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Abstract—Graph alignment aims at finding the vertex corre-

spondence between two correlated graphs, a task that frequently

occurs in graph mining applications such as social network analy-

sis. Attributed graph alignment is a variant of graph alignment,

in which publicly available side information or attributes are

exploited to assist graph alignment. Existing studies on attributed

graph alignment focus on either theoretical performance without

computational constraints or empirical performance of efficient

algorithms. This motivates us to investigate efficient algorithms

with theoretical performance guarantee. In this paper, we propose

two polynomial-time algorithms that exactly recover the vertex

correspondence with high probability. The feasible region of the

proposed algorithms is near optimal compared to the information-

theoretic limits. When specialized to the seeded graph align-

ment problem, the proposed algorithms strictly improve the best

known feasible region for exact alignment by polynomial-time

algorithms.

I. INTRODUCTION

The graph alignment problem, also referred to as the
graph matching or noisy graph isomorphism problem, is the
problem of finding the correspondence between the vertices
of two correlated graphs. This problem has been given in-
creasing attention for its applications in social network de-
anonymization. For instance, datasets of social networks are
typically anonymized for privacy protection. However, an at-
tacker may be able to de-anonymize the dataset by aligning its
user-user connection graph with that of publicly available data.
Attributed graph alignment is a variant of graph alignment in
which side information, referred to as attributes of vertices, is
also publicly available in addition to the user-user connection
information. This variant is motivated by the largely available
information on social network users in practice such as edu-
cation background, hobbies, and birthplaces.

In this paper, we focus on the attributed graph align-
ment problem under the attributed Erdős–Rényi pair model
G(n, p, su;m, q, sa) first proposed in [1]. In this model, a
base graph G is generated on the vertex set [n + m] where
the vertices from the set [n] represent users and the rest
of the vertices represent attributes. Between each pair of
users, an edge is generated independently and identically
with probability p to represent their connection. For each
user-attribute pair, an edge is generated independently and
identically with probability q to represent their association.
Note that there are no edges between attributes. The graph G

is then independently subsampled to two graphs G1 and G2,
where each user-user edge is subsampled with probability su

and each user-attribute edge is subsampled with probability sa.

To model the anonymization procedure, a random permutation
⇧⇤ chosen uniformly at random is applied to the users in
G2 to generate an anonymized version G

0
2. Our goal in this

model is to achieve exact alignment, i.e, exactly recovering
the permutation ⇧⇤ using G1 and G

0
2.

For the attributed graph alignment problem, and the graph
alignment problem in general, two often asked questions are
the following. First, for what region of graph statistics is exact
alignment feasible with unlimited computational power? This
region is usually referred to as the information-theoretically
feasible region or the information-theoretic limits. Second, for
what region of graph statistics is exact alignment feasible with
polynomial-time algorithms? This region is usually referred to
as the feasible region of polynomial-time algorithms. Charac-
terizing these two feasible regions and their relationship is of
utmost importance to developing a fundamental understanding
of the graph alignment problem. For the attributed graph align-
ment problem, the first question has been partially answered
in [1], where the feasible region (achievability results) and
infeasible region (converse results) are characterized with a
gap in between in some regimes. However, the second question
on the feasible region of polynomial-time algorithms has not
been studied before, and it is the focus of this paper.

There has been massive study on the graph alignment prob-
lem under the Erdős–Rényi pair model without attributes. A
line of research focuses on the information-theoretic limits of
exact alignment [2, 3, 4, 5]. It is shown that exact alignment is
information-theoretically feasible when the intersection graph
is dense enough. A sharp threshold of exact alignment has
been established, while there still exists some gap between
the converse and the achievability results. Another line of
research focuses on polynomial-time algorithms for exact
alignment [6, 7, 8, 9]. Compared to the information-theoretic
limits, the existing polynomial-time algorithms further require
high edge correlation between the pair of graphs to achieve
exact alignment. The question whether there exist polynomial-
time algorithms that achieve the known information-theoretic
limits is still left open.

