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Kuznetsov’s Fano threefold conjecture via
K3 categories and enhanced group actions

By Arend Bayer at Edinburgh and Alexander Perry at Ann Arbor

Abstract. We settle the last open case of Kuznetsov’s conjecture on the derived cate-
gories of Fano threefolds. Contrary to the original conjecture, we prove the Kuznetsov compo-
nents of quartic double solids and Gushel-Mukai threefolds are never equivalent, as recently
shown independently by Zhang. On the other hand, we prove the modified conjecture asserting
their deformation equivalence. Our proof of nonequivalence combines a categorical Enriques-
K3 correspondence with the Hodge theory of categories. Along the way, we obtain a categorical
description of the periods of Gushel-Mukai varieties, which we use to resolve a conjecture of
Kuznetsov and the second author on the birational categorical Torelli problem, as well as to give
a simple proof of a theorem of Debarre and Kuznetsov on the fibers of the period map. Our
proof of deformation equivalence relies on results of independent interest about obstructions to
enhancing group actions on categories.

1. Introduction

We work over the complex numbers. If V' is a smooth Fano threefold of Picard number
1 with ample generator H € Pic(V'), then the index of V' is the integer i such that Ky = —i H
and the degree is the integer d = H 3. The classification of Fano threefolds [22] shows that if
i =4thenV =~ P3,ifi = 3 then V isaquadric,ifi = 2thenl < d < 5,andifi = 1 thend is
even, d # 20,and 2 < d < 22. Moreover, for any pair (i, d) satisfying these restrictions, there
is a unique and explicitly described deformation class of Fano threefolds with these numerics.
For instance:

* Fano threefolds Y of Picard number 1, index 2, and degree 2 are quartic double solids,
i.e. double covers Y — P3 branched along a quartic surface.

* Fano threefolds X of Picard number 1, index 1, and degree 10 are Gushel-Mukai (GM)
threefolds, i.e. either intersections X = Gr(2,5) NP7 N Q of the Grassmannian Gr(2, 5)
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with a codimension 2 linear subspace and a quadric in the Pliicker embedding (in which
case X is called ordinary), or double covers X — Gr(2,5) NP® of a codimension 3
linear section branched along a quadric section (in which case X is called special).

There are some curious classical “coincidences” between the families with numerical
invariants (i = 2,d) and (i = 1,4d + 2). For instance, the rationality of a (generic) Fano
threefold in a given family is preserved under this correspondence (see [5]). At the level of
Hodge theory, the dimensions of the intermediate Jacobians on each side also match, except
for d = 1 (see Remark 1.3 below).

1.1. Kuznetsov’s conjecture. In [29] Kuznetsov suggested an intrinsic explanation for
these coincidences, in terms of bounded derived categories of coherent sheaves. If Y is a Fano
threefold of Picard number 1 and index 2, there is a semiorthogonal decomposition

D°(Y) = (Ku(Y). Oy. Oy (H)).
where Ku(Y) is the subcategory — now known as the Kuznetsov component — defined by
(1.1) Ku(Y) = {F e D’(Y) | Ext*(Oy, F) = Ext*(Qy (H), F) = 0}.

If X is a Fano threefold of Picard number 1, index 1, and degree d, then d = 2g — 2 for an
integer g > 2 known as the genus of X. If g > 6 is even, there is a semiorthogonal decompo-
sition

D°(X) = (Ku(X). €. Ox).
where & is a canonical exceptional rank 2 vector bundle on X constructed by Mukai (see
[4, Theorem 6.2]), and

(1.2) Ku(X) = {F € D°(X) | Ext*(Ox. F) = Ext*(&, F) = 0}.

For example, if X is a GM threefold, then g = 6 and & is the pullback of the tautological rank
2 subbundle on Gr(2, 5).

Kuznetsov conjectured the categories Ku(Y) for Y of index 2 and degree d can be
realized as Ku(X) for X of index 1 and degree 4d + 2. More precisely, let ‘Mil denote the
moduli stack of Fano threefolds of Picard number 1, index i, and degree d; this is a smooth
irreducible stack of finite type (see [25]).

Conjecture 1.1 ([29]). For 1 < d < 5 there exists a correspondence
7 C M3 x Mg

that is dominant over each factor and such that for any point (Y, X)) € Z there is an equivalence
of categories Ku(Y) >~ Ku(X).

Remark 1.2. In this paper, we work with enhanced triangulated categories (see Sec-
tion 1.6), so by an equivalence Ku(Y) ~ JKu(X) we mean an equivalence of such enhanced
categories; this amounts to Ku(Y') >~ Ku(X) being given by a Fourier—Mukai kernel on ¥ x X.
Technically, Kuznetsov’s conjecture as stated in [29] only requires the existence of a trian-
gulated equivalence Ku(Y) ~ JKu(X), but a different conjecture of Kuznetsov [28, Conjec-
ture 3.7] implies any such equivalence is of Fourier—Mukai type. In fact, in the cases of interest
in this paper, the Fourier—Mukai-type conjecture was recently proved in [41], so our assumption
that all equivalences are enhanced is harmless.
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As evidence, Kuznetsov [29] proved Conjecture 1.1 for d = 3,4, 5.

Remark 1.3. For d = 1 the conjecture fails, for the following reason. If V' is a Fano
threefold and # C D°(V) is any semiorthogonal component defined as the orthogonal to an
exceptional sequence, then the HKR isomorphism and additivity of Hochschild homology
gives an isomorphism HHj(A) = HY2(V). Thus, for (Y, X) € ‘Mfi X ‘Mid+2’ a necessary
condition for the existence of an equivalence

Ku(Y) ~ Ku(X)

is that h12(Y) = h!2(X). This equality holds for d = 2,3, 4, 5, but it fails for d = 1, as then
h'2(Y) = 21 while h12(X) = 20. In fact, for d = 1 there is some subtlety in even defining
Ku(X) — note that in (1.2) we excluded the case g = 4 — but this argument applies to any
possible definition of Ku(X). Instead, in an article in preparation Kuznetsov and Shinder show
that Ku(X) and Ku(Y') are related by a degeneration and resolution: there exists a smooth
proper family of categories with generic fiber JKu (X) and special fiber a categorical resolution
of Ku(Y') for anodal Y.

Bernardara and Tabuada [8] observed that Conjecture 1.1 also fails for d = 2, essentially
for dimension reasons: the categories JKu(X) of GM threefolds vary in a 20-dimensional fam-
ily, while M% is only 19-dimensional. Thus, if Z C :M% X M}O is a correspondence parameter-
izing Fano threefolds with equivalent Kuznetsov components, then Z does not dominate M%O.
This left open the question of whether there could be such a correspondence dominating M2,
as suggested by the dimension count.

1.2. Main results. Our first main result says that, somewhat surprisingly, there does not
even exist a nonempty correspondence Z C M3 x M}O parameterizing equivalent Kuznetsov
components, and thus Conjecture 1.1 fails maximally for d = 2.

Theorem 1.4. Let Y be a quartic double solid, and let X be a GM threefold. Then
Ku(Y') and Ku(X) are not equivalent.

Remark 1.5. This result was also recently shown by Zhang [62], via a completely dif-
ferent method, using uniqueness of (Serre-invariant) Bridgeland stability conditions and moduli
spaces of stable objects.

In view of the failure of Conjecture 1.1 for d = 2, Kuznetsov suggested a weakening of
the conjecture, which asserts that the categories Ku(Y) and Ku(X) are “deformation equiva-
lent”. Theorem 1.4 can be thought of as a negative result in this direction, as the simplest way
the modified conjecture could be true is if Ku(Y) >~ Ku(X) for some (¥, X) € M% X :M%O.
Nonetheless, our second main result confirms Kuznetsov’s modified conjecture.

Theorem 1.6. There exists a smooth pointed curve (B, 0) and a smooth proper B-linear
category C such that:

(1) The fiber C, is equivalent to Ku(Y') for a quartic double solid Y .
(2) Forb € B\ {0}, the fiber Cp is equivalent to Ku(Xp) for a GM threefold Xy,
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We expect this result to be a useful tool for relating Bridgeland moduli spaces of objects
in Kuznetsov components of quartic double solids and GM threefolds.

Remark 1.7. See Section 2.1 for a summary on B-linear categories. In general, a B-lin-
ear category should be thought of as a “family of categories parameterized by B”; there is
a well-behaved notion of base change for such categories, which in particular gives rise to
a k(b)-linear fiber category Cp for any b € B. Theorem 1.6 thus informally says that the
Kuznetsov components of GM threefolds smoothly specialize to those of quartic double solids.

Our method of proof of Theorem 1.4 naturally leads to our third main result, concerning
the “categorical Torelli problem”. Namely, the intermediate Jacobian of a Fano threefold X is
determined by its Kuznetsov component [54], and hence the association X +— Ku(X) can be
thought of as a categorical lift of the period map. The categorical Torelli problem then asks
to what extent X is determined by Ku(X). Positive answers are known in many situations;
see [58] for a recent survey and references. One particularly interesting open case is that of
GM threefolds, for which the 3-dimensional case of a conjecture of Kuznetsov and the second
author predicts the following.

Conjecture 1.8 ([38, Conjecture 1.7]). If X; and X, are GM threefolds such that there
is an equivalence Ku(X1) >~ Ku(X»), then X1 and X, are birational.

We note that by the duality conjecture [37, Conjecture 3.7] proved in [38], there are
indeed 2-dimensional families of birational GM threefolds with equivalent Kuznetsov com-
ponent. More precisely, [13] introduces a notion of period partnership and duality for GM
varieties (see Section 5.3 for definitions), shows that these relations imply birationality, and
explicitly describes the locus of period partners and duals of a given GM variety in terms of an
associated EPW sextic (the locus being 2-dimensional for a GM threefold), while the duality
conjecture implies that the Kuznetsov components of period partners or duals are equivalent.
We show that this is in fact the only way for GM threefolds to have equivalent Kuznetsov com-
ponents, and therefore resolve Conjecture 1.8 while simultaneously computing the fiber of the
“categorical period map’:

Theorem 1.9. Let X| and X, be GM threefolds. Then
JCM(XI) ~ JCM(Xz)

if and only if X1 and X, are period partners or duals. In particular, if Ku(X1) >~ Ku(X>3),
then X1 and X, are birational.

One of the appeals of Theorem 1.9 is that the expected corresponding result for the
ordinary period map, i.e. with Kuznetsov components replaced by intermediate Jacobians,
is currently unknown. This illustrates the utility of the extra structure provided by working
categorically.

Remark 1.10. Under a genericity assumption, the birationality of X; and X, above
was recently shown in [23], via a completely different method, and without the genericity
assumption in the upcoming [24].
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The proofs of Theorems 1.4, 1.6, and 1.9 involve ideas of independent interest, sketched
below.

Categorical Enriques-K3 correspondence. The Kuznetsov components of quartic
double solids and GM threefolds are Enriques categories, in the sense that their Serre func-
tors are of the form 7 o [2] where 7 is a nontrivial involution generating a Z/2-action. To any
Enriques category, there is an associated 2-Calabi—Yau (CY2) cover, defined as the invariant
category for the Z/2-action. By [36], if Y — P3 is a quartic double solid with branch locus
a quartic K3 surface Y}, C P3, then the CY2 cover of Ku(Y) is D(Y;,), while if X is a GM
threefold, the CY2 cover of Ku(X) is the Kuznetsov component of the “opposite” GM vari-
ety X°P (a Fano fourfold if X is ordinary or a K3 surface if X is special, see Definition 4.12);
these CY2 categories are called K3 categories because their Hochschild homology agrees with
that of a K3 surface.

As reviewed in Section 4, the CY2 cover of an Enriques category admits a residual
Z./2-action, which should be thought of as an analogue of the covering involution of a K3
surface over an Enriques surface; in the case of DP(Y},) and JKu(X°P) these actions can be
described explicitly, see Theorem 4.15. One of our key observations is that two Enriques
categories are equivalent if and only if their CY2 covers are Z/2-equivariantly equivalent
(Lemma 4.9). This is useful as K3 categories are often easier to understand.

Outline of the proof of Theorem 1.4. In particular, Theorem 1.4 reduces to proving the
nonexistence of a Z/2-equivariant equivalence D°(Yy;) =~ JKu (X °P). To rule out such an equiv-
alence, we study the induced Z/2-equivariant isometry ﬁ(Ybr, 7) =~ ﬁ(JCu (X°P),Z) between
their Mukai Hodge structures, whose definitions are reviewed in Section 5.1. This leads to a
contradiction to constraints on the periods of GM fourfolds when X is ordinary (Theorem 7.1),
and those of GM surfaces when X is special (Lemma 7.3).

Enhanced group actions. The above discussion elided a subtlety about Z/2-actions.
In general, if G is a finite group, then there are several possible notions of an action of G on
a category C. Naively, one might consider a homomorphism ¢ from G to the group of auto-
equivalences modulo isomorphisms of functors. However, more structure is needed to define
a reasonable category €% of G-equivariant objects in C; namely, following Deligne [16], we
need to specify suitably compatible isomorphisms of functors ¢(g) o ¢(g’) = ¢(g - g). This
suffices if € is an ordinary category, but if € is triangulated then in general €% need not be (see
[17, Theorem 6.9] for a sufficient condition).

To correct this, we instead work with an enhanced triangulated category € — we use
oo-categorical enhancements, see Section 1.6 — and consider co-categorical group actions on C.
Then there is a well-behaved category € of invariants, but the price we pay is that it is a pri-
ori much harder to specify a group action of G on C, as it requires an infinite hierarchy of
data. At the first two levels, if hC denotes the triangulated homotopy category of C, then an
oo-categorical action on C determines both a naive G-action on hC given by a homomor-
phism ¢ as above, as well as a G-action on hC in the sense of Deligne; we call the former
a l-categorical action on C, and the latter a 2-categorical action. We study obstructions to
and uniqueness of lifts of 1- and 2-categorical actions to co-categorical ones. In particular, we
show that if € satisfies a connectivity hypothesis on Hochschild cohomology (which holds for
most categories of interest), then given a 1-categorical action there is a single obstruction to the
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existence of an co-categorical lift, and the set of lifts form a torsor over an explicit cohomol-
ogy group (Corollary 3.4); moreover, this obstruction and torsor are the exact same as those
controlling 2-categorical lifts. This in particular answers a question raised in [17]. In the spe-
cial case where C is the derived category of a variety, the result is the following enhancement
of [6, Theorem 2.1].

Theorem 1.11. Let X be a connected smooth proper variety over a field k. Let G be
a finite group with a group homomorphism ¢ to the group of autoequivalences of DP(X).
Then there is a canonical obstruction class ob(¢p) € H3(BG, k*), where the G-action on k*
is trivial, such that an co-categorical lift of ¢ exists if and only if ob(¢p) = 0, in which case the
set of equivalence classes of such lifts is an H2(BG, k™)-torsor.

The complete result in Corollary 3.4 applies in the relative setting where we consider
categories C that are linear over a base scheme, instead of merely a field. An important technical
result is that the vanishing of the obstruction mentioned above is an open condition in the étale
topology of the base (Proposition 3.9).

Outline of the proof of Theorem 1.6. By our discussion above, if X is a special GM
threefold and Y is a quartic double solid, then the CY2 covers of their Kuznetsov components
are D°(X°P) and D°(Y},), where X°P is a GM K3 surface and Y, is a quartic K3 surface,
and the Kuznetsov components can be recovered as the invariant categories for the residual
Z,/2-actions. The idea of the proof of Theorem 1.6 is thus to find a specialization of X°P to
a quartic K3, with a Z/2-action that restricts on fibers to the residual Z/2-actions. To do so,
we first construct such a specialization with a 1-categorical action on the family of derived
categories of the K3 surfaces, and then use the general results discussed above to lift this
to an oo-categorical action. Passing to invariant categories gives the category C promised by
Theorem 1.6, which is smooth and proper by a general result (Proposition 3.15) that we prove.

