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In modern computing systems, jobs’ resource requirements often vary over time. Accounting for this temporal
variability during job scheduling is essential for meeting performance goals. However, theoretical understand-
ing on how to schedule jobs with time-varying resource requirements is limited. Motivated by this gap, we
propose a new setting of the stochastic bin-packing problem in service systems that allows for time-varying
job resource requirements, also referred to as ‘item sizes’ in traditional bin-packing terms. In this setting, a
job or ‘item’ must be dispatched to a server or ‘bin’ upon arrival. Its resource requirement may vary over time
while in service, following a Markovian assumption. Once the job’s service is complete, it departs from the
system. Our goal is to minimize the expected number of active servers, or ‘non-empty bins’, in steady state.

Under our problem formulation, we develop a job dispatch policy, named J����R���������S����� (JRS).
Broadly, JRS lets each server independently evaluate its current job con�guration and decide whether to accept
additional jobs, balancing the competing objectives of maximizing throughput and minimizing the risk of
resource capacity overruns. The JRS dispatcher then utilizes these individual evaluations to decide which
server to dispatch each arriving job to. The theoretical performance guarantee of JRS is in the asymptotic
regime where the job arrival rate scales large linearly with respect to a scaling factor A . We show that JRS
achieves an additive optimality gap of $ (pA ) in the objective value, where the optimal objective value is
⇥(A ). When specialized to constant job resource requirements, our result improves upon the state-of-the-art
> (A ) optimality gap. Our technical approach highlights a novel policy conversion framework that reduces the
policy design problem into a single-server problem.
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1 INTRODUCTION
1.1 Background and Motivation
In modern computing systems, a job often takes the form of a virtual machine (VM) or a container
[8, 14]. Such a job comes with a resource requirement, such as a certain number of CPUs and amount
of memory, while in service. Each server in the system o�ers a limited amount of these resources.
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When a job arrives at the system, the job dispatch policy needs to decide which server the job
should be assigned to, given the job’s resource requirement and servers’ current job con�gurations.
This job scheduling problem can be approached as a Stochastic Bin-Packing (SBP) problem, where
jobs are viewed as items, job resource requirements as item sizes, and servers as bins. A traditional
SBP setting considers a �nite set of jobs that arrive online but do not depart from the system.
The objective is to minimize the number of servers that have jobs on them, or ‘non-empty bins’,
subject to the resource capacities of the servers. SBP, with a rich history in operations research
and theoretical computer science [10–12], is a �eld of continuous developments and advancements
[1, 16, 18].
To incorporate job departures into the problem formulation, a setting referred to as stochastic

bin-packing in service systems has been proposed recently [17, 32–36]. In this setting, jobs not only
arrive but also depart over time. More speci�cally, jobs are assumed to arrive according to Poisson
processes, and each job is assumed to stay in the system for an exponentially distributed service
time. The service time of a job remains unknown until the job departs. Before delving further into
SBP in service systems, it is worth mentioning that there is a parallel thread of research on the
so-called dynamic bin-packing problem that also handles job departures (see, e.g., [6, 9, 20], and
references therein), but it is primarily from a worst-case analysis perspective. Additionally, the
virtual machine scheduling problem with objectives di�erent from minimizing the number of active
servers has also been widely studied (see, e.g., [22–24, 26–29, 39]).
For SBP in service systems, the goal is to design a job dispatch policy f that minimizes the

expected number of active servers in steady state, denoted as # (f). The optimality gap of a policy f
is de�ned as # (f) � # (f⇤), where f⇤ is the optimal policy. Since SBP in service systems aims to
model today’s large-scale computing systems, the optimality gap of a policy is usually studied in
the regime where the total job arrival rate becomes large. As we scale up the total job arrival rate
linearly with a scaling factor, A , the optimal value # (f⇤) can be shown to be ⇥(A ). 1 Therefore, we
say a policy is asymptotically optimal if its optimality gap is > (A ).

The optimality gap for SBP in service systems has been characterized in the line of work [32–36].
In particular, Stolyar [32], Stolyar and Zhong [34] propose greedy policies that are asymptotically
optimal, but the scheduler that executes these policies needs to know detailed state information,
which is in a high-dimensional space. Stolyar and Zhong [35, 36] later develop policies that use much
less state information and achieve ⇥(A ) (with an arbitrarily small constant) and > (A ) optimality
gaps, respectively.
While prior work on SBP in service systems has provided substantial insights into scheduling

virtual-machine-type jobs, it primarily focuses on job resource requirements that remain �xed
over time. However, in modern computing systems, jobs’ resource requirements often vary over
time [2, 13, 21, 30, 31, 37]. For example, when a job involves providing user-facing services, the
instantaneous requirement on CPUs and memory depends on the service demand, which is subject
to �uctuation over time [13, 21]. Time-varying job resource requirements pose signi�cant challenges
in optimizing system e�ciency, particularly when aiming to minimize the number of active servers,
thereby improving server utilization. It is pertinent to note that low utilization has been recognized
as a signi�cant obstacle to the continued scaling of today’s computing systems.

Motivated by this gap, in this paper, we propose a new setting of stochastic bin-packing in service
systems that allows job resource requirements, or ‘item sizes’, to vary over time.
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(a) A simplified version of our job model. Each job
in service is in either an ! phase or an � phase, as-
sociated with low and high resource requirements,
respectively. When the job is completed, it is said to
be in the state ?. The job transitions between the
two phases while in service until it is completed, fol-
lowing a continuous-time Markov chain with rates
`880 , 8, 8 0 2 {!,� ,?}.

(b) A system model with an infinite number of identi-
cal servers. As soon as a job arrives to the system, the
job needs to be dispatched to a server to start service
immediately. The configuration of each server is the
number of jobs in each phase on the server.

Fig. 1. Job model and system model.

1.2 Problem Formulation: A Simplified Version
We �rst describe our job model that features time-varying resource requirements. For ease of
exposition, here we present a simpli�ed setting where each job in service can be in one of the
two phases, ! and � , associated with low and high resource requirements, respectively. Our full
model, presented in Section 2, allows more than two phases and more than one type of resources. To
model the temporal variation in the resource requirement, we assume that each job transitions
between the two phases while in service until it is completed, following a continuous-time Markov
chain illustrated in Figure 1(a). We use an absorbing state ? to denote that the job is completed. A
job can initialize in either phase ! or phase � , and they are referred to as type ! and type � jobs,
respectively. Note that the setting where a job’s resource requirement does not vary over time is a
special case of our job model where the transition rates between phases are 0.

We consider a system with an in�nite number of identical servers, illustrated in Figure 1(b). We
assume jobs arrive according to a Poisson process as existing work on SBP in service systems. In
particular, we assume that the two types of jobs arrive at the system following two independent
Poisson processes, with rates ⇤! and ⇤� , respectively; i.e., the interarrival times of type ! and type
� jobs are i.i.d. following exponential distributions with means 1/⇤! and 1/⇤� , respectively. Upon
arrival, a job needs to be dispatched to a server according to a dispatch policy, and the job enters
service immediately. The goal is to design a policy f to minimize the expected number of active
servers (servers currently serving a positive number of jobs) in steady state, denoted as # (f).
As job resource requirements vary over time, situations can arise where the total job resource

requirement on a server exceeds the server’s resource capacity, resulting in resource contention.
Modern computing systems can tolerate temporary overruns of resource capacity, though they
often incur performance degradation or other costs [7, 15]. In our model, we incorporate a rate
at which the cost accumulates due to resource contention. We �rst represent the state of a server
by its con�guration, a vector k = (:!,:� ) where :! and :� are the numbers of jobs in phase !
and phase � , respectively. Then a cost rate function ⌘(·) maps a server’s con�guration to a rate of
cost. For example, the cost rate can be proportional to how much the total resource requirement of
1We use the standard Bachmann–Landau notation. Consider two functions 0 (A ) and 1 (A ) , where 1 (A ) is positive for large
enough A . Then 0 = $ (1) if lim supA!+1

|0 (A ) |
1 (A ) < 1; 0 = > (1) if limA!+1

0 (A )
1 (A ) = 0; 0 = ⇥ (1) if 0 = $ (1) and1 = $ (0) .
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the jobs on the server exceeds this server’s resource capacity. A more general de�nition of ⌘(·) is
given in Section 2. We assume that the resource contention does not a�ect the transition rates in
the job model nor prompt jobs to be terminated, suitable for the application scenarios where the
contention level is low and manageable. Let ⇠ (f) denote the average expected cost rate per server.

Now our bin-packing problem can be formulated as follows:
minimize

f
# (f)

subject to ⇠ (f)  n,
(1)

where n > 0 is a budget for the cost rate of resource contention. We are interested in solving
this problem in the asymptotic regime where the arrival rates (⇤!,⇤� ) scale to in�nity [33–36],
motivated by the ever-increasing computing demand that drives today’s computing systems to be
large-scale. Speci�cally, we assume (⇤!,⇤� ) = (_!A , _�A ) for some �xed coe�cients _! and _�
and a scaling factor A , and we study the asymptotic regime where A increases.

1.3 Main Result
Our main result is an asymptotically optimal policy, named J����R���������S����� (JRS), for this
new setting of SBP in service systems with time-varying job resource requirements. The asymptotic
optimality is in the sense that under our proposed policy JRS, the expected number of active servers
is at most

�
1 +$

�
A�0.5

� �
times the optimal objective value of the optimization problem in (1), while

the cost rate incurred is at most
�
1 +$

�
A�0.5

� �
·n (i.e., exceeding the budget by at most a diminishing

fraction). This asymptotic optimality result translates into an additive optimality gap of $ (pA ) in
the objective value (expected number of active servers), since the optimal objective value can be
shown to be ⇥(A ). This main result is formally presented in Theorem 1.
Our model can be specialized to the traditional setting of SBP in service systems where jobs’

resource requirements remain �xed over time. For this specialization, we replace the constraint
⇠ (f)  n in the problem formulation (1) with a capacity constraint, which requires the total
resource requirement by jobs on a server to be within the server’s resource capacity. Our proposed
policy JRS can then be adapted into one that has an $ (pA ) optimality gap in the objective value,
which improves upon the state-of-the-art > (A ) optimality gap. A discussion on the implementation
complexity of JRS and how it compares with existing policies for the traditional setting of SBP in
service systems is provided in Section 4.3. To be clear, this setting is not a strict special case of the
formulation in (1) because n > 0 is required there, but our approach and proof carry over.

From a technical approach perspective, our contribution is a novel approach that decomposes the
policy design into two steps: de�ning a single-server sub-problem, and then converting the solution
of the sub-problem into a policy in the original problem. This decomposition not only reduces the
complexity of policy design but also makes the analysis tractable. We provide an overview of this
approach in Section 1.4.

1.4 Approach Overview
To motivate our approach, we ask two questions:

How should we design a good dispatch policy for this system?
How can we prove that a dispatch policy is asymptotically optimal?

Before presenting our answers to these two questions, we �rst comment onwhy they are challenging
to answer. On the one hand, solving this problem directly via dynamic programming is intractable
due to the unbounded state space resulting from the in�nitely many servers. Even if we restrict
ourselves to the servers that are active, the state space is still prohibitively large. On the other hand,
we can consider designing a heuristic policy. However, unlike traditional SBP problems where we
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Fig. 2. A single-server system with an infinite supply of jobs. A single-server policy decides when to request
jobs and how many jobs of each type to request.

can simply seek to pack the servers as compactly as possible, here the question of how many jobs
should be put on a server is complicated. The complexity comes from the time-varying resource
requirements of jobs, which a�ect future resource contention.

A policy-conversion framework. We answer the two questions at the same time with a novel
policy-conversion framework. The framework has two steps:
(1) De�ne the single-server problem, which is a easy-to-solve low-dimensional subproblem;
(2) Convert the optimal policy of the single-server problem into a policy in the original problem.

This framework allows us to break down the complicated policy design problem into two compo-
nents. In de�ning the single-server problem in Step 1, our goal is to quantify the throughput of
each server under the resource contention constraint; in the policy conversion in Step 2, our goal is
to dispatch jobs optimally based on each single server’s characteristics. As we will show, a careful
construction of the single-server problem and the conversion procedure naturally leads to a policy
for the original system and a proof of its asymptotic optimality. Below we give a quick overview of
how we carry out these two steps and the motivation for the design choices.

Single-server problem. To de�ne the single-server problem, consider the following setting: suppose
that our goal is to maximize the throughput of one speci�c server while keeping its expected cost
rate of resource contention below n , then how should we send jobs to this server? Observe that even
though we want to send jobs to the server as frequently as possible, the frequency is fundamentally
limited by how fast the server is able to serve jobs and how many jobs can be packed on the server.
This motivates us to consider the single-server system illustrated in Figure 2. The system has one
server and an in�nite supply of jobs of all types, so the server can start the service of any number
of new jobs of any type at any time. We say the server requests a job from the in�nite supply
whenever it starts serving a new job. We assume the same job model and cost model as in the
original in�nite-server system. The single-server problem aims to �nd a job-requesting policy that
maximizes the throughput (the number of each type of job that can be served) along the direction
of the arrival rate vector (⇤!,⇤� ) = (_!A , _�A ), while maintaining the steady-state expected cost
rate of resource contention below n .

How is the single-server problem related to the original problem? Let #
⇤
be the number such that

the total throughput of #
⇤
single-server systems under the optimal job-requesting policy is equal to

(_!A , _�A ) (assuming #
⇤
is an integer for simplicity). Consider the following policy in the original

system: let each of the �rst #
⇤
servers in the original system adopt the optimal job-requesting

policy and send requests to the dispatcher based on its current con�guration. If the requested jobs
were to arrive as soon as the dispatcher received the requests, the dispatcher would be able to ful�ll
the requests immediately. In this case, the �rst #

⇤
servers in the original system would have the

same dynamics as #
⇤
i.i.d. single-server systems, achieving the largest possible throughput and
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satisfying the constraint on resources contention. So the original system would have achieved the
optimal number of active servers.
However, in the actual model, the dispatcher cannot immediately ful�ll a job request because

jobs arrive stochastically over time. Nevertheless, the dispatcher can still �nd a suitable way to
match each job arrival with the requests. To see this, note that the time points when the dispatcher
receives type 8 requests result from the superposition of #

⇤
= ⇥(A ) independent point processes,

each with the average rate _8A/#
⇤
. As A ! 1, the instantaneous rates of requesting type 8 jobs

concentrate around the arrival rate _8A for each 8 . As a result, most job requests can be ful�lled
within a diminishing delay, so most servers in the original system can closely track the optimal
single-server dynamics.

A meta-policy, J����R����������S����� (JRS), and its asymptotic optimality. Based on the single-
server problem and the idea of tracking the optimal single-server dynamics, we propose a meta-
policy, J����R���������S����� (JRS), which converts a single-server policy f to a dispatch policy
in the original in�nite-server system. We say that JRS takes f as a subroutine. The full de�nition
of JRS is given in Section 4, along with discussions on various practical considerations in its
implementation.

We show that the asymptotic performance of JRS is related to its subroutine in the sense described
in Theorem 3, which we refer to as the conversion theorem. In particular, JRS with the optimal
single-server policy (which we refer to as S������OPT) as the subroutine is asymptotically optimal
for the original in�nite-server problem as A ! 1.

In order to track the optimal single-server dynamics, JRS uses a more sophisticated mechanism
to control the long-term consequences of missing job requests or ful�lling requests with delays.
The mechanism involves the auxiliary variables of tokens and virtual jobs, which regularize the
process of generating requests and matching arrivals with requests. These auxiliary variables play
a crucial role in the proof of Theorem 3 in Section 5, where a novel Stein’s method argument is
carried out. We discuss the role of tokens and virtual jobs and their necessity at the end of Section 4
and in Section 5.5.
Finally, we comment that our policy conversion framework can be applicable to other systems

with similar structures. Speci�cally, we can try to de�ne a suitable single-server problem, solve for
its optimal policy, and convert the optimal single-server policy to the original problem. A similar
conversion theorem should hold as long as the servers are weakly coupled in some sense. See
Section 6 for a discussion of such systems.

Relation to the mean-�eld approach. We remark that the mean-�eld approach often studies
the empirical distribution of con�gurations on all servers [17, 32–36], which can be viewed as a
probability distribution of a single server’s con�guration. However, the mean-�eld approach is
typically used to analyze this empirical distribution under a given policy for the original system. In
contrast, our approach solves the single-server problem to design a single-server policy, and then
converts it to a policy in the original system with performance guarantee.

1.5 Paper organization
In Section 2, we present the general problem formulation, which generalizes the simpli�ed version
in this section. In Section 3, we give a more detailed overview of our main result and approach,
with a short proof of Theorem 1 (main result) based on Theorems 2–4 at the end of the section.
Section 4 provides a detailed description of our meta-policy, J����R���������S����� (JRS), along
with discussions on practical considerations in its implementation. In Section 5, we prove the
performance guarantee of JRS (Theorem 3) under an irreducibility assumption. The proof for the
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general case and other proofs are deferred to the appendices. We conclude the paper and discuss
some future directions in Section 6.

2 PROBLEM FORMULATION
Job Model. As described in Section 1, we consider a job model where each job in service can

be in one of multiple phases, each phase associated with a di�erent resource requirement. Here
the resource requirement can be a multi-dimensional vector, with each coordinate specifying the
requirement of one type of resource. To model the temporal variation in the resource requirement,
we assume that each job transitions between phases while in service until it is completed. The phase
transition process is described by a continuous-time Markov chain on the state space I [ {?},
where I is the set of phases and ? is the absorbing state that denotes the completion of the job. We
call a transition between two phases in I an internal transition, and let `880 denote the transition
rate from phase 8 to phase 8 0; the departure of a job then corresponds to a transition from a phase
8 2 I to ?, whose transition rate is denoted as `8?. The phase transitions of di�erent jobs are
assumed to be independent of each other.