In this work, we consider the attributed graph align-
ment problem and characterize the feasible regions of two
polynomial-time algorithms that we propose. The two al-
gorithms are designed for two different regimes of param-
eters based on the richness of attribute information: the
algorithm ATTRRICH is designed for the regime where
mqs

2
a = ⌦(log n), referred to as the attribute-information
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rich regime; and the algorithm ATTRSPARSE is designed
for the regime where mqs

2
a = o(log n), referred to as the

attribute-information sparse regime. In both algorithms, we
first explore the user-attribute connections to align a set of
anchor users, and then utilize the user-user connections to the
anchors to align the rest of users. Due to the regime difference,
ATTRRICH is able to generate a much larger set of anchors
in the first step than ATTRSPARSE. Therefore, ATTRRICH
and ATTRSPARSE make use of the anchors differently in the
second step: ATTRRICH explores one-hop user-user connec-
tions to align the rest of users, while ATTRSPARSE explores
multiple-hop user-user connections to align the rest of users.

Our characterizations of the feasible regions of ATTRRICH
and ATTRSPARSE are illustrated in Figure 1 as areas 2
and 3 , respectively. The information-theoretically feasible and
infeasible regions given in [1] are also illustrated in the figure
for comparison. We can see that there is a gap between the
feasible region achieved by ATTRRICH and ATTRSPARSE and
the known information-theoretically feasible region. It is left
open whether this gap is a fundamental limit of polynomial-
time algorithms. 1 In addition, we also specialize the attributed
graph alignment to the so-called seeded graph alignment prob-
lem and show that our proposed algorithms strictly improve
the known feasible region of polynomial-time algorithms for
the seeded graph alignment problem.

log n± !(1)

mqs
2
a

nps
2
u

(1 + ✏) log n

4

1

3

2

log n± !(1)

⇥(log n)

log n+O(mq
3/2)

(1 + ✏) log n

⇥
⇣

logn
log 1/q

⌘

Fig. 1: Comparison between the feasible regions of the proposed algorithms
and the information-theoretic limits: the shaded area ( 1 + 2 + 3 ) represents
the information-theoretically feasible region given in [1]; area 2 is the
feasible region for Algorithm ATTRRICH and area 3 is the feasible region for
Algorithm ATTRSPARSE; area 4 is the information-theoretically infeasible
region given in [1].

II. MODEL

In this section, we describe a random process that gener-
ates a pair of correlated graphs, which we refer to as the
attributed Erdős–Rényi pair model G(n, p, su;m, q, sa). Under
this model, we define the exact alignment problem.

Base graph generation. We first generate a base graph G,
whose vertex set V(G) consists of two disjoint sets, the user

1We comment that efficient algorithms for attributed graph alignment are
also studied in the line of work [10, 11, 12], where the focus is the empirical
performance rather than the theoretical feasible regions.
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Fig. 2: An illustration of attributed Erdős–Rényi pair model. We first sample
a base graph G. Then we get G1 and G2 through edge subsampling G. The
anonymized graph G

0
2 is obtained through apply the permutation ⇧⇤ on the

user vertex set of G2.

vertex set Vu = {1, 2, . . . , n} and the attribute vertex set Va =
{n + 1, n + 2, . . . , n + m}. There are two types of edges in
the base graph G, the user-user edges (edges connecting a
pair of users) and the user-attribute edges (edges connecting
a user vertex and an attribute vertex). The user-user edges
are generated independently and identically with probability
p, and the user-attribute edges are generated independently
and identically with probability q. Throughout this paper, we
assume that p = o(1) and q = o(1). We write i

G⇠ j if vertices
i and j are connected in graph G.

Edge subsampling. From the base graph G, we obtain
two correlated graphs G1 and G2 by subsampling the edges
in G independently. More specifically, we get G1 and G2

by independently including each user-user edge in G with
probability su and independently including each user-attribute
edge with probability sa. Throughout this paper, we assume
that su = ⇥(1) and sa = ⇥(1).

Anonymization. From the G2 generated as above, we get an
anonymized graph G

0
2 by applying an unknown permutation

⇧⇤ on the user vertices of G2, where ⇧⇤ is drawn uniformly
at random from the set of all possible permutations on Vu.
We use Vu

2 to denote the user vertex set of G0
2 and use Vu

1 to
denote the user vertex set of G1. Finally, we remark that this
subsampling process is a special case of an earlier described
attributed Erdős–Rényi pair model in [1].

Exact alignment. Given an observable pair (G1, G
0
2), our

goal is to recover the unknown permutation ⇧⇤, which allows
us to recover the original labels of user vertices in the
anonymized graph G

0
2. We say exact alignment is achieved

with high probability (w.h.p.) if limn!1 P(⇧̂ 6= ⇧⇤) = 0. It
is worth mentioning that P(⇧̂ 6= ⇧⇤) = P(⇧̂ 6= ⇧⇤|⇧⇤ = ⇡id)
due to the symmetry among user vertices. Thus, we later
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assume without loss of generality that the underlying true
permutation is the identity permutation.