The role of derived algebraic geometry. We briefly explain the role played by derived
algebraic geometry, more specifically stable co-categories, in this paper. We need the notion
of a category linear over a base B, along with base change. Sometimes, one considers such
categories as admissible B-linear subcategories of Dpe(X) for a scheme X over B; this is
e.g. the approach taken in [3]. However, we know of no such embedding of the category € in
Theorem 1.6.

Instead, as explained above C is constructed as the invariant category for a Z/2-action on
the derived category Dpef(&) of the total space § of a family of K3 surfaces over B. A result
of Elagin [17, Corollary 6.10] allows to construct from a 2-categorical action on Dpe(§) a tri-
angulated structure on the invariant category, but it does not come with a natural B-linear
structure that satisfies base change. Instead, our results in Section 3 show that the Z/2-action
on the triangulated Dy (&) lifts to an action on its enhancement as a oo-category; then the
desired properties of the invariant category are automatic.

Categorical description of periods. As a byproduct of our proof of Theorem 1.4, we
obtain a categorical description of the periods of even-dimensional GM varieties. GM vari-
eties are generalizations of GM threefolds to dimensions 2 < n < 6, with similarly defined
Kuznetsov components (see Definition 4.11 and equation (4.1)). If W is such a variety of
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dimension 4 or 6, then Ku (W) is canonically the CY2 cover of an Enriques category (gener-
alizing the discussion above for W = X°P), and hence carries a canonical residual Z/2-action.
If n = dim(W), the period map assigns to W the Hodge structure H” (W, Z)¢ given as the
orthogonal to the sublattice H* (Gr(2, 5),Z) C H"(W, Z).

Proposition 1.12. Let W be a GM variety of dimension n = 4 or 6. Let H(Ku(W), Z)o
denote the orthogonal to the invariant sublattice H(Ku(W), Z)%/? c H(KXu(W), Z) for the
residual 7./ 2-action. Then there is an isometry of weight 2 Hodge structures

H(Ku(W). Z)o = H"(W.Z)o(5 — 1),
where (5 — 1) on the right denotes a Tate twist.

Our main application, to Theorem 1.9, is explained below. As another application, we
give a simple proof of a recent result of Debarre and Kuznetsov [14], which identifies the
periods of even-dimensional GM varieties that are “generalized partners or duals” (Theo-
rem 5.11), and implies the period map factors through the moduli space of double EPW
sextics.

Remark 1.13. In the work [54], canonical weight 0 and —1 Hodge structures Kg’p (A)
and Ktlop (+4) are constructed for any admissible subcategory A of the derived category of
a smooth proper variety, which can be thought of as versions of even and odd degree cohomol-
ogy of #A. If A = Ku(W) for an even-dimensional GM variety, then Kg)p(eA) is up to Tate
twist the Mukai Hodge structure. For many odd-dimensional Fano varieties (including GM
varieties), if #4 is taken to be an appropriate Kuznetsov component, then KtIOP(eA) recovers the
middle Hodge structure of W on the nose. In this way, the categorical description of periods in
even dimensions is more subtle than in odd dimensions.

Outline of the proof of Theorem 1.9. If X; and X, are GM threefolds with
Ku(X1) =~ Ku(X2),
then passing to CY2 covers we obtain an equivalence
Ku (Xfp) ~ Ku (X;p)

equivariant for the residual Z/2-actions. By a trick one can reduce to the case where X and X,
are ordinary, so that X 10 Pand X ;)p are GM fourfolds. Then Proposition 1.12 implies an isometry
of Hodge structures

HY (X", Z)o = H* (X", Z)o.

Theorem 1.9 then follows by combining this with the factorization of the period map through
the moduli space of double EPW sextics (mentioned above) and the injectivity of the period
map for double EPW sextics (by Verbitsky’s Torelli theorem). The moral of this argument is
that passing to CY?2 covers allows us to leverage Torelli theorems for hyperkihler fourfolds.

1.3. Further conjectures and questions. We highlight several further directions sug-
gested by our work.
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Birational geometry and intermediate Jacobians of the threefolds. Heuristic rela-
tions between derived categories and birational geometry [33] suggest that if ¥ were a quartic
double solid which is birational to a GM threefold X, then Ku(Y) >~ Ku(X). Together with
Theorem 1.4, this leads to the following conjecture.

Conjecture 1.14. Let Y be a quartic double solid, and let X be a GM threefold. Then
Y is not birational to X .

Motivated by this, we also propose:

Conjecture 1.15. Let Y be a quartic double solid, and let X be a GM threefold. Then
the intermediate Jacobian J(Y') is not isomorphic to J(X) as a principally polarized abelian
variety.

We note that J(X) and J(Y) are both 10-dimensional. One could hope to address Con-
jecture 1.15 by proving a description for the singular locus of the theta divisor of J(X) in
terms of Bridgeland moduli spaces for Ku (X ). Our main interest in Conjecture 1.15 is that it
explains both Theorem 1.4 and Conjecture 1.14.

Conjecture 1.15 = Theorem 1.4. By [54, Lemma 5.30] (cf. Remark 1.13) an equiva-
lence Ku(Y) ~ Ku(X) would imply an isomorphism J(Y) = J(X) of principally polarized
abelian varieties. m]

Conjecture 1.15 = Conjecture 1.14. For a Fano threefold W, the Clemens—Griffiths
component Jog(W) — defined as the product of the principally polarized factors of J(W)
that are not Jacobians of curves — is a birational invariant (see [9]). It follows from [61] that
Jeg(Y) = J(Y), soif Y is birational to X then we must have J(Y) =~ J(X). m|

Remark 1.16. Conjecture 1.15, and hence Conjecture 1.14, are shown for a generic
GM threefold X in [11, Corollary 7.6].

Loci of equivalent Kuznetsov components. Conjecture 1.1 motivates studying in gen-
eral the locus where Kuznetsov components are equivalent in families of Fano varieties. We
note the following consequence of work of Anel and Toén [2, Corollaire 3.3].

Theorem 1.17. For j = 1,2, let C; be a smooth, proper, connected S;-linear cate-
gory for a scheme S;. Then the locus Z C Sy x S» of points (s1,52) € S1 x S2 such that
(C1)s; = (Ca)s, is a countable union of locally closed subspaces.

In Section 2, we review the notion of connectedness for a linear category, and explain
a useful criterion (Corollary 2.11) for checking it based on [32]. The criterion applies to the
Kuznetsov components of many Fano varieties, including those of Fano threefolds of Picard
number 1 and of cubic fourfolds [30]." By Theorem 1.17 the locus where connected Kuznetsov

D See [4, Section 6] for a (somewhat ad hoc) definition of the Kuznetsov component without restrictions on
the degree.
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components become equivalent in the product of two moduli spaces is a countable union of
locally closed subspaces. We believe such loci deserve further study. For instance:

Question 1.18. When do equivalences between Kuznetsov components specialize, i.e.
when are the locally closed subspaces above actually closed?

This specialization property holds in the setting of Conjecture 1.1: for d = 3,4,5 by
the results of [29] combined with the categorical Torelli theorems for Fano threefolds Y of
Picard number 1, index 2, and degree d = 3,4, 5; for d = 2 by Theorem 1.4; and for d = 1
by Remark 1.3. For cubic fourfolds, the results of [3] give a partial answer to Question 1.18:
they imply that derived equivalences between Kuznetsov components of cubic fourfolds and
K3 surfaces specialize, as they are given by 2-dimensional moduli spaces of stable objects.

1.4. Related work. There are alternative approaches to some of our results: Theo-
rem 1.4 was proved independently by Zhang in [62], based on a study of Bridgeland moduli
spaces, while Theorem 1.6 was proved independently by Kuznetsov and Shinder in work in
preparation [39] (see also [35, Section 5.4]), based on a degeneration argument and a theory of
“absorption of singularities”. Our paper and these two use completely different methods, which
we believe are interesting in their own right.

After posting the first version of this paper, we learned that Zoé Schroot has obtained
results similar to ours in Section 3 on enhancing group actions on categories.

We also note that some of the ideas in this paper are used in the upcoming [56] to
describe Bridgeland moduli spaces for Enriques categories, like the Kuznetsov components
of GM threefolds or quartic double solids.

1.5. Organization of the paper. In Section 2 we review the formalism of enhanced
triangulated categories linear over a base scheme, as well as their Hochschild cohomology. In
Section 3 we discuss co-categorical group actions on (linear) categories, and in particular study
the obstruction to lifting an action on the homotopy category to the co-level. In Section 4 we
explain the correspondence between Enriques categories and their CY2 covers. In Section 5 we
review Mukai Hodge structures and prove Proposition 1.12. In Section 6 we prove Theorem 1.9,
in Section 7 we prove Theorem 1.4, and finally in Section 8 we prove Theorem 1.6.

1.6. Conventions. Schemes are tacitly assumed to be quasi-compact and quasi-sepa-
rated. A variety over a field k is an integral scheme which is separated and of finite type over k.
Fano varieties are smooth by convention.

For a scheme X, Dpe(X) denotes the category of perfect complexes, Dy (X) denotes
the unbounded derived category of quasi-coherent sheaves, and DP(X) denotes the bounded
derived category of coherent sheaves. (In fact, in all cases where we consider D®(X) in this
paper, D’(X) = Dpert(X), so it is just a matter of notation.) All functors are derived by con-
vention. In particular, for a morphism f: X — Y of schemes we write fx and f* for the
derived pushforward and pullback functors, and for £, F' € Dpe(X) we write £ ® F for the
derived tensor product.

For technical convenience all categories in the paper are considered as enhanced cate-
gories. More precisely, instead of k-linear triangulated categories we consider k-linear cat-
egories and functors between them in the sense of [52], i.e. we consider small idempotent-
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complete stable co-categories equipped with a module structure over DP(Spec(k)) (or equiv-
alently, when char(k) = 0, DG categories over k). In particular, for a variety X over k we
regard DP(X) as such a category; its homotopy category hD(X) is the classical triangulated
derived category. We note that giving a semiorthogonal decomposition of D°(X) is equivalent
to giving one of hDP(X), and by the results of [7] and [31] if € C D°(X) and D C D®(Y) are
semiorthogonal components of smooth proper varieties, then any functor ¢ — D of k-linear
categories is induced by a Fourier—Mukai kernel on X x Y.

If Cis a k-linear category, we use the notation Homy (E, F') € Dy.(Spec(k)) for the map-
ping object between objects E, F € €, see Section 2.1; in case € C D°(X) is a semiorthogonal
component of the derived category of a variety, then #Homy (E, F) coincides with the classical
derived Hom complex RHom(E, F).

In several places, we also need the general notion of categories linear over a base scheme,
briefly reviewed in Section 2.1.

As stated in the introduction, our main results are over the complex numbers, and corre-
spondingly in Section 5-Section 8 we work in this setting. However, in the foundational part of
the paper, Section 2-Section 4, we work over more general bases, as explained there.

Acknowledgement. We thank Sasha Kuznetsov, Laura Pertusi, and Xiaolei Zhao for
helpful discussions about this work. We are especially grateful to Bhargav Bhatt for explaining
to us the proof of Lemma 3.10 and suggesting Example 3.12, and to Sasha Kuznetsov for
carefully reading a preliminary version of this paper. We also thank the referee for their careful
reading.

2. Hochschild cohomology of linear categories

In this section we discuss categories linear over a base scheme and their Hochschild
cohomology. In Section 2.1 we recall some of the basic formalism of linear categories, in Sec-
tion 2.2 we define Hochschild cohomology and review some of its properties, and in Section 2.3
we define the notion of connectedness of a linear category (which appears as a hypothesis in
Theorem 1.17) and explain a convenient method for checking it in practice.

2.1. Linear categories. Fix a base scheme S. We use the notion of S-linear cate-
gories as in [52]. Namely, the derived category Dpe(S) is a commutative algebra object in
the oco-category of small idempotent-complete stable co-categories, and an S-linear category
is a module object over Dper(S); in particular, an S-linear category € is equipped with an
action functor Dpe(S) x € — C.

There is a well-behaved base change operation along any morphism 7" — S which pro-
duces a T'-linear category

eT =C ®Dpen-(S) Dperf(T)-
This construction is compatible with semiorthogonal decompositions in the following sense.
We say a semiorthogonal decomposition C = (Cy, ..., Cy) is S-linear if the Dpe(S)-action
preserves each of the components C;, in which case C; inherits the structure of an S-linear
category. Then for any morphism 7" — §, there is an induced 7 -linear semiorthogonal decom-
position

Cr =((COT.....(Cm)T).
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For a point s € S, we use the following terminology. The fiber C5 of € over s is the
base change along Spec(kx(s)) — S. Similarly, if F:C — D is a functor between S-linear
categories, its fiber over s is the functor Fy: Gy — Dj obtained by base change.

We also recall that for objects £, F € C, there is a mapping object Homg (E, F') € Dg(S)
characterized by equivalences

(2.1) MaquC(S)(G, Homg (E, F)) ~ Mape(E ® G, F),

where Map(—, —) denotes the space of maps in an co-category.

Example 2.1. Let f: X — S be a morphism of schemes. Then Dye(X) is naturally an
S-linear category. By [7], for T'— § the base changed category Dpe(X )7 recovers Dper(X7),
where X7 is the derived base change (which agrees with the classical base change if, for
example, X — § is flat) of X along " — S. Further, if E, F' € Dpe(X), then

Homg (E, F) ~ fedomyx(E, F),

where Homy (E, F) € Dy (X) denotes the derived sheaf Hom on X.

2.2. Hochschild cohomology. Recall that given two S-linear categories € and D, there
is a natural S-linear category Fung (C, D) whose objects are the S-linear functors € — D.

Definition 2.2. Let C be an S-linear category. The sheafy Hochschild cohomology over
S of Cis

(2.2) HIH*(C/S) := Homs (ide, ide) € Dgc(S),

i.e. the endomorphism object of ide regarded as an object of Fung(C, C). The Hochschild
cohomology over S of C is the derived global sections

HH*(C/S) := RI(HH*(C/S)) € D(Modr(s,05))

Fori € Z denote by H J'(€/S) the i -th cohomology sheaf of H H*(C/S), and by HH' (C/S)
the i-th cohomology module of HH*(C/S). When € = Dpe(X) for a morphism of schemes
X — S, we use the simplified notation J #*(X /S) and HH* (X /S) for Hochschild cohomol-

ogy.

Warning 2.3. Sometimes different notation is used for Hochschild cohomology; for
instance, in [54] which we shall reference several times below, sheafy Hochschild cohomology
is denoted by HH*(C/ S).

Example 2.4. Let X — S be a morphism of schemes. Then there is an equivalence
HH*(X]S) = Homs(Oa,Op)

where O € Dge(X X g X) is the structure sheaf of the diagonal A C X xg X. Indeed, we
can compute J H*(X/S) as the Hochschild cohomology of the presentable S-linear cate-
gory Dgc(X) = Ind(Dpers(X)) (see [54, Remark 4.2]), and then the claim follows from the
equivalence Dgc(X xs X) >~ Fung(Dgc(X), Dge(X)) of [7] which sends Oa to idp, (x)-
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Remark 2.5. Sheafy Hochschild cohomology satisfies a base change formula: if € is
an S-linear category and g: T — S is a morphism, then there is a natural equivalence

(2.3) gEHIH*(C)S) = HIH*(Cr/T).
This morphism is constructed as follows. The base change formalism gives a functor
Fung (C, €) ®p,,(s) Dpert(T) — Funz (Cr, Cr),
which induces a morphism on mapping objects
grHH*(C/S) =~ Homy (ide K O, ide K O7) — Homy(ide,,ide,) = HH*(Cr/T),

where the first equivalence is the Kiinneth formula for mapping objects [52, Lemma 2.10]. That
this morphism is an equivalence is proved (in a more general context) in [54, Lemma 4.3].