We classify a job as a type 8 job if it starts from phase 8 2 I when entering service. Jobs of each
type 8 arrive to the system according to an independent Poisson process with rate ⇤8 .

Server Model. We consider an in�nite-server system with identical servers. As soon as a job
arrives to the system, the job needs to be dispatched to a server to start service immediately. Note
that this is always feasible because there are an in�nite number of servers in the system. We
assume that jobs cannot be preempted or migrated. To describe the state of a server, we de�ne
the con�guration of a server as an |I |-dimensional vector k = (:8 )82I , whose 8-th entry :8 is the
number of jobs in phase 8 on the server. Each server has a limit on the total number of jobs in
service at the same time. This limit is denoted as  max and referred to as the service limit. Then the
set of feasible server con�gurations is K , {k : Õ

82I :8   max}.

System Dynamics. The system state can be represented by the concatenation of the con�gura-
tions of all servers. Speci�cally, we index the servers by positive integer numbers and denote the
con�guration of server ✓ at time C as Q ✓ (C). Then the state of the entire system can be represented
by the in�nite vector (Q ✓ (C))✓2Z+ .

Suppose that the system is in state (k✓ )✓2Z+ . Let e8 be an |I |-dimensional vector whose 8-th entry
is 1 and all other entries are 0. Then the following state transitions can happen:

• k✓ ! k✓ + e8 , k✓
0 ! k✓

0 8✓ 0 < ✓ : a type 8 job arrives and is dispatched to server ✓ ;
• k✓ ! k✓ + e80 � e8 , k✓

0 ! k✓
0 8✓ 0 < ✓ : a job on server ✓ transits from phase 8 to phase 8 0;

• k✓ ! k✓ � e8 , k✓
0 ! k✓

0 8✓ 0 < ✓ : a job on server ✓ departs the system from phase 8 .

The speci�cs of the system dynamics depend on the employed dispatch policy that decides which
server to dispatch to when a job arrives.

Active Servers. We are interested in the number of active servers, i.e., servers currently serving
a positive number of jobs. Note that given the arrival rates of jobs, the smaller the number of
active servers, the better the system is utilized. Let -k (C) be the number of servers in con�guration
k at time C , i.e., -k (C) =

Õ1
✓=1 1{Q ✓ (C )=k } . Then the number of active servers can be written asÕ

k<0-k (C), where 0 2 R |I | is the zero vector.

Cost of Resource Contention. Recall that the cost rate function ⌘(·) maps a server’s con�gu-
ration to a rate of cost. We assume that ⌘(·) is any function that is �-Lipschitz continuous with
respect to the !1 distance for some constant � > 0 and satis�es ⌘(0) = 0.
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PerformanceGoal. Our high-level goal is to design dispatch policies thatminimize the number of
active users while keeping the cost rate of resource contention within a certain budget. Speci�cally,
we consider policies that are allowed to be randomized and non-Markovian (i.e., the policies can
make history-dependent decisions). We further focus on policies that induce a unique stationary
distribution on the con�guration process {(Q ✓ (C))✓2Z+ }, assuming that the con�guration process
is embedded in a Markov chain that has a unique stationary distribution. We are interested in
such policies because the resulting time averages of quantities related to the con�gurations are
equal to the corresponding expectations under the unique stationary distribution regardless of the
initial state. Let f be a policy of interest, (Q ✓ )✓2Z+ be a random element that follows the stationary
distribution of the system state induced by f , and -k be the corresponding number of servers in
con�guration k in steady state under f . Then the expected number of active servers is given by

# (f) ,
’
k<0

E[-k ] .

We de�ne the expected cost rate per expected active server as

⇠ (f) ,
Õ

k<0 ⌘(k)E[-k ]Õ
k<0 E[-k ]

.

Note that if⇠ (f)  n , we have Õ
k<0 ⌘(k)E[-k ]  n

Õ
k<0 E[-k ]. Now our goal can be formulated

as the following optimization problem, referred to as problem P((⇤8 )82I, n):
minimize

f
# (f)

subject to ⇠ (f)  n,
(2)

where n is a budget for the cost rate of resource contention.

Asymptotic Optimality. We focus on the asymptotic regime where for all 8 2 I, the arrival rate
is given by ⇤8 = _8A for some constant coe�cient _8 and a positive scaling factor A ! +1. To de�ne
asymptotic optimality, we �rst de�ne the following notion of approximation to the optimization
problem P((⇤8 )82I, n) in (2): a policy f is said to be (U, V)-optimal if # (f)  U · # ⇤ ((⇤8 )82I, n)
and ⇠ (f)  V · n , where # ⇤ ((⇤8 )82I, n) is the optimal objective value in (2). Now consider a family
of policies f (A ) indexed by the scaling factor A . We say that the policy f (A ) is asymptotically optimal
if it is

�
U (A ) , V (A )

�
-optimal to the optimization problem P((_8A )82I, n) with U (A ) , V (A ) ! 1 as A ! 1.

We will suppress the superscript (A ) for simplicity when it is clear from the context.
We note that under any policy f , # (f) = ⇥(A ). This can be proven using the renowned Little’s

Law [19] in the following way. The total job arrival rate is ⇥(A ) and the expected time that a job
spends in the system is $ (1). So by Little’s Law, the expected number of jobs in the system in
steady state is ⇥(A ). Since each server can accommodate a constant number of jobs, the expected
number of active servers is ⇥(A ). Given this,

�
U (A ) , V (A )

�
-optimality implies an optimality gap of

U (A ) · A in the objective value.

3 MAIN RESULT AND OUR APPROACH
3.1 Main Result
Our main result, Theorem 1, is the asymptotic optimality of our proposed policy J����R���������
S����� (JRS), with a subroutine we call S������OPT, as brie�y discussed in Section 1. This asymp-
totic optimality result implies an $ (pA ) optimality gap in the expected number of active servers.
We defer the detailed descriptions of JRS and S������OPT to Section 4 and Appendix C. Theorem 1
follows immediately from Theorems 2–4 to be introduced in Section 3.2; a short proof is included
at the end of Section 3.2 for clarity.
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Theorem 1 (Asymptotic Optimality). Consider a stochastic bin-packing problem in service systems
with time-varying job resource requirements. Let the arrival rates be (_8A )82I and the cost rate
budget be n > 0. Then the policy J����R����������S����� (JRS) with the subroutine S������OPT is�
1 +$

�
A�0.5

�
, 1 +$

�
A�0.5

� �
-optimal. That is, the expected number of active servers under JRS with

S������OPT is at most
�
1 +$

�
A�0.5

� �
times the optimal value of the problem P((_8A )82I, n), while

the cost rate incurred is at most
�
1 +$

�
A�0.5

� �
· n .

Specialization to Non-Time-Varying Resource Requirements. As mentioned in Section 1,
we can specialize this result to the setting where the resource requirement of a job does not vary
over time. To do that, we remove the cost constraint in P((_8A )82I, n), and rede�ne the set of
feasible server con�gurations, K , to also incorporate hard capacity constraints for each type of
resources. The rest of the analysis is almost identical to that of the analysis for time-varying
resource requirements; we omit the details due to the space limit. This specialization results in a
policy that is

�
1 +$

�
A�0.5

� �
-optimal in the expected number of active servers.

3.2 Our Approach
In a nutshell, our approach is to reduce the original optimization problem in an in�nite-server
system to an optimization problem in a single-server system, which is de�ned below.

A Single-Server System. Consider a single-server system serving jobs with time-varying re-
source requirements. The system has an in�nite supply of jobs of all types. As a result, the server
can request any number of new jobs of any type at any time. Once a job is requested, it immediately
enters service.
We represent the server con�guration at time C using a vector Q (C) = ( 8 (C))82I , whose 8-th

entry denotes the number of jobs in phase 8 . We assume that the single-server system has the
same service limit  max and cost rate function ⌘(·) as a server in the original in�nite-server system.
Therefore, the server con�guration Q (C) is also in the set K = {k : Õ

82I :8   max}, and the cost
rate at time C is ⌘(Q (C)).

A single-server policy f determines when and how many jobs of each type to request. We allow
the single-server policy to be randomized and assume it is Markovian, i.e., it makes decisions
only based on the current con�guration. Note that allowing non-Markovian policies will not
change the optimal value of the single-server problem that we will consider (see Appendix C). Let
c , (c (k))k2K be a stationary distribution of the server con�guration under the policy f , and let
Q (1) be a random variable with the distribution c . When we consider a policy f and its stationary
distribution c , we assume that the system is initialized from c . The policy f together with c de�nes
the request rate of type 8 jobs _8 , which is the expected number of type 8 jobs requested per unit
time in steady state. Note that _8 is the throughput of type 8 jobs since the system has a �nite state
space.

We consider the following single-server problem, denoted as P((_8A )82I, n):
minimize
# , f, c

#

subject to E
⇥
⌘
�
Q (1)

� ��Q (1) < 0
⇤
 n,

# _8 = _8A , 88 2 I .

(3)

The single-server problem can be interpreted as follows. We can think of # as the number of copies
of the single-server system under f needed to support the arrival rates (_8A )82I in the in�nite-server
system. To minimize # , it is equivalent to maximizing the throughput (_8 )82I in each single-server
system, while maintaining their proportions as (_8A )82I .
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We remark that for the problem P((_8A )82I, n), we only need to consider policies that do not
depend on the scaling factor A . To see this, we can replace the decision variable # with = , # /A
and the optimization problem can be equivalently formulated as follows, which does not involve A :

minimize
=, f, c

=

subject to E
⇥
⌘
�
Q (1)

� ��Q (1) < 0
⇤
 n,

= _8 = _8 , 88 2 I .

(4)

Lower Bound. The single-server problem gives a lower bound to the original problem in (2) as
stated in the following theorem. The proof is given in Appendix A.

Theorem 2 (Lower Bound). Consider a stochastic bin-packing problem in service systems with
time-varying job resource requirements. Let the arrival rates be (_8A )82I and the cost rate budget be
n > 0. Let # ⇤ be the optimal value of the original in�nite-server problem in (2), and let #

⇤
be the

optimal value of the single-server problem P((_8A )82I, n), then # ⇤ � #
⇤
.

Converting From the Single-Server System to the In�nite-Server System. Having established
a lower bound on the in�nite-server problem P((_8A )82I, n) in terms of the optimal value of the
single-server problem P((_8A )82I, n), next we focus on �nding an asymptotically optimal policy.
We will characterize the performance guarantee of a class of policies and then show that the best
policy within the class is asymptotically optimal. Speci�cally, we consider a meta-policy called
J����R���������S����� (JRS), which converts a Markovian single-server policy f into an in�nite-
server policy. We call the policy resulting from the conversion a JRS policy with a subroutine f .
Through analyzing the meta-policy JRS, we show that the performance of each JRS policy can
be characterized by the performance of its subroutine, as stated in Theorem 3 below. The proof
of Theorem 3 under an irreducibility assumption is given in Section 5, and the proof for the full
version is given in Appendix B.3.

Theorem 3 (Conversion Theorem). Consider a stochastic bin-packing problem in service systems
with time-varying job resource requirements. Let the arrival rates be (_8A )82I and the cost rate budget
be n > 0. Let (# ,f, c (k)) be a solution feasible to the single-server problem P((_8A )82I, n). In addition,
we assume that the policy f is Markovian. Let the in�nite-server policy f be JRS with a subroutine f .
Then under f , we have �����

’
k<0

E [-k ] �
l
#

m
· P

⇣
Q < 0

⌘����� = $
⇣p
A
⌘
, (5)

�����
’
k<0

⌘(k)E [-k ] �
l
#

m
· E

⇥
⌘(Q )

⇤ ����� = $
⇣p
A
⌘
. (6)

As a result,

# (f) 
�
1 +$

�
A�0.5

� �
· # , (7)

⇠ (f) 
�
1 +$

�
A�0.5

� �
· n . (8)

Optimal Single-Server Policy. Theorem 3 together with the lower bound in Theorem 2 reduces
the in�nite-server problem P((_8A )82I, n) in (2) to the single-server problem P((_8A )82I, n) in (3).
We can obtain the optimal single-server policy, S������OPT, by solving a linear program, as stated
in the theorem below.
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Theorem 4 (Optimality of Single-OPT, Informal). There exists a linear program LP((_8 )82I, n) that
is equivalent to the single-server problem P((_8A )82I, n). In particular, we can construct an optimal
Markovian policy for P((_8A )82I, n) from the optimal solution of LP((_8 )82I, n).

Proof of Theorem 4 and details on the construction of the optimal policy are given in Appendix C.

P���� �� ��� T������ 1 B���� �� T������� 2–4. Because S������OPT (along with an
optimal stationary distribution) optimally solves P((_8A )82I, n), it achieves the optimal value #

⇤
.

Let f be JRS with a subroutine S������OPT, then according to Theorem 3, we have # (f) �
1 +$

�
A�0.5

� �
· # ⇤

and ⇠ (f) 
�
1 +$

�
A�0.5

� �
· n . By Theorem 2, we also have # ⇤ � #

⇤
. So we

conclude that JRS with a subroutine S������OPT is
�
1 +$ (A�0.5), 1 +$ (A�0.5)

�
-optimal. ⇤

4 PROPOSED META-POLICY: JOIN�REQUESTING�SERVER (JRS)
In this section, we describe our meta-policy, J����R���������S����� (JRS), in full detail. For
ease of presentation, we focus on the case where the subroutine policy f for JRS is k0-irreducible,
i.e., under f , there exists a con�guration k0 such that the single-server system can return to k0

from any other con�gurations (which is equivalent to assuming that the con�guration of the
single-server system under policy f forms a unichain). The algorithm for the general case is given
in Appendix B.3.

4.1 How the Single-Server Policy Requests Jobs
Before going into the de�nition of JRS, we �rst take a closer look at how the Markovian single-server
policy f requests jobs, to avoid potential ambiguity caused by the fact that a single-server policy
can request jobs at any time. Let 08 denote the number of type 8 jobs requested, and let a , (08 )82I .
We say a is feasible if the total number of jobs on the server does not exceed  max after adding
the jobs. The policy f performs one of the following two types of requests based on the current
con�guration.
• Reactive requests. A reactive request is triggered by either an internal transition or a departure.
The changes in the con�guration when a reactive request is made can be represented by the
diagram

k ! k 0 ! k 0 + a,

where k ! k 0 is due to the internal transition or departure, and k 0 ! k 0 + a happens since
the policy immediately requests a jobs. The policy f speci�es a probability distribution over all
feasible a when it decides to perform reactive requests for the con�guration k 0.

• Proactive requests. A proactive request happens on its own, and it happens at a �nite rate
depending on the current con�guration of the server. The change of the con�guration when a
proactive request happens can be represented by the diagram

k ! k + a.

More speci�cally, suppose the policy f decides to perform proactive requests for a con�guration k .
Then for each feasible a, the policy f speci�es a rate and runs a timer with an exponentially
distributed duration with the speci�ed rate. When the timer ticks, a jobs are requested. When
the con�guration changes, all the timers are canceled and restarted with new rates based on the
new con�guration.

4.2 Description of J����R����������S����� (JRS)
The inputs of JRS include: (i) the single-server policy f , (ii) the objective value of f in the single-
server problem (3), denoted as # , and (iii) the transition rates in the job model.
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We �rst divide the in�nite server pool into two sets based on the server index ✓ . Let ! = d# e. We
call servers with index ✓  ! normal servers; we call servers with index ✓ > ! backup servers. The
normal servers are responsible for serving most of the jobs, while the backup servers are activated
only to handle over�ow jobs (jobs that are not dispatched to normal servers).

The JRS is speci�ed in two steps.

• Step 1 (Job Requesting on a Normal Server):We let each normal server request jobs using
its subroutine, the single-server policy f . The input to the policy f is what we refer to as the
observed con�guration of the server, which will be further explained below. When f requests
a = (08 )82I jobs, 08 type 8 tokens are generated for each 8 2 I to store the job requests. The
server pauses the job requesting process if it already has any type of tokens, and resumes when
all the tokens that it generated are removed.

• Step 2 (Arrival Dispatching):
– Real jobs. When a type 8 job arrives, the dispatcher chooses a type 8 token uniformly at
random, removes the token, and assigns the job to the corresponding server. When there are
no type 8 tokens, the dispatcher sends the job to an idle backup server.

– Virtual jobs.When the total number of type 8 tokens throughout the system exceeds the
limit [max = d

p
!e (called the token limit), a type 8 virtual arrival is triggered, which causes

the dispatcher to choose a type 8 token uniformly at random, remove the token, and assign a
virtual job to the corresponding server. A virtual job has the same transition dynamics as a
real job but does not consume physical resources.

The observed con�guration of a normal server in Step 1 is the con�guration resulting from real jobs
and virtual jobs combined. That is, it is a vector whose 8-th entry represents the total number of
real and virtual jobs in phase 8 on this server. The observed con�guration changes when there is a
new real or virtual job arrival assigned to the server, or when a real or virtual job on the server has
a phase transition or departs. We update the input to the policy f when the observed con�guration
changes. Whenever the observed con�guration changes, the policy f cancels the exponential timers
in progress; but a reactive request from the policy f can only be triggered when a real or virtual
job on the server has a phase transition or departs.

