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The enteric nervous system (ENS) is a complex series of interconnected neurons and glia
that reside within and along the entire length of the gastrointestinal tract. ENS functions
are vital to gut homeostasis and digestion, including local control of peristalsis, water
balance, and intestinal cell barrier function. How the ENS develops during embryological
development is a topic of great concern, as defects in ENS development can result in
various diseases, the most common being Hirschsprung disease, in which variable
regions of the infant gut lack ENS, with the distal colon most affected. Deciphering how
the ENS forms from its progenitor cells, enteric neural crest cells, is an active area of
research across various animal models. The vertebrate animal model, zebrafish, has been
increasingly leveraged to understand early ENS formation, and over the past 20 years has
contributed to our knowledge of the genetic regulation that underlies enteric develop-
ment. In this review, I summarize our knowledge regarding the genetic regulation of zeb-
rafish enteric neuronal development, and based on the most current literature, present a
gene regulatory network inferred to underlie its construction. I also provide perspectives
on areas for future zebrafish ENS research.

Introduction to the enteric nervous system
The peripheral nervous system (PNS) encompasses all neurons and glia that reside outside of the
brain and spinal cord and largely regulates unconscious events — such as the fight or flight response
and digestive functions [1]. The largest branch of the PNS is the enteric nervous system (ENS). Also
known as the ‘gut brain,’ the ENS is an autonomous network of neurons and glia located within the
walls of the entire gut. The ENS mediates peristalsis, local digestive functions, and water balance in
the gut, among many other functions [2]. However, although the human ENS contains more than 600
million neurons — rivaling the numbers of those found within the spinal cord — far less is known
about its formation [2].
The vertebrate ENS primarily originates from neural crest cells (NCCs) [3–6]. NCCs are multipo-

tent embryonic stem cells that migrate throughout the embryo, eventually contributing to numerous
cell types in the vertebrate body [7,8]. NCCs are born along the anterior–posterior extent of the
neural tube, and are subdivided according to their spatial level of origin — namely the ‘cranial’ from
anterior, followed by the ‘vagal’, ‘trunk’, and ‘sacral’ populations in the most posterior [9]. Following
emigration from the neural tube, vagal NCCs that approach the foregut are hereafter referred to as
enteric NCCs (ENCCs). ENCCs are competent to become either enteric neurons or enteric glia [3,4].
ENCCs then migrate into and along the outer walls of the incipient gut tube and progress caudally
along its length until reaching their final destinations, where they spatially position along the gut cir-
cumference. During their journey, ENCCs mainly migrate together in a ‘follow the leader’ chain
pattern, such that chains of cells navigate the landscape of the growing gut tube [10–12]. Incredibly,

Version of Record published:
4 January 2024

Received: 29 August 2023
Revised: 13 December 2023
Accepted: 15 December 2023

© 2024 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-ND). 1

Biochemical Society Transactions (2024)
https://doi.org/10.1042/BST20230343

D
ow

nloaded from
 http://portlandpress.com

/biochem
soctrans/article-pdf/doi/10.1042/BST20230343/953271/bst-2023-0343c.pdf by guest on 21 January 2024

http://orcid.org/0000-0002-0427-4493
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1042/BST20230343&domain=pdf&date_stamp=2024-01-04


during their migration ENCCs robustly expand in numbers sufficient to keep up with the growing gut tissue
[13] and give rise to various enteric neuronal subtypes, as well as glia, which can be classified by molecular
means [2,14].
Defects in ENS development and function manifest as various congenital and adult-onset gastrointestinal

diseases. Such diseases include; Hirschsprung disease (HSCR), Esophageal Achalasia, Chronic Constipation,
and Gastroesophageal Reflux Disease [15], among many others. In particular, HSCR is a birth defect character-
ized by the absence of ENS along variable lengths of the infant’s gut, with colonic aganglionosis being the most
common form, occurring every 1 in 5000 births [16,17]. The principal treatment for HSCR is invasive surgical
resection of the aganglionic gut segment, highlighting the need for alternative therapies that may perhaps be
based upon a more comprehensive understanding of ENS genesis in vivo.
To date, the field has identified evolutionarily conserved genetic and cellular signaling factors required for