Relation to the seeded graph alignment problem. Another
well-studied graph alignment problem with side information is
the seeded graph alignment problem, where we have access to
part of the true correspondence between user vertices. To make
a comparison between the two models, here we describe the
seeded Erdős–Rényi pair model G(N,↵, p, s). We first sample
a base graph G from the Erdős–Rényi graph on N vertices
with edge probability p. Then two correlated copies G1 and
G2 are obtained by independently subsampling the edges in
the base graph where each edge is preserved with probability
s. The anonymized graph G

0
2 is obtained by applying an

unknown permutation ⇧⇤ on G2, where ⇧⇤ is drawn uniformly
at random. Then, a subset Vs ⇢ V(G1) of size bN↵c is
chosen uniformly at random and we define the vertex pairs
I0 = {(v1,⇧⇤(v1)) : v1 2 Vs} as the seed set. The graph pair
(G1, G

0
2) together with the seed set I0 are given and the goal

of the exact alignment is to recover the underlying permutation
for the remaining vertices w.h.p.

Comparing the seeded Erdős–Rényi pair model and the
attributed Erdős–Rényi pair model, we can see that the seed
set and the attribute set both provide side information to assist
the alignment of the remaining vertices. Nevertheless, there
are two main differences between the two models. First, in
the attributed Erdős–Rényi pair model, we allow different edge
probabilities and subsampling probabilities for user-user edges
and user-attribute edges, whereas in the seeded Erdős–Rényi
pair model, the edge probability is identical for all edges
and so is the subsampling probability. Second, while there
are edges between seeds in seeded Erdős–Rényi pair model,
there are no attribute-attribute edges in the attributed Erdős–
Rényi pair model. However, it can be shown that the existence
of edges between seeds has no influence on the information-
theoretic limits for exact alignment in the seeded Erdős–Rényi
pair model. This further suggests that the information-theoretic
limits on attributed graph alignment recover the information-
theoretic limits on seeded graph alignment if we specialize
p = q and su = sa in the attributed Erdős–Rényi pair model
G(n, p, su; q, sa).

Other notation. Our algorithms rely on exploring the neigh-
borhood similarity of user vertices in G1 and G

0
2. Here we

introduce our notation of local neighborhoods. We define
N a

1(i) , {j 2 Va
1 : i

G1⇠ j} as the set of attribute neighbors of

a user vertex i in G1 and N a
2(i) , {j 2 Va

2 : i
G0

2⇠ j} as the set
of attribute neighbors of a user vertex i in G

0
2. For two user

vertices i and j in the same graph, let d(i, j) be the length
of the shortest path connecting i and j via user-user edges.
For a user vertex i 2 Vu

1 , we define the set of l-hop user
neighbors of vertex i as N u

1 (i, l) , {j 2 Vu
1 : d(i, j)  l} for

any positive integer l. By convention, when l = 1, we simply
write N u

1 (i) ⌘ N u
1 (i, 1). The quantities N u

2 (i, l) and N u
2 (i)

are defined similarly for user vertices in G
0
2.

Reminder of the Landau notation.

Notation Definition

f(n) = !(g(n)) lim
n!1

|f(n)|
g(n) = 1

f(n) = o(g(n)) lim
n!1

|f(n)|
g(n) = 0

f(n) = O(g(n)) lim sup
n!1

|f(n)|
g(n) < 1

f(n) = ⌦(g(n)) lim inf
n!1

|f(n)|
g(n) > 0

f(n) = ⇥(g(n)) f(n) = O(g(n)) and f(n) = ⌦(g(n))

III. MAIN RESULTS

In this section, we propose two polynomial-time algorithms
for the attributed graph alignment problem. Their feasible
regions are characterized in the following two theorems.

Theorem 1. Consider the attributed Erdős–Rényi pair
G(n, p, su;m, q, sa) with p = o(1), q = o(1), su = ⇥(1),
and sa = ⇥(1). Assume that

mqs
2
a = ⌦(log n) (1)

and that there exists some constant ✏ > 0 such that

mqs
2
a + nps

2
u � (1 + ✏) log n. (2)

Then there exists a polynomial-time algorithm, namely, Algo-
rithm ATTRRICH with the parameters chosen in (8) and (9),
that achieves exact alignment w.h.p.

