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Abstract—Motivated by various data science applications in-
cluding de-anonymizing user identities in social networks, we
consider the graph alignment problem, where the goal is to
identify the vertex/user correspondence between two correlated
graphs. Existing work mostly recovers the correspondence by
exploiting the user-user connections. However, in many real-
world applications, additional information about the users, such
as user profiles, might be publicly available. In this paper, we
introduce the attributed graph alignment problem, where addi-
tional user information, referred to as attributes, is incorporated
to assist graph alignment. We establish sufficient and necessary
conditions for recovering vertex correspondence exactly, where
the conditions match for a wide range of practical regimes.
Our results recover existing tight information-theoretic limits for
models where only the user-user connections are available, and
further span the full spectrum between these models and models
where only attribute information is available.

I. INTRODUCTION

The graph alignment problem, also known as the graph
matching problem or the noisy graph isomorphism problem,
has received growing attention in recent years, brought into
prominence by applications in a wide range of areas [1, 2, 3].
For instance, in social network de-anonymization [4, 5], one
is given two graphs, each of which represents the user rela-
tionship in a social network (e.g., Twitter, Facebook, Flickr,
etc). One graph is anonymized and the other graph has user
identities as public information. Then the graph alignment
problem, whose goal is to find the best correspondence of
two graphs with respect to a certain criterion, can be used
to de-anonymize users in the anonymous graph by finding
the correspondence between them and the users with public
identities in the other graph.

The graph alignment problem has been studied under var-
ious random graph models, among which the most popular
one is the Erdős–Rényi graph pair model (see, e.g., [6, 7]).
In particular, two Erdős–Rényi graphs on the same vertex set,
G1 and G2, are generated in a way such that their edges are
correlated. Then G1 and an anonymous version of G2, denoted
as G

0
2, are made public, where G

0
2 is modeled as a vertex-

permuted G2 with an unknown permutation. Under this model,
typically the goal is to achieve the so-called exact alignment,
i.e., recovering the unknown permutation and thus revealing
the correspondence for all vertices exactly.

A fundamental question in the graph alignment problem
is: when is exact alignment possible? More specifically, what

are the conditions on graph statistics for achieving exact

alignment when given unbounded computational resources?

Such conditions, usually referred to as information-theoretic

limits, have been established for the Erdős–Rényi graph pair in
a line of work [6, 7, 8]. In the most recent study [8], Cullina
and Kiyavash established matching sufficient and necessary
conditions of exact alignment for a large range of parameters.

In many real-world applications, additional information
about the anonymized vertices might be available. For exam-
ple, Facebook has user profiles on their website about each
user’s age, birthplace, hobbies, etc. Such associated informa-
tion is referred to as (vertex) attributes [9], which, unlike user
identities, are often publicly available. Then a natural question
to ask is: Can the attribute information help recover the vertex

correspondence? If so, can we quantify the amount of benefit

brought by the attribute information? The value of attribute
information has been demonstrated in the work of aligning
Netflix and IMDb users by Narayanan and Shmatikov [10].
They successfully recovered some of the user identities in the
anonymized Netflix dataset based only on users’ ratings of
movies, without any information on the relationship among
users. In this paper, we incorporate attribute information to
generalize the graph alignment problem. We call this problem
the attributed graph alignment problem.

To study attributed graph alignment, we extend the current
Erdős–Rényi graph pair by adding a set of vertices publicly
labeled by attributes. We refer to this set of vertices as attribute

vertices and assume they are aligned between the graph pair.
For distinction, we refer to the original set of vertices in the
Erdős–Rényi graph pair as user vertices. Edges between user
vertices and attribute vertices represent their relationship, and
there are no edges between attribute vertices. Similar to the
Erdős–Rényi graph pair, user-attributed edges in G1 and G2

are also correlated. Then a random permutation is applied on
the user vertices of G2 to create the anoynimized graph G

0
2.

This new model is referred to as attributed Erdős–Rényi graph

pair. The goal of attributed graph alignment is to recover the
unknown permutation from G1 and G

0
2.

In this paper, we focus on characterizing the information-
theoretic limits for graph alignment under the attributed
Erdős–Rényi graph pair. We establish sufficient and necessary
conditions for achieving exact alignment, where the conditions
match for regimes that are typical and interesting in practice.
These achievability and converse results allow us to better
understand how the attribute information can be integrated
with the structural information of the user relationship net-
work, and then to quantify the benefit brought by the attribute
information. Our results span the full spectrum between the
traditional Erdős–Rényi pair model where only the user rela-
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Figure 1: Example of attributed Erdős–Rényi graph pair: Graph G1 and G2
are generated on the same set of vertices. Anonymized graph G

0
2 is obtained

through applying ⇧⇤ = (1)(2, 3) only on Va of G2 (permutation ⇧⇤ is
written in cycle notation).

tionship network is available and models where only attribute
information is available [11, 12], unifying existing results in
each of these settings.