ENS development. Largely in the mouse model, progress has been made in identifying transcription factors
required for ENS formation; these include Sox10, Phox2b, and Pax3 [18–20]. Among the most studied cellular
signaling pathways during ENCC development, it is known that receptors, Rearranged during Transfection
proto-oncogene (Ret) and Gdnf family member receptor alpha1 (Gfra1), and their ligand, glial-derived neuro-
trophic factor (GDNF), are instrumental for ENCC infiltration, proliferation, and survival in the gut [21–23].
Indeed, it has been appreciated that the loss of combinations of various intrinsic and extrinsic factors results in
severe ENS defects such as HSCR, suggesting that complex phenomena underlie the formation of ENS [17].
For over 20 years now, the zebrafish, Danio rerio, has been leveraged as a relevant model to understand ver-

tebrate ENS development, form, and function [24,25]. Zebrafish ENS development is under the control of
genetic circuits, such as Sox10 [26], Phox2b [27], and the Ret-GDNF pathway [23,28–30], demonstrating the
conservation of genetic pathways giving rise to the ENS, and thus the utility of this model for studying ENS
development. In a nutshell, zebrafish offer many outstanding characteristics to study ENS development, includ-
ing: 1. Large clutches of transparent, externally developing embryos and larvae; 2. Homologous organs and
genes with high conservation to mammals; 3. A large number of fluorescently tagged transgenic lines for live
cell and whole-gut imaging; 4. High amenability to transgenic, drug, and genetic approaches [24,25].
In this review, I summarize knowledge regarding the genetic and signaling level regulation of enteric neur-

onal development in zebrafish, and offer some brief perspectives about possible future directions in the field.

Zebrafish ENS developmental stages and major events
Following emigration from the neural tube, zebrafish vagal NCCs localize in ventrolateral domains posterior to
the otic vesicles (Figure 1A). By 36 hours post fertilization (hpf), ENCCs then begin to migrate as two single
chains medially toward and along the foregut entrance [28,31,32] (Figure 1B). Zebrafish ENCCs express a
defining combination of marker genes that encode for various transcription factors and receptors; including
sox10, foxd3, hoxb5b, phox2bb, ret, and gfra1a/b [23,27,28,33–37]. Once resident along the gut, ENCC chains
migrate caudally within gut mesenchyme until they reach their final destinations, with the wavefront (a.k.a.
vanguard cells) reaching the hindgut’s distal region ∼66–72 hpf [30,31,38]. Along the gut tube, mesenchymal
tissues express chemoattractant-encoding genes, such as gdnfa [28], while intestinal tissues express additional
signaling factor-encoding genes, such as shha [39].
Once reaching their destinations along the gut, which can extend from the foregut to the hindgut, ENCCs

spatially pattern along the gut circumference, and begin to differentiate into enteric neurons [31,35]
(Figure 1C), or glia [40,41], between 54 hpf and 7 days post fertilization (dpf) during the larval stage.
Differentiating neurons express enteric neuronal subtype markers, such as vipb, nos1, chata, and pbx3b [36,41–
43], while cells with differentiating glial identity express the markers her4, cx43, and s100b [40,41]. The zebra-
fish ENS continues neurogenesis after 7 dpf [40,43]; however, the ENS already contains an identifiable neuropil
structure by 7 dpf [44]. The mature zebrafish ENS exists in one diffuse layer of neurons and glia, called the
myenteric plexus, which is sandwiched between circular and longitudinal muscle layers of the gut [45]. While
the zebrafish gut [46] and ENS represent simplified versions of the amniote counterparts — where zebrafish
ENS is not arranged in ganglia and solely contains a myenteric plexus yet lack a submucosal plexus, the larger
functions of the zebrafish ENS are conserved [25].
Spectacularly, research in the zebrafish ENS field has been especially fruitful for not only confirming the con-

servation of gene function across vertebrates — it has also functionally brought to light novel candidates that
are required for ENS development. To date, we know of at least 65 genes (Table 1) [47] that are required for,
and/or are functionally important for, zebrafish ENS development. While I do not discuss all the factors listed
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in Table 1, below I touch upon key gene regulatory network (GRN) takeaways from the data compiled and
discuss what the results suggest regarding zebrafish enteric neuronal development.