Intuition behind JRS. To provide a better understanding of the main design ideas of JRS, here
we give an intuitive description of how it works. Broadly, servers generate job requests and store
unful�lled requests as tokens; the dispatcher assigns jobs to servers according to the tokens to ful�ll
job requests. This is the mechanism for matching job arrivals with requests, which is referenced
at the end of Section 1.4. However, rather than matching all tokens with job arrivals, JRS opts to
convert some of the tokens into virtual jobs to keep the total number of tokens within an upper limit
[max. By capping the number of tokens, JRS ensures that the job requests generated by each server
get ful�lled quickly (either by a real job or a virtual job), and thus the observed con�gurations of
servers maintain proximity to i.i.d. copies of the single-server systems.

The choice of the token limit [max = ⇥(pA ) balances two key considerations. On the one hand, a
smaller [max brings the observed con�gurations closer to i.i.d. copies of single-server systems. On
the other hand, if [max is overly small, the rate of generating virtual jobs becomes high and the
probability for a job arrival to see no tokens is also high. As a result, the observed con�gurations,
which include both real and virtual jobs, deviate from the real-job con�gurations. A more in-depth
discussion on the role of tokens and virtual jobs and whether they are fundamental is in Section 5.5.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 48. Publication date: December 2023.



Near-Optimal Stochastic Bin-Packing in Large Service Systems with Time-Varying Item Sizes 48:13

4.3 Practical considerations in implementing J����R����������S����� (JRS)
Computational complexity of JRS. The computational complexity of JRS consists of two com-
ponents: the o�ine component that computes a single-server policy f and its objective value # ,
and the online component that carries out the two steps of JRS.
The o�ine component reduces to solving the linear program given in (61) in Appendix C.1,

whose number of optimization variables is linear in the number of feasible con�gurations times
the number of phases, i.e., |K | ⇥ |I |, on a single server. Admittedly, |K | can be large when a single
server has a large quantity of resources and there are many job phases. However, we opt for the
view that a single server is not excessively large and the system’s scale is primarily captured by
the scaling factor A . Therefore, it is advantageous that the computational complexity of this o�ine
component is independent of A .
In the online component, the bulk of the computation is in job requesting and virtual job

simulation, which can be executed distributedly on the normal servers. Speci�cally, each normal
server monitors its observed con�guration and generates tokens according to the single-server
policy f ; additionally, when a virtual job is assigned to the server, the server simulates the dynamics
of the virtual job, i.e., generates random variables corresponding to phase transitions and job
departure. Backup servers do not need to perform any computation beyond serving jobs.
The scheduler, which stores all the tokens, has two responsibilities in the online component:

(i) the scheduler matches each newly arrived job to a token of the same type, chosen uniformly at
random, or sends the job to a backup server when there are no tokens of the same type; (ii) the
scheduler monitors the number of tokens of each type and assigns virtual jobs when the number of
tokens exceeds the limit [max.
It is informative to compare the computational complexity of JRS with existing algorithms

designed for the traditional setting of stochastic bin-packing in service systems, where the resource
requirements are non-time-varying [17, 32–36]. At a high level, these existing algorithms function
as follows: upon the arrival of a job, the scheduler checks the current con�gurations of all servers
and assigns the job to a server whose con�guration optimizes certain prede�ned criteria. Among
these, the GRAND algorithm [33, 35, 36] stands out for its simplicity and asymptotic optimality.
Under GRAND, the scheduler only needs to identify con�gurations that can accommodate the
incoming job and then randomly assigns the job to one of these feasible servers, along with
some idle servers. Compared to JRS, GRAND does not have an o�ine planning component, and
individual servers do not perform computation beyond serving jobs. The scheduler’s role in GRAND
is slightly more complex than in JRS. Consequently, when considering using JRS in settings where
job resource requirements are non-time-varying, practitioners should weigh whether the additional
computational complexity is warranted.

Model parameter estimation. A limitation of JRS is its dependency on known model parameters,
including job arrival rates and phrase transition rates. Such dependency is not present in existing
algorithms designed for the setting with non-time-varying resource requirements. In real-world ap-
plications, the model parameters can be estimated from workload traces such as [37, 38]. Estimation
errors can impact the system’s performance, an issue that merits further in-depth investigation in
future work. Here, we provide a preliminary result on the performance degradation due to parame-
ter estimation errors. Roughly speaking, suppose that the estimation error in the job arrival rate
coe�cients _8 ’s and the phase transition rates `880 ’s and `8?’s are bounded by X � 0 (along with an
insensitivity assumption on the single-server problem). Then if we use JRS where the single-server
policy is obtained by solving for the optimal single-server policy under the estimated parameters,
the resulting JRS is

�
1 + ⌫X +$

�
A�0.5

�
, 1 + ⌫X +$

�
A�0.5

� �
-optimal for any X  Xmax, where ⌫ and
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Xmax are positive constants independent of A . The exact statement is given in Proposition 1 in
Appendix D, along with a proof.

Connection to practical algorithms. Recent progress has been made in addressing the issue of
low utilization due to time-varying job resource requirements, notably within Google’s datacenters,
as discussed in [2]. The approach in [2] makes predictions on the future resource requirements of
jobs, which lead to a further prediction on the future peak resource requirement on a server if a
newly arrived job were to be sent to that server (assuming no future job arrivals). This prediction
categorizes each server as either feasible or infeasible for the new job, and this binary outcome is
subsequently used by a separate scheduler for job assignment.
Our proposed JRS policy can be viewed as giving more detailed predictions on whether it is

suitable for a server to take on new jobs, represented by the tokens. The predictions are optimized
by taking into account future job arrivals and the stochastic dynamics of jobs.

5 PROOF OF THEOREM 3 (CONVERSION THEOREM) ASSUMING IRREDUCIBILITY
In this section, we prove Theorem 3 to establish the performance guarantee of JRS. For ease of
presentation, we focus on the case where the subroutine policy f is k0-irreducible. The proof for
the general case is in Appendix B.3.

This section is organized as follows. We �rst provide some preliminaries in Section 5.1. Then we
outline the steps and lemmas needed for the proof in Section 5.2. In Section 5.3, we prove Theorem 3
based on the lemmas. In Section 5.4, we prove one of the lemmas, Lemma 2, where we devise a
novel approach to employ Stein’s method. Finally, in Section 5.5, we discuss the role of tokens
and virtual jobs and their necessity from a proof perspective. The proofs of the rest of the lemmas
presented in this section are given in Appendix B.

5.1 Preliminaries
Consider an in�nite-server system under the JRS policy. For each normal server ✓ , we describe its
status at time C using the following variables: con�guration of real jobs Q ✓ (C) (referred to simply as
con�guration in previous sections), tokens (✓ (C), con�guration of virtual jobs ' ✓ (C), and observed
con�guration bQ ✓ (C) , Q ✓ (C) +' ✓ (C). We use the superscript “1 : !” to refer to a certain descriptor of
all normal servers, for example, bQ1:! (C) ,

�bQ ✓ (C)
�
✓=1,2,...! . The system under JRS is a Markov chain

with a unique Markovian representation ((Q ✓ (C))✓=1,2,..., ' 1:! (C),(1:! (C)). The following lemma
shows that the system has a unique stationary distribution (the proof is provided in Appendix B.1).

Lemma 1 (Unique Stationary Distribution). Consider an in�nite-server system under the JRS policy
with f as its subroutine, where f is a single-server policy that is Markovian and k0-irreducible. Then
the state of the system ((Q ✓ (C))✓=1,2,..., ' 1:! (C),(1:! (C)) has a unique stationary distribution.

Let Q1:! (C) ,
�
Q
✓ (C)

�
✓=1,2,...,! be the con�guration vector of ! i.i.d. copies of the single-server

system under f . As discussed in Section 4.2, we will show that Q1:! (1) can be approximated by
Q

1:! (1). In the remainder of this section, we omit the steady-state symbol (1) for simplicity.
To rigorously discuss the approximation of the steady-state random variables, we de�ne some

metrics. Recall that K , {k : Õ
82I :8   max} is the set of feasible single-server con�gurations.

Let K! , {k1:! : k✓ 2 K,8✓} be the set of feasible con�gurations for all normal servers. We use k·k
to denote the !1 norm in both space K and space K! :

kk � k 0k = Õ
82I

��:8 � : 08 �� , for k, k 0 2 K,

kk1:! � k 01:! k = Õ!
✓=1kk✓ � k 0✓ k, for k1:!, k 01:! 2 K! .
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For any two random variables [0, [1 2 K! , their closeness will be measured in terms ofWasserstein
distance as follows:

3 ([0, [1) , sup
5 2Lip(1)

n
E [5 ([0)] � E[5 ([1)]

o
,

where the supremum is taken over the all Lipschitz-1 functions from K! to R.

5.2 Steps and Lemmas Needed for the Proof of Theorem 3 Assuming Irreducibility
Our goal is to show that the steady-state distribution of the normal servers’ real-job con�gurations
Q1:! is close to the steady-state distribution of i.i.d. copies of the single-server systems Q1:! in
Wasserstein distance, and that the backup servers are almost empty as the arrival rate gets large.
More formally, we aim to show that 3 (Q1:!,Q

1:!) = $ (pA ) and Õ1
✓=!+1

Õ
82I  

✓
8 = $ (pA ) as A ! 1.

These two bounds provide the performance guarantee claimed in Theorem 3.
Instead of directly looking into the distribution of real-job con�guration Q1:! , we show that the

distribution of each of the three sums, Q1:! + ' 1:! +(1:! , Q1:! + ' 1:! , and Q1:! , can be approximated
by the distribution of Q1:! in Wasserstein distance. The approximation result for each sum helps us
derive the approximation result for the sum with one fewer term. The result that the backup servers
are almost empty also follows from these approximations. This sequence of approximations is
illustrated in the �gure below, where recall that bQ ✓ (C) , Q ✓ (C) +' ✓ (C) is the observed con�guration.

A crucial observation that leads to this stepwise proof is that the process (bQ1:! (C),(1:! (C)) forms
a Markov chain on its own. This is because real jobs and virtual jobs have the same transition
dynamics and are indistinguishable by the subroutine when requesting jobs. Moreover, by the
construction of JRS, the Markov chain (bQ1:! (C),(1:! (C)) governs the dynamics of the virtual-job
con�gurations ' 1:! (C) and the con�gurations on backup servers.
Our proof consists of two steps. In Step 1, we focus on the process (bQ1:! (C),(1:! (C)). We show

that 3 (bQ1:! + (1:!,Q
1:!) = $ (pA ), which immediately implies 3 (bQ1:!,Q

1:!) = $ (pA ) because we
have limited the total number of tokens to$ (pA ). In Step 2, we use the approximation result for bQ1:!

in Step 1 to show that the total number of virtual jobs,
Õ
82I

Õ!
✓=1 Z

✓
8 , and the total number of jobs

on backup servers are both $ (pA ). Recall that Q1:! = bQ1:! � ' 1:! , so we get 3 (Q1:!,Q
1:!) = $ (pA ).

Next, we state the speci�c lemmas.
Step 1. Lemma 2 below bounds the Wasserstein distance between bQ1:! and Q

1:! .

Lemma 2. Under the conditions of Theorem 3 and f being k0-irreducible, we have

3
⇣bQ1:!,Q

1:!⌘
= $

⇣p
A
⌘
.

The key challenge for proving Lemma 2 is that the job dispatching decisions are based on the
con�gurations of all normal servers, which creates dependencies among the transitions of di�erent
servers. The key idea that helps us overcome this challenge is to consider the sum bQ1:! +(1:! , which
remains unchanged under job arrivals regardless of dispatching decisions. Observe that bQ1:! + (1:!

has decoupled dynamics across servers because it is only changed by internal phase transitions,
departures, and requests of new jobs, which happen independently on each server. This helps us
prove 3 (bQ1:! + (1:!,Q

1:!) = $
�p
A
�
, which implies Lemma 2, as argued earlier in the section.

Formally, the proof of Lemma 2makes use of Stein’s method (see, e.g., [3–5]) to compare bQ1:!+(1:!

with Q
1:! . Stein’s method usually consists of three steps: generator comparison, Stein factor bound,
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and moment bound. In our case, due to the �niteness of the state space K , we only need to do the
generator comparison and the Stein factor bound. In the generator comparison step, we show that
the instantaneous transition rates of bQ1:! +(1:! match with those of Q1:! ; in the Stein factor bound
step, we show that small di�erence in the transition rates of bQ1:! + (1:! and Q

1:! does not cause
much increase in the overall distance of the distributions. The detailed proof is in Section 5.4.
Step 2. We establish Lemma 3 and Lemma 4 below, which bound the steady-state expected number
of virtual jobs and the jobs on backup servers.

Lemma 3. Under the conditions of Theorem 3 and f being k0-irreducible, for each 8 2 I, the
steady-state expected number of virtual jobs of type 8 is of the order $ (pA ), i.e.,

E
⇥Õ!

✓=1 Z
✓
8

⇤
= $

⇣p
A
⌘
.

Lemma 4. Under the conditions of Theorem 3 and f being k0-irreducible, for each 8 2 I, the
steady-state expected number of type 8 jobs on backup servers is of the order $ (pA ), i.e.,

E
⇥Õ1

✓=!+1  
✓
8

⇤
= $

⇣p
A
⌘
.

The key idea for proving Lemma 3 and Lemma 4 is that by the characterization of bQ1:! in Lemma 2
and the fact that the job requests are made based on bQ1:! , we can show that the rate of requesting
jobs is approximately equal to the arrival rate for each job type. Therefore, the number of tokens
rarely reaches 0 or [max. This implies the rarity of virtual jobs and jobs on backup servers. The
proofs are provided in Appendix B.2.

5.3 Proof of Theorem 3 Assuming Irreducibility Based on Lemmas 1–4.

P����. First we show that Lemmas 2 and 3 imply the closeness between Q1:! and Q
1:! . By

Lemma 2, for any 5 2 Lip(1), we haveE
⇥
5
�
Q

1:! � ⇤�E⇥5 �bQ1:! � ⇤ = $ �p
A
�
. By Lemma 3,E

⇥Õ!
✓=1 Z

✓
8

⇤
=

$
�p
A
�
. Recall that bQ ✓ = Q ✓ + ' ✓ , so E

⇥
5 (bQ1:!)

⇤
� E

⇥
5 (Q1:!)

⇤
= $

�p
A
�
. Therefore,

E
h
5 (Q1:!)

i
� E

⇥
5 (Q1:!)

⇤
= $

⇣p
A
⌘
. (9)

Now we prove (5), the bound on the expected number of the active servers, by taking a suitable
5 in (9). Observe that

’
k<0

E
h
-k

i
� ! · P(Q < 0) = E

h !’
✓=1

1{Q ✓<0}
i
� E

h !’
✓=1

1{Q ✓
<0}

i
+ E

h 1’
✓=!+1

1{Q ✓<0}
i
, (10)

where the last term on RHS is $
�p
A
�
by Lemma 4. To show that the di�erence between the �rst

two terms on the RHS of (10) are also $
�p
A
�
, consider 51 (k1:!) ,

Õ!
✓=1 1{k✓<0} . Because

��51 (k1:!) � 51 (k 01:!)
�� =

�����
!’
✓=1

�
1{k✓<0} � 1{k0✓<0}

� ����� 
!’
✓=1

1{k✓<k0✓ }  kk1:! � k 01:! k,

for any k1:!, k 01:! 2 K! , we have 51 2 Lip(1). By (9), E
⇥
51 (Q ✓ )

⇤
� E

⇥ Õ!
✓=1 51 (Q

✓ )
⇤
= $

�p
A
�
.

Therefore,
Õ

k<0 E
⇥
-k

⇤
� ! · P

�
Q < 0

�
= $

�p
A
�
. Recall that ! =

l
#

m
, so we get (5).

Similarly, to prove (6), we observe that
’
k<0

⌘(k)E[-k ] � ! · E
h
⌘(Q )

i
= E

h !’
✓=1

⌘(Q ✓ )
i
� E

h !’
✓=1

⌘(Q ✓ )
i
+ E

h 1’
✓=!+1

⌘(Q ✓ )
i
. (11)
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The last term of (11) can be bounded as E
h Õ1

✓=!+1 ⌘(Q ✓ )
i
 E

h Õ1
✓=!+1 1{ ✓

8 <0}
i
· maxk2K ⌘(k),

which is$
�p
A
�
by Lemma 4 and the fact thatK is a �nite set. To show that the di�erence between

the �rst two terms on the RHS of (11) is also $
�p
A
�
, consider 52 (k1:!) = 1

�

Õ!
✓=1 ⌘(k✓ ), where � is

the Lipschitz constant of ⌘(·). Because
��52 (k1:!) � 52 (k 01:!)

�� = 1
�

�����
!’
✓=1

(⌘(k✓ ) � ⌘(k 0✓ ))
����� 

!’
✓=1

kk✓ � k 0✓ k = kk1:! � k 01:! k,

for any k1:!, k 01:! 2 K! , we have 52 2 Lip(1). By (9), E
⇥
52 (Q ✓ )

⇤
� E

⇥ Õ!
✓=1 52 (Q

✓ )
⇤
= $

�p
A
�
.

Therefore,
Õ

k<0 ⌘(k)E[-k ] � ! · E
⇥
⌘(Q )

⇤
= $

�p
A
�
. Recall that ! =

l
#

m
, so we get (6).