Theorem 2. Consider the attributed Erdős–Rényi pair
G(n, p, su;m, q, sa) with p = o(1), q = o(1), su = ⇥(1),
and sa = ⇥(1). Assume that

mqs
2
a = o(log n), (3)

nps
2
u � log n = !(1), (4)

and that there exists some constant ⌧ > 0 such that

mqs
2
a � 2 log n

⌧ log 1
q

. (5)

Then there exists a polynomial-time algorithm, namely, Algo-
rithm ATTRSPARSE with the parameters chosen in (11), (12)
and (13), that achieves exact alignment w.h.p.

The proofs of Theorems 1 and 2 are omitted due to space
limitations; see [13] for the proofs.

A. Algorithm ATTRRICH

In this subsection, we propose the first algorithm that leads
to the feasible region in Theorem 1. This algorithm is designed
for the attribute-information rich regime, reflected by the
condition mqs

2
a = ⌦(log n) in (1), hence named ATTRRICH.

• Input: The graph pair (G1, G
0
2) and two thresholds x and y.

• Step 1: Align through attribute neighbors. In this step,
we only consider the edge connections between users and
attributes, and use this information to find the matching for
a set of vertices that will be later referred to as anchors. For
each pair of users i 2 Vu

1 and j 2 Vu
2 , compute the number

of common attribute neighbors

Cij , |N a
1(i) \N a

2(j)|. (6)
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If Cij > x, add (i, j) into S1. We refer to vertex pairs in
the set S1 as anchors. If there exist conflicting pairs in S1,
i.e., two distinct pairs (i1, j1) and (i2, j2) with i1 = i2 or
j1 = j2, set S1 = ; and declare failure. Otherwise, set
⇧̂(i) = j for all pairs (i, j) 2 S1.

• Step 2: Align through user neighbors. In the previous
step, we have aligned the anchors using user-attribute edges.
In this step, we align the unmatched vertices by their edge
connections to the anchors. Let

U1 , {i 2 Vu
1 : (i, j) 62 S1, 8j 2 Vu

2}

denote the set of all unmatched vertices in G1, and let

U2 , {j 2 Vu
2 : (i, j) 62 S1, 8i 2 Vu

1}

denote the set of all unmatched vertices in G2. For each
unmatched pair (i, j) with i 2 U1 and j 2 U2, consider
the user neighbors of i and the user neighbors of j that are
matched as pairs in S1, and compute the number of such
matched pairs

Wij ,
X

k2N u
1(i),l2N u

2(j)

1{(k,l)2S1}. (7)

For each i 2 U1, if Wij > y|S1| for a unique j 2 U2, set
⇧̂(i) = j. Otherwise, declare failure. If ⇧̂ is not a bijection
from Vu

1 to Vu
2 , declare failure.

• Output: The estimated permutation ⇧̂.
In this algorithm, there are two threshold parameters x and

y. In the analysis of Theorem 1, we choose

x = (1� �x)mqs
2
a , (8)

where 1 � �x = �x

log 1
q

with constant �x � max{1, 3 logn
mqs2a

},
and

y = (1� �y)ps
2
u , (9)

where 1� �y = �y

log 1
p

with constant �y � 2.

Remark 1 (Complexity of Algorithm ATTRRICH). The time
complexity for computing Cij for all pairs (i, j) 2 Vu

1 ⇥Vu
2 is

O(n2
m) since there are n

2 pairs and for each pair, there are m

attributes to consider. The time complexity for computing Wij

for all pairs (i, j) 2 U1 ⇥ U2 is O(n3). This is because there
are at most n2 pairs (i, j) 2 U1 ⇥U2, and for each (i, j) pair,
computing Wij needs to scan through all pairs (k, l) 2 S1. A
necessary condition for the algorithm to execute Step 2 is that
there are no conflicting pairs in S1, which implies that |S1| 
n. Therefore, the time complexity of Algorithm ATTRRICH is
O(n2

m) if m = !(n), and O(n3) if m = O(n).