We comment that the proposed attributed alignment problem
can also be viewed as a graph alignment problem with
part of vertices correctly pre-aligned, known as the seeded

graph alignment problem. Efficient algorithms and achievable
regions for seeded graph alignment have been studied in
[5, 13, 14, 15]. However, the model assumptions in these
existing work are typically not directly comparable with our
model assumptions.

II. MODEL

In this section, we describe the attributed Erdős–Rényi
graph pair model. We propose and formally define the at-
tributed graph alignment problem under this model. An il-
lustration of the model is given in Figure 1.

User vertices and attribute vertices. We first generate two
graphs, G1 and G2, on the same vertex set V . The vertex set
V consists of two disjoint sets of vertices, the user vertex set

Vu and the attribute vertex set Va, i.e., V = Vu [ Va. Assume
that the user vertex set Vu consists of n vertices, labeled as
[n] , {1, 2, 3, ..., n}. Assume that the attribute vertex set Va

consists of m vertices, and m scales as a function of n.
Correlated edges. To describe the probabilistic model for

edges in G1 and G2, we first consider the set of user-user
vertex pairs Eu , Vu ⇥ Vu and the set of user-attribute vertex
pairs Ea , Vu ⇥ Va. Then for each vertex pair e 2 Eu [ Ea,
we write G1(e) = 1 (resp. G2(e) = 1) if there is an edge
connecting the two vertices in the pair in G1 (resp. G2), and
write G1(e) = 0 (resp. G2(e) = 0) otherwise. Since we often
consider the same vertex pair in both G1 and G2, we write
(G1, G2)(e) as a shortened form of (G1(e), G2(e)).

The edges of G1 and G2 are then correlatedly generated
in the following way. For each user-user vertex pair e 2 Eu,
(G1, G2)(e) follows the joint distribution specified by

(G1, G2)(e) =

8
>>><

>>>:

(1, 1) w.p. p11,

(1, 0) w.p. p10,

(0, 1) w.p. p01,

(0, 0) w.p. p00,

(1)

where p11, p10, p01, p00 are probabilities that sum up to 1. For

each user-attribute vertex pair e 2 Ea, (G1, G2)(e) follows the
joint probability distribution specified by

(G1, G2)(e) =

8
>>><

>>>:

(1, 1) w.p. q11,

(1, 0) w.p. q10,

(0, 1) w.p. q01,

(0, 0) w.p. q00,

(2)

where q11, q10, q01, q00 are probabilities that sum up to 1.
The correlation between G1(e) and G2(e) is measured by the
correlation coefficient defined as

⇢(e) , Cov(G1(e), G2(e))p
Var[G1(e)]

p
Var[G2(e)]

,

where Cov(G1(e), G2(e)) is the covariance between G1(e)
and G2(e) and Var[G1(e)] and Var[G2(e)] are the variances.
We assume that G1(e) and G2(e) are positively correlated,
i,e., ⇢(e) > 0 for every vertex pair e. Across different vertex
pair e’s, the (G1, G2)(e)’s are independent. Finally, recall that
there are no edges between attribute vertices in our model.

For compactness of notation, we represent the joint distri-
butions in (1) and (2) in the following matrix form:

p =

✓
p11 p10

p01 p00

◆
and q =

✓
q11 q10

q01 q00

◆
.

We refer to the graph pair (G1, G2) as an attributed Erdős–
Rényi pair G(n,p,m, q). Note that this model is equivalent to
the subsampling model in the literature [6].

Anonymization and exact alignment. In the attributed graph
alignment problem, we are given G1 and an anonymized
version of G2, denoted as G

0
2. The anonymized graph G

0
2 is

generated by applying a random permutation ⇧⇤ on the user
vertex set of G2, where the permutation ⇧⇤ is unknown. More
explicitly, each user vertex i in G2 is re-labeled as ⇧⇤(i) in G

0
2.

The permutation ⇧⇤ is chosen uniformly at random from Sn,
where Sn is the set of all permutations on [n]. Since G1 and
G

0
2 are observable, we refer to (G1, G

0
2) as the observable pair

generated from the attributed Erdős–Rényi pair G(n,p,m, q).
Then the graph alignment problem, i.e., the problem of

recovering the identities/original labels of user vertices in the
anonymized graph G

0
2, can be formulated as a problem of

estimating the underlying permutation ⇧⇤. The goal of graph
alignment is to design an estimator ⇡̂(G1, G

0
2) as a function of

G1 and G
0
2 to best estimate ⇧⇤. We say ⇡̂(G1, G

0
2) achieves

exact alignment if ⇡̂(G1, G
0
2) = ⇧⇤. The probability of error

for exact alignment is defined as P(⇡̂(G1, G
0
2) 6= ⇧⇤). We say

exact alignment is achievable with high probability (w.h.p.) if
there exists ⇡̂ such that limn!1 P(⇡̂(G1, G

0
2) 6= ⇧⇤) = 0.