To show (7) and (8), noting that
l
#

m
= ⇥ (A ), we have

# (f) = Õ
k<0 E[-k ] 

l
#

m
+$

�p
A
�
=

�
1 +$

�
A�0.5

� �
· # ,

⇠ (f) =
Õ

k<0 ⌘(k)E[-k ]Õ
k<0 E[-k ]

=
Õ

k<0 ⌘(k)c (k) +$
�
A�0.5

�
1 � c (0) +$ (A�0.5) 

�
1 +$

�
A�0.5

� �
· n,

where in the last inequality we have used the fact that n > 0. This completes the proof.
⇤

5.4 More Details on the System and Proof of Lemma 2

To bound the distance between Q
1:! and bQ1:! , observe that because 5 2 Lip(1) and Õ!

✓=1
Õ
82I [

✓
8 =

$
�p
A
�
, it su�ces to bound bound the Wasserstein distance between Q

1:! and bQ1:! + (1:! , i.e.,

sup
5 2Lip(1)

n
E

h
5
�
Q

1:! � i � E h
5
�bQ1:! + (1:! � i o = $

⇣p
A
⌘
, (12)

where 5
�bQ1:! + (1:! � is a valid expression because bQ1:! + (1:! 2 K as discussed in Remark 1 below.

5.4.1 More Details on System Dynamics and Generator. To prepare for the proof, we �rst
look into the dynamics of the two systems under study. In particular, we write out the generators of
Q

1:! (C) and (bQ1:! (C),(1:! (C)), which are used in the Stein’s method arguments.
We �rst examine the dynamics of the single-server system under Markovian policy f . Four types

of events change a single-server system’s con�guration: internal transitions, departures, reactive
requests, and proactive requests (see Section 4.1). The change of con�guration due to any event
can be represented by the diagram

k ! k 0 ! k 0 + a,

where the arrow k ! k 0 denotes an internal transition or a departure from con�guration k to k 0 if
k < k 0; the arrow k 0 ! k 0 + a denotes a reactive request that adds a jobs to the system if k < k 0,
and denotes a proactive request if k = k 0. We call the above change of con�guration a transition,
and denote its rate as Wk,(k0,a) . Let ⇢ (k) denote the set of possible (k 0, a) pairs in a transition.
We de�ne the total transition rate at con�guration k as Wk ,

Õ
(k0,a)2⇢ (k) Wk,(k0,a) , and de�ne

the maximal transition rate Wmax = maxk2K Wk . Since K is a �nite set, we have Wmax < 1. Also,
observe that the request rate of type 8 jobs is given by

_8 ,
’
k

’
(k0,a)2⇢ (k)

Wk,(k0,a)08 · c (k), (13)

where c denotes the stationary distribution of single-server con�guration under policy f .
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Next, we focus on the dynamics of ! i.i.d. copies of single-server systems. Consider the generator
⌧ of the corresponding Markov chain {Q1:! (C)}, which is a linear operator on functions 6 : K! ! R
de�ned as:

⌧6(k1:!) , 3

3C
E

h
6

⇣
Q

1:! (C)
⌘���Q1:! (0) = k1:!

i ���
C=0

, (14)

and we call the resulting function⌧6(·) the drift of 6(·). Based on the transition rates de�ned above,
we have

⌧6(k1:!) =
!’
✓=1

’
(k0,a)2⇢ (k✓ )

Wk✓ ,(k0,a)
�
6(·, k 0 + a, ·) � 6(·, k✓ , ·)

�
, (15)

where 6(·, k 0 + a, ·) � 6(·, k✓ , ·) is a shorthand for 6(k1, . . . , k✓�1, k 0 + a, k✓+1, . . . , k!) � 6(k1:!), i.e.,
we use · to omit the entries that agree with k1:! .

Similarly, for the in�nite-server system, consider the generator b⌧ of (bQ1:! (C),(1:! (C)) de�ned as

b⌧k (k1:!,(1:!) , 3

3C
E

h
k

⇣bQ1:! (C),(1:! (C)
⌘���bQ1:! (0) = k1:!,Q1:! (0) = (1:!

i ���
C=0

, (16)

for any functionk : (K⇥K)! ! R. The drift ofk under b⌧ turns out to have a similar decoupled form
as⌧6: observe that for each ✓ , the transition of (bQ ✓ (C),(✓ (C)) from (k,() to (k 0,( +a1{(=0}) occurs
at the rate Wk,(k0,a) for each (k 0, a) 2 ⇢ (k), and any real or virtual job arrivals do not change the sumbQ ✓ (C) + (✓ (C). Consider any function 6 : K! ! R and the functionk (k1:!,(1:!) = 6(k1:! + (1:!).

b⌧k (k1:!,(1:!) =
!’
✓=1

’
(k0,a)2⇢ (k✓ )

Wk✓ ,(k0,a)
�
6(·, k 0 + a, ·) � 6(·, k✓ , ·)

�
1{(✓=0}

+
!’
✓=1

’
(k0,a)2⇢ (k✓ )

Wk✓ ,(k0,a)
�
6(·, k 0 + (✓ , ·) � 6(·, k✓ + (✓ , ·)

�
1{(✓<0} . (17)

In this context 6(·, k 0 + (✓ , ·) � 6(·, k✓ + (✓ , ·) is a shorthand for 6(k1 + (1, . . . , k✓�1 + (✓�1, k 0 +
(✓ , k✓+1 +(✓+1, . . . , k! +(!) �6(k1:! +(1:!). In other words, we use · to omit the entries of 6’s input
that agree with the corresponding entries of k1:! + (1:! .

Remark 1. In (17), although 6 is only de�ned on the domain K! , it is valid to write k1:! + (1:! as
its input because we always have bQ ✓ + (✓ 2 K , i.e., the total number of real jobs, virtual jobs, and
tokens on a normal server never exceeds  max. To see why this is true, the single-server policy
f requests jobs only when there are no tokens on the server, and it will not request more than
 max � = jobs if there are already = real and virtual jobs on the server.

5.4.2 Proof of Lemma 2.

P����. Generator Comparison. For any 5 2 Lip(1), consider the Poisson equation (see, e.g.,
[3]) that solves for 65 : K! ! R:

E
h
5
�
Q

1:! � i � 5 �k1:! � = ⌧65 �k1:! � . (18)

We let k1:! = bQ1:! + (1:! in (18) and take the expectation. This results in

E
h
5
�
Q

1:! � i � E h
5
�bQ1:! + (1:! � i = E h

⌧65
�bQ1:! + (1:! � i . (19)

On the other hand, because (bQ1:! (C),(1:! (C)) is a �nite-state Markov chain, we have

E
hb⌧k5 �bQ1:!,(1:! � i = 0, (20)
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wherek5 is given byk5
�bQ1:!,(1:! � = 65 (bQ1:! + (1:!). Subtracting (20) from (19), we get

E
h
5
�
Q

1:! � i � E h
5
�bQ1:! + (1:! � i = E h

⌧65
�bQ1:! + (1:! � � b⌧k5 �bQ1:!,(1:! � i . (21)

We want to show that ⌧ and b⌧ are close so that we can bound the RHS of (21).
Now we plug the formula of the generators in (15) and (17) into the RHS of (21) and get���⌧65 �bQ1:! + (1:! � � b⌧k5 �bQ1:!,(1:! � ���

(i)
=

�����
!’
✓=1

’
(k0,a)2⇢ (bQ ✓+(✓ )

WbQ ✓+(✓ ,(k0,a)

⇣
65

�
·, k 0 + a, ·

�
� 65

�
·, bQ ✓ + (✓ , ·

� ⌘
· 1{(✓<0}

�
!’
✓=1

’
(k0,a)2⇢ (bQ ✓ )

WbQ ✓ ,(k0,a)

⇣
65

�
·, k 0 + (✓ , ·

�
� 65

�
·, bQ ✓ + (✓ , ·

� ⌘
· 1{(✓<0}

�����
(ii)


!’
✓=1

WbQ ✓+(✓ · sup
(k0,a)2⇢ (bQ ✓+(✓ )

���65 �·, k 0 + a, ·
�
� 65

�
·, bQ ✓ + (✓ , ·

� ��� · 1{(✓<0}

+
!’
✓=1

WbQ ✓ · sup
(k0,a)2⇢ (bQ ✓ )

���65 �·, k 0 + (✓ , ·
�
� 65

�
·, bQ ✓ + (✓ , ·

� ��� · 1{(✓<0}

(iii)
 2Wmax ·

!’
✓=1

sup
k0 2K

���65 �·, k 0, ·
�
� 65

�
·, bQ ✓ + (✓ , ·

� ��� · 1{(✓<0}

 2Wmax · sup
k,k0 2K

��65 �·, k 0, ·
�
� 65

�
·, k, ·

� �� · !’
✓=1

1{(✓<0}, (22)

where in 65
�
·, k 0, ·

�
� 65

�
·, k, ·

�
we have omitted the entries that agree with k1:! . The equality (i) is

true because each of the ✓-th terms in ⌧ and b⌧ is equal if (✓ = 0. For the inequalities (ii) and (iii),
recall that Wk is the total transition rate given by Wk ,

Õ
(k0,a)2⇢ (k) Wk,(k0,a) , and Wmax = maxk2K Wk .

Observe that
!’
✓=1

1{(✓<0} 
!’
✓=1

’
82I

[✓8  |I | · [max = $
⇣p
A
⌘
.

Therefore (22) can be further bounded by
���⌧65 �bQ1:! + (1:! � � b⌧k5 �bQ1:!,(1:! � ���  2Wmax · sup

k,k0 2K

��65 �·, k 0, ·
�
� 65

�
·, k, ·

� �� · !’
✓=1

’
82I

[✓8

 2Wmax · sup
k,k0 2K

��65 �·, k 0, ·
�
� 65

�
·, k, ·

� �� ·$ ⇣p
A
⌘
.

To prove (12), it remains to show that

sup
k,k0 2K

��65 (·, k 0, ·) � 65 (·, k, ·)
�� = $ (1) . (23)

Stein Factor Bound. To prove (23), observe that the following 65 (·) is a solution to the Poisson
equation (18):

65
�
k1:!

�
=

π 1

0
E

h⇣
5
�
Q

1:! (C)
�
� E

h
5
�
Q

1:! � i ⌘���Q1:! (0) = k1:!
i
3C . (24)
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This allows us to bound the di�erence of 65 using coupling. Speci�cally, we de�ne the coupling of
two systems, each consisting of ! i.i.d. copies of the single-server system under f . The two systems
are initialized with con�gurations (·, k 0, ·) and (·, k, ·) that only di�er at the ✓-th server, where we
omit the entries that agree with k1:! . Let

�
Q

1:!,1 (C),Q1:!,2 (C)
�
be the joint con�guration of the two

systems, which is actually 2! i.i.d. copies of the single-server system. As a result, we can specify
the couplings (Q ✓0,1 (C),Q ✓0,2 (C)) for di�erent ✓ 0 separately. For ✓ 0 < ✓ , the corresponding server in
the two systems have the same initial con�gurations, so we can always keep their con�gurations
identical. For the ✓-th servers, we let them evolve independently following their own dynamics until
a stopping time gmix when their con�gurations become the same. After that, we can use coupling
to keep their con�gurations identical. Under this coupling, it is not hard to see that

��65 (·, k 0, ·) � 65 (·, k, ·)
�� =

����
π 1

0
E

h
5
�
Q

1:!,1 (C)
�
� 5

�
Q

1:!,2 (C)
� i
3C

����
 E

π 1

0

���5 �Q1:!,1 (C)
�
� 5

�
Q

1:!,2 (C)
� ���3C

�

 E
"π 1

0

!’
✓0=1

��Q ✓0,1 (C) � Q
✓0,2 (C)

��3C
#

= E
π gmix

0

��Q ✓,1 (C) � Q
✓,2 (C)

��3C
�
, (25)

where in the second inequality we have used the fact that 5 is 1-Lipschitz continuous under the
!1 norm of the space K! . For each pair of k, k 0, observe that because f is a k0-irreducible policy,
E[gmix] is �nite; and because K is a �nite set,

��Q ✓,1 (C) � Q
✓,2 (C)

�� is uniformly bounded. All these
�nite quantities depend on a single-server system under a policy f that is independent of A . As a
result, the last expression in (25) is of constant order. Moreover, because there are �nite pairs of
(k, k 0), the supremum supk,k0 E

hØ gmix

0 kQ ✓,1 (C) � Q
✓,2 (C)k3C

i
is also of constant order, independent

of A . This proves the Stein factor bound in (23). Together with the generator comparison, we have
proved

sup
5 2Lip(1)

E
h
5
�
Q

1:! � i � E h
5
�bQ1:! + (1:! � i = $ ⇣p

A
⌘
. (12)

Because
Õ!
✓=1

Õ
82I [

✓
8  |I | [max = $

�p
A
�
, for any 5 2 Lip(1), we have

���E h
5
�bQ1:! � i � E h

5
�bQ1:! + (1:! � i ���  E

"
!’
✓=1

’
82I

[✓8 (C)
#
= $

⇣p
A
⌘
. (26)

Plugging the above equation to (12), we get sup5 2Lip(1) E
h
5
�
Q

1:! � i � E h
5
�bQ1:! � i = $ �p

A
�
. This

proves Lemma 2. ⇤

5.5 Role of Tokens and Virtual Jobs
This section aims to shed light on the role of tokens and virtual jobs in the proposed policy, JRS.
We �rst outline how we devise the token-and-virtual-job mechanism from the perspective of
generators. To begin with, consider the scenario where dispatch decisions are solely based on
real-job con�gurations (Q ✓ )✓=1,2,.... In this case, the transitions of servers’ con�gurations would be
correlated in general due to job arrivals, which are dispatched based on the joint con�guration
of all servers. To break this correlation, let us introduce tokens but not set an upper limit yet on
the number of tokens (thus no virtual jobs). Observe that Q1:! (C) + (1:! (C) remains unchanged by
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job arrivals, so tokens remove the correlation brought about by job arrivals. However, because
tokens lack internal phase transitions or departures, the transition dynamics of Q1:! (C) + (1:! (C)
will diverge from Q

1:! (C) when ((C) is large. In other words, although tokens help decouple the
transitions on servers, they cannot keep the transitions of Q1:! (C) + (1:! (C) close to Q

1:! (C). To
solve this issue, we �nally introduce the mechanism of converting tokens into virtual jobs when
the number of tokens is high, where virtual jobs can make internal phase transitions or departures
just like real jobs. Now, the sum Q1:! (C) + ' 1:! (C) + (1:! (C) remains unchanged by job arrivals nor
the creation of virtual jobs, and the internal phase transitions and job departures are similar to
those of Q1:! (C). More formally, the generators of Q1:! (C) + ' 1:! (C) + (1:! (C) and Q

1:! (C) are close
to each other – their additive di�erence can be upper bounded by a quantity proportional to the
expected number of tokens, as shown in (22). Therefore, by regulating the number of tokens, we
can control the di�erence between the generators of Q1:! (C) + ' 1:! (C) + (1:! (C) and Q

1:! (C).
Another key design component of JRS is that the subroutine requests jobs based on the observed

con�gurations. This has been used in the proof of Lemma 2 to show that the observed con�gurations
Q1:! + ' 1:! are close to Q

1:! , which consist of ! i.i.d. single-server systems. Recall that each single-
server system in Q

1:! is designed to have a throughput of _8A/! for each job type 8 2 I. Therefore,
the proximity between Q1:! + ' 1:! and Q

1:! ensures that the job request rate mirrors the arrival
rate for each job type, regardless of the real-job con�gurations. The fact that these two rates are
approximately equal is important for proving Lemma 3 and Lemma 4. It guarantees that both the
rate of generating virtual jobs (when there are too many tokens) and the rate of dispatching jobs to
backup servers (when there are no tokens) are appropriate.

A natural follow-up question is whether the usage of tokens and virtual jobs is fundamental or
an artifact of our analysis technique. For example, it is unclear whether removing the upper limit
on the number of tokens would still yield an asymptotically optimal policy. This is an interesting
question that we do not have a complete answer to. The token-and-virtual-job mechanism emerges
as a natural choice under our analysis framework. Nevertheless, it is worth noting that our analysis
primarily treats each server’s con�guration as a generic Markov chain, without utilizing many
properties speci�c to the stochastic bin-packing setting. An exception to this is the proofs in
Appendix B.2, where we use the model that each job leaves the system within a constant expected
time. It would be interesting to explore more properties of the problem to better understand policy
designs without auxiliary state variables like tokens and virtual jobs.

6 CONCLUSION
In this paper, we study a new setting of stochastic bin-packing in service systems that features
time-varying item sizes. Since our formulation is motivated by the problem of virtual-machine
scheduling in computing systems, we use the terminology of jobs and servers, where jobs are
viewed as items, whose sizes are their resource requirements, and servers as bins. The time-varying
item sizes capture the emerging trend in practice that jobs’ resource requirements vary over time.
Our goal is to design a job dispatch policy to minimize the expected number of active servers in
steady state, subject to a constraint on resource contentions. Our main result is the design of a
policy that achieves an optimality gap of $ (pA ), where A is the scaling factor of the arrival rate.
When specialized to the setting where jobs’ resource requirements remain �xed over time, this
result improves upon the state-of-the-art > (A ) optimality gap. Our technical approach highlights
a novel policy conversion framework, J����R���������S�����, that reduces the policy design
problem to that in a single-server system.
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There are several potential directions that may be worth further exploration. One direction is to
strengthen the optimality result within the current setting. Speci�cally, it is interesting to investigate:
(i) whether it is possible to achieve an optimality gap smaller than ⇥(pA ); and (ii) whether there
exist asymptotically optimal policies whose average cost rate of resource contention satis�es the
budget strictly instead of asymptotically.