B. Algorithm ATTRSPARSE

In this subsection, we propose the second algorithm that
leads to the feasible region in Theorem 2. This algorithm is
designed for the attribute-information sparse regime, reflected
by the condition mqs

2
a = o(log n) in (3), hence named

ATTRSPARSE. In Step 2 of this algorithm, we consider two
different cases. In the case when the user-user connection is

dense, we perform a similar process as in Step 2 of Algo-
rithm ATTRRICH. In the case when the user-user connections
is sparse, we call a seeded alignment algorithm proposed
in [14], which is restated in Subsection III-C.
• Input: The graph pair (G1, G

0
2), three thresholds y, z and

⌘, an integer l, and the model parameters n and p.
• Step 1: Align through attribute neighbors. Similar to

Step 1 of Algorithm ATTRRICH, for each pair of users
i 2 Vu

1 and j 2 Vu
2 , we compute the quantity

Cij = |N a
1(i) \N a

2(j)|. (10)

Unlike Step 1 of Algorithm ATTRRICH, we create an anchor
set using a different threshold z. If Cij > z, add (i, j) into
S2. We refer to vertex pairs in the set S2 as anchors. If there
exist conflicting pairs in S2, i.e., two distinct pairs (i1, j1)
and (i2, j2) with i1 = i2 or j1 = j2, set S2 = ; and declare
failure.

• Step 2: Align through user-user edges.

– If np > n
1/7, we perform the similar process as in Step 2

of Algorithm ATTRRICH to align the non-anchor vertices.
Define

U3 , {i 2 Vu
1 : (i, j) 62 S2, 8j 2 Vu

2}

and
U4 , {j 2 Vu

2 : (i, j) 62 S2, 8i 2 Vu
1}.

For each unmatched pair i 2 U3 and j 2 U4, compute
Wij as defined in (7). For each i 2 U3, if Wij > y|S2| for
a unique j 2 U4, set ⇡̂(i) = j. Otherwise, declare failure.
If ⇡̂ is not a bijection from Vu

1 to Vu
2 , declare failure.

– If np  n
1/7, run Algorithm III-C with the induced

subgraphs on the user vertices in Vu
1 and Vu

2 , the seed
set I0 = S2, and parameters l and ⌘.

• Output: The estimated permutation ⇧̂.
In this algorithm, there are four parameters y, z, l and ⌘ that
we can choose. In the analysis of Theorem 2, we choose y to
be the same value as in (9),

z = (1 + ⌧)mqs
2
a, (11)

(cf. the same ⌧ as in Theorem 2),

l =

�
(6/7) log n

log(np)

⌫
, (12)

and
⌘ = 42l+2

n
�2/7

. (13)

Remark 2 (Complexity of Algorithm ATTRSPARSE). For the
same reason as in Algorithm ATTRRICH, the time complexity
of computing Cij for all pairs (i, j) 2 Vu

1 ⇥ Vu
2 is O(n2

m)
and that of computing Wij for all pairs (i, j) 2 U3 ⇥ U4 is
O(n3). The time complexity of Algorithm III-C is O(n37/7)
as given in [14], which may be further improved with better
data structures. Therefore, if np > n

1/7, the complexity
of Algorithm ATTRSPARSE is O(n2

m + n
3); otherwise, its

complexity is O(n2
m+ n

37/7).
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C. Seeded alignment in the sparse regime [14, Algorithm 3]
Except for the two graphs G1 and G

0
2, this algorithm takes

a seed set I0 as input. Recall that the seed set I0 consists of
vertex pairs (i, j) such that ⇧⇤(i) = j. The algorithm utilizes
this seed set to align the remaining vertices.
• Input: The graph pair (G1, G

0
2), the seed set I0, a thresh-

old ⌘, and an integer l.
• Align high-degree vertices. Let

J1 , {i 2 V(G1) : (i, j) 6= I0, 8j 2 V(G0
2)},

and

J2 , {j 2 V(G0
2) : (i, j) 6= I0, 8i 2 V(G1)}.

For each pair of unseeded vertices u 2 J1 and v 2 J2,
and for each pair of their neighbors i 2 N u

1 (u) \ {u} and
j 2 N u

2 (v) \ {v}, compute

�
u,v
i,j = min

x2V(G1),y2V(G0
2)

���{(k1, k2) 2 I0 :

k1 2 N u
G1\{u,x}(i, l), k2 2 N u

G0
2\{v,y}

(j, l)}
���,

where N u
G\S(i1, l) denotes the set of user vertices i2 such

that d(i1, i2)  l in the induced subgraph G with the set of
vertices S removed. Let

Zu,v =
X

i2Nu
1 (u)\{u}

X

j2Nu
2 (v)\{v}

1{�u,v
i,j �⌘|I0|}.