A GRN crucial for enteric neuronal development is present
in zebrafish
Not surprisingly, many genes encoding for transcription factors that are expressed in and required for the spe-
cification of NCC populations are functionally important for zebrafish ENS development. Specifically, genes

Figure 1. Early development of the zebrafish ENS from vagal and enteric neural crest cells.

A dorsal view of a transgenic zebrafish embryo at 30 hpf (A), or at 36 hpf (B) is shown, where NCCs are revealed by expression

of sox10:mRFP [81] (shown here in magenta). (A) vagal NCCs reside posterior to the otic vesicles at 30 hpf (long arrow), while

by 36 hpf (B) they emerge from the post-otic domain and thereafter are called enteric NCCs (arrows) as they enter and migrate

along the foregut. (C) A cartoon schematic of a zebrafish larval fish at 96 hpf is shown, where the gut tube is outlined. The

outlined image shows enteric neurons (red) along the gut tube. A, anterior; P, posterior; M, medial; L, lateral.
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Table 1. Genes with published functional roles in zebrafish ENS development Part 1 of 4

Gene name
Gene
symbol Mutation or condition Phenotype(s) Reference(s)

acyl-CoA synthetase short chain family
member 2

acss2 MO-acss2 Reduction in ENS by larval
stage

[59]

achaete-scute family bHLH
transcription factor 1a

ascl1a ascl1at25215/t25215 ENCCs present; reduction
in ENS by larval stage

[56]

AT hook containing transcription factor
1

ahctf1 ahctf1ti262c/ti262c ENCCs present; reduction
in ENS by larval stage

[82]

ADP-ribosylation factor-like 6
interacting protein 1

arl6ip1 MO-arl6ip1 ENCCs reduced; reduction
in ENS by larval stage

[83]

beta-secretase 2 bace2 MO-bace2 Mild reduction in ENS by
larval stage

[84]

bone morphogenetic protein 2b bmp2b MO-bmp2b ENCCs absent; complete
loss of ENS

[61]

chromodomain helicase DNA binding
protein 7

chd7 chd7hsi3/hsi3; MO-chd7 Reduction in ENS by larval
stage

[71,73,74]

chromodomain helicase DNA binding
protein 8

chd8 CRISPR-chd8; MO-chd8 Mild reduction in ENS by
larval stage

[85]

DENN/MADD domain containing 3a dennd3a CRISPR-dennd3a;
MO-dennd3a

Reduction in ENS by larval
stage

[77]

distal-less homeobox 2a dlx2a CRISPR-dlx2a Reduction in ENS by larval
stage

[86]

DNA (cytosine-5-)-methyltransferase 1 dnmt1 dnmt1s904/s904 ENCCs present; reduction
in ENS by larval stage

[68]

Down syndrome cell adhesion
molecule a

dscama MO-dscama Mild reduction in ENS by
larval stage

[84]

Down syndrome cell adhesion
molecule b

dscamb MO-dscamb Mild reduction in ENS by
larval stage

[84]

elongator acetyltransferase complex
subunit 1

elp1 MO-elp1 Reduction in ENS by larval
stage

[77]

endothelin receptor type Bb ednrbb MO-ednrbb Reduction in ENS by larval
stage

[59]

enolase 3, (beta, muscle) eno3 MO-eno3 Reduction in ENS by larval
stage

[59]

fascin actin-bundling protein 1a fscn1a fscn1azd1011/zd1011 Mild reduction in ENS by
larval stage

[87]

forkhead box D3 foxd3 foxd3m188/m188;
foxd3zdf10/zdf10

ENCCs absent; complete
loss of ENS

[34,50,51,54]

forkhead box J3 foxj3 CRISPR-foxj3 Reduction in ENS by larval
stage

[86]

gdnf family receptor alpha 1a gfra1a MO-gfra1a Reduction in ENS by larval
stage

[23]

gdnf family receptor alpha 1b gfra1b MO-gfra1b Reduction in ENS by larval
stage

[23]

glial cell derived neurotrophic factor a gdnfa MO-gdnfa Reduction in ENS by larval
stage