We are also interested in extending our technique to the optimal control of other systems with
similar structures. Intuitively, this technique could be applied to systems with many components
that evolve mostly independently but are weakly coupled by certain constraints. Viewing each
component as a server, we can de�ne a suitable single-server problem and then design a policy
for the original system to track the dynamics of the optimal single-server solution. Below we list
several variations of our model that can potentially be analyzed using the proposed technique.

• Amodel where jobs running on each server will be put into a local queue when there are resource
contentions. The goal thus becomes �nding the optimal trade-o�s between the number of active
servers and the waiting time of the jobs.

• A model that allows each server to have a Markovian state that a�ects the dynamics of the jobs
running on the server.

• A model that allows jobs to migrate to di�erent servers at the cost of migration delays.
• A closed-system model where jobs re-enter the system after completion.

A third possible direction is to tackle the problem when the arrival rates and the parameters
in the job model are unknown, as mentioned in Section 4.3. A possible approach is to develop
an approximate version of the JRS framework, where the optimal single-server policy and the
simulator for the virtual jobs are both learned from data. It is desirable to design such an approximate
framework whose performance degrades gracefully as the approximation error increases.
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A PROOF OF THEOREM 2 (LOWER BOUND)
P����. It is su�cient to show that given an in�nite-server policy f for P((_8A )82I, n) in (2), we

have # (f) � #
⇤
. To this end, we will construct a single-server policy f such that the resulting

system con�guration Q (1) in steady state satis�es:

E
⇥
⌘
�
Q (1)

� ��Q (1) < 0
⇤
= ⇠ (f)  n, (27)

_8 =
_8A

# (f) , 88 2 I . (28)

Letc be the distribution ofQ (1), then (# (f),f, c) is a feasible solution to the problemP((_8A )82I, n)
in (3). As a result, we have # (f) � #

⇤
. Note that although f is actually non-Markovian, i.e., it

makes decisions based on not only the current con�guration but also the history, as we will show
in Appendix C, #

⇤
is still a lower bound to the objective value that f can achieve in P((_8A )82I, n).

The construction of the single-server policy f involves simulating an in�nite-server system
under f from the empty con�guration. At time 0, the policy f randomly chooses the ✓-th server
in the in�nite-server system with probability ?✓ , for ✓ = 1, 2, · · · . It then requests jobs for the
single-server system according to a policy f ✓ . The key to our policy f ✓ is to make the single-server
system emulate the job assignment at the ✓-th server of the simulated in�nite-server system, but
without incurring idleness. We �rst construct the policy f ✓ , and then specify the probabilities ?✓ .

Let us start by introducing some useful notation. Let Q ✓ (C) be the single-server system con-
�guration under f ✓ at time C and Q ✓ (C) be the con�guration of the ✓-th simulated server in
the in�nite-server system under f . We de�ne a stochastic process {B✓ (C), C � 0} as follows:
B✓ (C) = maxg

�
g :

Ø g
0 1{Q ✓ (G)<0}3G = C

 
. The “max” is well-de�ned because the integral is con-

tinuous in g . Intuitively, B✓ (C) gives the maximum time when the accumulative busy time of the
✓-th server is C . Note that {B✓ (C), C � 0} is only discontinuous when Q ✓ (g) reaches 0, thus it is
right-di�erentiable with derivative equal to 1 at any point.

We construct f ✓ and the simulation of the in�nite-server system under f in a way such that:

Q
✓ (C) = Q ✓ (B✓ (C)) 8C . (29)

That is, we want that the single-server system has the same dynamic of the simulated ✓-th server
except skipping the idle period. To this end, we couple the two systems as follows:
(1) When the ✓-th simulated server Q ✓ (B✓ (C)) receives a type 8 job, we let the single-server system

Q
✓ (C) request a type 8 job at time C . For each such job, its phase transition process in the ✓-th

simulated server is the same as that in the single-server system. That is, when we observe
any internal transition or departure event in Q

✓ (C), we produce a same event on the ✓-th
simulated server Q ✓ (B✓ (C)).

(2) The simulations of the rest of the in�nite-server system under policy f are driven by inde-
pendently generated random seeds.

It is not hard to see that the simulated in�nite server-system has the same stochastic behavior as
an uncoupled system under f . Moreover, as we couple all the events that happen in Q

✓ (C) and
Q ✓ (B✓ (C)), together with the facts that Q ✓ (C) and Q ✓ (B✓ (C)) are piecewise constant and Q

✓ (0�) =
Q ✓ (B✓ (0�)) = 0, we get (29).
Next we claim that (29) implies the following relationship between the steady-state cost of

the single-server system under f ✓ and the steady-state cost of the ✓-th simulated server in the
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in�nite-server system under f :

E
h
⌘

⇣
Q
✓ (1)

⌘i
=
E

⇥
⌘(Q ✓ (1))

⇤
P (Q ✓ (1) < 0) . (30)

This is because for all k < 0, we have

P
�
Q ✓ (1) = k

�
P (Q ✓ (1) < 0)

(0)
= lim

(!1

Ø (
0 1{Q ✓ (B)=k }3BØ (
0 1{Q ✓ (B)<0}3B

(1)
= lim

)!1

Ø )
0 1{Q ✓ (B✓ (C ))=k }3CØ )
0 1{Q ✓ (B✓ (C ))<0}3C

(2)
= lim

)!1
1
)

π )

0
1{Q ✓ (B✓ (C ))=k }3C

(3)
= lim

)!1
1
)

π )

0
1{Q ✓ (C )=k }3C

(4)
= P

⇣
Q
✓ (1) = k

⌘
,

where (0) and (4) hold because long-run averages converge to steady-state expectations; (1) is
due to the fact that

Ø )
0 1{Q ✓ (B✓ (C ))=k }3C =

Ø B✓ () )
0 1{Q ✓ (B)=k }3B, for any k < 0; (2) is due to the fact

that 1{Q ✓ (B✓ (C ))<0} = 1; and (3) follows from (29).
Let _

✓
8 be the long-run request rates of type 8 jobs in the single-server system under f ✓ , and _✓8

be the throughput of type 8 jobs of ✓-th simulated server under f . By the construction of f ✓ , the
single-server system requests jobs based on the arrival events of the ✓-th simulated server, we have
_
✓
8 =

_✓8
P(Q ✓ (1)<0) ,88 2 I .

With the constructed policies {f ✓ , ✓ = 1, 2, . . . }, we are ready to de�ne the policy f . We let f
choose an index ✓ with probability ?✓ at time 0, and then follow f ✓ . We set the probability ?✓ as

?✓ =
P

�
Q ✓ (1) < 0

�
Õ1
✓0=1 P (Q ✓0 (1) < 0) =

P
�
Q ✓ (1) < 0

�
Õ

k<0 E[-k (1)] , 8✓ = 1, 2, . . . (31)

where the second inequality uses the fact that
Õ1
✓0=1 P

�
Q ✓0 (1) < 0

�
=

Õ
k<0 E[-k (1)]. Then under

f , we have

E
⇥
⌘
�
Q (1)

� ⇤
=

1’
✓=1

?✓E
h
⌘

⇣
Q
✓ (1)

⌘i (0)
=

1’
✓=1

P
�
Q ✓ (1) < 0

�
Õ

k<0 E[-k (1)] ·
E

⇥
⌘(Q ✓ (1))

⇤
P (Q ✓ (1) < 0)

=

Õ1
✓=1 E

⇥
⌘(Q ✓ (1))

⇤
Õ

k<0 E[-k (1)] =
Õ

k<0 ⌘(k)E[-k (1)]Õ
k<0 E[-k (1)] = ⇠ (f),

where (0) follows from (30) and (31). Observe that under f , Q (1) < 0 almost surely, we thus have

E
⇥
⌘
�
Q (1)

� ��Q (1) < 0
⇤
= E

⇥
⌘
�
Q (1)

� ⇤
= ⇠ (f),

which proves (27). Moreover, for each 8 2 I the request rate _8 is given by

_8 =
1’
✓=1

?✓ · _✓8 =
1’
✓=1

P
�
Q ✓ (1) < 0

�
Õ

k<0 E[-k (1)] ·
_✓8

P (Q ✓ (1) < 0) =
Õ1
✓=1 _

✓
8Õ

k<0 E[-k (1)] =
_8A

# (f) .

This proves (28). By the argument presented at the beginning of the proof, we get # (f) � #
⇤
. ⇤

B THE REST OF THE PROOFS NEEDED FOR THEOREM 3 (CONVERSION THEOREM)
B.1 Proof of Lemma 1

P����. Wewill show that under the JRS policy, theMarkov chain for the system state (represented
as ((Q ✓ (C))✓=1,2,..., ' 1:! (C),(1:! (C))) has a unique stationary distribution by �rst arguing that it is
k0-irreducible (here being k0-irreducible means the Markov chain has a state that can be reached
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by all other states through transitions, “k0” in “k0-irreducible” does not refer to any speci�c states),
and then use Foster-Lyapunov theorem to show the positive recurrence [see, e.g., 25]. Combining
k0-irreducibility with positive recurrence, we can conclude that the Markov chain under study has
a unique stationary distribution.
First, we show that the Markov chain ((Q ✓ (C))✓=1,2,..., ' 1:! (C),(1:! (C)) is k0-irreducible. Speci�-

cally, observe that the Markov chain starting from any state ((k✓ )✓=1,2,..., ' 1:!,(1:!) can reach the
state (k1:!, (0)✓=!+1,..., 01:!, 01:!), after experiencing a sequence of departures and arrivals that clears
up all the tokens, virtual jobs and jobs on backup servers. Further, letting ek be the con�guration
reachable by all other con�guration in the single-server system under the policy f , we argue that
starting from any states of the form (k1:!, (0)✓=!+1,..., 01:!, 01:!), the Markov chain can reach the state
(ek1:!, (0)✓=!+1,..., 01:!, 01:!). Because for any ✓  !, there is a transition path from k✓ to ek , consider
the sequence of events where each Q ✓ (C) transitions independently following the path, and the
jobs arrive right after Q ✓ (C) making a request, so that the tokens are checked out before Q ✓ (C) has
a further transition. In this way, each Q ✓ (C) with ✓  ! can eventually reach ek from k✓ . This proves
the k0-irreducibility of ((Q ✓ (C))✓=1,2,..., ' 1:! (C),(1:! (C)).

Next, we show that ((Q ✓ (C))✓=1,2,..., ' 1:! (C),(1:! (C)) satis�es the Foster-Lyapunov criterion, i.e.,
b⌧6  �1 + 11{( }, (32)

where 6 is a non-negative function of the states, ( is a �nite set, 1 is a �nite number, and b⌧ is the
in�nitesimal generator of the continuous-time Markov chain. Let C8 be the expected remaining time
in the system when a job is in phase 8 for each 8 2 I. According to the job model, we have the
recurrence relation ⇣

`8? +
’

80 2I : 80<8

`880
⌘
C8 =

’
80 2I : 80<8

`880C80 88 2 I . (33)

We construct a Lyapunov function 6 as follows:

6((k✓ )✓=1,2,..., ' 1:!,(1:!) =
’
82I

1’
✓=1

C8:
✓
8 +

’
82I

1’
✓=1

C8Z
✓
8 . (34)

Using the relation (33), it can be veri�ed that the drift of 6 satis�es

b⌧6((k✓ )✓=1,2,..., ' 1:!,(1:!)


’
82I

⇣
_8C8A �

1’
✓=1

:✓8

⌘
+

’
82I

⇣ !’
✓=1

’
(k0,a)2⇢ (k✓ )

Wk✓ ,(k0,a)08C8 �
1’
✓=1

Z ✓8

⌘


’
82I

⇣
_8C8A + ! ·max

k2K

’
(k0,a)2⇢ (k)

Wk,(k0,a)08C8
⌘
�

⇣ 1’
✓=1

’
82I

:✓8 +
1’
✓=1

’
82I

Z ✓8

⌘
,

where the �rst inequality uses the fact that virtual jobs are generated at a rate no faster than the
total rate of job requests. Then the Foster-Lyapunov criterion in (32) is satis�ed with 1 and ( given
by

1 =
’
82I

⇣
_8C8A + ! ·max

k2K

’
(k0,a)2⇢ (k)

Wk,(k0,a)08C8
⌘
,

( =
�
((k✓ )✓=1,2,..., ' 1:!,(1:!) : 6((k✓ )✓=1,2,..., ' 1:!,(1:!)  1 + 1

 
.

By the Foster-Lyapunov theorem, ((Q ✓ (C))✓=1,2,..., ' 1:! (C),(1:! (C)) is positive recurrent. ⇤
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B.2 Proofs of Lemma 3 and Lemma 4
In this subsection, we prove Lemma 3 and Lemma 4 together. We begin by introducing some
notations. We use [ ✓ , (bQ ✓ ,(✓ ) to represent the state of the ✓-th server, and use [ 1:! to represent
the joint state of the �rst ! servers. We also use the lowercase u✓ , u1:! to represent the realizations
of the corresponding random variables. We denote the total number of type 8 virtual jobs as
+8 ,

Õ!
✓=1 Z

✓
8 for 8 2 I, and its realization as E8 . We denote the total number of type 8 jobs on

backup servers as .8 for 2 I, and its realizations as ~8 . We also denote the total number of type 8
tokens throughout the system as /8 ,

Õ!
✓=1 [

✓
8 , and its realization as I8 . Our goal can be rewritten

as proving E[+8 ] = $
�p
A
�
and E[.8 ] = $

�p
A
�
for each 8 2 I.

We �rst give an overview of the proof. Observe that in our model, the expected time that a job
stay in the system is �xed. As a result, bounding the number of virtual jobs or jobs on backup
servers in the system is equivalent to bounding the rate that they are generated, according to
Little’s Law. By our construction of the policy, the rate of generating those jobs is closely related to
the dynamics of the total number of type 8 tokens /8 (C).

To describe the dynamics of /8 (C), we �rst introduce two functions 3E8 and 3~8 :

3E8 (08 , I8 ) , (I8 + 08 � [max)+,
3~8 (I8 ) , (1 � I8 )+.

The function 3E8 represents the increment in the number of type 8 virtual jobs due to the event
that the total number of type 8 tokens on the �rst ! servers exceeds the token limit [max. The
function 3~8 corresponds to the increment in the total number of type 8 jobs on backup servers due
to the event that a type 8 job arrives to the system without seeing a type 8 token. For a function
6 : (K ⇥K)! ! R that only depends on the number of type 8 tokens I8 , its drift can be written as

b⌧6(u1:!) = !’
✓=1

’
(k0,a)2⇢ (k✓ )

Wk✓ ,(k0,a) (6(I8 + 08 � 3E8 (08 , I8 )) � 6(I8 )) 1{(✓=0}

+ _8A (6(I8 � 1 + 3~8 (I8 )) � 6(I8 )) . (35)

We abuse the notation of 6 here. For ease of exposition, we will simply write 3E8 and 3~8 to represent
3E8 (08 , I8 ) and 3~8 (I8 ).

By construction, the total number of type 8 tokens {/8 (C}) is a stochastic process constrained
within [0,[max]. Note that /8 (C) increases when some servers request new tokens, and decreases
when a real or virtual arrival checks out the token or when some servers have the excessive
tokens removed. When /8 (C) is away from the boundaries, the average rate that it increases is
approximately equal to _8A , and the average rate that /8 (C) decreases is given by

E

266664
!’
✓=1

’
(k0,a)2⇢ (bQ ✓ )

WbQ ✓ ,(k0,a)081{(✓=0}

377775
⇡ E

266664
!’
✓=1

’
(k0,a)2⇢ (Q ✓ )

W
Q

✓
,(k0,a)08

377775
= ! · _8 ⇡ _8A ,

where we have used the approximations that bQ ✓ 3⇡ Q
✓ , 1{(✓=0} ⇡ 1 and ! = d# e ⇡ # .

As {/8 (C)} randomly moves up and down with approximately the same rate and re�ects on
the boundaries of 0 and [max, it behaves as a re�ected simple symmetric random walk. Intuitively
speaking, the steady-state distribution of /8 is approximately a uniform distribution over [0,[max].
Recall that 3E8 and 3~8 can only be non-zero when /8 (C) is near the boundaries. Since the length of
the interval [max = ⇥

�p
A
�
, we can expect that 3E8 and 3~8 diminish as A ! 1.

In the proof, we �rst establish the relationship between E[+8 ], E[.8 ] and 3E8 , 3~8 using Little’s
Law. Then we derive bounds on 3E8 and 3~8 by analyzing the drift of several test functions of
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/8 . This step is implicitly based on the intuition that /8 is approximately uniformly distributed
over [0,[max], with the tokens being generated and eliminated at similar rates. Finally, we invoke
Lemma 2 to show that the tokens are indeed generated and eliminated at similar speeds, which
leads to bounds on 3E8 and 3~8 .
Finally, we make some additional remarks on the notations. First, 3E8 and 3~8 depend on the

total number of type 8 tokens I8 and the number of newly requested jobs 08 , although we omit the
dependency expression for ease of exposition. Second, we abuse the notation 3E8 and 3~8 to denote
the corresponding random variables. We also write

Õ
k0,a as a shorthand for

Õ
(k0,a)2⇢ (k✓ ) when

the context is clear.

