; 6/, whose square
is �8, a contradiction. Therefore,

Hom�.O.�D/;U/ D C2Œ0� D Hom�.O.�D/; Is=Es
/:

To prove the claim, we need to show that the long exact sequence obtained by applying
Hom.O.�D/;�/ to the map U ! Is=Es

in (8.3) induces an isomorphism in degree 0 if and
only if s … L.

Every nonzero morphism O.�D/ ! U fits into short exact sequence

0 ! O.�D/ ! U ! Is0.�E/ ! 0:
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An easy computation shows that s0 2 L, as otherwise

Ext1.Is0.�E/;O.�D// D H 1.Is0.L//_ D 0:

Conversely, if s0 2 L, the extension exists, and thus arises from a morphism O.�D/ ! U.
Now observe that the composition O.�D/ ! U ! Is=Es

is nonzero unless there is a mor-
phism Is0.�E/ ! Is=Es

, which exists if and only if s D s0. This proves the claim.
Thus TO.�D/Vs D Vs if s … L, and Proposition 8.3 shows that TO.�D/Vs is �D-stable

for all s 2 S . Thus both the left-hand side and the right-hand side of (8.2) send Os to the shift
by Œ2� of a �D-stable vector bundle. By Lemma 8.6 and Remark 8.7, this completes the proof
of the proposition.

8.4. Z=2-action in families.

Proof of Theorem 1.6. We consider the quasi-projective moduli space F6 of degree 10
(genus 6) polarized K3 surfaces. It contains as a Noether–Lefschetz divisor the locus of K3
surfaces lattice polarizable with the lattice

 
4 3

3 0

!

spanned by D and E where D CE corresponds to the given polarization of degree 10.
Let C � F6 be a smooth curve intersecting this divisor transversely at a single point

o 2 C such that o corresponds to a quartic K3 of Picard rank two containing a line. By base
change to a finite cover if necessary, we can assume that there exists a family of K3 surfaces
� W S ! C with polarization H . The very general point of C necessarily corresponds to a K3
surface of Picard rank one, which is a GM surface by [46] and [18, Lemma 2.8]; shrinking C
if necessary, we can assume C n ¹oº parameterizes only GM surfaces.

Up to possibly passing to a cover of C , there exists a rank 2 vector bundle U on S whose
restrictions to fibers Sc is the unique H -stable vector bundle of Mukai vector .2;�Hc ; 3/;
so it is the tautological subbundle on GM fibers, and the unique stable bundle of Mukai vec-
tor .2;�D �E; 3/ appearing in Lemma 8.4 on So. Let ioW So ! S be the inclusion of the
special fiber. Then the object io�O.�D/ is spherical; indeed, by our choice of the curve
C � F6 the object O.�D/ does not deform in the family � W S ! C , so the claim holds by
[21, Proposition 1.4]. Now consider the following autoequivalence of Dperf.S/:

… D Tio�O.�D/ ı TU=C ı TO=C ı .� ˝ OS .H //Œ�1�;

where Tio�O.�D/ is the spherical twist around io�O.�D/, and TU=C and TO=C are the spher-
ical twists associated to the spherical functors Dperf.C / ! Dperf.S/ given by F 7! ��F ˝ U

and F 7! ��F . Each of these three spherical twists are associated to C -linear spherical func-
tors: in the case of Tio�O.�D/ for the functor Dperf.o/ ! Dperf.S/, V 7! io�O.�D/˝ V .
Hence the spherical twists, and thus …, are also C -linear.

The autoequivalence … induces an autoequivalence …c on Dperf.Sc/ for every fiber by
base change. For c ¤ 0, it is the residual action ˆGM of Theorem 4.15 on GM K3s as the
CY2 covers of Kuznetsov components of corresponding special GM threefolds. For c D o, by
[21, Proposition 2.7 and Proposition 2.9] we get

…o D T2
O.�D/ ı TU ı TO ı .� ˝ O.D CE//Œ�1� D T2

O.�D/ˆ
GM;
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the autoequivalence considered in Lemma 8.8 and Proposition 8.9. In particular, for every
c 2 C , the autoequivalence …c is an involution that generates a Z=2-action on Dperf.Sc/.

The functor… ı… is the identity on every fiber, and thus sends every skyscraper sheaf Os

for s 2 S to itself. Since … ı… is a Fourier–Mukai transform by construction, one can easily
adapt the proof of [19, Corollary 5.23] to show that it is given by tensor product with a line
bundle; this line bundle is trivial on the fibers of � , i.e. it is pulled back from C . Shrinking C
further if necessary, we may assume this line bundle to be trivial, and therefore that … is an
involution of Dperf.S/.

We therefore have a homomorphism �W Z=2! �0.Aut.Dperf.S/=C // as in Corollary 3.4,
and want to show that the obstruction to the existence of an 1-lift vanishes. The restriction
of � to So can be lifted to a Z=2-action, as by Proposition 8.9 it is conjugate to the residual
action on Dperf.So/ coming from its realization as the CY2 cover of the Kuznetsov component
of the corresponding quartic double solid. By Proposition 3.9, we can replace C by an étale
neighborhood B of o 2 C such that the obstruction to lifting � vanishes.

We have thus obtained a Z=2-action on Dperf.S/ over B whose generator acts by the
involution …. The associated invariant category C WD Dperf.S/

Z=2 has the properties claimed
in Theorem 1.6. Indeed, by Proposition 3.15 the category C is smooth and proper over B ,
and by Lemma 3.14 the fiber Cb over b 2 B is given by the invariant category Db.Sb/

Z=2 for
the induced Z=2-action �b . Let Y ! P3 be the quartic double solid branched along So, and
for b ¤ 0 let Xb be the GM threefold opposite (in the sense of Definition 4.12) to the GM
surface Sb . By construction, for b D o the action of �o on Db.So/ is conjugate to the residual
action on Db.So/ from Theorem 4.15 (1), and thus its invariant category is equivalent to Ku.Y /

(Lemma 4.5). Similarly, by construction and Remark 4.2, for b ¤ o the action �b is equivalent
to the residual action on Db.Sb/ from Theorem 4.15 (3), so its invariant category is equivalent
to Ku.Xb/.
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