Base change also induces maps on Hochschild cohomology. Namely, taking RI"(—) of
the adjoint of the map (2.3) gives a natural map

HH*(C/S) — HH*(Cr/T)

(which is usually not an equivalence).

We will be concerned with the case of smooth proper S-linear categories. We refer to
[52, Section 4] for background on this notion. In particular, we note that if € is an S-linear
semiorthogonal component of Dpe(X) where X — S is a smooth proper morphism, then €
is a smooth proper S-linear category [52, Lemma 4.9]. Although not strictly necessary for
our purposes, we observe that in the smooth proper case Hochschild cohomology satisfies the
following finiteness property.

Lemma 2.6. Let C be a smooth proper S-linear category. Then H H*(C/S) € Dpers(S)
is a perfect complex.

Proof. By definition, it suffices to show the functor category Fung (C, €) is proper. In
fact, it is smooth and proper. Indeed, an S-linear category is smooth and proper if and only if it
is dualizable, in which case the dual is given by the opposite category C°P ([52, Lemma 4.8]).
Thus there is an equivalence Fung(C, €) >~ C% ®p,_(s) €, and it follows that Fung (€, €) is
dualizable, being the tensor product of such categories. D

2.3. Connected linear categories. Note that for any S-linear category €, by the defi-
nition of JH*(C/S) there is a canonical morphism Qs — K H°(C/S).

Definition 2.7. Let C be an S-linear category. We say C is connected (over S) if for
every morphism of schemes 7" — S, we have

« HH'(Cr/T)=0fori <0,and
« O = HH(@r/T) is an isomorphism.

Remark 2.8. By base change for sheafy Hochschild cohomology (Remark 2.5), it suf-
fices to consider only affine schemes 7" in the definition of connectedness.
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The source of this terminology is the following example.

Example 2.9. Let f: X — S be a morphism of schemes. It follows from Example 2.4
that H#H'(X/S) =0 fori <0 and HH°(X/S) ~R® f,Ox. If f: X — S is a flat proper
surjective morphism with geometrically reduced and connected fibers, then the morphism
Os — RO £, Oy is an isomorphism. It follows that in this case, Dpert(X) is a connected S-linear
category.

The above example can sometimes be leveraged to deduce connectivity of a semiorthog-
onal component of Dper(X). Recall that if € — Dper(X) is the embedding of an S-linear
semiorthogonal component, then there is a restriction morphism

JIH*(X/S) = HI*(C/)S).

Kuznetsov [32] introduced a general method for controlling the cocone of this morphism,
which is particularly effective when C is defined as the orthogonal to an exceptional collec-
tion. In [32] everything is done relative to a base field, but the arguments work similarly over
a base ring, which is the case we will need. We recall the result below after introducing some
notation.

Let f: X — S be a smooth proper morphism of schemes with S = Spec(A4) affine. Let
Ej. ..., Ey € Dperf(X) be a relative exceptional collection, i.e. Ext;1 (Ei,Ej) =0fori > j
and Ext} (E;, E;) = A[0] for all i. Then there is an S-linear semiorthogonal decomposition

(2.4) Dperf(X) = (e, f*Dperf(S) ®Eq,..., f*Dperf(S) X En)
The pseudoheight of the collection Ey, ..., E;, is
ph(E1,..., Ep) = min (e(EaO,Eal) +---+e(Eap_1,Eap)

1<ap<ai<-<ap=<n
+ C(Ea,,s S_I(an)) - p)’

where
e(F, F') = min{k | ExtX(E, E") # 0}

(defined to be +o00 if Exty(E, E’) = 0)and ST/(F) = F ® w;/ls [~ dim(X/S)] is the inverse
of the relative Serre functor.

Proposition 2.10 ([32]). Let f: X — S be a smooth proper morphism of schemes with
S affine, let E1, ..., Ey € Dper(X) be a relative exceptional collection, and let C be defined
by the semiorthogonal decomposition (2.4). Then the restriction morphism

HH(X/)S)—> KK (C)S)
is an isomorphism fori < ph(Ey,..., Ey) —2 and an injection fori = ph(Eq,..., E,) — 1.

Using this, we can give a simple criterion for connectedness of a semiorthogonal compo-
nent.

Corollary 2.11. Let f: X — S be a smooth proper surjective morphism of schemes
with geometrically connected fibers. Let E1, ..., E, be finite locally free sheaves which form
a relative exceptional collection in Dyerr(X). Let C be defined by the semiorthogonal decom-
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position (2.4). If the relative dimension satisfies dim(X/S) > n + 1, then C is a connected
S-linear category.

Proof.  All of our assumptions are preserved by base change along a morphism 77 — S,
so we may assume S is affine and must prove

« HH (€/S) = 0fori < 0 and
« Os = HH°(C/S) is an isomorphism.

It follows from the definitions and the assumption that the E; are locally free sheaves that
ph(Eq,..., Ey) > dim(X/S) —n + 1. Therefore, if dim(X/S) > n 4 1, then Proposition 2.10
shows the map K K’ (X/S) — HH'(C/S) is an isomorphism for i < 0. By Example 2.9 this
finishes the proof. m]

Corollary 2.11 implies connectedness of many Kuznetsov components, including those
of Fano threefolds of Picard number 1 or of cubic fourfolds. Let us spell out explicitly how this
verifies the hypotheses of Theorem 1.17 in one example.

Example 2.12. Let ¥ — S be a smooth family of Fano threefolds of Picard number 1
and index 2, equipped with a line bundle @y (1) whose restriction to each geometric fiber ¥
is the ample generator of Pic(¥s). Then Oy, Oy(1) is a relative exceptional collection (in the
sense of [3, Section 3.3], cf. [59]), and the S-linear category Ku(¥) C Dper(¥) defined by

Dperf(:y) = (Ku(y)’ f*Dperf(S)» f*Dperf(S) ® (93/(1»

is smooth, proper, and connected over S, and satisfies Ku(¥)s ~ Ku(¥Y;) for every geo-
metric point s € S. Indeed, Oy, Oy (1) is a relative exceptional collection because this is so
fiberwise. The S-linear category Ku(¥) is smooth and proper as ¥ — S is so, connected
by Corollary 2.11, and by base change has as fibers the Kuznetsov components of the fibers
of ¥ —> §.

3. Group actions on categories

Throughout this section, G denotes a finite group. There are two notions of an action
of G on a triangulated category C appearing in the literature. The first one, often considered in
mirror symmetry, is simply a group homomorphism ¢ from G to the group of autoequivalences,
considered up to natural transformations. A second, finer notion was originally introduced by
Deligne in [16] and requires a choice of natural transformations

P(g)op(g) = d(g-g)

compatible with triple compositions. This finer notion is necessary for the definition of G-equi-
variant objects; we refer to [6] for a recent account, including of the obstruction to lifting the
former notion to the latter.

In this section, we consider actions on the homotopy category hD of an oo-category D
that lift to an action on D. In this context, the first and second notion above correspond to
1-categorical and 2-categorical group actions on D .
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First in Section 3.1 we discuss some generalities on group actions, focusing on obstruc-
tions to lifting 1-categorical group actions to co-categorical actions. In Section 3.2 we spe-
cialize to the case of group actions on linear categories, and show that for connected linear
categories over a base scheme there is a single obstruction, whose vanishing is an open con-
dition in the étale topology of the base (Proposition 3.9). Finally, in Section 3.3 we study the
category of (co)invariants for a group action on a linear category; this is the oco-categorical
analogue of Elagin’s notion [17] of the triangulated category of G-equivariant objects. In par-
ticular, we show that if the order of the group is invertible on the base scheme, then invariants
commute with base change (Lemma 3.14) and preserve the property of being smooth and
proper (Proposition 3.15).

3.1. Group actions oco-categorically. We freely use the language of co-categories, as
developed in [42]. We often think of oo-groupoids interchangeably as topological spaces,
under the standard correspondence (given by passage to geometric realizations and singular
simplicial sets).

We denote by BG the classitying space of G. When regarded as an co-groupoid, BG is
the nerve of the ordinary category with a single object whose endomorphisms are G. We write
* € BG for the unique object.

Definition 3.1. Let D be an oco-category, and let X € D be an object. An action of G
on X is a functor ¢: BG — D such that ¢ (x) = X.

Let us relate this co-categorical definition to some more classical notions.

3.1.1. 1-categorical actions. Suppose that D is an 1-category. For such a category, we
denote by N (D) its nerve, which is an oco-category. Let (BG); denote the 1-category with
a single object * whose endomorphisms are G, so that N((BG)1) = BG by definition. Recall
[43, Tag 002Y] the nerve construction induces a bijection

Hom((BG)1, D) = Hom(BG, N(D)),

where the left side is the set of all functors of 1-categories (BG); — D and the right is the
set of all functors of oco-categories BG — N (D). Note that a functor (BG); — D taking
to an object X € D is equivalent to the data of a homomorphism G — Aut X to the group
of automorphisms of X; we call this a 1-categorical action of G on X. Thus under the nerve
construction, Definition 3.1 recovers the notion of a 1-categorical action.

3.1.2. 2-categorical actions. Suppose that D is (2, 1)-category, i.e. a 2-category whose
2-morphisms are all invertible. For such a category, we denote by N(D) its Duskin nerve
[43, Tag 009T], which is an oo-category [43, Tag 00AC]. If D is a 1-category, regarded as
a 2-category with only identity 2-morphisms, then the Duskin nerve is identified with the usual
nerve, so the notation N (D) is unambiguous. By [43, Tag 00AU] the Duskin nerve construction
induces a bijection

Homyrax ((BG)1. D) = Hom(BG, N(D)),

where the left side denotes the set of all strictly unitary lax functors (BG); — D (in the sense
of [43, Tag 008R]) and we regard (BG); as a 2-category with only identity 2-morphisms. For
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simplicity let us assume D is a strict (2, 1)-category; then concretely, a strictly unitary lax func-
tor (BG); — D taking * to X amounts to the following data, which we call a 2-categorical
action of G on X:

» Forevery g € G, a I-morphism ¢(g): X — X such that ¢(1) = idy.
* For every pair g, f € G, a 2-morphism g r:¢(g) o ¢(f) = ¢(gf) such that the dia-

gram
() 0 d(g) 0 (1) =L 4(hg) 0 (1)
oW 1ig. fﬂ ﬂﬂhg.,f
$(h) o p(gf) = $(hgf)

1s commutative.

3.1.3. Obstructions to oco-actions. Now suppose D is an oo-category. For an object
X € D, let Aut X denote the space of automorphisms and let B Aut X denote its classifying
space. As the sub-oco-groupoid of D spanned by X is equivalent to B Aut X, a G-action on X is
tantamount to the data of a functor ¥: BG — B Aut X. We say two G-actions ¢, ¢': BG — D
are equivalent if there is an equivalence ¢ ~ ¢’ of functors. By the previous remark, equiva-
lence classes of G-actions on an object X € D are in bijection with the set of homotopy classes
of maps from BG to B Aut X .

This perspective is useful for building G -actions. Namely, consider the Postnikov tower

cor > T<2(BAutX) - 1< (BAutX) — 17<o(B Aut X) = *

of BAut X. So 7; (1<, (B Aut X)) = 0 fori > n, the map 1<, (B Aut X) — t<4—1(B Aut X)
is a fibration with fiber K(m,(B AutX),n), and B Aut X =~ lim t<,(B Aut X). (Here and
below, we typically suppress basepoints when dealing with homotopy groups.) Note that there
is an isomorphism

3.1 Tn(B Aut X) = m,—1 (Aut X);

in particular, it follows t<1 (B Aut X) ~ B mo(Aut X).

Now suppose we are given a map BG — 7<;(B Aut X). By the preceding observation,
such a map corresponds via taking ; to a group homomorphism ¢1: G — mo(Aut X). We
call ¢ a l-categorical action of G on X, because when X is regarded as an object of the
homotopy category hD then ¢ is precisely a 1-categorical action in the sense of Section 3.1.1.
We say a G-action ¢: BG — B Aut X is an oco-lift of ¢; if the composition

BG 2, BAutX — 1<1(B AutX)

recovers ¢ (upon taking 7r1). It is also convenient to study an intermediate notion. Namely, we
call amap ¢,: BG — 1<, (B Aut X) an n-lift of ¢ if the composition

BG ﬁ> T<p(BAut X) — 7<1(B Aut X)

recovers ¢1. We say two n-lifts are equivalent if they have the same homotopy class.
The n-lifts of ¢ can be studied via obstruction theory; below we spell out the simplest
case of 2-lifts. Note that o (Aut X) acts on ; (Aut X) for i > 1 via conjugation; under the
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identifications o (Aut X) = 71 (B Aut X) and 7; (Aut X)) = ;41 (B Aut X), this is the usual
action of the fundamental group on higher homotopy groups. In particular, a 1-categorical
action ¢1: G — mo(Aut X) also induces an action of G on 7; (Aut X) fori > 1.

Lemma 3.2. Let D be an oo-category, X € D an object, and ¢1: G — mo(Aut X)
a 1-categorical action of G on X. Regarding w1 (Aut X) as a local system on BG via the
action of G described above, then there is a canonical obstruction class

ob(¢1) € H3(BG, 71 (Aut X))

such that a 2-lift of ¢1 exists if and only if ob(¢p1) = 0, and in this case the set of equivalence
classes of 2-lifts is a H2(BG, w1 (Aut X))-torsor. If wi(Aut X) = 0 for i > 2, then the same
conclusion holds for oo-lifts.

Proof. The first claim holds by standard obstruction theory. If 7; (Aut X)) = 0 fori > 2,
then by (3.1) we have B Aut X =~ 7<»(B Aut X), so oco-lifts are the same as 2-lifts. O

3.2. Group actions on linear categories. Let S be a base scheme. Recall that the col-
lection of all S-linear categories (with morphisms between them the exact S-linear functors)
can be organized into an co-category Catg [52]. Thus, using the formalism of Section 3.1 we
can make sense of G-actions on S-linear categories.

3.2.1. Obstructions in terms of Hochschild cohomology. Our main observation is
that when negative Hochschild cohomology vanishes, then it is easy to classify oco-lifts of
1-categorical G-actions. For this, we need a preliminary lemma. If € is an S-linear category,
to emphasize the dependence on the S-linear structure we write Aut(C/S) for the space of
S-linear autoequivalences of C, i.e. the automorphism space of € as an object of Catg. Note also
that HH?(C/S) = H®(Homg (ide, ide)) has a I'(S, Og)-algebra structure, so we may consider
the group of units HH%(C/S)*.

Lemma 3.3. There are natural group isomorphisms

HHO(C/S)*  ifi =1,
71 (Aut(C/S)) = 1( °/8)” i
HH 7' (C/S) ifi > 2.
Proof. Note that in general, if D is an co-groupoid and X € D is an object, then there
is an isomorphism
i (D, X) = mi—1(AutX) fori > 1,

where the left side denotes the homotopy group of D (thought of as a topological space) based
at the point X . Further, suppose that D <> D’ is the sub-oo-groupoid spanned by some collec-
tion of objects in an co-category D’. If Map4, (X, X) denotes the space of endomorphisms of X
as an object of D’, then 7o(Mapy, (X, X)) is a monoid, whose group of invertible elements we
denote by 7o(Mapqy, (X, X))*. Then there are isomorphisms

mo(Mapqy, (X, X))* ifi =0,

i (Aut X) =
i ) {m(MapD,(X,X)) ifi > 1.
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Indeed, for i = O this holds by the definition of Aut X, while for i > 1 this holds because
k-morphisms in D’ are invertible (and hence coincide with k-morphisms in D) for k > 2.