[28]

gutless wonder glw glwb871/b871 Reduction in ENS by larval
stage

[88]

gutwrencher gwr gwrb1088/b1088 Reduction in ENS by larval
stage

[88,89]

Continued
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Table 1. Genes with published functional roles in zebrafish ENS development Part 2 of 4

Gene name
Gene
symbol Mutation or condition Phenotype(s) Reference(s)

hairy-related 9 her9 her9uky2/uky2 Reduction in ENS glia by
larval stage

[90]

heart and neural crest derivatives
expressed 2

hand2 MO-hand2 Reduction in ENS by larval
stage

[39]

histone deacetylase 1 hdac1 hdac1b382 Reduction in ENS by larval
stage

[91]

homeobox B5b hoxb5b vp16-hoxb5b mRNA Expanded ENCCs;
reduction in ENS by larval
stage

[37]

Indian hedgehog signaling molecule a ihha MO-ihha Reduction in ENS by larval
stage

[92]

jumonji and AT-rich interaction domain
containing 2a

jarid2a CRISPR-jarid2a Reduction in ENS by larval
stage

[86]

kinesin family binding protein kifbp kifbpst23/st23 Abnormal enteric neuron
axonal connections; ENS
maturation defect by larval
stage

[93]

mab-21-like 2 mab21l2 mab21l2au10/au10;
MO-mab21l2

Reduction in ENS by larval
stage

[92]

mediator complex subunit 24 med24 med24w24/w24;
MO-med24

Reduction in ENCCs;
reduced migration of
ENCCs; reduction in ENS
by larval stage

[38,94]

Mitogen-activated proteiin kinase 8 mapk8 CRISPR-mapk8 Reduction in ENS by larval
stage

[60]

mitogen-activated protein kinase 10 mapk10 mapk10fci200/fci200;
MO-mapk10

Reduction in ENS by larval
stage

[29]

MYCN proto-oncogene, bHLH
transcription factor

mycn CRISPR-mycn Reduction in ENS by larval
stage

[86]

myeloid ecotropic viral integration site 3 meis3 MO-meis3 ENCCs reduced; reduced
migration of ENCCs;
reduction in ENS by larval
stage

[32]

neuregulin 1 nrg1 MO-nrg1 ENCCs reduced; reduction
in ENS by larval stage

[95]

nicalin ncln CRISPR-ncln; MO-ncln Reduction in ENS by larval
stage

[77]

nucleoporin 98 and 96 precursor nup98 CRISPR-nup98;
MO-nup98

Reduction in ENS by larval
stage

[77]

PAF1 homolog, Paf1/RNA polymerase
II complex component

paf1 MO-paf1 ENCCs absent; complete
loss of ENS

[96]

paired box 3a pax3a MO-pax3a ENCCs absent; complete
loss of ENS

[49]

paired like homeobox 2A phox2a CRISPR-phox2a Reduction in ENS by larval
stage

[86]

paired like homeobox 2Bb phox2bb MO-phox2bb Reduction in ENS by larval
stage

[27]

polymerase (RNA) III (DNA directed)
polypeptide B

polr3b polr3bm74/m74 Reduction in ENS by larval
stage; ENS maturation
defect by larval stage

[97]

Continued
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Table 1. Genes with published functional roles in zebrafish ENS development Part 3 of 4

Gene name
Gene
symbol Mutation or condition Phenotype(s) Reference(s)

protein tyrosine phosphatase
non-receptor type 11a

ptpn11a MO-ptpn11a Reduction in ENS by larval
stage

[98]

RAD21 cohesin complex component a rad21a MO-rad21a Reduction in ENS by larval
stage

[99]

Ras association and DIL domains radil MO-radil ENCCs absent; complete
loss of ENS

[100]

ret proto-oncogene receptor tyrosine
kinase

ret rethu2846/hu2846; retwmr1/

wmr1; MO-ret
Reduction in ENCCs;
reduced migration of
ENCCs; reduction in ENS
by larval stage; loss of ENS
by larval stage; Loss of ENS
function