B.2.1 Proofs of Lemma 3 and Lemma 4. We are now ready to prove Lemma 3 and Lemma 4.

P����. Step 1: Bounding Virtual Jobs and Jobs on Backup Servers using Little’s Law. We
�rst apply Little’s Law to +8 and .8 . For each type 8 , we let the expected time that a type 8 job stays
in the system be C8 . Let Cmax = max82I C8 . Because there are only �nitely many types of jobs, and
each job spends �nite expected time in the system, Cmax is a �nite constant. By Little’s law,

E[+8 ]  CmaxE

"
!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a)3E81{(✓=0}

#
, (36)

E[.8 ]  CmaxE [_8A · 3~8 ] . (37)

Step 2: Drift Analysis. The above two equations (36) and (37) suggest that we can derive upper
bounds on E[+8 ] and E[.8 ] by analyzing the following two terms:

• E
hÕ!

✓=1
Õ

k0,a WbQ ✓ ,(k0,a)3E81{(✓=0}
i
, interpreted as the average rate that /8 (C) re�ects on the

boundary at [max;
• E [_8A · 3~8 ], interpreted as the average rate that /8 (C) re�ects on the boundary at 0.

We establish the relationships of 3E8 , 3~8 and /8 by analyzing the drift of two test functions 6.
Letting 6(I8 ) = I8 and taking steady-state expectation over its drift, by (35) and the fact that the

drift is zero in steady state, we get

E

"
!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a) (08 � 3E8 )1{(✓=0} + _8A (�1 + 3~8 )
#
= 0. (38)

Similarly, letting 6(I8 ) = I28 and taking steady-state expectation over its drift, one can verify that

E

"
!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a)3E81{(✓=0}

#
(39)

=
1

[max
· E

" 
!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a)081{(✓=0} � _8A
!
· /8

#
(40)

+ 1
2[max

· E
"
!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a)
�
028 � (3E8 )2

�
1{(✓=0} + _8A · (1 � (3~8 )2)

#
. (41)

Readers may refer to the complete calculation at the end of this subsection.
Step 3: Estimating the Terms Obtained fromDrift Analysis.Wewill �rst focus on bounding

E
hÕ!

✓=1
Õ

k0,a WbQ ✓ ,(k0,a)3E81{(✓=0}
i
analyzing the two terms in (40) and (41) separately. Then we

invoke (38) to bound E [_8A · 3~8 ].
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The term in (41) is easy to deal with. Observe that the number of jobs requested each time should
be no more than the maximal number of jobs that a server can hold, i.e., 08   max, so

(41)  1
2[max

· E
"
!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a) 
2
max + _8A

#

 1
2[max

· E
"
!’
✓=1

Wmax 
2
max + _8A

#

= $
⇣p
A
⌘
, (42)

where in the second inequality we have used the fact that the total rate is uniformly bounded by
Wmax, and the last step uses the facts that ! = $ (A ) and [max = ⇥

�p
A
�
.

To bound the term in (40), �rst observe that /8  [max, which implies that

(40)  E
"�����

!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a)081{(✓=0} � _8A
�����
#
.

The term on the RHS of the above equation is the expected absolute di�erence between the rates of
generating and eliminating type 8 tokens, which can be shown to be small relative to A . Speci�cally,
we claim that

E

"�����
!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a)081{(✓=0} � _8A
�����
#
= $

⇣p
A
⌘
. (43)

To show (43), �rst notice that we can remove the indicator 1{(✓=0} without introducing much
error:

E

"�����
!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a)081{(✓=0} � _8A
�����
#

 E
"�����

!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a)08 � _8A
�����
#
+ E

"�����
!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a)081{(✓<0}

�����
#

 E
"�����

!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a)08 � _8A
�����
#
+ E

"�����
!’
✓=1

Wmax max1{(✓<0}

�����
#

 E
"�����

!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a)08 � _8A
�����
#
+ Wmax max |I | [max,

where the �rst inequality is due to triangular inequality, the second inequality is due to the de�nition
of Wmax, and the last inequality is because

Õ!
✓=1 1{(✓<0}  |I | [max. It remains to bound the term

E
h���Õ!

✓=1
Õ

k0,a WbQ ✓ ,(k0,a)08 � _8A
���i , which can be seen as showing that the rate of generating type

8 tokens concentrates around the type 8 jobs’ arrival rate _8A . It is natural to think of using some
Law of Large Numbers. Unfortunately,

Õ!
✓=1

Õ
k0,a WbQ ✓ ,(k0,a)08 is not a sum of i.i.d. random variables

due to dependencies among bQ ✓ for di�erent ✓’s. As a result, we want to invoke the Wasserstein
distance bound in Lemma 2 to replace bQ ✓ in the above expression with Q

✓ . We de�ne the function
5 (k1:!) as

5 (k1:!) = 1
2Wmax max

�����
!’
✓=1

’
k0,a

Wk✓ ,(k0,a)08 � _8A
����� . (44)
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We claim that 5 2 Lip(1). For any two k1:!,1, k1:!,2,

2Wmax max ·
⇣
5 (k1:!,1) � 5 (k1:!,2)

⌘

=

�����
!’
✓=1

’
k0,a

Wk✓ ,1,(k0,a)08 � _8A
����� �

�����
!’
✓=1

’
k0,a

Wk✓ ,2,(k0,a)08 � _8A
�����


�����
!’
✓=1

’
k0,a

Wk✓ ,1,(k0,a)08 �
!’
✓=1

’
k0,a

Wk✓ ,2,(k0,a)08

�����
=

�����
!’
✓=1

’
k0,a

�
Wk✓ ,1,(k0,a) � Wk✓ ,2,(k0,a)

�
081{(k✓ ,1)<(k✓ ,2) }

�����


!’
✓=1

’
k0,a

��Wk✓ ,1,(k0,a) � Wk✓ ,2,(k0,a)
�� ·  max · kk✓,1 � k✓,2k


!’
✓=1

2Wmax max · kk✓,1 � k✓,2k

= 2Wmax max · kk1:!,1 � k1:!,2k,
where the �rst inequality is due to triangular inequality; the second inequality uses the fact that
08   max and 1{k1,✓<k2,✓ }  kk1,✓ � k2,✓ k; the third inequality uses triangular inequality, the fact
that the total rate at a con�guration k is bounded by Wmax and the property of the !1 norm k·k.
Therefore, 5 2 Lip(1). The Lipschitz continuity of 5 allows us to invoke Lemma 2 and get

E

"�����
!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a)08 � _8A
�����
#
� E

"�����
!’
✓=1

’
k0,a

W
Q

✓
,(k0,a)08 � _8A

�����
#
 2Wmax max ·$

⇣p
A
⌘
.

Therefore,

E

"�����
!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a)08 � _8A
�����
#
 E

"�����
!’
✓=1

’
k0,a

W
Q

✓
,(k0,a)08 � _8A

�����
#
+$

⇣p
A
⌘
. (45)

Observe that under a Markovian policy, the request rate of type 8 jobs can be written as _8 =
E[Õk0,a WQ ✓

,(k0,a)08 ], so we have

E

"
!’
✓=1

’
k0,a

W
Q

✓
,(k0,a)08 � _8A

#
= _8 · d# e � _8A = $ (1) . (46)

Moreover, because
Õ

k0,a WQ ✓
,(k0,a)08 are i.i.d. for ✓ = 1, . . . , !, we have

E

"�����
!’
✓=1

’
k0,a

W
Q

✓
,(k0,a)08 � _8A

�����
#


vuuut
E

266664

 
!’
✓=1

’
k0,a

W
Q

✓
,(k0,a)08 � _8A

!2377775
+$ (1)

=

vut !’
✓=1

Var

 ’
k0,a

W
Q

✓
,(k0,a)08

!
+$ (1)

= $
⇣p
A
⌘
.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 48. Publication date: December 2023.



Near-Optimal Stochastic Bin-Packing in Large Service Systems with Time-Varying Item Sizes 48:31

Therefore, by combining the arguments above, we get

E

"�����
!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a)081{(✓=0} � _8A
�����
#
 E

"�����
!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a)08 � _8A
�����
#
+$

⇣p
A
⌘

 E
"�����

!’
✓=1

’
k0,a

W
Q

✓
,(k0,a)08 � _8A

�����
#
+$

⇣p
A
⌘

 $
⇣p
A
⌘
, (47)

which proves (43). This implies that the term in (40) is also in $
�p
A
�
.

Combining the bounds on the terms in (40) and (41), we get

E

"
!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a)3E81{(✓=0}

#
= $

⇣p
A
⌘
.

Finally, we bound E [_8A · 3~8 ]. We rearrange the terms in (38) and get

E [_8A · 3~8 ] = E
"
!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a) (�08 + 3E8 )1{(✓=0} + _8A
#

= E

"
�

!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a)081{(✓=0} + _8A
#
+$

⇣p
A
⌘
.

By (43), we have E
h
�Õ!

✓=1
Õ

k0,a WbQ ✓ ,(k0,a)081{(✓=0} + _8A
i
= $

�p
A
�
. Therefore,

E [_8A · 3~8 ] = $
⇣p
A
⌘
.

We invoke the equations (36) and (37) that we get at the beginning of the proof, and conclude
that

E[+8 ]  CmaxE

"
!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a)3E81{(✓=0}

#
= $

⇣p
A
⌘
.

E[.8 ]  CmaxE [_8A · 3~8 ] = $
⇣p
A
⌘
.

This �nishes the proof. ⇤

B.2.2 Deriving the equality in (39). We show the calculation detail of deriving the following
equality.

E

"
!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a)3E81{(✓=0}

#
(39)

=
1

[max
· E

" 
!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a)081{(✓=0} � _8A
!
· /8

#
(40)

+ 1
2[max

· E
"
!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a)
�
028 � (3E8 )2

�
1{(✓=0} + _8A · (1 � (3~8 )2)

#
. (41)
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The equality is obtained by considering the drift of the function 6(I8 ) = I28 , which is zero in steady
state. Recall that the drift of 6(I8 ) is given by

b⌧6(I8 , u1:!) =
!’
✓=1

’
k0,a

Wk✓ ,(k0,a) (6(I8 + 08 � 3E8 ) � 6(I8 )) 1{(✓=0}

+ _8A (6(I8 � 1 + 3~8 ) � 6(I8 )) . (35)

We will �rst calculate 6(I8 + 08 � 3E8 ) � 6(I8 ), then 6(I8 � 1 + 3~8 ) � 6(I8 ), and �nally plug them
into the (35).

The calculation of 6(I8 + 08 � 3E8 ) � 6(I8 ) utilizes the following property of 3E8 :

(I8 + 08 � 3E8 ) · 3E8 = [max · 3E8 . (48)

This property follows from the de�nition 3E8 = (I8 + 08 � [max)+. Intuitively, this is because 3E8 is
the “force” that pushes I8 back when it hits the boundary at [max. Using the property, we have

6(I8 + 08 � 3E8 ) � 6(I8 )
= (I8 + 08 � 3E8 )2 � I28
= (I8 + 08 � 3E8 )2 � (I8 + 08 � 3E8 � 08 + 3E8 )2

= (I8 + 08 � 3E8 )2 �
�
(I8 + 08 � 3E8 )2 + 2(�08 + 3E8 ) · (I8 + 08 � 3E8 ) + (�08 + 3E8 )2

�
= 2(08 � 3E8 ) · (I8 + 08 � 3E8 ) � (�08 + 3E8 )2

= 208 · (I8 + 08 � 3E8 ) � (�08 + 3E8 )2 � 23E8 · [max

= 208 · I8 + 028 � (3E8 )2 � 23E8 · [max.

The second last equality is due to (48), and the rest are all algebraic manipulations.
We carry out a similar calculation for 6(I8 � 1 + 3~8 ) � 6(I8 ):

6(I8 � 1 + 3~8 ) � 6(I8 )
= 2(�1 + 3~8 ) · I8 + (�1 + 3~8 )2

= �2I8 + 2I8 · 3~8 + 1 � 23~8 + (3~8 )2

= �2I8 + 1 + 2(I8 � 1 + 3~8 ) · 3~8 � (3~8 )2

= �2I8 + 1 � (3~8 )2.
where the last equality is due to the property that

(I8 � 1 + 3~8 ) · 3~ = 0, (49)

and the rest are all algebraic manipulations.
Putting together,

b⌧6(I8 , u1:!) =
!’
✓=1

’
k0,a

Wk✓ ,(k0,a) (6(I8 + 08 � 3E8 ) � 6(I8 )) 1{(✓=0}

+ _8A (6(I8 � 1 + 3~8 ) � 6(I8 ))

=
!’
✓=1

’
k0,a

Wk✓ ,(k0,a)
�
208 · I8 + 028 � (3E8 )2 � 23E8 · [max

�
1{(✓=0}

+ _8A ·
�
�2I8 + 1 � (3~8 )2

�
.
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After recombining the terms, we get

[max · E
"
!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a)3E81{(✓=0}

#

= E

" 
!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a)081{(✓=0} � _8A
!
· /8

#

+ 1
2
E

"
!’
✓=1

’
k0,a

WbQ ✓ ,(k0,a)
�
028 � (3E8 )2

�
1{(✓=0} + _8A · (1 � (3~8 )2)

#

This �nishes the calculation.

B.3 Proof of Conversion Theorem without Assuming Irreducibility
In this subsection, we prove Theorem 3 without assuming k0-irreducibility of the subroutine f .
Speci�cally, suppose that we have a Markovian single-server policy f and an initial distribution ? 9
over its recurrent classes ( 9 for 9 = 1, 2 . . . � , we will construct an in�nite-server policy f such that
(5) and (6) still hold. The basic idea is to decompose a general Markovian single-server policy f
into multiple k0-irreducible Markovian policies, each induces one recurrent class and preserves
stationary distribution and the throughput of f on that recurrent class, as stated in Lemma 5 below.

Lemma 5 (Decomposing The Reducible Policy). Let f be a general single-server Markovian policy
with recurrent classes ( 9 for 9 = 1, 2, . . . , � . Then for each 9 exists a Markovian policy f 9 such that

• The induced Markov chain is k0-irreducible with the unique recurrent class being ( 9 ;
• The stationary distribution is the same as the stationary distribution under f starting from a
con�guration in ( 9 .

P����. For each 9 = 1, 2, . . . , � , we de�ne the policy f 9 as follows: when the system has con�g-
uration k 2 ( 9 , the policy f 9 makes the same decisions as f ; when k 8 ( 9 and k = 0, the policy
starts a timer whose duration follows an exponential distribution with rate 1 and immediately adds
k0 many jobs of each type when the timer ticks for some arbitrary k0 2 ( 9 ; when k 8 ( 9 and k < 0,
the policy does not request any jobs.

We show that under the new policy f 9 , ( 9 is also a recurrent class of the induced Markov chain.
This is because if the system starts from a con�guration k 2 ( 9 , then it will stay in ( 9 since it makes
the same decisions and has the same transitions as under the policy f . Because ( 9 is a recurrent
class under f , it is still a recurrent class under f 9 .
To show that the Markov chain induced by f 9 is k0-irreducible, observe that starting from any

k 8 ( 9 , the system state will return to ( 9 . Speci�cally,
• If the system starts from a con�guration k such that k 8 ( 9 and k < 0, then no new jobs will
be requested until either k 2 ( 9 or k = 0. In the latter case, by the construction of the policy,
the system jumps to a con�guration in ( 9 after the next transition.

• If the system starts from a con�guration k such that k 8 ( 9 and k = 0, the system jumps to a
con�guration in ( 9 after the next transition.

The claim that the stationary distribution under f 9 is the same as the stationary distribution
under f starting from a con�guration in ( 9 is trivial to show, because when the system initializes
from any con�guration in ( 9 , it stays in ( 9 and the transitions are exactly the same under the two
policies. ⇤
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The JRS policy with a general Markovian single-server policy as its subroutine f is constructed
using the k0-irreducible policies f 9 ’s obtained from the decomposition of f and the probabilities
? 9 ’s.
(1) We divide all the servers into � server pools, each with in�nitely many servers. Let the 9-th

server pool run the JRS policy with subroutine f 9 (de�ned in Section 4.2) for each 9 = 1, . . . � .
(2) Whenever we see an arrival of type 8 , we route the job to the 9-th in�nite-server system with

probability ? 9_
9
8Õ

9 ? 9_
9
80
for each 9 = 1, . . . � .

To analyze the policy f , let c 9 and _
9
8 ’s be the stationary distribution and throughput of the

policy f 9 for 9 = 1, . . . , � . By Lemma 5, we have the following relationships:

c (k) = Õ�
9=1 ?

9c 9 (k), 8k 2 K, (50)

_8 =
Õ�
9=1 ?

9_
9
8 , 88 2 I . (51)

Based on the above relationships, we can prove the general version of the Conversion Theorem
that does not require k0-irreducibility.

P���� �� T������ 3. For each 9 = 1, . . . , � , Lemma 5 implies that the policy f 9 and station-
ary distribution c 9 form a feasible solution to the single-server problem P

� �
? 9_

9
8 #

�
82I, n

�
, and

the corresponding objective value is ? 9# . Consider the in�nite-server system with arrival rates�
? 9_

9
8 #

�
82I and budget n . As we have proved Theorem 3 for the JRS policy with k0-irreducible

subroutine f 9 , it follows that ���Õk<0 E[- 9
k ] �

l
? 9#

m
· (1 � c 9 (0))

��� = $ ⇣p
A
⌘
, (52)���Õk<0 ⌘(k)E[- 9

k ] �
l
? 9#

m
· Õk<0 ⌘(k)c 9 (k)

��� = $ ⇣p
A
⌘
, (53)

where - 9
k is the random variable representing the steady-state number of servers in con�guration

k in the in�nite-server system under the JRS policy with subroutine f 9 .