As Aut(C/S) is the sub-co-groupoid spanned by the autoequivalences in the co-category
Fung (€, ), combining the above observations shows

7o (Mapgy, ¢ (c,¢) (ide, ide)) ™ ifi =1,

i (Aut(C/S), ide) = o .
l 7i—1(Mapgy, ¢ (e, (ide, ide)) if i > 2.

By the characterizing property of mapping objects (2.1) and the definition (2.2) of Hochschild
cohomology, we have

Mapg,,  e,e) (ide, ide) =~ Mapp, (s) (Os, HIH*(C/S)).
Taking homotopy groups, we conclude
7i Mapgyn ¢ e.¢) (ide. ide) =~ Ext™ (Og, HH*(€/S)) = HH ' (C/S).

All together, this proves the claimed formula for 7; (Aut(C/S)). O

Note that via conjugation 7o (Aut(C/S)) acts on the I'(S, @g)-algebra HH?(C/S), and
hence so does G for any 1-categorical action ¢1: G — mo(Aut(C/S)). Combining Lemma 3.2
and Lemma 3.3 gives the following.

Corollary 3.4. Let C be an S-linear category and ¢1: G — mo(Aut(C/S)) a 1-cate-
gorical action of G on C. Regarding HH®(C/S)* as a local system on BG via the action of G
described above, then there is a canonical obstruction class

ob(¢1) € H*(BG,HH’(C/S)™)

such that a 2-lift of ¢1 exists if and only if ob(¢p1) = 0, and in this case the set of equivalence
classes of 2-lifts is a H*(BG,HH®(C/S)*)-torsor. IFHH' (C/S) = 0 for i < 0, then the same
conclusion holds for oco-lifts.

Remark 3.5. Suppose C is an S-linear category such that I'(S, Os) — HH?(C/S)
is an isomorphism; this holds if € is a connected S-linear category, such as C = Dperf(X )
for a morphism X — S with assumptions as in Example 2.9. Then mo(Aut(C/S)) acts triv-
ially on HH?(C/S), because the conjugation action fixes id: ide — ide and the isomorphism
I'(S,0s) — HH®(C/S) takes 1 to ide. Hence if this condition holds in the setup of Corol-
lary 3.4, then the obstruction class lies in H3(BG, T'(S, Og)>), where I'(S, ©Og)* is a constant
local system on BG.

Remark 3.6. Let us make some comments about Aut(C/S) for an S-linear category C.

(1) Suppose € = Dperf(X), where X — S is a smooth proper morphism of schemes. Then
by [7] there is an equivalence Dpef(X X X) =~ Fung (Dperf(X), Dpers(X)) that takes
K € Dperf(X xg X) to the Fourier—Mukai functor ®x = pr,, (pr] (—) ® K). Therefore,
Aut(Dper(X)/S) is equivalent to the sub-oo-groupoid of Dpe(X X g X) spanned by
objects K such that g is an equivalence.
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(2) Suppose S = Spec A is affine. The homotopy category hC is a triangulated category
which is A-linear in the sense that it is enriched in A-modules. Let 7o (Aut(hC/A)) be
the group of A-linear exact autoequivalences of hC modulo isomorphisms of functors.
(Classically, this group may be denoted Aut(hC/A), but it is more consistent with our
notation above to rather denote by Aut(hC/A) the groupoid whose objects are A-linear
exact autoequivalences and whose morphisms are isomorphisms of functors.) There is
a natural group homomorphism

mo(Aut(C/A)) — mo(Aut(hC/A)).

The question of when this map is an isomorphism is interesting and difficult. In the case
where A =k is a field and € = Dper(X) for a smooth projective variety X over k,
the answer is positive; indeed, this follows from ((1)) together with the existence and
uniqueness of Fourier—Mukai kernels for triangulated equivalences [51, Theorem 2.2].

Remark 3.7. Our arguments have similar consequences for group actions on 1-cate-
gories. Let A be a ring. We use the term classical A-linear category to mean a 1-category
which is enriched in A-modules. Let Catf4l be the strict (2, 1)-category with objects the classical
A-linear categories, 1-morphisms the A-linear functors, and 2-morphisms the isomorphisms of
functors. For any € € Cat}, we can consider the notion of a 2-categorical action on € (in the
sense of Section 3.1.2). Any such action induces a homomorphism ¢1: G — 7o(Aut(C/A)),
where o(Aut(C/A)) denotes the group of A-linear autoequivalences modulo isomorphisms
of functors.

Conversely, suppose we are given a homomorphism ¢;: G — mo(Aut(C/A)), and we
want to understand when it lifts to a 2-categorical action. By analogy with the case of lin-
ear categories, define the A-algebra HH?(C/A) := Hom(ide, ide). Then there is a canonical
obstruction class ob(¢;) € H3(BG,HH?(C/A)*) such that a 2-categorical action lifting ¢,
exists if and only if ob(¢;) = 0, and in this case the set of equivalence classes of oco-lifts is
a H2(BG,HH®(C/S)*)-torsor. Indeed, the Duskin nerve N (Cati) is an oco-category, C can be
thought of as an object of N (Catfill), and its corresponding automorphism space Aut(C/A) has
o as described above, 771 (Aut(C/A)) = HH®(C/A)*, and vanishing higher homotopy groups;
therefore, the claim follows from Lemma 3.2 and the correspondence between oco-categorical
actionson C € N (Catjl) and 2-categorical actions on € € Catf41 described in Section 3.1.2.

In the case where HH?(C/A) = A4 and A = C is the field of complex numbers, this
obstruction to 2-categorical actions was proved in [6, Theorem 2.1] by a hands-on cocycle argu-
ment; the advantage of our proof is that it is more conceptual and generalizes to co-categorical
actions. We also refer to [6, Section 3.6] for some simple examples where this obstruction is
nontrivial.

3.2.2. Base change of G-actions. Let C be an S-linear category. As discussed in Sec-
tion 2.1, for any morphism of schemes 7" — S we can form the base change category C7 which
is linear over 7. Formation of base change is functorial, i.e. gives a functor Catg — Catr; so,
any G-action ¢p: BG — Catg on C induces a base changed G-action ¢7: BG — Catr on Cr
by composition with this functor. Similarly, any 1-categorical action ¢1: G — o (Aut(C/S))
of G on € induces a base changed 1-categorical action (¢p1)7: G — mo(Aut(Cr/T)) on Cr,
by composition with g of the map Aut(C/S) — Aut(Cr/T). Note also that the base change
map for group actions takes n-lifts of ¢; (in the sense of Section 3.1.3) to n-lifts of (¢1)7.
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By Remark 2.5, we also have a natural ring map HH®(€/S) — HH®(C7/T), which is
easily seen to be compatible with the actions of 7o (Aut(C/S)) and 7o (Aut(C7/T)) under the
map 7o(Aut(C/S)) — mo(Aut(Cr/T)).

The next lemma follows by unwinding our construction of ob(¢1) and using functoriality
of all the constructions involved.

Lemma 3.8. Let C be an S-linear category, and let p1: G — mwo(Aut(C/S)) be a 1-cat-
egorical action of G on C. Then the obstruction class of Corollary 3.4 is functorial under base
change in the sense that for any morphism T — S, the natural map

H3(BG,HH(€/S)*) — H3(BG,HH (Cy/T)*)

takes ob(¢y1) to ob((¢p1)T). Moreover, the map from the set of equivalence classes of 2-lifts

of ¢1 to the set of those of (¢1)T is compatible with the torsor structures under the map
H2(BG,HH?(C/S)*) — H?(BG,HH(CT/T)>).

3.2.3. Vanishing of obstructions on étale neighborhoods. Recall that a ring A4 is
called a Grothendieck ring if it is noetherian and for every p € Spec A the completion A, — 71;
of the local ring at p is a regular map of rings [60, Tag 07GG]. (This is often called a G-ring, but
we will not use that terminology to avoid confusion with the group G.) A scheme S is called
a Grothendieck scheme if for every open affine U C § the ring Og(U) is a Grothendieck ring.
This is a very mild condition, which includes all excellent schemes.

Proposition 3.9. Let S be a Grothendieck scheme and let C be a connected S -linear cat-
egory. Let ¢1: G — mo(Aut(C/S)) be a 1-categorical action of G on C. Let s € S be a point
such that the characteristic of the residue field k (s) is prime to the order of G, and the obstruc-
tion ob((¢1)s) € H3(BG, k(s)*) vanishes. Then there exists an étale neighborhood U — S
of s such that the obstruction ob((¢1)y) € H*(BG, T'(U, Oy)*) vanishes, and thus the set of
equivalence classes of co-lifts of (¢1)y is a nonempty H*(BG, T'(U, Oy )*)-torsor:

Proof. As C is connected, the natural map I'(T, O7) — HH?(Cr/T) is an isomor-
phism for any 7 — S, and G acts trivially on HH?(C7/T)* (Remark 3.5); in particular, the
obstructions indeed lie in the stated groups. Further, as the claim is local on S, we may assume
S = Spec A is affine. By functoriality of the obstruction under base change (Lemma 3.8), the
result is then a consequence of the following lemma. m)

Lemma 3.10. Let A be a Grothendieck ring. Let o € H*(BG, A*) where n > 1 and
A has the trivial G-action. Let p € Spec A be a point such that the characteristic of k(p) is
prime to the order of G, and such that « maps to zero under H* (BG, A*) — H"(BG, k(p)>).
Then there exists an affine étale neighborhood Spec(B) — Spec(A) of p such that o maps to
zero under H"(BG, A*) — H"(BG, B>).

Before proving the result in general, we handle the case of complete local rings:
Lemma 3.11. Let A be a complete local ring with residue field k of characteristic prime

to the order of G. Then for n > 1 the map H"(BG, A*) — H"(BG, k™) is an isomorphism,
where A™ and k™ have the trivial G-actions.
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Proof. First consider the case where A is artinian. Then the maximal ideal satisfies
m'y = 0 for some i > 1, so by considering the factorization

A =A/mi1 —>A/mf4_1 — = K,

we reduce to proving the following claim: if A — B is a surjection of artinian local rings
whose kernel [ is annihilated by miy4, then for n > 1 the map H”(BG, A*) — H"(BG, B*) is
an isomorphism. In this case, we have an exact sequence

0—>14+1—> A= B*—0,

and as an abelian group 1 + [ is isomorphic to the k-vector space /; as |G| is invertible in «
this implies H*(BG, 1 4+ 1) = 0 for n > 1, and hence the claim.

Now consider the case of a general complete local ring A. Then A™ = lim; AX where
A; = A/my, so we have an exact sequence

0 — R'limH""1(BG, A]) — H"(BG, A*) — limH"(BG, A) — 0.
1 l

By the artinian case handled above, it suffices to show that the first term in this sequence
vanishes. But if n > 2 then again by the artinian case the transition maps for the system
H""1(BG, A]) are isomorphisms, while if n = 1 then the transition maps are surjective; in
either case, the system is Mittag-Leffler and we conclude that their R! lim; vanishes. |

Proof of Lemma 3.10. By assumption, « dies in H*(BG, x(p)*), so by Lemma 3.11
it also dies in H*(BG, Z;X). As A is a Grothendieck ring, the composition A — A, — 71;
is a regular map of noetherian rings, so by Popescu’s theorem [60, Tag 07GC] we can write
1/4; = colim A; as a filtered colimit of smooth ring maps A — A;. Then

H"(BG, A,”) = colimH"(BG, AX)

as Zl\px = colim A, and hence & must die in H" (BG, A}) for some i. As Spec(4;) — Spec(A)
is smooth and its image contains p, we can find étale neighborhood Spec(B) — Spec(A) of
p over which Spec(A4;) — Spec(A) has a section. In other words, the map A — B factors
through A — A;, and therefore « dies in H*(BG, B>). |

Example 3.12. Observe that in the conclusion of Lemma 3.10, “étale neighborhood”
cannot be replaced by “Zariski neighborhood” in general. Indeed, let G = Z/m for m > 2,
and let A = C[x, x"!]. Note that AX =~ C* @ Z, with (a,b) € C* @ Z corresponding to ax’.
If n > 0 is even, then H*(BG,C*) = 0 and H*(BG,Z) = Z/m. Hence every element of
H"(BG, A*) = Z/m is killed by the map H" (BG, A*) — H"(BG, C*) induced by any closed
point Spec C — Spec A. However, it is easy to see that for any f € A, the map to the localiza-
tion A — Ay induces a split injection A* — (A7)™ on groups of units, and hence

H"(BG, A™) — H"(BG, (A7))

is also a split injection. It follows that any 0 # o € H"(BG, A*) dies after restriction to any
closed point of Spec A4, but has nonzero image in H*(BG, T'(U, Oy )™) for any Zariski open
U C Spec A.
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3.3. Invariant categories. The (co)invariants for a group action can be formulated in
the oco-categorical setting as follows.

Definition 3.13. Let D be an co-category, let X € D be an object, and let ¢p: BG — D
be an action of G on X. The G-invariants XY and G-coinvariants Xg of the action ¢ are
defined by

X% =lim(¢) and Xg = colim(¢),

provided the displayed limit and colimit exist.

We will be interested in the case where D = Catg is the co-category of S-linear cat-
egories over some base scheme S, and G acts on an S-linear category C € Catg. Note that
Catg has all limits and colimits; see for instance [44, Section 2.1] where this result is explained
for Cat’l, the co-category of small stable co-categories, and it similarly holds for Catg. The
G-invariants C¢ and coinvariants Cg thus always exist in this situation. A basic example to
keep in mind is that for a scheme X with a G-action, Dpe. (X )G ~ Dpert([X/ G]), where [X/ G]
is the quotient stack.

3.3.1. Base change of G -(co)invariants. The operations of taking G -coinvariants com-
mutes with base change, while the same is true for G-invariants if the order of G is invertible
on the base scheme:

Lemma 3.14. Let C be an S-linear category with a G-action, and let T — S be a mor-
phism of schemes.

(1) There is an equivalence (Cg)t =~ (C1)gG of T-linear categories, where (CT)g denotes
the G-coinvariants for the induced G-action on the base change Cr.

(2) If |G| is invertible on S, then there is an equivalence (C%)r ~ (C7)% of T-linear
categories.

Proof. (1) The base change functor Catg — Caty, C +— Cr has a right adjoint, given
by the functor which regards a 7 -linear category as an S-linear category via restriction along
Dperf(S) — Dperf(T), and therefore commutes with colimits.

(2) There is a canonical norm functor Nm: Cg — @%, which under our assumption on
|G| is an equivalence; see [53, Proposition 3.4] where this result is stated for S a field, but the
same proof works in general. Therefore, the claim reduces to (1) proved above. m]

3.3.2. G-invariants of smooth proper categories. Passage to G-invariants preserves
smooth and properness of a category, as long as |G| is invertible on the base scheme:

Proposition 3.15. Let C be a smooth proper S-linear category, where |G| is invertible
on S. Then the G-invariant category CS is also smooth and proper.