[23,29,30,33,57–
59,101]

ring finger protein 2 rnf2 CRISPR-rnf2 ENCCs reduced; reduction
in ENS during by larval
stage

[75]

sema domain, immunoglobulin domain
(Ig), short basic domain, secreted,
(semaphorin) 3C

sema3c MO-sema3c Reduction in ENS by larval
stage

[58]

sema domain, immunoglobulin domain
(Ig), short basic domain, secreted,
(semaphorin) 3D

sema3d MO-sema3d Reduction in ENS by larval
stage

[58]

SH3 and PX domains 2Aa sh3pxd2aa MO-sh3pxd2aa Reduction in ENS by larval
stage

[59]

smoothened smo smo, unspecified
mutation

ENCCs nearly absent [39]

SRY-box transcription factor 10 sox10 sox10t3/t3; sox10m618/

m618; sox10tw2/tw2;
sox10tw11/tw11;
MO-sox10

ENCCs nearly absent;
complete loss of ENS

[26,52,53,102]

SRY-box transcription factor 32 sox32 MO-sox32; sox32ta56/ta56 ENCCs absent; complete
loss of ENS

[39]

tetratricopeptide repeat domain 8 ttc8 MO-ttc8 ENCCs reduced; reduction
in ENS during by larval
stage

[103]

thymus, brain and testes associated tbata CRISPR-tbata; MO-tbata Reduction in ENS by larval
stage

[77]

transcription factor AP-2 alpha tfap2a tfap2am610/m610;
tfap2ats213/ts213

ENCCs absent; complete
loss of ENS

[50,51]

transcription factor AP-2 beta tfap2b tfap2bre32/re32 Reduction in ENS by larval
stage

[104]

T-box transcription factor 2b tbx2b CRISPR-tbx2b Reduction in ENS by larval
stage

[60]

ubiquitin protein ligase E3 component
n-recognin 4

ubr4 MO-ubr4 Reduction in ENS by larval
stage

[59]

ubiquitin recognition factor in ER
associated degradation 1

ufd1l CRISPR-ufd1l Mild reduction in ENS by
larval stage

[60]

ubiquitin-like with PHD and ring finger
domains 1

uhrf1 uhrf1b1115/b1115 ENCCs present; reduction
in ENS during larval stage

[68,88]

Continued
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within the GRN of zebrafish NCC [48] are crucial for the subsequent development of ENCCs. For example,
zebrafish with reduced pax3a levels [49], or harboring mutations in tfap2a [50,51], sox10 [26,27,52,53], foxd3
[50,51,54], and zeb2a [55] (formerly known as sip1a), all present with near complete ENCCs loss and total
aganglionosis in larvae.
Across vertebrates, a core enteric GRN has been constructed from data largely using the mouse and chicken,

which centers — the genes Sox10, Pax3/7, Phox2b, GDNF, Ret, Hand2, and Ascl1a [9]. Similarly, the execution
of zebrafish enteric neuronal development relies upon an enteric neuron GRN (Figure 2). The zebrafish enteric
neuron GRN represents transcription factors, chromatin-associated proteins, and signaling molecules, which
together are expressed in vagal NCCs, ENCCs, microenvironmental tissues along ENCC pre-gut entry migra-
tory paths, and/or in the developing gut tissues.
In zebrafish, morpholino-knockdown of pax3a [49], or loss of function mutation in foxd3 [54], decreases the

expression of sox10 in migratory vagal NCC, later resulting in the near complete loss of ENCCs, and therefore,
total aganglionosis in larvae. As evident in data from a zebrafish sox10 mutant line (formerly known as color-
less) [27], sox10 is required for the expression of phox2bb and ret in ENCCs en route to and along the gut.
While a paltry number of ENCCs reach the foregut in sox10 mutants, the ENCCs do not further colonize the
gut, and total aganglionosis occurs. In foxd3 mutants [54], hand2 expression along the gut is abolished, high-
lighting foxd3’s upstream role within the GRN. Furthermore, mutation and/or morpholino-knockdown of
ascl1a [56], hand2 [39], or phox2bb [27], results in compromised ENS development; although ENCCs are ini-
tially present, there is a reduction in enteric neuron numbers by the larval stage, likely due to defects in prolif-
eration, migration, survival and/or differentiation of ENCCs.
The Ret signaling pathway, a key part of the enteric GRN, is necessary for zebrafish ENS development.