By the construction of f , the arrival rate to the 9-th server pool is equal to ? 9_
9
8Õ

9 ? 9_
9
80
· _8A =

? 9_
9
8

_8
· _8A = ? 9_

9
8 # , where the �rst equality is due to (51), and the second equality is due to the

condition that _8A = _
9
8 · !. Therefore, (52) and (53) hold, and we have�����

’
k<0

E[-k ] � # · (1 � c (0))
����� =

�����
�’
9=1

’
k<0

E[- 9
k ] �

�’
9=1

? 9# · (1 � c 9 (0))
�����


�’
9=1

�����
’
k<0

E[- 9
k ] �

l
? 9#

m
· (1 � c 9 (0))

����� +$ (1)

= $ (
p
A ).

Here we use (52) and the relationship between c (k) and c 9 (k). Similarly,�����
’
k<0

⌘(k)E[-k ] � # ·
�’
9=1

’
k<0

⌘(k)c (k)
����� =

�����
�’
9=1

’
k<0

E[- 9
k ] �

�’
9=1

? 9# ·
’
k<0

⌘(k)c 9 (k)
�����
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=
�’
9=1

�����
’
k<0

E[- 9
k ] �

l
? 9#

m
·
’
k<0

⌘(k)c 9 (k)
����� +$ (1)

= $ (
p
A ).

After re-indexing the servers, we get (5) and (6). The bounds on # (f) and ⇠ (f), (7) and (8), follow
from (5) and (6). They can be veri�ed in the same way as that in the proof for the irreducible case,
so we omit the argument here. ⇤

C SOLVING THE SINGLE-SERVER PROBLEM
In this section, we show the equivalence of the single-server problem in (3) and a linear program
(LP) as stated in Theorem 4. The equivalence needs to be proved in two directions. In Appendix C.1,
we �rst derive the linear program (61) as a relaxation of the single-server problem (3) so that the
optimal value of the LP is a lower bound to the optimal value of (3). Then in Appendix C.2, we
will construct a Markovian single-server policy that achieves the optimal value of the LP, which
implies the optimality of the policy.

C.1 Lower Bound via LP Relaxation
In this subsection we derive an LP relaxation of the optimization problem (3), restated below:

minimize
# , f, c

#

subject to E
⇥
⌘
�
Q (1)

� ��Q (1) < 0
⇤
 n,

# · _8 = _8A , 88 2 I .

(3 revisited)

Here we allow f to be non-Markovian, i.e., it can make decisions based on the history, but we still
require its performance metrics used in the objective and the constraints of (3) to have well-de�ned
steady-state distributions.
Observe that both Q (1) and _8 depend on the stationary distribution c , but the constraints

in terms of c are implicit. To derive an LP relaxation, we give an explicit characterization of the
constraints that must be satis�ed by the stationary distribution c induced by any feasible policy f .

To do this, we derive a version of the stationary equation in terms of a quantity called transition
frequency. The transition frequency of type 8 jobs is a function D8 : K ! R describing the steady-
state frequency of requesting a type 8 job when the system has con�guration k . To rigorously de�ne
transition frequency, we �rst introduce a concept called nominal transition.

De�nition 1 (Nominal Transition). Consider a single-server system under any policy. When the
con�guration Q (C) transitions from k to k 0 + a for some k, k 0 2 K with a = (08 )82I new jobs added
into service, we decompose the transition by adding intermediate con�gurations as illustrated
below, where k �rst goes to k 0 if k 0 < k , then add jobs of each type one by one.

k ! k 0 ! (k 0 + e81 ) ! · · · ! (k 0 + 081e81 ) ! · · · ! (k 0 + 081e81 + · · · + 08 |I | e8 |I | ),

where (81, 82, . . . , 8 |I |) is a �xed ordering of the set of phases I. We call each short transition in the
diagram a nominal transition.

For k1, k2 2 K , we denote � (k1, k2, C) as the cumulative number of nominal transitions from k1

to k2 during the time interval [0, C], which is a random variable with a distribution depending on
the single-server policy and initial distribution of con�gurations.
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Note that for any 8 2 I and k 2 K s.t. :8 � 1, � (k, k � e8 , C) counts the number of times that a
type 8 job departs when being in con�guration k . As a result,

� (k, k � e8 , C) = N
✓π C

0
:8`8?1{ (B)=k }3B

◆
,

where N(C) denotes a unit rate Poisson process. If we take expectation, divide both sides by C , and
let C ! 1, we have

lim
C!1

1
C
E[� (k, k � e8 , C)] = :8`8? · lim

C!1
1
C

π C

0
P(Q (B) = k)3B = :8`8?c (k). (54)

Similarly, � (k, k � e8 + e80, C) counts the number of times a job in phase 8 transitions to phase 8 0
when being in con�guration k for any 8, 8 0 2 I, k 2 K s.t. 8 0 < 8 and :8 � 1, so

lim
C!1

1
C
E[� (k, k � e8 + e80, C)] = :8`880c (k). (55)

We de�ne transition frequency as follows.

De�nition 2 (Transition Frequency). Transition frequency of type 8 jobs at state k is the long-run
average number of nominal transitions from con�guration k to k + e8 per unit time,

D8 (k) , lim
C!1

1
C
E[� (k, k + e8 , C)] . (56)

The transition frequencies allow us to derive the following version of the stationary equation.

Lemma 6 (Stationary Equation). Under any policy, the stationary distribution c and the transition
frequency D8 satisfy the following equation:’

8

D8 (k � e8 )1{:8 �1} +
’
8

(:8 + 1)`8?c (k + e8 )

+
’

8,80 : 8<80
(:8 + 1)`880c (k + e8 � e80)1{:80 �1}

=
’
8

D8 (k) +
⇣’

8

:8`8? +
’

8,80 : 8<80
:8`880

⌘
c (k)

(57)

for any state k 2 K , and
Õ
8 ,
Õ
8,80 are shorthand for

Õ
82I,

Õ
8,80 2I .

P����. For each con�guration k 2 K , if we look at the di�erence between the number of
nominal transitions into con�guration k and that out of con�guration k by time C , we have the
following equation,

1{Q (C )=k } � 1{Q (0)=k }

=
’
8

� (k � e8 , k, C)1{:8 �1} +
’
8

� (k + e8 , k, C) +
’

8,80 : 8<80
� (k + e8 � e80, k, C)1{:80 �1}

�
’
8

� (k, k + e8 , C) �
’
8

� (k, k � e8 , C)1{:8 �1} �
’

8,80 : 8<80
� (k, k � e8 + e80, C)1{:8 �1}

(58)

By De�nition 2 and (54)-(55), if we divide both sides of (58) by C and let C ! 1, we get the stationary
equation in (57). ⇤

Since the stationary equation in (57) is linear in D8 (k) and c (k), we can write it in matrix form:

�0 + Õ
82I ⌫8u8 = 0, (59)
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where 0 and u8 are column vectors representing c (·), D8 (·), and �,⌫8 are matrices that make (59)
equivalent to (57). Therefore, the following three conditions are necessary for any tuple (0 , (u8 )82I)
to be a possible pair of stationary distribution and transition frequencies for a Markovian policy.

�0 + Õ
82I ⌫8u8 = 0Õ
k c (k) = 1
0 , u8 � 0, 88 2 I

(60)

Based on the characterization of stationary 0 and u8 ’s in (60), we can now formulate a linear
program LP((_8 )82I, n). The linear program has decision variables � 2 R, 0 2 RK , and u8 2 RK

for 8 2 I, where � is a factor that scales the throughput of each type of jobs in the direction of
(_8 )82I .

maximize
�, 0 , (u8 )82I

�

subject to h)0  n (1 � c (0))
1)> u8 = � · _8 88
�0 +

’
82I

⌫8u8 = 0

1)0 = 1
0 � 0, u8 � 0 88 2 I

(61)

where h is the vector form of the cost rate function ⌘; 1)> is a |K |-dimensional vector with one in all
entries except those with

Õ
82I :8 =  max. In addition to the last three constraints on stationarity,

the �rst constraint of LP((_8 )82I, n) is the resource contention constraint; the second constraint
is because the transition frequency from k to k + e8 is equal to the throughput of type 8 jobs.

By the construction of LP((_8 )82I, n), any feasible solution of P((_8A )82I, n) can be converted
to a feasible solution of LP((_8 )82I, n). Let #

⇤
be the optimal value of (3) and �⇤ be the optimal

value of (61). Then we have
#

⇤ � A

�⇤ . (62)

C.2 Policy Construction
In this subsection, we describe a procedure that allows us to construct a policy that achieves the
lower bound given by the LP relaxation in (61). Speci�cally, given a feasible solution (0 , (u8 )82I)
to (61), we de�ne an LP-based policy that requests jobs as follows:

• Case 1: When the system enters a con�guration k with c (k) < 0, for each 8 2 I, the policy
starts a timer whose duration follows an exponential distribution with rate D8 (k)

c (k) . The policy
requests a type 8 job when the 8-th timer ticks. When the con�guration changes, all timers
are canceled.

• Case 2: When the system enters a con�guration k with c (k) = 0 and
Õ
80 D80 (k) < 0, the

policy immediately requests a type 8 job with probability D8 (k)Õ
80 D80 (k) .

• Case 3: When the system enters a con�guration k with c (k) = 0 and
Õ
80 D80 (k) = 0, the

policy does not request any jobs.
We denote the LP-based policy based on the solution (0 , (u8 )82I) as f (0 , (u8 )82I).

Remark 2. Note that the de�nition of the LP-based policy here is stated from a view di�erent from
the view in Section 4.2: here each request only adds one job to the server, and one request can
happen immediately after another; while in Section 4.2 each request can add multiple jobs to the
server, and there is only one request happening at a time. We refer to the view here as the impulsive
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view, because multiple requests happening at the same time can be thought of as having an in�nite
request rate. In contrast, we call the view in Section 4.2 the non-impulsive view.
The LP-based policy can be alternatively described using the non-impulsive view if we see

multiple requests happening at the same time as one request that adds multiple jobs to the server.
More speci�cally, each reactive request of the LP-based policy is initiated by an internal transition
or departure and consists of one or multiple requests of Case 2; each proactive request of the
LP-based policy consists of one request in Case 1 and possibly several requests in Case 2.

The following lemma characterizes the steady-state behavior of a single-server system under the
LP-based policy.

Lemma 7 (Properties of LP-based Policies). Consider a single-server system under the LP-based
policy f (0 , (u8 )82I), where (0 , (u8 )82I) is a feasible solution to (61). We have that 0 is a stationary
distribution under policy f , and (u8 )82I are the transition frequencies corresponding to f .

The proof of Lemma 7 is based on (58), following the same argument as the proof of Lemma 6,
as well as an induction argument.

P����. Let (0 , (u8 )82I) be a feasible solution to the LP in (61). To show that 0 and (u8 )82I are
also the actual stationary distribution and transition frequencies, it su�ces to show that if the
initial distribution follows 0 , i.e.

P
�
Q (0) = k

�
= c (k)

then under the policy f (0 , (u8 )82I), we have

lim
)!1

1
)

π )

0
P
�
Q (C) = k

�
3C = c (k), (63)

lim
)!1

1
)
E[� (k, k + e8 ,) )] = D8 (k), (64)

where � is the cumulative number of nominal transitions under the policy f (0 , (u8 )82I) and the
initial distribution 0 .

Our proof is based on the following equation:

3

3C
P(Q (C) = k)

���
C=0

=
’
8

3

3C
E [� (k � e8 , k, C)]

���
C=0

�
’
8

3

3C
E [� (k, k + e8 , C)]

���
C=0

+
’
8

(:8 + 1)`8?c (k + e8 ) +
’
8,80

(:8 + 1)`880c (k + e8 � e80)1{:80 �1}

�
’
8

:8`8?c (k) �
’
8,80
:8`880c (k),

(65)

The equation is a straightforward consequence of (58), following the same argument as the proof
of Lemma 6.

We prove the following two equations by induction on
Õ
82I :8 .

lim
C!0

1
C
E[� (k, k + e8 , C)] = D8 (k), (66)

3

3C
P(Q (C) = k) |C=0 = 0. (67)
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We �rst consider the base case when
Õ
82I :8 = 0. In this case, k = 0 and we have

3

3C
E [� (k � e8 , k, C)]

���
C=0

= D8 (k � e8 )1{:8 �1} = 0, (68)

for all 8 . This reduces (65) to
3

3C
P(Q (C) = k)

���
C=0

=
’
8

D (k � e8 )1{:8 �1} �
’
8

3

3C
E [� (k, k + e8 , C)]

���
C=0

+
’
8

(:8 + 1)`8?c (k + e8 ) +
’
8,80

(:8 + 1)`8,80c (k + e8 � e80)1{:80 �1}

�
’
8

:8`8?c (k) �
’
8,80
:8`8,80c (k),

(69)

Now we discuss based on whether c (k) = 0. If c (k) < 0, by the de�nition of our policy, for all 8 ,
3

3C
E [� (k, k + e8 , C)]

���
C=0

=
D8 (k)
c (k) · P(Q (0) = k) = D8 (k), (70)

which is (66). Combining the above equation and the stationary equation (57) satis�ed by (0 , (u8 )82I),
we conclude that the RHS of (69) is zero, i.e.

3

3C
P(Q (C) = k) |C=0 = 0,

which is (67). For the case when c (k) = 0 and
Õ
8 D8 (k) < 0, because the system immediately leave

the con�guration k after reaching it through a nominal transition,
3

3C
P(Q (C) = k) |C=0 = 0,

i.e., the LHS of (69) is 0. Again we compare (69) against the stationary equation (57) and get’
8

3

3C
E [� (k, k + e8 , C)]

���
C=0

=
’
8

D8 (k).

By the de�nition of our policy, we have
3

3C
E [� (k, k + e8 , C)]

���
C=0

=
D8 (k)Õ
80 D80 (k)

·
’
80

3

3C
E [� (k, k + e80, C)]

���
C=0

= D8 (k). (71)

which is (66). For the case when c (k) = 0 and
Õ
8 D8 (k) = 0, (57) implies that D8 (k � e8 ) = 0,

c (k + e8 ) = 0, c (k + e8 � e80) = 0 for any 8 . Then (69) is further reduced to
3

3C
P(Q (C) = k)

���
C=0

= �
’
8

3

3C
E [� (k, k + e8 , C)]

���
C=0

.

Because P(Q (C) = k) � 0 and P(Q (0) = k) = 0, the LHS of the above expression is non-negative.
However, the RHS of the above expression is non-positive. Therefore, both sides are equal to zero,
thus we have 3

3C P(Q (C) = k)
���
C=0

= 0 and 3
3C E [� (k, k + e8 , C)]

���
C=0

= D8 (k).
Having proved the base case, we do the induction step. Suppose we have proved (66) and (67) for

all k such that
Õ
82I :8  < � 1 for some integer< � 1. We consider k with

Õ
82I :8 =<. By the

induction hypothesis,
3

3C
E [� (k � e8 , k, C)]

���
C=0

= D8 (k � e8 )1{:8 �1} . (72)
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Then we repeat the arguments after (68) of the base case verbatim. By induction, we have proved
(66) and (67).

Therefore, given the policy and initial distribution, the distribution of Q (C) is stationary, i.e., we
always have P(Q (C) = k) = c (k) for all k 2 K . As a result, an analogue of (66) holds for all C � 0:
E[� (k, k + e8 , C)] is di�erentiable with respect to C and

3

3C
E[� (k, k + e8 , C)] = D8 (k),

for all k 2 K and all 8 2 I. Therefore,

lim
)!1

1
)

π )

0
P(Q (C) = k)3C = lim

)!1
1
)

· c (k) ·) = c (k),

lim
)!1

1
)
E[� (k, k + e8 ,) )] = lim

)!1
1
)

π )

0

3

3C
E[� (k, k + e8 , C)]3C

= lim
)!1

1
)

· D8 (k) ·) = D8 (k).

This completes the proof. ⇤

C.3 Proof of Theorem 4
Theorem 4 (Optimality of Single-OPT). Given an optimal solution (�⇤, 0⇤, (u8 )82I) to the linear
program LP((_8 )82I, n), we can solve the single-server problem P((_8A )82I, n) in (3) to achieve an
optimal value A/�⇤, using the optimal policy f (0⇤, (u8 )⇤82I) and the optimal stationary distribution
0⇤. Moreover, the optimal policy f (0⇤, (u8 )⇤82I) is a Markovian policy.