Proof. Properness of C¥ is the assertion that for any objects E, F € C¥ their mapping
object Homg (E, F) € Dy (S) lies in Dpes(S) (see e.g. [52, Lemma 4.7]). This mapping object
can be described by the formula

Homs(E, F) = Homs(Forg(E), Forg(F))°,
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where Forg: @9 — C is the forgetful functor, and the right side is the group invariants for
the induced G-action on Homg (Forg(E), Forg(F)) (see e.g. [53, Section 3.1]). The object
Homg (Forg(E), Forg(F)) is perfect by the properness of C. By our assumption on |G| the
object Homg (E, F) is a summand of Homg (Forg(E), Forg(F)), hence also perfect. Indeed,
more generally if A € Dper(S) is an object equipped with a G-action, then A is a summand
of A: if ¢4 denotes the automorphism of A corresponding to g € G, then

1

G Y A AC
geG

gives the splitting.

Smoothness of CY is the assertion that idppg(ec) € Fung (Ind(€9), Ind(C%)) is a compact
object (see [52, Section 4] for background on ind completions and smoothness of categories).
To prove this, we use some results from [53]; we note that while results there are stated for cat-
egories linear over a field, they also hold relative to a base scheme S by the same arguments.
First we note that Ind(C%) ~ Ind(C)Y; indeed, by [53, Proposition 3.4 and Lemma 3.5], the
assertion is equivalent to the analogous statement Ind(Cg) =~ Ind(C)g for coinvariant cate-
gories, which holds by [53, Lemma 2.3 (1)]. By [53, Lemma 4.7] (or rather the corresponding
result for presentable S-linear categories, see [53, Remark 4.6]), we have an equivalence

Fung (Ind(€)%, Ind(€)%) ~ Fung(Ind(€), Ind(C))°®*¢

which sends idj,4(e)c to the functor P geg Ind(¢g): Ind(€C) — Ind(C), where ¢g:C — C is
the equivalence corresponding to the action of g € G on C. By [53, Lemma 3.7] the func-
tor EBgeG Ind(¢g) is compact as an object of Fung (Ind(C), Ind(€))9*C if and only if it is
compact as an object of Fung (Ind(C), Ind(C)).

The S-linear category C, being smooth and proper, is dualizable with dual the opposite
category C°P (see [52, Lemma 4.8]), and the presentable S-linear category Ind(C) is dualizable
with dual Ind(C°P) (see [52, Lemma 4.3]). Thus we have equivalences

Fung (Ind(C), Ind(C)) =~ Ind(C?) ®p_(s) Ind(C)
>~ Ind(C ®p,«(s) €)
~ Ind(Fung(C, ©)),
where the second line holds by the definition of the tensor product of S-linear categories (see

[52, Section 2.3]). This shows that for a smooth proper S-linear category €, the compact objects
of Fung (Ind(C), Ind(C)) are precisely those in the image of

Fung (C, €) — Fung(Ind(C), Ind(C)).

In particular, we see that the functor ¢cc Ind(¢g) from above is compact as an object
of Fung (Ind(€), Ind(C)), because it is the image of the object @geG ¢¢ € Fung(C, C). Hence
@Y is smooth. |

4. Enriques categories and their CY2 covers
In this section we will work over an algebraically closed field & with char(k) # 2. We

define Enriques and CY2 categories, explain the correspondence between them via residual
Z./2-actions, and describe the examples of interest for this paper.
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4.1. Definitions. Recall that a smooth proper k-linear category C admits a Serre func-
tor, i.e. an autoequivalence Se such that there are natural isomorphisms

Jomy (E, Se(F)) ~ Homy (F, E)”

for E, F € C. Recall also that if ¢ C D°(X) is a semiorthogonal component of the derived
category of a variety, then Homy (E, F') coincides with the classical derived Hom complex
RHom(E, F).

Definition 4.1. Let C be a smooth proper k-linear category. We say that

(1) € is an Enrigues category if it is equipped with a Z/2-action whose generator t is
a nontrivial autoequivalence of C satisfying Se¢ >~ 7 o [2].

(2) Cisa2-Calabi-Yau (CY2) category if Se >~ [2].

Remark 4.2. Let C be a k-linear category, and suppose 7 is an autoequivalence of € sat-
isfying 7 o 7 =~ ide. Then by Corollary 3.4 there is a class ob(t) € H3(B(Z/2), HH(C/k)>),
which vanishes if and only if 7 is the generator for a Z/2-action on C, in which case the set of
such actions is a torsor under H2(B(Z/2), HH®(C/ k)*). If C is connected, then HH*(C/ k) = k
and H3(B(Z/2),k*) = Z/2 and H?>(B(Z/2),k*) = 0 (where the Z/2-action on k* is trivial),
so a Z/2-action with t as a generator is unique if it exists. This remark applies to all of the
Enriques categories we consider in examples below, as they will all be connected.

Example 4.3. (1) If S is an Enriques surface, then DP(S) is an Enriques category with
Z./2-action generated by tensoring by wg, cf. Example 4.8.

(2) If T is a smooth proper surface with K7 = 0, i.e. T is a K3 or abelian surface, then
DP(T) is a CY2 category.

Remark 4.4. We use the term K3 category to mean a CY2 category whose Hochschild
homology agrees with that of the derived category of a K3 surface. All of the explicit examples
of CY2 categories considered in this paper will in fact be K3 categories. Note that a K3
category is automatically connected, because for a CY2 category C there is an isomorphism
HH! (C/k) = HH,_; (C/ k).

4.2. Enriques-CY2 correspondence. An interesting feature of invariant categories is
that they come equipped with a natural group action. In the Z/2-case, this leads to an involution
on the category of k-linear categories equipped with a Z/2-action.

Lemma 4.5. Let C be a k-linear category with a Z./2-action, and let D = C%/2 pe the
invariant category. Then there is a natural Z./2-action on D, called the residual Z/2-action,
such that there is an equivalence C ~ D%/2,

Proof. This is a special case of [17] (where the triangulated version of the result is
proved, but a similar argument also works for k-linear categories). In particular, we note that
the residual action on D = €%/ is given by tensoring with characters of Z,2. m]

Considering the invariant category of the Z/2-action on an Enriques category leads to
a correspondence between Enriques and CY?2 categories.
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Lemma 4.6. Let C be an Enriques category, and let D = CZ/2 pe the invariant category
for the Z./2-action. Then D is a CY2 category, called the CY2 cover of C.

Proof. The category D is smooth and proper by Proposition 3.15 and has Serre func-
tor [2] by [53, Lemma 6.5]. |

Remark 4.7. There is a natural generalization of Lemma 4.6 in which C is assumed to
be a smooth proper k-linear category whose Serre functor has the form Se = o o [n], where o is
the generator of a Z/g-action. In this case, assuming the characteristic of k is coprime to ¢, we
get a correspondence between such categories € and n-dimensional Calabi—Yau categories D
equipped with a residual Z/g-action.

The source of the terminology “CY2 cover” in Lemma 4.6 is the following example.

Example 4.8. If S is an Enriques surface, then its canonical bundle satisfies w?z ~ Us.
The corresponding étale double cover T — S is a K3 surface. For the Z/2-action generated by
the involution of T over S, we have

D(T)%/2 ~ D"(S).

Under this equivalence, the residual Z/2-action on D°(S) is generated by tensoring by wg, and
we have D(§)%/2 ~ DP(T).

The following observation plays a key role in this paper, as it lets us translate the condition
that two Enriques categories are equivalent to a statement about their CY2 covers.

Lemma 4.9. Let C; and Cy be connected Enriques categories, with CY2 covers D
and Dy. Then the following are equivalent:

(1) There is an equivalence C; >~ C,.

(2) There is an equivalence C1 ~ Cp which is equivariant for the Z./2-actions generated by
the (—2)-shifted Serre functors.

(3) There is an equivalence ‘D1 ~ D, which is equivariant for the residual 1./ 2-actions.

Proof. Any equivalence C; ~ €, automatically commutes with Serre functors (see e.g.
[53, Lemma 5.4]) and shifts, and hence by connectedness and Remark 4.2 it is equivariant for
the Z/2-actions generated by Se, [—2] and Se,[—2]. This shows (1) < (2). A Z/2-equivariant
equivalence induces an equivalence of invariant categories, which is equivariant with respect
to the residual actions. This shows (2) = (3). Finally, the implication (3) = (1) follows from
Lemma 4.5. O

Remark 4.10. Lemma 4.9 also admits an obvious generalization to the situation of
Remark 4.7.

4.3. Examples. One of the main sources of Enriques and CY2 categories in this paper
are Kuznetsov components of GM varieties. Generalizing the definition of 3-dimensional GM
varieties from the introduction, we have the following.
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Definition 4.11. An n-dimensional GM variety, 2 < n < 6, is either a smooth inter-
section
W =Gr(2,5 NP nQ

of the Pliicker embedded Grassmannian Gr(2,5) C P® with a linear subspace P" 4 C P? and
a quadric hypersurface Q C P?, or a smooth double cover

W — Gr(2,5) N p"t3

branched along Gr(2,5) N P**3 N Q, where P"*3 C P? is a linear subspace and Q C P? is
a quadric hypersurface. We say W is ordinary in the first case, and special in the second. Note
that if » = 6 then W is necessarily special.

There is a natural correspondence between GM varieties of ordinary and special types.

Definition 4.12. The opposite of an ordinary GM variety W = Gr(2,5) NP"*4 N Q
of dimension 7 is the (n + 1)-dimensional special GM variety

W — Gr(2,5) NP4

given by the double cover branched along W, while the opposite of a special GM variety
W — Gr(2,5) N P"*3 of dimension n > 3 is the (n — 1)-dimensional ordinary GM variety

W c Gr(2,5) N P**3

given by the branch locus.

When discussing derived categories of GM varieties, we will always assume for simplic-
ity that char(k) = 0, as this is done in the references cited below; in fact, for char(k) sufficiently
large, all of the results still hold, but we leave the details to the interested reader. The Kuznetsov
component of a GM variety is defined by the semiorthogonal decomposition

@.1) D°(W) = (Ku(W), Uw, Ow. ..., Uw dim(W) — 3), O (dim(W) — 3)),

where Uy and Ow (1) denote the pullbacks to W of the tautological rank 2 subbundle and
Pliicker line bundle on Gr(2, 5). These categories were extensively studied in [37]. Note that if
W is a GM threefold, this agrees with the definition from (1.2). Further, if W is a GM surface,
then W is a K3 surface of degree 10 and Ku (W) = DP(W).

Remark 4.13. Instead of the Kuznetsov component as we have defined it, [37] studies
a category sy defined by the slightly different semiorthogonal decomposition

DY (W) = (Aw. Ow. Wy . ... Ow (dEm(W) — 3), Uy, (dim(W) — 3)).

There is a canonical equivalence Ku(W) >~ A given by ® = Lg,, o (— ® Ow (1)), where
Lo, is the left mutation functor through Ow . Indeed, if we tensor the defining semiorthogonal
decomposition (4.1) of Ku(W) by Ow (1) and mutate the object Ow (dim(W) — 2) to the far
left, we get

DP(W) = (O, Ku(W) @ Ow (1), Uw (1), Ow (1), ..., Uw (dim(W) — 2)).
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Using that Uy (1) = Uy, and mutating Ku (W) ® Ow (1) through O, we obtain
DY(W) = (®(Ku(W)), Ow, wo - Ow(dim(W) = 3), Uy, (dim(W) — 3)),

from which the stated equivalence follows, cf. [37, Lemma 2.30]. We chose to define Ku (W)

by the decomposition (4.1) for consistency with the definition (1.2) from [29] in the case of
a GM threefold.

Recall from (1.1) the definition of the Kuznetsov component of a quartic double solid.

Proposition 4.14. The following statements hold:
(1) If'Y is a quartic double solid, then Ku(Y') is a connected Enriques category.

(2) If char(k) = 0 and X is an odd-dimensional GM variety, then Ku(X) is a connected
Enriques category.

(3) Ifchar(k) = 0 and W is an even-dimensional GM variety, then Ku(W) is a connected
K3 category.

Proof. By [34] and the Hochschild homology computation in [37, Proposition 2.9], the
category Ku(W) in (3) is a K3 category, while the Serre functors in (1) and (2) are of the form
7 o [2] for an involution 7. By [37, Proposition 2.6] the involution 7 is nontrivial for Ku(X),
and the same argument applies to Ku (Y ). Thus to show that Ku(Y') and Ku(X) are Enriques
categories, it remains to show that there is a Z/2-action with generator 7. By Remark 4.2 there
is a potential obstruction to the existence of such an action; we show it vanishes by relating ©
to a geometric Z/2-action.

More precisely, in case (1) or in case (2) if X is special, [34] shows that 7 can be described
as the pushforward along the covering involution of ¥ or X; in particular, it follows that 7 is
the generator of a Z/2-action. If X is ordinary, then v >~ ®yx[—1] where Oy is the “rotation
functor” defined in (4.2) below. Note that the Kuznetsov component Ku (X °P) of the oppo-
site variety has a Z/2-action generated by the covering involution. By [36, Section 8.2] there
is an equivalence Ku(X°P)%/2 ~ Ku(X) such that ®x[—1] is the generator of the residual
Z /2-action on Ku(X); in particular, 7 also corresponds to a Z/2-action in this case.

Finally, the connectedness of the categories in (2) and (3) holds by the computation of
their Hochschild cohomology in [37, Corollary 2.11 and Proposition 2.12], and an analogous
argument applies to the categories in (1). |

The CY2 covers of Kuznetsov components of quartic double solids and odd-dimensional
GM varieties can be described explicitly as follows.

Theorem 4.15 ([36]). The following statements hold:

(1) Let Y — P3 be a quartic double solid with branch locus Yy Then the CY2 cover of
Ku(Y) is equivalent to DP(Yy;). Under this equivalence the residual Z.)2-action on
DP(Yy,) is generated by the autoequivalence (DZYbr [—1], where

Py, = T0Ybr o (= ® Oy, (1))

and Ty, is the spherical twist around Oy,
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(2) Let W be a GM variety and assume char(k) = 0. Let
(4.2) ®w =Ly, oLoy, o (—® Ow(1)): Ku(W) — Ku(W)

where Ly, and Lg,, are the left mutation functors through Uw and Ow if dim(W) > 3
(in which case these objects are exceptional), or the spherical twists around Uw and Oy
if dim(W) = 2 (in which case these objects are spherical). Then @y [—1] is an involutive
autoequivalence of Ku(W') such that:

o If W is special, then @y [—1] ~ ix, where i is the covering involution of W.
o If dim W is odd, then ®w [—1] =~ t, where T = S y0,(w)[—2].
(3) Let W be an odd-dimensional GM variety and assume char(k) = 0. Then the CY2 cover

of Ku(W) is equivalent to JKu(W°P). Under this equivalence the residual Z./2-action
on Ku(W°P) is generated by the autoequivalence ®yo[—1]

Proof. The assertions follow from the main results of [36], as explained in [36, Sec-
tions 8.1-8.2]. O

Remark 4.16. In the upcoming paper [56], we will use the description of the CY2
covers in these and other examples to describe moduli spaces of Bridgeland stable objects in
Enriques categories.

5. Hodge theory via Kuznetsov components

In this section we work over the complex numbers. After reviewing some facts about
Mukai Hodge structures in Section 5.1, we prove Proposition 1.12 on the categorical descrip-
tion of GM periods in Section 5.2, and give an application to the period map in Section 5.3.

5.1. Mukai Hodge structure. As explained in [54], to any C-linear category C occur-
ring as a semiorthogonal component in the derived category of a smooth proper complex
variety, one can canonically attach a lattice equipped with a Hodge structure, which is additive
under semiorthogonal decompositions. If € is a CY2 category, then we get a weight 2 Hodge
structure ﬁ(G,Z), called the Mukai Hodge structure of C (see [54, Definition 6.4]), which
generalizes a construction of Addington—Thomas [1] in the case of Kuznetsov components of
cubic fourfolds. Below we explicitly describe this Hodge structure in the cases of interest for
this paper.