Reduction in ret expression and/or function, via morpholino-knockdown or mutations, elicits enteric neuron
loss, manifesting as colonic, and/or total aganglionosis [23,29,30,33,57–59]. In particular, dose-dependent dis-
ruption of ret in zebrafish, via heterozygous and homozygous mutant analyses [29,30], leads to colonic agan-
glionosis or total aganglionosis, respectively, demonstrating that even partial disruption of ret causes severe
ENS defects. mapk10, encoding for the intracellular kinase Mapk10, has been shown to genetically interact with
ret. Heterozygous disruption of ret combined with homozygous mutations in mapk10 increases the severity of
gut aganglionosis [29], therefore, putting forth Mapk10 as a timely player that may function to influence ENS
development synergistically with Ret. Moreover, similarly to mapk10, various other genes [58,60] have been dis-
covered to genetically interact with ret, such as sema3c/d [58], expanding the Ret-associated network. Finally,
morpholino-knockdown of the Ret pathway-associated genes, gdnfa [28], encoding for ligand GDNF, and
gfra1a/b [23], encoding for co-receptors Gfra1a/b, causes drastic reductions in enteric neuron numbers along
the larval gut.
Further building the zebrafish enteric GRN, various other studies have been able to link signaling level

inputs to intracellular signaling effectors that drive ENS development. These recent studies have begun to pave
the way for more thoroughly fleshing out the signaling networks underlying the complexity of ENS
development.
One example includes the linkage of the bone morphogenetic protein pathway to downstream ENS regula-

tors. bmp2b is expressed along the developing gut path of ENCCs during ENS development in zebrafish [61].
Morpholino-knockdown of bmp2b leads to total aganglionosis due to ENCC loss, as well as disruptions in
enteric GRN factor expression. Specifically, bmp2b reduction leads to the abolishment of gdnfa expression in
the gut tube, therefore, placing bmp2b within the zebrafish enteric GRN.

Table 1. Genes with published functional roles in zebrafish ENS development Part 4 of 4

Gene name
Gene
symbol Mutation or condition Phenotype(s) Reference(s)

zinc finger E-box binding homeobox 2a zeb2a MO-zeb2a ENCCs absent; complete
loss of ENS

[55]

A table summarizing genes involved in zebrafish ENS development, in alphabetical order. The table depicts: gene name, gene symbol, mutation or
condition, phenotype(s), and reference(s). ENCCs, enteric neural crest cells; ENS, enteric nervous system. Under the mutation or condition column,
stable mutant lines are denoted with a line designation, while perturbation conditions are listed as performed, i.e. MO: morpholino, CRISPR: F0
crispant data.
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Another example is illustrated by the association between the Sonic Hedgehog (Shh) pathway and zebrafish
ENS. shha, encoding for the ligand Shha, is expressed in gut endoderm during pre-gut entry phases ∼30 hpf,
and along the intestine during colonization phases between 48 and 60 hpf, while ptch2 (formerly known as
ptc1), encoding for the Shh receptor and repressor Patched 2, is expressed within gut mesenchyme and in a
subset of ENCCs between 36 and 42 hpf [39]. A zebrafish shha mutant line (formerly known as sonic you),
presents with total aganglionosis due to failure of ENCC colonization of the gut [39]. In addition, treatment
with the Shh pathway inhibitor Cyclopamine phenocopies the shha mutant ENCC colonization phenotype, and
depletes gdnfa expression along the gut, indicating that intestinal Shh signaling is upstream of gdnfa expression
during zebrafish ENS development.
Further connecting signaling and intracellular inputs, Meis3 has been identified as an important factor

during early zebrafish ENS development. meis3, which encodes for the co-transcriptional regulator Meis3, is
expressed within ENCCs, and along ENCC migratory paths, during pre-gut entry and early colonization phases
of ENS development [32,36]. Reduction in Meis3 via morpholino stalls ENCC migration along the gut and
causes colonic aganglionosis. Meis3 knockdown also results in a near complete loss of intestinal shha

Figure 2. The zebrafish enteric neuron gene regulatory network.