P����. By Lemma 7, under the policyf (0⇤, (u⇤8 )82I), 0⇤ is a stationary distribution, and (u⇤8 )82I)
are the corresponding transition frequencies. Recall the single-server P((_8A )82I, n) problem

minimize
# , f, c

#

subject to E
⇥
⌘
�
Q (1)

� ��Q (1) < 0
⇤
 n,

# · _8 = _8A , 88 2 I .

(3 revisited)

Observe that under the policy f (0⇤, (u⇤8 )82I), the cost rate of resource contention is h)0 
n (1 � c (0)), the request rate of type 8 jobs is _8 = 1)> u⇤8 = �⇤ · _8 , so

E
⇥
⌘
�
Q (1)

� ��Q (1) < 0
⇤
=

h)0
1 � c (0)  n,

_8 = �⇤ · _8 , 88 2 I .
where we have used the fact that ⌘(0) = 0 in the �rst equality. Therefore, (�⇤/A ,f (0⇤, (u⇤8 )82I), 0)
is a feasible solution to the single-server problem P((_8A )82I, n), achieving the objective value of
A/�⇤, which is the optimal value because A/�⇤  #

⇤
. ⇤

D PERFORMANCE GUARANTEE OF JOIN�REQUESTING�SERVER WITH AN
ESTIMATED MODEL

D.1 Assumptions and result
In this section, we consider the performance of JRS when it is based on an estimated model. We
will state the performance guarantee in terms of the estimation error, and give a proof sketch by
pointing out which part of Theorem 3’s proof needs to be changed accordingly.
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Consider the setting where the maximal jobs on a server  max, the set of job phases I, the cost
rate function ⌘(·), and the budget n are all known. However, we only have estimations of the jobs’
arrival rates, internal transition rates, and departure rates.

Speci�cally, for any 8, 8 0 2 I, let è880 be the true rate of internal transition from phase 8 to phase
8 0; let è8? be the true departure rate of phase 8; let e_8A be the true arrival rate of type 8 jobs. We let
`880 ’s, `8?’s, and _8A ’s be the estimated internal transition rates, departure rates, and arrival rates,
respectively. We assume that there exists a small positive constant X that is independent of the
scaling factor A such that the following assumptions hold.

Assumption 1 (X-accurate estimation). For any 8, 8 0 2 I,

|`880 � è880 |  X, (73)
|`8? � è8? |  X, (74)��_8 � e_8 ��  X . (75)

Assumption 2 (Scaling of the single-server objective value). Consider the single-server problem in
(3). Let (# ,f, c) be a solution feasible to the single-server problem with the estimated parameters
that are X-accurate, where X 2 [0, Xmax), for some constant Xmax > 0. We assume that there exist
constants 0 < <1 < <2 independent of X and A such that

<1A  #  <2A .

Assumption 3 (X-insensitivity of the optimal value). Consider the single-server problem in (3).
Let the optimal value of the single-server problem with the estimated parameters be #

⇤
, where the

estimated parameters are X-accurate; let the optimal value of the single-server problem with true
parameters be #

⇤
true. We assume that

#
⇤  #

⇤
true + XA .

We also assume that JRS can accurately simulate the virtual jobs.

Assumption 4 (Accurate simulation). The virtual jobs simulated in JRS follow the true transition
dynamics.

Given the above assumptions, we have the following proposition that states the optimality gap
of JRS policy with estimated model parameters, which has a similar form as Theorem 3 for JRS
under true model parameters.

Proposition 1 (Optimality gap with model estimation). Consider a stochastic bin-packing problem
in service systems with time-varying job resource requirements. Let the in�nite-server policy f be JRS
with subroutine f . Suppose f is speci�ed based on an estimated model satisfying Assumption 1, 2,
3, and 4, for X s.t. X 2 [0, Xmax), where Xmax is some positive constant independent of A . Let # be the
objective value achieved by f in the single-server problem P((_8A )82I, n) with estimated parameters.
Under f , for any initial state, we have�����

’
k<0

E [-k ] �
l
#

m
· P

⇣
Q < 0

⌘����� = $
�p
A
�
+ X ·$

�
A
�
, (76)

�����
’
k<0

⌘(k)E [-k ] �
l
#

m
· E

⇥
⌘(Q )

⇤ ����� = $
�p
A
�
+ X ·$

�
A
�
, (77)
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where Q denotes the steady-state con�gurations of the single-server system under f with the estimated
parameters. If we let f be the optimal policy of the single-server problem with estimated parameters,
for any initial state, we have

# (f) 
�
1 + ⌫X +$

�
A�0.5

� �
· # ⇤

true, (78)

⇠ (f) 
�
1 + ⌫X +$

�
A�0.5

� �
· n, (79)

where⌫ is a positive constant independent of A . In other words,f is
�
1 + ⌫X +$

�
A�0.5

�
, 1 + ⌫X +$

�
A�0.5

� �
-

optimal.

Remark 3. Note even if the single-server system with estimated parameters k0-irreducible under
f , it is hard to guarantee that the original system is k0-irreducible due to the estimation errors.
Consequently, the steady-state performance metrics # (f) and ⇠ (f) could depend on the system’s
initial state. Fortunately, our proof for Theorem 3 does not rely on the uniqueness of the stationary
distribution, so we can adapt the proof to show the inequalities in Proposition 1 for any initial state.

Remark 4. Note that Assumption 4 ensures that the real jobs and virtual jobs on a server are indis-
tinguishable, so that (bQ1:! (C),(1:! (C)) is still a Markov chain. Recall that bQ ✓ and and (✓ denote the
observed con�guration and tokens for each normal server ✓ , respectively (see Section 5.1). We sus-
pect that Assumption 4 can be removed since our proof does not rely too much on (bQ1:! (C),(1:! (C))
being a Markov chain. However, removing the assumption requires a more careful and notationally
heavy analysis. We argue that in practice, this assumption is not restrictive, as one can record the
traces of the jobs that arrived in the past and resample virtual jobs from those traces.

D.2 Lemmas
In this section, we give a proof sketch for Proposition 1 when the single-server system under f with
estimated parameters is k0-irreducible. The argument of extending to the general case is essentially
the same as Appendix B.3, so we omit it here.
On a high level,the proof of Proposition 1 is similar to that of Theorem 1. In particular, the key

steps of the proof are to show that 3 (Q1:!,Q
1:!) = $ (pA ) and Õ1

✓=!+1
Õ
82I  

✓
8 = $ (pA ) as A ! 1,

where ! = d# e, and Q
1:! are i.i.d. copies of steady-state con�gurations of the single-server system

under f with the estimated parameters, and Q is the steady-state con�gurations of the in�nite
server system under f .
Proposition 1 is based on the three lemmas stated below. The proof of Proposition 1 using the

three lemmas is essentially the same as the argument in Section 5.3.

Lemma 8. Under the conditions of Proposition 1 and the single-server system with estimated parame-
ters under f being k0-irreducible, for any initial state, we have

3
⇣bQ1:!,Q

1:!⌘
= $

�p
A
�
+ X ·$

�
A
�

Lemma 9. Under the conditions of Proposition 1 and the single-server system with estimated parame-
ters under f being k0-irreducible, for any initial state and 8 2 I, the steady-state expected number of
virtual jobs of type 8 s.t.

E
⇥Õ!

✓=1 Z
✓
8

⇤
= $

�p
A
�
+ X ·$

�
A
�
.

Lemma 10. Under the conditions of Proposition 1 and the single-server system with estimated
parameters under f being k0-irreducible, for any initial state and 8 2 I, the steady-state expected
number of type 8 jobs on backup servers s.t.

E
⇥Õ1

✓=!+1  
✓
8

⇤
= $

�p
A
�
+ X ·$

�
A
�
.
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These three lemmas are analogous to Lemma 2, Lemma 3, and Lemma 4, respectively. In the rest
of the section, we sketch the proofs for the three lemmas above, highlighting the di�erence from
the proofs of their analogues.

D.3 Proof sketch for Lemma 8
Recall from Section 5.4 that the proof of Lemma 2 is based on Stein’s method, which compares the
generator of the i.i.d. copies of the single-server system with the generator of the in�nite-server
system. To write down the generators with the estimated model, recall that in the single-server
system, each transition can be represented by the diagram

k ! k 0 ! k 0 + a,

where the arrow k ! k 0 denotes an internal transition or a departure if k < k 0; the arrow
k 0 ! k 0 + a denotes a job request that is made right after reaching k 0. For any k , let ⇢ (k) be the
set of (k 0, a) 2 K2 such that k 0 + a 2 K . We de�ne two sets of transition rates as below: for any
k 2 K and (k 0, a) 2 ⇢ (k),

• Under the estimated parameters and the policy f , we let Wk,(k0,a) be the rate of the transition
k ! k 0 ! k 0 + a, and let Wk ,

Õ
k0,a Wk,(k0,a) be the total transition rate at con�guration k .

• Under the true parameters and the policy f , we let eWk,(k0,a) be the rate of the transition
k ! k 0 ! k 0 + a, and leteWk , Õ

k0,a eWk,(k0,a) be the total transition rate at con�guration k .

Let ⌧ be the generator of ! = d# e i.i.d. copies of single-server systems under the estimated
parameters. For any 6 : K! ! R, we have

⌧6(k1:!) =
!’
✓=1

’
k0,a

Wk✓ ,(k0,a)
�
6(·, k 0 + a, ·) � 6(·, k✓ , ·)

�
, (80)

where
Õ

k0,a is a shorthand for
Õ

(k0,a)2⇢ (k) . Let b⌧ be the generator of (bQ1:! (C),(1:! (C)) for the
in�nite-server system. For any function 6 : K! ! R andk (k1:!,(1:!) = 6(k1:! + (1:!), we have

b⌧k (k1:!,(1:!) =
!’
✓=1

’
k0,a

eWk✓ ,(k0,a)
�
6(·, k 0 + a, ·) � 6(·, k✓ , ·)

�
1{(✓=0}

+
!’
✓=1

’
k0,a

eWk✓ ,(k0,a)
�
6(·, k 0 + (✓ , ·) � 6(·, k✓ + (✓ , ·)

�
1{(✓<0} . (81)

To prove Lemma 8, we need to show that for any 5 2 Lip(1), k1:! 2 K! , and (1:! 2 K! ,

⌧65 (k1:! + (1:!) � b⌧k5 (k1:!,(1:!) = $
�p
A
�
+ X ·$

�
A
�
, (82)

where 65 is the solution to

E
h
5
�
Q

1:! � i � 5 �k1:! � = ⌧65 �k1:! �, (83)

andk5 (k1:!,(1:!) = 65 (k1:! + (1:!). Same as the proof of Lemma 2, we prove (82) in two steps: the
generator comparison step, and the Stein factor bound step.

In the generator comparison step, we observe that the formula of ⌧6(k1:!) and b⌧k (k1:!,(1:!) in
(80) and (81) look almost the same as (15) and (17), except that the rates in (81) areeWk✓ ,(k0,a) instead
of Wk✓ ,(k0,a) . As a result, after carrying out similar calculations as in the poof of Lemma 2, we get
an extra error term involving Wk✓ ,(k0,a) �eWk✓ ,(k0,a) , which can be bounded using the lemma below.
This error term results in the X ·$ (A ) in (82).
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Lemma 11. Under Assumption 1, for any k 2 K and (k 0, a) 2 ⇢ (k), we have��eWk,(k0,a) � Wk,(k0,a)
��   maxX . (84)

P����. When k = k 0, Wk,(k0,a) and eWk,(k0,a) are both the rate of adding a jobs via a proactive
request under the policy f , so they are identical.
When k < k 0 and a = 0, Wk,(k0,a) is equal to the rate of going from k to k 0 via an internal

transition or departure under the estimated job model, whileeWk,(k0,a) is under the true job model.
Because there are at most  max jobs, and by our assumption the estimation error of each job’s
transition rates are bounded by X , thus Wk,(k0,a) andeWk,(k0,a) di�er by at most  maxX .
When k < k 0 and a < 0, Wk,(k0,a) is equal to the rate of going from k to k 0 via an internal

transition or departure, multiplied by the probability of adding a jobs via a reactive request, under
the estimated job model and the policy f ; eWk,(k0,a) is under the true job model instead of the
estimated job model, but uses the same policy. Because the rate of going from k to k 0 di�ers by at
most  maxX under two di�erent job models, and the probability of adding a jobs after going from k
to k 0 is the same under the same policy, thus Wk,(k0,a) andeWk,(k0,a) di�er by at most  maxX . ⇤

In the Stein factor bound step, we need to show that
sup

k,k0 2K

��65 (·, k 0, ·) � 65 (·, k, ·)
�� = $ (1) . (85)

This involves analyzing the i.i.d. copies of the single-server system, and the fact that the single-
server system with estimated parameters is k0-irreducible under f . This part of the proof is identical
to the corresponding part of the proof of Lemma 2.

D.4 Proof sketch for Lemma 9 and Lemma 10
The proof of Lemma 9 and Lemma 10 has a similar structure as the proof of Lemma 3 and Lemma 4.
In the �rst step, we use Little’s law to bound expectations of the number of type 8 virtual jobs, +8 ,
and the number of type 8 jobs on backup servers, .8 . We have two equations almost the same as
(36) and (37) except that the rates WbQ ✓ ,(k0,a) and _8A are replaced byeWbQ ✓ ,(k0,a) and e_8A :

E[+8 ]  CmaxE

"
!’
✓=1

’
k0,a

eWbQ ✓ ,(k0,a)3E81{(✓=0}

#
, (86)

E[.8 ]  CmaxE
he_8A · 3~8 i , (87)

where Cmax is the maximal expected service time of any type of virtual job or real job. Because
Cmax = $ (1), it su�ces to bound E

hÕ!
✓=1

Õ
k0,a eWbQ ✓ ,(k0,a)3E81{(✓=0}

i
and E

he_8A · 3~8 i .
In the second step, we utilize the fact that the two Lyapunov functions 6(I8 ) = I8 and 6(I8 ) = I28

have zero drift in steady-state, where I8 is the total number of type 8 tokens. We get two equalities
similar to (38) and (41):

E

"
!’
✓=1

’
k0,a

eWbQ ✓ ,(k0,a) (08 � 3E8 )1{(✓=0} + e_8A (�1 + 3~8 )
#
= 0. (88)

E

"
!’
✓=1

’
k0,a

eWbQ ✓ ,(k0,a)3E81{(✓=0}

#
(89)

=
1

[max
· E

" 
!’
✓=1

’
k0,a

eWbQ ✓ ,(k0,a)081{(✓=0} � e_8A
!
· /8

#
(90)
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+ 1
2[max

· E
"
!’
✓=1

’
k0,a

eWbQ ✓ ,(k0,a)
�
028 � (3E8 )2

�
1{(✓=0} + e_8A · (1 � (3~8 )2)

#
. (91)

In the third step, we use the above two equalities to bound E
hÕ!

✓=1
Õ

k0,a eWbQ ✓ ,(k0,a)3E81{(✓=0}
i
and

E
he_8A · 3~8 i . We �rst use the equality in (89) to (91) to bound E

hÕ!
✓=1

Õ
k0,a eWbQ ✓ ,(k0,a)3E81{(✓=0}

i
.

Following the same argument as the proof of Lemma 3 and Lemma 4 until (47), we can show that

(91)  $
�p
A
�
,

(90)  E
"�����

!’
✓=1

’
k0,a

eWbQ ✓ ,(k0,a)081{(✓=0} � e_8A
�����
#

 E
"�����

!’
✓=1

’
k0,a

eWbQ ✓ ,(k0,a)08 � e_8A
�����
#
+$

�p
A
�

 E
"�����

!’
✓=1

’
k0,a

eW
Q

✓
,(k0,a)08 � e_8A

�����
#
+$

�p
A
�
+ X ·$

�
A
�
, (92)

where to get (92), we apply Lemma 8 to replace bQ ✓ with Q
✓ , which causes an$ (pA ) +X ·$ (A ) error.

Next, we show that

E

"�����
!’
✓=1

’
k0,a

eW
Q

✓
,(k0,a)08 � e_8A

�����
#
= $

�p
A
�
+ X ·$

�
A
�
. (93)

By Assumption 1 and Lemma 11, we have ���e_8A � _8A
���  XA , (94)

��� !’
✓=1

’
k0,a

eW
Q

✓
,(k0,a)08 �

!’
✓=1

’
k0,a

W
Q

✓
,(k0,a)08

���  X ·$ �
A
�
. (95)

These two bounds allow us to replaceeW
Q

✓
,(k0,a) and

e_8A on the LHS of (93) with W
Q

✓
,(k0,a) and _8A at

the cost of introducing X ·$ (A ) error. Moreover, because {Q ✓ }✓=1,...,! are i.i.d.,
Õ!
✓=1

Õ
k0,a WQ ✓

,(k0,a)08

concentrates around its mean with $ (pA ) error, where the mean can be shown to be

E

"
!’
✓=1

’
k0,a

W
Q

✓
,(k0,a)08

#
= _8! = _8A +$ (1).

Note that the �rst equality in (96) holds because for each ✓ , E[Õk0,a WQ ✓
,(k0,a)08 ] is equal to _8 ,

i.e., the long-run average rate of requesting type 8 jobs on a single-server system with estimated
parameters under f ; the second equality in (96) is because ! = d# e, and #_8 = _8A . As a result,

E

"�����
!’
✓=1

’
k0,a

W
Q

✓
,(k0,a)08 � _8A

�����
#
 $

�p
A
�
. (96)

Combining (94) to (96), we get (93). Therefore,

E[+8 ]  CmaxE

"
!’
✓=1

’
k0,a

eWbQ ✓ ,(k0,a)3E81{(✓=0}

#
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 $ (1) ·
�
(90) + (91)

�
 $

�p
A
�
+ X ·$

�
A
�
,

which completes the proof of Lemma 9.
Finally, it is straightforward to show that E

he_8A · 3~8 i = $ (pA )+X ·$ (A ) using (88) and the bound

on E
hÕ!

✓=1
Õ

k0,a eWbQ ✓ ,(k0,a)3E81{(✓=0}
i
. Therefore, E[.8 ]  CmaxE

he_8A · 3~8 i = $ (pA ) +X ·$ (A ). This
proves Lemma 10.
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