Example 5.1. Let 7 be a complex K3 surface. Then ﬁ(Db(T), Z.) coincides with the
classical Mukai Hodge structure, defined as
H(T,Z) = HY(T, Z)(~1) @ HX(T, Z) ® H*(T, Z)(1),
where (—1) and (1) denote Tate twists, with pairing ((r, ¢, s), (r',c’,s")) = cc’ —rs' —r's.
Example 5.2. Let W be a GM fourfold. In this case, H(:Ku(W),Z) was originally
defined and studied in [57], and admits the following explicit description. As an abelian group,

H(Ku(W),Z) = {v € Kg"(W) | xop((Uw ()], v) = xiop([Ow (i)],v) = O fori = 0, 1},



Bayer and Perry, Kuznetsov’s conjecture via K3 categories and group actions 135

where Kg)p(X ) denotes the complex topological K -theory of the space of complex points X (C),
and yop denotes the topological Euler pairing. The group H(Xu(W),Z) is regarded as a lattice
with the symmetric pairing (—, —) = —yp(—, —). Further, the Chern character induces an
embedding

H(Ku(W),Z) ® Q — H"""(W, Q).

By taking appropriate Tate twists, we regard

4
HO' (W, Q) = P H* (X, Q)(k — 1)

k=0
as a weight 2 Hodge structure. The Hodge filtration on ﬁ(J{u(W), Z) ® C is then the inter-
section of the corresponding filtration on H*V*" (W, C) along the above embedding.

Example 5.3. Let W be a GM sixfold. Then there is a similar description of the Mukai
Hodge structure: as an abelian group
H(Ku(W).Z) = {v € K" W) | xop((Uw ()] ) = xeop((Ow ()], v) = 0 fori =0,1,2,3},
with Hodge structure induced by the one on H*" (W, Q).

The above description shows that for a GM fourfold or sixfold, ﬁ(JCu(W), Z) is ratio-
nally quite closely related to the usual middle-degree cohomology HImW) (W, Z)). We will
need the following integral relation.

Proposition 5.4 ([57]). Let W be a GM variety of dimension n = 4 or 6.

(1) There is a canonical rank 2 sublattice
2 0 ~
A®? = (0 2) C H(Ku(W),Z)

which is the image of the map Ko(Gr(2,5)) = Kg’p(Gr(Z, 5)) —> ﬁ(JCu(W), Z) given by
pulling back classes on Gr(2, 5) and projecting into Ku(W).

(2) Let ﬁ(JCu(W), 7)o denote the orthogonal sublattice to A?z C ﬁ(JCu(W), Z), and let
H" (W, Z)o denote the orthogonal sublattice to H"(Gr(2,5),Z) — H"(W,Z). Then the
Chern class ¢y >: Kg)p(W) — H*(W,Z) induces an isometry of weight 2 Hodge struc-
tures

H(Ku(W), Z)o = H"(W.Z)o(5 — 1),
where (5 — 1) on the right denotes a Tate twist.

Remark 5.5. Proposition 5.7 below implies that our notation ﬁ(JCu(W), Z), above is
consistent with that of Proposition 1.12.

Proof. Part (1) follows from [37, Lemma 2.27]. Part (2) for n = 4 holds by [57, Propo-
sition 3.1], and the n = 6 case holds by an analogous argument. ]

For later use in Section 7, we record a lift of the isomorphism in Proposition 5.4 (2) to the
level of quotient groups. We only consider the 4-dimensional case, as that is the one we shall
need, but a similar statement holds in dimension 6.
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Proposition 5.6 ([57]). Let W be a GM fourfold. There is an isomorphism of abelian
groups
H(Xu(W).Z) _ H*W.Z)
A®? ~ H4(Gr(2,5),2)
induced by the second Chern class ¢»: H(Ku(W), Z) — H*(W, Z). Moreover, under the result-
ing correspondence between sublattices

H*(Gr(2,5),Z) C K CH*(W,Z) and A®? C K’ C H(Ku(W),Z)

we have:
(1) K is primitive if and only if K’ is primitive.

(2) K is non-degenerate if and only if K' is nondegenerate, in which case K has signature
(r,s) if and only if K' has signature (s + 2, r — 2) and disc(K) = (—1)*Kdisc(K").

(3) K c HY(W, Z) consists of Hodge classes if and only if K' C ﬁ(Ku(W), Z) consists of
Hodge classes.

Proof. The isomorphism is [57, Propositions 3.2], (1) and (2) hold by [57, Lemma 3.4]
(taking into account that our lattice H(Ku(W),Z) is by definition the negative of the one
considered there), and (3) follows from Proposition 5.4 (2). m)

5.2. Proof of Proposition 1.12. Proposition 5.4 reduces Proposition 1.12 to the follow-
ing result. Note that the construction of Hodge structures for categories from [54] is functorial;
in particular, a Z/2-action on a CY?2 category does indeed induce a Z/2-action on its Mukai
Hodge structure.

Proposition 5.7. Let W be a GM variety of dimension 4 or 6. Then the invariant sub-
lattice H(Ku(W), Z)%/2 c H(Ku(W),Z) for the residual Z./2-action equals the canonical
sublattice A?Z C H(Ku(W), Z).

Remark 5.8. The residual Z/2-action on ﬁ(JCu(W), Z) is by isometries, and so its
—1-eigenspace must be exactly the orthogonal complement H(Ku (W), Z)o of A?z . In par-
ticular, the residual Z/2-action on Ku(W) is antisymplectic, in the sense that it acts by —1
on H20(Ku(W)). This induces antisymplectic involutions of Bridgeland moduli spaces of
objects in Ku (W) with class in A?z, giving a categorical interpretation for the antisymplectic
involutions from [55, Proposition 5.16] whose existence was guaranteed there lattice theoret-
ically. The geometry of the fixed loci of these involutions will be described in the upcoming
work [56].

We will prove Proposition 5.7 by showing the claim is deformation invariant, and then
checking it for a specific W where the claim is easy. For this, we will need to consider families
of GM varieties and their Kuznetsov components. By a family of GM varieties over a base S,
we mean a smooth proper morphism 7: ‘W — S equipped with a line bundle O+ (1) on ‘W such
that for every point s € S the pair (Wy, O, (1)) is a GM variety with the Pliicker polarization.

The results of [13] show that for any family of GM varieties, there is a canonical rank 5
vector bundle V5 on S and a morphism ‘W — Grg (2, V5) which on fibers recovers the usual
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map to Gr(2,5). We denote by Uy the pullback to ‘W of the tautological rank 2 subbundle
on Grg (2, Vs).

Lemma 5.9. Letw: W — S be a family of n-dimensional GM varieties.

(1) There is an S-linear semiorthogonal decomposition

Dperf(w) = (JCM(W)’ n*(Dperf(S)) ® u'W» 7T*(Dperf(S)) ® (DW» cee
e s T (Dpert(S)) @ Uy (n — 3), 7 (Dpert(S)) @ Oy (n — 3))

such that the fiber of KXu('W) over any point s € S satisfies Ku(W)s >~ Ku(Ws), where
the right side is defined by (4.1).

(2) Let
Dy = Lytyy/s ©Loy/s 0 (= ® Ow(1)): Ku(W) — Ku(W),

where for E = Uw or O+ the functor Lg s is defined by the exact triangle
n*Homs(E,F)® E - F — Lg;s(F)

for F € Dpert(W). Then ®vy is an autoequivalence of Ku('W), whose fiber over any

s € § recovers the autoequivalence ®y_ from Theorem 4.15 (2) under the identification
Ku(W)s >~ Ku(Ws).

Remark 5.10. Note that we do not claim ®+y[—1] is necessarily an involution, but it is
fiberwise an involution by Theorem 4.15 (2).

Proof. The semiorthogonal decomposition in (1) follows from the decomposition (4.1)
on fibers, cf. [3, Lemmas 3.22 and 3.25] and [59], and the statement about the fibers of Ku (W)
is a consequence of the compatibility of base change with semiorthogonal decompositions. For
E = Uw or O, the functor Lg,gs is nothing but the left mutation through the admissible
subcategory 7* (Dperf(S)) ® E if n > 3, and the spherical twist around the spherical functor
Dpert(S) = Dpert(W), F = 7™ (F) ® E if n = 2; it follows in particular that ®+y is indeed
an autoequivalence of Ku(W). The final claim about the fibers of @y is immediate from
the definitions. |

Proof of Proposition 5.77. Suppose m: W — § is a family of GM varieties of dimension
n = 4 or 6. By [54] the Mukai Hodge structures ﬁ(J{u(Ws), 7), s € S(C), form the fibers of
alocal system H(Ku(W) /S, Z) on the analytification $". By functoriality the autoequivalence
®p[—1] induces an automorphism of the local system H(Ku(W)/S,Z), which is necessarily
an involution because it is so on fibers (see Remark 5.10). Therefore, we have a Z/2-action
on the local system ﬁ(J{u('W) /S, Z) which fiberwise recovers the residual Z/2-action on the
Mukai Hodge structures. So it suffices to prove the proposition for any particular fiber of the
family W — S.

We may thus assume W is a special GM variety. Then by Theorem 4.15 the residual
Z./2-action on Ku(W) is induced by the covering involution of W. Note that, by construc-
tion, ﬁ(JCu(W), 7) is a summand of Kg’p(W), and by the previous remark the inclusion
H(KXu(W).Z) C KI)OP(W) is Z/2-equivariant, where Z/2 acts by the residual action on the
left and the covering involution on the right. By the description of A?z C H(Xu(W), Z) from
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Proposition 5.4 (1), it follows that
AP C H(Ku(W), 2)%/2,

Moreover, as H*(Gr(2,5),Z) Cc H*(W, Z) is primitive by [12, Section 5.1], it follows from
Proposition 5.6 (1) that A?z C ﬁ(JCu(W), Z) is also primitive. Therefore, to finish the proof
it suffices to show the inclusion A?z C ﬁ(](u(W), 7)%/2 is rationally an isomorphism. By
applying the Chern character, it is enough to show H*(Gr(2, 5), Q) surjects onto the invari-
ants of H*(W, Q). If dim(W) = 6, then this is true because W — Gr(2, 5) is a double cover.
If dim(W) = 4, then W — Gr(2,5) N P? is a double cover, so it is enough to observe that
H*(Gr(2, 5), Q) surjects onto H*(Gr(2, 5) N P, Q); this follows, for instance, from the semi-
orthogonal decompositions

D°(Gr(2,5)) = (0, UY,...,0(4), U’ (4)),
D*(Gr(2,5) NP®) = (0, UY,...,0(3), U (3)).
which hold by [27, Section 6.1]. O

5.3. Application to periods. In [13] Debarre and Kuznetsov classified GM varieties in
terms of linear algebraic data, by constructing for any GM variety W a Lagrangian data set
(Ve(W), Vs(W), A(W)), where

* V(W) is a 6-dimensional vector space,
o Vs(W) C Ve(W) is a hyperplane, and
« A(W) C A3Ve(W) is a Lagrangian subspace with respect to the wedge product,

and proving that W is completely determined by its dimension and this data. Surprisingly,
many properties of W only depend on A(W). Recall that GM varieties W; and W, with
dim(Wy) = dim(W,) (mod 2) are called generalized partners if there exists an isomorphism
Ve(W1) = Ve(W>) identifying A(W1) C A3Ve(Wr) with A(Wa) C A3V(Wa), and general-
ized duals if there exists an isomorphism V(W)) = Ve(W,)" identifying A(W;) C A3Vs(W)
with A(Ws)+ C A3Vs(W5)V. In the case where dim(W;) = dim(W>), these definitions spe-
cialize to the notions of period partners and duals originally introduced in [13].

The main result of [14] shows that A(W) determines the period of W in dimensions 4
and 6, which implies the period map factors through the moduli space of EPW sextics studied
by O’Grady [47]. More precisely:

Theorem 5.11 ([14]). Let Wy and W5 be GM varieties of (possibly unequal) dimen-
sions ny,ny € {4, 6}. Assume Wy and W, are generalized partners or duals. Then there is an
isometry of Hodge structures

H"' (W1, Z)0(%) = H"2(W2,Z)o("3).

This is proved in [14] by intricate geometric arguments, but here we note a simple
categorical proof. This relies on the following slight enhancement of [38, Theorem 1.6].

Theorem 5.12. Let Wy and W5 be GM varieties which are not special GM surfaces. If
W1 and W, are generalized partners or duals, then there is an equivalence Ku(W1) ~ Ku(W>)
which is equivariant for the canonical Z./2-actions described in Theorem 4.15 (2).
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Proof. By [38, Theorem 1.6] there exists an equivalence Ku (W) >~ Ku(W>), not a pri-
ori Z/2-equivariant. If W, and W, are odd-dimensional, then by Lemma 4.9 this equivalence
is necessarily Z/2-equivariant. If W; and W, are even-dimensional, then by Theorem 4.15 (3)
combined with Lemma 4.9, it suffices to show there is an equivalence JCu(WIOp) ~ J(u(WZO Py.
But by construction the Lagrangian data of a GM variety and its opposite GM variety are the
same, SO Wlop and W20 P are odd-dimensional generalized partners or duals, and the equivalence
holds again by [38, Theorem 1.6]. O

Proof of Theorem 5.11.  The Z/2-equivariant equivalence
JCu(Wl) ~ :Ku(Wz)

of Theorem 5.12 induces a Z/2-equivariant isomorphism H(Ku(Wh),Z) =~ H(Ku(W>), Z),
which by Proposition 5.7 must identify the canonical copy of A?z on each side. Now the result
follows from Proposition 5.4 (2). O

6. Birational categorical Torelli

In this section we work over the complex numbers. After reviewing some facts about the
period map for GM fourfolds, we prove Theorem 1.9 in Section 6.2.

6.1. The period morphism. Let N denote the moduli stack of GM fourfolds. This
is a smooth irreducible 24-dimensional Deligne-Mumford stack of finite type over C (see
[37, Proposition A.2] or [15]). We denote by

pN—>D

the period map, where the period domain D is the 20-dimensional quasi-projective variety
classifying Hodge structures on the middle cohomology H* (W, Z) of a fixed GM fourfold
W, for which the canonical rank 2 sublattice H*(Gr(2, 5), Z) C H*(Wj, Z) consists of Hodge
classes (see [12] for details). We note that D is equipped with a canonical involution, denoted
ro (see the discussion preceding [12, Corollary 6.3]).

We will also need to consider the related moduli space N EPW of EPW sextics [50]. Recall
that, if we fix Vs a 6-dimensional vector space, then NPV is the GIT quotient by PGL(V)
of the space of Lagrangians A C A3V containing no decomposable vectors. The space N EPW
has a natural involution 7®°W, induced by sending A C A3V to its orthogonal A+ C A* Ve’
O’Grady constructed a period morphism

PEPV. WEPW
sending A to the period of the associated double EPW sextic [49].