The zebrafish enteric neuron GRN is constructed from many studies that examined how the loss or gain of gene function

affected the expression of other NCC and enteric-associated genes, usually via in situ hybridization assays. The GRN takes

into account how extrinsic factors, such as signaling molecules (i.e. retinoic acid), are known to influence GRN factor

expression. Interactions between GRN nodes that have not yet been directly verified are depicted by dashed lines, with sharp

arrows denoting enhancement or up-regulation of gene expression, while blunt arrows indicate inhibition.
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expression, while also eliciting an expansion in ptch2 expression in the adjacent gut mesenchyme — suggesting
that Meis3 either directly or indirectly up-regulates shha, while it represses ptch2 in the gut [32]. On the other
hand, depletion of retinoic acid (RA) production via pharmacological inhibition of Aldh1a2 restricts meis3
expression, resulting in ENCC failure to colonize the gut, and total aganglionosis [62].
Recently, a connection between Ret signaling and enteric neuronal subtype expression has been brought to

light. Zebrafish larvae heterozygous for a ret mutation [30] display colonic aganglionosis, due to defects in pro-
liferation and migration along the gut. However, the ret mutant enteric neurons prematurely differentiate,
whereby they express aberrantly elevated levels of pbx3b, encoding for Pbx3b, a transcription factor associated
with excitatory neuron differentiation in mammalian ENS [63]. In congruence, immunohistochemical detection
against choline acetyltransferase, an indicator of acetylcholine presence, was elevated within ret mutant enteric
neurons, when compared with sibling controls [30]. Thus, while it is not yet clear whether Ret indirectly or dir-
ectly regulates the expression of pbx3b, the results suggest pbx3b is downstream of the Ret pathway.

Epigenetic regulation of zebrafish ENS development
Epigenetics involves understanding how cell states and/or gene expression are altered without changes in the
DNA sequence of a cell. While epigenetic regulation of gene expression is known to occur in NCC populations
[64,65], largely through changes in chromatin state, we know relatively little about this in terms of the zebrafish
ENS. Nonetheless, several studies have begun to shed light on how epigenetic factors regulate zebrafish ENS
development and enteric GRN factor expression.
One epigenetic modification is DNA methylation. DNA methylation is associated with the suppression of

gene expression and is mediated by DNA methyltransferases (Dnmt). De novo DNA methylation is created by
Dnmt3a/b, while maintenance of DNA methylation marks is enabled by Dnmt1 [66]. The Ubiquitin-like
protein containing PHD and RING finger domains 1 (Uhrf1) is responsible for recruiting Dnmts to unmethy-
lated DNA [67].
While zebrafish carrying homozygous loss-of-function mutations in uhrf1 or dnmt1 display no apparent

change in ENCC production during pre-gut entry and early gut migratory stages, later during larval stages
mutants present with strong, yet variable intestinal hypoganglionosis and colonic aganglionosis phenotypes
[68]. uhrf1 and dnmt1 mutant ENS phenotypes are likely due to diminished ENCC proliferation, migration, or
survival; however, it is not yet clear what downstream ENS-related gene expression is altered in these zebrafish
mutants. Interestingly, ENS phenotypes detected within double mutants for uhrf1 and dnmt1 are not more
severe than those of the single mutants [68], suggesting Uhrf1 and Dnmt1 co-operate, and that DNA methyla-
tion as a whole is required for proper ENS development.
Besides DNA methylation, other epigenetic influences are essential for zebrafish ENS formation. The enzyme