If Zu,v � log n/ log log n � 1, add (u, v) into set T . Add
all the vertex pairs from I0 to T . If there exist conflicting
pairs in T , i.e., two distinct pairs (i1, j1) and (i2, j2) with
i1 = i2 or j1 = j2, set T = ; and declare failure.

• Align low-degree vertices. Let

J3 , {i 2 V(G1) : (i, j) 6= T , 8j 2 V(G0
2)},

and

J4 , {j 2 V(G0
2) : (i, j) 6= T , 8i 2 V(G1)}.

For all pairs of unmatched vertices i1 2 J3 and i2 2 J4, if
i1 is adjacent to a user vertex j1 in G1 and i2 is adjacent
to a user vertex j2 in G

0
2 such that (j1, j2) 2 T , then set

⇧̂(i1) = i2.
• Finalize and output: For each vertex pair (i, j) 2 T , set
⇧̂(i) = j. If ⇧̂ is a bijection from V(G1) to V(G0

2), output
⇧̂, otherwise declare failure.

IV. DISCUSSION

In this section, we briefly summarize the comparison be-
tween the feasible region in Theorems 1 and 2 and the existing
results. A detailed comparison is referred to [13].

Specialization to the seeded graph alignment. Consider an
attributed Erdős–Rényi pair (G1, G

0
2) ⇠ G(n, p, su;m, q, sa)

with p = q and sa = su , s. Then these m attributes
can be viewed as m seeds and (G1, G

0
2) can be viewed as

a graph pair generated from the seeded Erdős–Rényi pair
model G(n + m,

m
m+n , p, s) with the edges between these

m vertices all removed. Let N , m + n and ↵ , m
m+n .

When specialized to the seeded graph alignment G(N,↵, p, s)
with p = o(1), s = ⇥(1) and N(1 � ↵) = !(1), the
feasible region in Theorems 1 and 2 strictly improves the
best known feasible region by polynomial-time algorithms
given in [9], [14] and [15], as shown in the blue area in
Fig. 3. We note, however, that there is also some region that is
feasible by the existing results but not feasible by the proposed
algorithms in this paper, as shown in the red area in Fig. 3.
Compared to the information-theoretic limits, there is still a
small gap between the union of all known feasible regions
by polynomial-time algorithms (shown in the red, blue, and
green areas in Fig. 3) and an inner bound on the information-
theoretic feasible region derived in [1] (shown as the area
above the solid green curve in Fig. 3).

Np

m = o(n) m = ⌦(n)
m = O(n1+✏0)

m = ⌦(n1+✏)

log N+!(1)

s2 ↵

sN1/2

16(2�s)2

Between and : ATTRSPARSE

Right of : [14]

Above : IT limit

Right of : ATTRRICH

Right of : [15]

Between two : [9]

N1/(R log log N)

s

(1+�) log N
s

Fig. 3: Comparison between the feasible region of Theorems 1 and 2 and the
feasible region of [9], [14] and [15]. On the top-left corner and bottom-right
corner, the two blue regions are feasible for our proposed algorithms but not
for any existing works. The red region is feasible for existing work [14], but
not for our proposed algorithms. The green region is the overlap of our feasible
region with the feasible region in the existing works. Constant ✏0 satisfies that
0 < ✏

0
< ✏ and ✏ � ✏

0 = ⇥(1). We note that the algorithm proposed in [9]
is designed for the usual Erdős–Rényi pair model with no seeds. Therefore,
it trivially induces a feasible region for the seeded alignment problem with
no constraint on ↵. We also point out that the feasible region in [9] involves
a constraint on s which is not reflected in the plot.

Specialization to the bipartite graph alignment. When p =
0, the attributed graph alignment problem specializes to the
bipartite graph alignment problem, where there is no user-user
edge and (G1, G2) are bipartite graphs. For this problem, the
information-theoretic limit is given by

mqs
2
a � log n+ !(1)

and can be achieved in polynomial time using the celebrated
Hungarian Algorithm [16]. When specialized to the bipartite
graph alignment problem, the proposed Algorithm ATTRRICH
provides an alternative polynomial time algorithm to the
Hungarian Algorithm when

mqs
2
a � (1 + ✏) log n,

with a slightly lower complexity when m = o(n).
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