The results of [13, 15] show that there is a surjective morphism
7 N — NEPW,
sending a GM fourfold W to its Lagrangian A(W) (as in Section 5.3). In particular, by defini-
tion GM fourfolds W) and W, are period partners if and only if 7 (W;) = w(W>), and duals if
and only if 7 (W) = rB*WV(x(W3)).
We will need the following two ingredients in our proof of Theorem 1.9.
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Theorem 6.1 ([14]). There is a factorization p = p¥* o .
Proof. This follows from [14], cf. [15, Proposition 6.1] and Theorem 5.11 above. O

Theorem 6.2. The morphism p®*V: NEPW
EPW  .EPW

— D is an open embedding and commutes
with the natural involutions, i.e. p =rgp o pttW,

Proof. That pF*W is an open embedding follows from Verbitsky’s Torelli theorem; see
[49, Theorem 1.3] for a more precise statement. That pEPW commutes with the involutions is
proved in [48]. D

6.2. Proof of Theorem 1.9. By the discussion preceding the statement of Theorem 1.9,
we only need to prove the forward implication. So let X; and X, be GM threefolds such that
Ku(X1) >~ Ku(X>). Note that if X is a special GM threefold, then we may find an ordinary
GM threefold X’ which is a period partner of X (see e.g. [37, Lemma 3.8]), and hence satisfies
Ku(X) ~ Ku(X’) by [38, Theorem 1.6]. Therefore, we may assume that X; and X, are both
ordinary. By Proposition 4.14, Lemma 4.9, and Theorem 4.15, passing to CY?2 covers gives
an equivalence Ku(X fp) ~ Ku(X ;p) which is equivariant for the residual Z/2-actions. This
induces a Z/2-equivariant Hodge isometry

H(KXu(X}"),Z) = H(Ku(X3"), Z),

and hence by Proposition 1.12 a Hodge isometry H*(X ", Z)o =~ H*(X,", Z)o. By the defini-
tion of the period morphism, it follows that either p(Xfp) = p(Xgp) or p(Xfp) =rop(p (X;p)),
cf. [14, Lemma 5.26]. By Theorems 6.1 and 6.2, this means that either H(X;)p) = H(X;p)
or m(X{?) = rBW (7 (X5")), i.e. either X|® and X," are period partners or duals. As these
relations are preserved under passing to opposite GM varieties, we conclude the same is true
of X; and X». O

7. Nonexistence of equivalences

In this section we work over the complex numbers. After reviewing some restrictions on
the periods of GM fourfolds and surfaces, we prove Theorem 1.4 in Section 7.2.

7.1. Restrictions on periods. As in our discussion of the period map p: N — D for
GM fourfolds in Section 6.1, let Wy be a fixed GM fourfold. Let K C H*(Wy, Z) be a rank 3
primitive positive definite sublattice which contains H*(Gr(2, 5), Z). We consider the locus
in O parameterizing Hodge structures on H* (W, Z) for which K C H*(W,, Z) consists of
Hodge classes. By [12] this locus only depends on the discriminant d > 0 of K, so we denote
it by D,. Moreover, the locus Dy is nonempty for d = 0,2,4 (mod 8), an irreducible divisor
ford = 0,4 (mod 8), and the union of two irreducible divisors for d = 2 (mod 8).

The following restriction on the image of the period morphism plays a crucial role in our
proof of Theorem 1.4 below.

Theorem 7.1 ([14,49]). The image of the period morphism p: N — D is contained in
the complement D \ (D U Dgq U Dg).
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Proof. By Theorem 6.1, p: N — D factors through the period morphism for double
EPW sextics, which by [49, Theorem 1.3] has image contained in D \ (D2 U Dyq U Dg). O

Remark 7.2. Conjecturally, the image of p: N — D is exactly D \ (Dz U Dy U Dg).
Some partial progress on this problem was made in [12], where it is shown that p is dominant
and p~1(Dy) is nonempty for d > 10.

Next we give a similar but much easier result restricting the periods of ordinary GM
surfaces. We will use this in one of two proofs given below for Theorem 1.4 in the case of
special GM threefolds.

Lemma 7.3. Let W = Gr(2,5) N P® N Q be an ordinary GM surface. Then Pic(W)
does not contain a rank two lattice with intersection form given by

10 1 10 3
or ,
1 0 30
with the first basis vector corresponding to the restriction of the Pliicker polarization.

Proof. This is a special case of [18, Lemma 2.8]; since a direct proof is short and easy,
we give one here. In either case, the second basis vector is effective, and thus the class of
a genus 1 curve C. The Pliicker polarization would restrict to a very ample divisor on C of
degree 1 or 3, respectively. This is immediately a contradiction in the first case. In the second
case, the Pliicker polarization would embed C as a plane cubic curve. However, as the equations
of Gr(2, 5) are quadratic, W would contain the entire P? spanned by C, a contradiction. |

7.2. Proof of Theorem 1.4. Let Y be a quartic double solid and X a GM threefold.
Assume for sake of contradiction that there is an equivalence Ku(Y) >~ JKu(X). Combining
Proposition 4.14, Lemma 4.9, and Theorem 4.15, we obtain an equivalence

DP(Yir) = Ku(X°P)

which is equivariant for the residual Z/2-actions, where Y, C P is the branch locus of Y — P3
and X °P is the opposite GM variety. This induces a Z/2-equivariant Hodge isometry

(7.1) 0: H(Yyr, Z) => H(Ku(X),Z).

To derive a contradiction, we will use a description of the Z/2-invariants on each lattice. The
case where X is ordinary so that X°P is a fourfold was already addressed in Proposition 5.7.
Note that Yy, as well as X°P when X is special, is a K3 surface, so its Mukai lattice up to sign
is just the full integral cohomology (Example 5.1).

Lemma 7.4. The invariant sublattice ﬁ(Ybr, 2)%12, as well as ﬁ(X b Z)2/2 when X is
a special GM threefold, are isomorphic to A?Z and given as follows:

(1) H(Ypr, Z)2/2 = ((1,—A,1), (1,0, —1)), where A € Pic(Yy) is the degree 4 polarization.

(2) H(X°P,Z)%/2 = ((1,—B,4), (2, —B,2)), where B € Pic(X°P) is the degree 10 Pliicker
polarization.
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Proof. Recall that a spherical twist Tg acts on cohomology by the reflection pyg),
defined by

(7.2) pue)(v) = v +v(€) - (v(€),v),
while tensoring with a line bundle &£ acts by multiplication with ch(£). In case ((1)), this shows
(7.3) (Py,)«(1,—-4,1) =(1,0,—1) and (Py,)«(1,0,—1)=—(1,—-A4,1).

Hence the two vectors are preserved by the action of @%br [—1],i.e. by Theorem 4.15 (1) they are
Z /2-invariant. In case (2), we instead apply Theorem 4.15 (3); using v(Uxe) = (2,—B,3) it
is a straightforward computation that both classes are invariant under ®yop[—1]. One also sees
immediately that Z/2 acts by —1 on the orthogonal complements of the sublattices

(7.4) Ly, = H'(Yer, Z) ® AZ & H*(Yyr, Z) C H(Yer, Z),
(7.5) Lyo» = H(X?,Z) ® BZ ® H*(X?,Z) c H(X*, Z).

As Z,/2 evidently does not act as the identity on these rank 3 sublattices, this leaves the claimed
rank 2 lattices as the only possibility for the invariants. ]

Now we can finish the proof of Theorem 1.4. We break the proof into two cases, depend-
ing on whether X is ordinary or special.

Assume X is ordinary. The primitive sublattice Ly, C H(Ypr, Z) from (7.4) has Sig-
nature (2, 1), contains the Z/2-invariant sublattice, consists of Hodge classes, and has discrim-
inant —4. Therefore, its image K’ C H(Ku(X°P), Z) under the Z /2-equivariant Hodge isom-
etry (7.1) has the same properties. By Proposition 5.7 the Z/2-invariants of H(Ku (X °P), Z) is
the canonical A?Z sublattice. So by Proposition 5.6, K’ corresponds to a rank 3 primitive pos-
itive definite sublattice K C H*(X°P, Z) which contains H*(Gr(2, 5), Z), consists of Hodge
classes, and has discriminant 4. This means the period of X°P lies in the divisor £4, which
contradicts Theorem 7.1. O

Assume X is special. We give two proofs. The first is shorter but relies on a hard result
from [38] to reduce to the ordinary case, while the second uses only the easy Lemma 7.3 and
is the starting point for our proof of Theorem 1.6 in Section 8.

Proof 1. The description of generalized partners from [37, Lemma 3.8] shows that there
exists an ordinary GM threefold X’ which is a generalized partner of X. Then by [38, Theo-
rem 1.6] we have an equivalence Ku(X) ~ Ku(X’), so we are reduced to the ordinary case
handled above. m]

Proof 2. The rank 3 lattices Ly, and Lxo» from (7.4) and (7.5) are given explicitly by

2 0o -1 2 0 -1
0 2 -1 and 0 2 =21,
-1 -1 O -1 -2 0

where the first two basis vectors are the Z/2-invariant ones from Lemma 7.4, and the third is the
class of a point. As the isometry 6 in (7.1) is Z/2-equivariant, it sends the basis of the invariant
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lattice AGIJ92 C Ly, to the basis of A?Z C Lxop, up to sign and permutation. By (7.3), one can
precompose with an appropriate power of @y, to ensure it sends the first vector to the first vec-
tor. As 6 respects the standard orientation of positive definite 2-planes by [20, Corollary 4.10],
it also sends the second basis vector to the second basis vector.

Thus, the rank 4 lattice in ﬁ(X °P,Z) generated by 0(Ly, ) and Ly« has intersection form

2 0 -1 -1

o 2 -2 -1

-1 -2 0 -—r

-1 -1 —r O
for some r € Z. The discriminant of this lattice, which has to be positive, is —4r2 —12r + 1,
and hence the only possibilities are r = —3, —2, —1, 0. The fourth basis vector is a class of the
form (r, D, s) with

D?=2rs, —s—D.B—4r=—-1 —2s—D.B—2r =—1.

Solving for s shows that B and D span a lattice with intersection form

10 1—6r
(1 —6r  4r? ) '

For r = 0 this immediately contradicts Lemma 7.3. For r = —1, we get

(B—D)>=0 and B.(B— D) =3,
contradicting the second case of Lemma 7.3. Similarly, for r = —2 we have

(D—-B)?=0 and B.(D—B) =3,
and for r = —3 we have

2B—D)>’=0 and B.2B—-D)=1,

in all cases contradicting Lemma 7.3. |

Remark 7.5. By [54, Proposition 5.23] the Kuznetsov component Ku(Y) of a quartic
double solid determines its intermediate Jacobian J(Y'), and by the classical Torelli theorem
proved in [10], J(Y') determines Y. As a corollary, categorical Torelli holds for quartic double
solids: Ku(Y') determines Y .

The methods used in the second proof for the case where X is special above also lead
to a short direct proof of this categorical Torelli statement, which we sketch briefly. Given an
equivalence Ku (Y1) ~ Ku(Y>), one considers the associated Z/2-equivariant Hodge isometry

0:H(Y1br. Z) => H(Y20r. Z).

If 6 sends the class of a point to a class in the lattice Ly, v, then up to composition with the
involution induced by ®y, }, it sends it to the class of a point; in this case, an easy argument
shows that 6 induces a Hodge isometry H2(Y7 pr, Z) => H?(Y2 1, Z) preserving the polariza-
tions. By the Torelli theorem for K3 surfaces there is a polarized isomorphism Y7 pr — Y2 pr,
and thus an isomorphism Y7 = Y. Otherwise, one considers again the rank 4 lattice spanned by
Ly, »r and the image of the class of a point; a computation exactly as in the proof above shows
that H2(Y3 vy, Z) contains a square zero class of degree 2, which cannot exist on a quartic K3.
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8. Deformation equivalence

We continue to work over the complex numbers. In this section, we prove Theorem 1.6,
which says that Kuznetsov components of quartic double solids and of GM threefolds are
deformation equivalent. The idea is based on the second proof of Theorem 1.4 in the case
where the GM threefold is special. Namely, in the case r = —1 we used the fact that there is
no GM K3 surface with Picard lattice

10 3
3 0/

However, there is such a polarized K3 surface S — indeed, as we will see it is given by a very
general quartic containing a line.

This directly suggest our strategy: we extend the Z/2-action on GM K3 surfaces, given
by Theorem 4.15 (2), to one acting also on §, in such a way that it becomes conjugate with
the Z/2-action on S as a quartic K3 surface given by Theorem 4.15 (1). To construct this as
an enhanced Z/2-action in a family, we apply the general results from Section 3. Taking the
associated Z/2-invariant category then proves Theorem 1.6.

8.1. Quartics containing a line. From now on, let S C P3 be a quartic K3 surface that
is very general among quartics containing a line L C §; in particular, S has Picard rank two.
The projection from the line induces an elliptic fibration S — P!; let E be the class of a fiber,
a plane cubic. The Picard lattice of S is given by

(o)

with respect to the basis given by D, the class of the hyperplane section, and E. Both E and
the class L = D — E of the line are classes of curves that can be contracted, and so generate
extremal rays of the Mori cone. A simple computation then confirms the following result.

Lemma 8.1. The Mori cone of S is given by (E, D — E), and the nef cone is given by
(E,3D — E).

In particular, H := D + E is a polarization of degree 10. Moreover, with respect to the
basis H, E, the intersection matrix becomes

10 3
3 0/

one of the possibilities we had to exclude for GM K3s in Lemma 7.3 for the second proof
of Theorem 1.4. As the general degree 10 K3 surface is obtained as a GM surface [46], S is
a degeneration of GM K3 surfaces.

8.2. Stable rank 2 bundles on S. In our arguments, we will sometimes have to show
that rank 2 bundles on S that we construct are stable. In all cases, this will follow from the
following classical lemma due to Mukai.
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Lemma 8.2 ([45, Corollary 2.8]). Let0— ¥ — & — 8§ — 0 be a short exact sequence
of sheaves on a K3 surface with Hom(¥ ,§) = 0. Then

dimExt! (¥, %) + dimExt' (¢, 9) < dimExt! (&, €).

Recall from Example 5.1 the Mukai Hodge structure H(S, Z) associated to the K3 sur-
face S. The Mukai vector of an object & € D"(S) is defined by

v(€) = ch(8) - td(S) € H'(S,Z) = HY(S,Z) @ HV!(S,Z) ® H*(S. Z).
The Mukai pairing is defined by
((r,c,s), (r’,c’,s/)) =cc' —rs' —r's
and satisfies
—x(€.F) = (v(€),v(F)).
Given a polarization A, we define u4-(semi)stability via the slope function

_ Aci(8)

/"LA(8) - Azrk(S) .

Proposition 8.3. Let S be a very general quartic K3 surface containing a line, and let
A be a polarization on S.

(1) LetV be a rank 2 spherical vector bundle on S. Then 'V is ju4-stable.

(2) Let 'V be a rank 2 vector bundle on S such that Hom('V, V) = C and Ext'(V,V) = C2.
Assume that ¢ (V) — D is divisible by 2. Then 'V is j14-stable unless it is destabilized
by O(B) for

c1(V) £ (D —2E)

> .
If A(D —2F)#0 (eg if A= D) and 'V is unstable, then more precisely the desta-
bilizing object is O(B) where the sign is chosen such that ug(OQ(B)) > ua(c1(V));
moreover, in this case the spherical twist Top)'V is a pa-stable vector bundle of the
same Mukai vector.

B =

Proof. 1f 'V is not stable, then there is a short exact sequence
0->L1—>V>E£1z—0

where £1, £, are line bundles with puy(£1) > pua(£2), and Z is a 0-dimensional subscheme
of S. AsHom(V, V) = C, we have £1 # £,, and hence Hom(£1, £2) = 0. Mukai’s lemma,
Lemma 8.2, shows that Z is empty in case (1), and that Z is either empty or a single point in
case (2). We write C; = c1(L;) fori = 1,2,and so v(£;) = (1, C;, %Ciz +1).
From
-2 =v(¥£1)>,
—2+2-length(Z) = v(£2 ® I7)?,

v(V)? = (v(L1) + (L2 ® I2))”
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we obtain
(8.1) 4+ v(V)*—2-length(Z) = 2(v(£1). v(£2 ® I7))
=2C1Cy — C? —2—C3# -2+ 2-length(Z),
(C1 — C2)? = =8 + 4 -length(Z) — v(V)%.