Chromodomain helicase DNA-binding protein (CHD) 7 is a chromatin remodeler [69]. CHD7 can also act as
a co-transcriptional regulator at promoters and enhancer regions, either as a context-dependent repressor or
activator, to affect gene expression [70]. Loss of chd7 via morpholino-knockdown in zebrafish results in wide-
spread phenotypes, mimicking the human congenital condition known as CHARGE syndrome [71], which
affects many tissue and organ systems, including the eye, craniofacial tissues [72]. Zebrafish chd7 loss of func-
tion embryos suffer from altered NCC specification, exhibiting decreased expression of NCC specifiers foxd3
and sox10 within cranial and vagal domains, as well as reduced crestin+ ENCC en route to and along the
foregut [71]. Not surprisingly, chd7 loss of function embryos display complete ENS loss by the larval stage
[71,73], and disrupted gut motility [74].
Recently one factor associated with chromatin modification, Ring finger protein 2 (Rnf2), has been discov-

ered to impact zebrafish ENS formation [75]. Modifying histones to control chromatin state is another promin-
ent way regulators exert epigenetic control over gene expression. The mammalian Polycomb repressive complex
1 contains the ubiquitin E3 ligase RING1, as either RING1A or RING1B, catalyzing the ubiquitination of
Lys119 of histone H2A, largely a repressive mark [76]. Zebrafish mutants for rnf2, with predicted homology to
Ring1b, present colonic aganglionosis, intestinal hypoganglionosis, and a reduction in gut tube ENCCs [75].
Examination during early NCC specification stages in rnf2 mutants revealed that the zebrafish NCC specifiers
foxd3 and sox9b were differentially reduced in expression amongst cranial, vagal, and trunk NCC domains,
where sox9b exhibited a strong loss of expression in cranial NCC, while foxd3 was globally restricted. During
gut pre-entry stages, the ENCC expression of phox2bb, ret, and hand2 was reduced [75], suggesting that Rnf2
regulates these developmental ENS genes.
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Knockdown of candidate genes identified from large-scale
HSCR-patient datasets display zebrafish ENS defects
Within the past several years, zebrafish have been leveraged to determine if candidate HSCR genes identified
from large-scale studies are required for ENS development. Specifically, several large studies analyzed
HSCR-patient sequencing datasets and prioritized candidates for knockdown using the zebrafish model. These
recent studies have identified many conserved, novel genes not known to have previous roles in ENS develop-
ment. The identified genes include; dennd3, ncln, nup98, and tbata [77]; ufd1l, tbx2b, slc18a1, and mapk8 [60];
and acss2, sh3pxd2aa, eno3, and ubr4 [59] (Table 1). With this exciting field of zebrafish ENS research still rela-
tively new, it will be interesting to see how the identified candidate genes functionally affect specific aspects of
enteric development.

Summary
Over the past 20 years, there have been an increasing number of studies that utilize zebrafish to delineate the
genetic networks, signaling landscapes, and epigenetic influences that underpin early ENS formation. To date,
these studies have illuminated that at least 65 genes are essential for zebrafish ENS development (Table 1). As
such, it is important to provide a timely overview of the GRN underlying zebrafish enteric neuron development,
which I have synthesized from numerous studies and depicted using the GRN Biotapestry model [78]
(Figure 2). Additionally, many recent transcriptomic studies have expanded our knowledge of the genes
expressed within developing zebrafish ENS cells [36,40–42,79,80]. Looking to the future, it will be essential to
validate connections between gene nodes within the GRN and incorporate how other newly discovered factors
affect ENS ontogenesis.

Perspectives
• Zebrafish have been used as a robust and relevant model to understand vertebrate ENS devel-

opment for over 20 years. To date, the field has discovered 65 genes necessary for proper
ENS development.

• Genetic, epigenetic, and signaling inputs direct the early development of enteric neurons from
vagal and ENCCs during ENS development. Validation of GRN links will be critical to resolve
the zebrafish enteric GRN.

• Many novel candidate genes have been identified from HSCR-patient data sets as important
for ENS development. Moving forward, it will be important to decipher how the newly identi-
fied genes regulate specific aspects of enteric development, how they interact with enteric
GRN modules, and for purposes of furthering HSCR research, it will be important to validate
findings in zebrafish with mammalian and human models of enteric development.
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