We write C; — C, = dD + eE, which gives (C; — C»)? = 4d? + 6de.
In case (1) we have v('V)? = —2 and length(Z) = 0, and thus (8.1) becomes

4d? + 6de = —6.

Hence d is divisible by 3. But then 4d? + 6de is divisible by 9 while —6 is not, a contradiction.
Now consider case (2), where v("V)2 = 0. When Z is a point, we get 4d? + 6de = —4,
a contradiction modulo 3. Thus Z has to be empty, in which case (8.1) is equivalent to

4d? + 6de = -8,
i.e. d(2d 4 3e) = —4. The possibilities d = £1,£2, +4 lead to
Ci—Cy = +(D —2E), (2D —2E), +(4D — 3E),

respectively. Since we assume that ¢ (V) — D is divisible by two, the first pair of solutions is
the only one with C; and C, integral. This proves the first part of the claim.
Finally, if 'V is not stable, we have seen that its Harder—Narasimhan filtration is

0—->0OB)—V—->0(c1(V)—B)—>0

with Hom(O@(B), O(c1(V) — B)) = 0 and hence Hom(O(B), V) = C. Since V is simple, we
have Ext>(@(B),V) = Hom(V, ©O(B))Y = 0. Using (8.1) once more, we obtain

2(O(B), V) = —v(O(B))* — (v(O(B)), v(O(c1(V) — B))) =2 -2 =0.
Thus Hom®*(O(B), V) = C & C[—1], which gives a 4-term short exact sequence
0—0(B)—>YV—TewmV—0(B)—0.

This shows that Tg(p)V is a rank 2 vector bundle with Hom(O(B),Tgp)V) = 0. Since
To(p) is an equivalence, it is also a simple vector bundle with Ext! (To)V.Towm)V) = C2.
Applying the previous results of the proposition shows that T (p)"V is stable as claimed. O

Let U be the up-stable spherical vector bundle with v(U) = (2,—D — E, 3), whose
existence and uniqueness were first proved in [26, Theorem 2.1] and [45, Corollary 3.5],
respectively. Then by Proposition 8.3, U is stable with respect to any polarization. Moreover:

Lemma 8.4. Let U be the slope-stable spherical vector bundle with
v(U) =2,-D — E,3).
Then the restriction of U to any fiber of the elliptic fibration induced by E is stable.
Proof. By the previous observation, U is stable with respect to the ample polarization
E + €D for € > 0, and thus at least semistable with respect to the nef polarization E. As

E.c1(U) = —3 is odd, this means it is stable with respect to E (in the sense that any saturated
subsheaf of U has strictly smaller slope).
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Now we can follow the proof of [40, Theorem 5.2]. Assume that there is a curve C C S
of class E such that U ¢ is unstable. Then there exists a line bundle L¢ on C of degree d < —2
and a surjection Uc — L. Let K be the kernel of the composition U — Uc —> L. Since
c1(K).E = c1(U).E, it is also slope-stable with respect to E. Since v(L¢) = (0, E,d), we
have v(K) = (2,—D —2E,3 — d) and hence

V(K =(D+2E)?—-2-2-3—d)=16—12+4d < —4,

a contradiction. O

Remark 8.5. As pointed out by Kuznetsov, the bundle U can be described explicitly as
follows. Note that Hom(© (D), O.(2)) = C? and the corresponding map @ (D)®2 — 91 (2)
is surjective. Let ¥ be the vector bundle defined by the short exact sequence

0> % - 0(D)® - 0.2 — 0.

A computation shows that Hom(¥, ) = C and v(¥ ) = (2,—D — E, 3). Therefore, ¥ is
arank 2 spherical vector bundle, and hence by Proposition 8.3.(1) it is it p-stable. We conclude
that U = F.

8.3. Conjugate autoequivalences. Since we can consider S either as a quartic K3
surface, or as a degeneration of a GM K3 surface, there are two natural autoequivalences
associated to it by Theorem 4.15:

QI — (T o (— ® O(D)))*[—1],
M = To 0 Tp o (—® O(D + E))[-1],

where T and T9q; are the spherical twists around (@ and U.

We will show that Té (- D)QDGM and P94 are conjugate to each other. Since by Theo-
rem 4.15 (3) the latter generates the residual Z/2-action on DP(S) as the CY2 cover of the
Kuznetsov component of the associated quartic double solid, it will follow that the former also
generates a Z/2-action on DP(S).

The following lemma will allow us to prove our identity by computing the images of
skyscraper sheaves of points.

Lemma 8.6. Let S be a smooth projective K3 surface, and let Fy, F be two autoequiv-
alences of D°(S). Assume that:

(1) F1 and F» have the same action on ﬁ(S 7).
(2) Applying F1 and F5 to skyscraper sheaves of points gives the same set of objects

{1F1(Os)}sesc) = {F2(0s)}ses(c)-

Then Fy and F» are isomorphic functors.

Proof. Assumption (2) implies that F|~ 1o F, sends skyscraper sheaves of points to
skyscraper sheaves of points. By [19, Corollary 5.23], it is the composition of the pushforward
along an automorphism f of S and tensoring with a line bundle M. By (1), F| Lo F, acts
trivially on cohomology. So F|~ 1o F, preserves the class v(@g) and M is trivial. But then
the action of fi on H?(S,Z) is trivial, and thus f is the identity by the Torelli theorem for
K3 surfaces. |
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Remark 8.7. Condition (2) holds automatically when the F; () are, up to the same
shift, slope-stable vector bundles for the same polarization. Indeed, both F; and F, induce an
injective map from S to the moduli space of vector bundles of class F; (Oy); since this moduli
space is 2-dimensional and irreducible, both maps are bijections on closed points.

We first prove that the actions of ®9"2¢ and M on cohomology are conjugate.

Lemma 8.8. Let W:D"(S) — D(S) be the autoequivalence given by

V(—) = Top)(— ® O(-E)).

Then dIUartic guqd =1 o T2 @M 6 W have the same action on ﬁ(S 7).

o(=D)

Proof. The lemma follows by direct computation, similar to the proof of Lemma 7.4.
More precisely, we find that 92t and w1 o Té - D)CDGM o W both act on a basis of the
algebraic part of H(S, Z) as follows:

(1,0,0) — (=1, D, -2),

(0, D,0) > (—4,3D, —4),

(0, E,0) > (=3,3D — E, —3),
(0,0,1) — (=2, D, —1).

Moreover, they each act by multiplication by —1 on the orthogonal complement of D and E
in H2(S, Z), and thus they agree on all of H(S, Z). m|

Proposition 8.9. The autoequivalences 3¢ and W~ o T2 DM o W of DP(9)

O(-D)
are isomorphic functors.

Proof. Since ¥~'(=) = (= ® O(E)) o Tg(_p,

82) (Too(—®O(D))*=(—®O(E)) oTop)oTyoTe
°o(=®O(D + E))oTo(-p) o (—®O(—E)).

the claim is equivalent to

By Lemma 8.8, the two sides have the same action on ﬁ(S ,Z)). By Lemma 8.6 and Remark 8.7,
it will thus be enough to show that applying the left-hand side and the right-hand side to
skyscraper sheaves of points yields slope-stable vector bundles.

We first consider the left-hand side of (8.2) applied to the skyscraper sheaf at s € S(C).
We note that Te (Os ® O(D)) = Te(Os) = Is[1]. Since O (D) is very ample, the sheaf /(D)
has three sections, no higher cohomology, and is globally generated; thus the image of U
is F5[2], where ¥y is defined by the short exact sequence

0— %, — O QH(I4(D)) — I(D) — 0.

It is a simple rank 2 bundle with Ext! (%, F5) = Ext! (O, O5) = C? and ¢;(F;) = —D. By
Proposition 8.3, F5 is ;up-slope stable unless it is destabilized by

0(—1)—(1) —2E)
2

) =0(=L),
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where we recall that L = D — E is the class of the line on §. Since the natural morphism
Hom(O(—L). 0 ® H°(I5(D)) = H°(I¢(D)) - Hom(O(~L), Is(D)) = H(I(D + L)),

induced by multiplying with the defining section of (9 (L) is injective, Hom(@(—L), 5) = 0,
and thus ¥ is pup-stable.
Now we consider the right-hand side of (8.2), applied to Os. After the first three steps we
reach
(Top)(Os ® O(~E) ® O(D + E) = L(E)[1].

Since @ (E) is globally generated and has two sections (inducing the elliptic fibration), there is
a unique section of /5(E) vanishing at the elliptic fiber Eg containing s; thus

To(Is(E)[1]) = I5/g,[1].

where I, g, denotes the image of the composition Iy — Os — Of,. By Lemma 8.4, U|E, is
a stable vector bundle on the elliptic curve E of rank two and degree —3. By Serre duality,

Extg(U. IyE,) = Exty (Ulg,. Iy/E,) = Homg, (Ig/g,. Ulg,)" =0,

and therefore by Riemann—Roch Hom(U, I,/ g, ) = C. Using stability of U|g, once more, we
see that this map must be surjective. Therefore,

Tu(Is/E,[1]) = Vs[2],

where the vector bundle Vg with v(Vs) = (2,—D — 2E, 4) is defined by the following short
exact sequence:

(8.3) 0= Vs —U— Iy, — 0.

By Proposition 8.3, V is up-stable unless it is destabilized by
—D —-2FE - (D —-2E
(9( (D —2E)

. ) = O(-D).

We claim that Hom(O (= D), Vs[i]) = Oforalli if s ¢ L, and Hom(OQ(—D), V) # 0ifs € L.
To prove the claim, first note that by stability

Ext?(O(—D), U) = Hom(U, O(—=D))Y = 0.

Moreover, Ext!(Q(—D), U) = Ext' (U, O(—D))V = 0; otherwise, the corresponding exten-
sion would define pp-stable vector bundle of Mukai vector (3,—2D — E, 6), whose square
is —8, a contradiction. Therefore,

Hom*(O(-D), U) = C?[0] = Hom*(O(-D), Iy/E,).

To prove the claim, we need to show that the long exact sequence obtained by applying
Hom(O(—D),—) to the map U — I g, in (8.3) induces an isomorphism in degree 0 if and
onlyifs ¢ L.

Every nonzero morphism (@ (—D) — U fits into short exact sequence

0—-0OD)—U— Iy(—E)— 0.
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An easy computation shows that s’ € L, as otherwise
Ext! (Ig(—E),O(=D)) = H'(Iy(L))Y = 0.

Conversely, if s’ € L, the extension exists, and thus arises from a morphism @(—D) — U.
Now observe that the composition O(—D) — U — /g, is nonzero unless there is a mor-
phism Iy (—E) — I/, which exists if and only if s = s’. This proves the claim.

Thus Te(—p)Vs = Vs if s ¢ L, and Proposition 8.3 shows that T p) Vs is up-stable
for all s € S. Thus both the left-hand side and the right-hand side of (8.2) send (s to the shift
by [2] of a up-stable vector bundle. By Lemma 8.6 and Remark 8.7, this completes the proof
of the proposition. O

8.4. Z/2-action in families.

Proof of Theorem 1.6.  'We consider the quasi-projective moduli space F¢ of degree 10
(genus 6) polarized K3 surfaces. It contains as a Noether—Lefschetz divisor the locus of K3
surfaces lattice polarizable with the lattice

(o)

spanned by D and E where D + E corresponds to the given polarization of degree 10.

Let C C F¢ be a smooth curve intersecting this divisor transversely at a single point
o € C such that o corresponds to a quartic K3 of Picard rank two containing a line. By base
change to a finite cover if necessary, we can assume that there exists a family of K3 surfaces
.8 — C with polarization #. The very general point of C necessarily corresponds to a K3
surface of Picard rank one, which is a GM surface by [46] and [18, Lemma 2.8]; shrinking C
if necessary, we can assume C \ {0} parameterizes only GM surfaces.

Up to possibly passing to a cover of C, there exists a rank 2 vector bundle U on § whose
restrictions to fibers §. is the unique #-stable vector bundle of Mukai vector (2, —#,, 3);
so it is the tautological subbundle on GM fibers, and the unique stable bundle of Mukai vec-
tor (2,—D — E, 3) appearing in Lemma 8.4 on §,. Let i,: 8, — & be the inclusion of the
special fiber. Then the object i,«@(—D) is spherical; indeed, by our choice of the curve
C C Fg the object O(—D) does not deform in the family 7: 8§ — C, so the claim holds by
[21, Proposition 1.4]. Now consider the following autoequivalence of Dpes(&):

IMI=T;,0-p)°Tu/coTo/co(—® Og(H))[-1],

where T; 9 (—p) is the spherical twist around i+ @ (—D), and Ty /¢ and T, ¢ are the spher-
ical twists associated to the spherical functors Dyerf(C) — Dperf(8) given by F +— n*F U
and F — 7* F. Each of these three spherical twists are associated to C-linear spherical func-
tors: in the case of T; , 9 p) for the functor Dyeif(0) — Dpert(8), V = ioxO(=D) @ V.
Hence the spherical twists, and thus IT, are also C-linear.

The autoequivalence IT induces an autoequivalence IT. on Dpe(8.) for every fiber by
base change. For ¢ # 0, it is the residual action ®M of Theorem 4.15 on GM K3s as the
CY2 covers of Kuznetsov components of corresponding special GM threefolds. For ¢ = o, by
[21, Proposition 2.7 and Proposition 2.9] we get

My =To_pyoTuoTe o (—® O(D + E))[~1] = T _p @M,
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the autoequivalence considered in Lemma 8.8 and Proposition 8.9. In particular, for every
¢ € C, the autoequivalence Il is an involution that generates a Z /2-action on Dpet(8¢).

The functor IT o IT is the identity on every fiber, and thus sends every skyscraper sheaf O
for s € & to itself. Since IT o IT is a Fourier—Mukai transform by construction, one can easily
adapt the proof of [19, Corollary 5.23] to show that it is given by tensor product with a line
bundle; this line bundle is trivial on the fibers of x, i.e. it is pulled back from C. Shrinking C
further if necessary, we may assume this line bundle to be trivial, and therefore that IT is an
involution of Dpe(§).

We therefore have a homomorphism ¢: Z/2 — mo (Aut(Dpes(8)/C)) as in Corollary 3.4,
and want to show that the obstruction to the existence of an oo-lift vanishes. The restriction
of ¢ to &, can be lifted to a Z/2-action, as by Proposition 8.9 it is conjugate to the residual
action on Dpef(8,) coming from its realization as the CY2 cover of the Kuznetsov component
of the corresponding quartic double solid. By Proposition 3.9, we can replace C by an étale
neighborhood B of 0 € C such that the obstruction to lifting ¢ vanishes.

We have thus obtained a Z/2-action on Dy (&) over B whose generator acts by the
involution IT. The associated invariant category € := Dperf(§ )%/2 has the properties claimed
in Theorem 1.6. Indeed, by Proposition 3.15 the category C is smooth and proper over B,
and by Lemma 3.14 the fiber ©;, over b € B is given by the invariant category D°(8},)%/2 for
the induced Z/2-action ¢,. Let ¥ — P3 be the quartic double solid branched along §,, and
for b # 0 let X; be the GM threefold opposite (in the sense of Definition 4.12) to the GM
surface 8p. By construction, for b = o the action of ¢, on D°(8,) is conjugate to the residual
action on D(8,) from Theorem 4.15 (1), and thus its invariant category is equivalent to Ku(Y")
(Lemma 4.5). Similarly, by construction and Remark 4.2, for b # o the action ¢, is equivalent
to the residual action on D(8}) from Theorem 4.15 (3), so its invariant category is equivalent
to Ku(Xp). ]
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