Reminder of the Landau notation.
Notation Definition

f(n) = !(g(n)) lim
n!1

|f(n)|
g(n) = 1

f(n) = o(g(n)) lim
n!1

|f(n)|
g(n) = 0

f(n) = O(g(n)) lim sup
n!1

|f(n)|
g(n) < 1

f(n) = ⌦(g(n)) lim inf
n!1

|f(n)|
g(n) > 0

f(n) = ⇥(g(n)) f(n) = O(g(n)) and f(n) = ⌦(g(n))

1830Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 21,2024 at 19:33:03 UTC from IEEE Xplore.  Restrictions apply. 



III. MAIN RESULT

Now we are ready to state our results. To better illustrate the
benefit of attribute information in graph alignment, we present
in Theorem 1 a simplified version of our achievability result
by adding mild assumptions on user-user edges motivated
by practical applications. This simplified result also makes
it easier to compare the achievability result to the converse
result in Theorem 2, which will be illustrated in Figure 2. Note
that these additional assumptions are not needed for technical
proofs. The more general achievability results without these
assumptions are presented in Lemmas 2 and 3 in Section IV.

In a typical social network, the degree of a vertex is
much smaller than the total number of users. Based on this
observation, we assume that the marginal probabilities of an
edge in both G1 and G2 are not going to 1, i.e.,

1� (p11 + p10) = ⇥(1), 1� (p11 + p01) = ⇥(1). (3)

Moreover, two social networks on the same set of users are
typically highly correlated. Based on this, we assume that the
correlation coefficient of user-user edges, denoted as ⇢u, is not
vanishing, i.e.,

⇢u = ⇥(1). (4)

Theorem 1 (Achievability). Consider the attributed Erdős–

Rényi pair G(n,p;m, q) under conditions (3) and (4). If

np11 +m a � log n ! 1, (5)

where  a = (
p
q11q00 � p

q10q01)2, then there exists an

algorithm that achieves exact alignment w.h.p.
1

Theorem 2 (Converse). Consider the attributed Erdős–Rényi

pair G(n,p,m, q). If

np11 +mq11 � log n ! �1, (6)

then no algorithm guarantees exact alignment w.h.p.

Now to better compare the achievability and the converse,
we further assume

1� (q11 + q10) = ⇥(1), 1� (q11 + q01) = ⇥(1),

⇢a = ⇥(1),
(7)

where ⇢a is the correlation coefficient of user-attribute edges.

Corollary 1. Consider the attributed Erdős–Rényi pair

G(n,p;m, q) under conditions (3), (4), and (7). If m =
⌦((log n)3) and

np11 +mq11 � log n ! 1, (8)

then there exists an algorithm that achieves exact alignment

w.h.p. If m = o((log n)3) and

np11 +mq11 �O(mq
3/2
11 )� log n ! 1, (9)

then there exists an algorithm that achieves exact alignment

w.h.p.

1Here and throughout the paper, log(·) = loge(·).

logn
n

q11

p11

3
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2

4

logn
m

(a) m = ⌦((log n)3)

logn
n

q11

p11

24

1
3

logn
m

(b) m = o((logn)3)

Figure 2: Feasible region ( 1 , 2 and 3 ) and infeasible region ( 4 ). Those re-
gions are specified by 1 : p11 � logn+!(1)

n ; 2 : p11+ m
n q11 � logn+!(1)

n

and q11 = O(m� 2
3 ); 3 : p11 + m

n  a � logn+!(1)
n and q11 = !(m� 2

3 );
4 : p11+ m

n q11  logn�!(1)
n . In (b), the gap between 3 and 4 is ⇥(q

3/2
11 )

that comes from the difference between  a and q11.

Figure 2 illustrates the achievability conditions (8) and (9).
Figure 2a shows the tightness of condition (8) when m =
⌦((log n)3). Figure 2b demonstrates the difference between
the achievability condition (9) and the converse condition (6)
when m = o((log n)3).

Note that in the traditional Erdős–Rényi pair without at-
tributes, the tight achievability condition for exact alignment
is np11 � log n ! 1 [8, 13]. Now in our attributed Erdős–
Rényi pair, the additional attribute information allows us to
relax the achievability condition to (8) or (9). We illustrate
how this expands the achievability region in Figure 2.

When setting q00 = 1, i.e., specializing the attributed
Erdős–Rényi pair to the traditional Erdős–Rényi pair, our
achievability result in Theorem 1 (and its more general version
in Lemmas 2 and 3) and converse result in Theorem 2 recover
the state-of-the-art information-theoretic limits in [6, 7, 8].
When setting p00 = 1, i.e., removing the user relationship
network, our results improve the information-theoretic limit
in [16] for the graph alignment problem on bipartite random
graphs.

IV. GENERAL ACHIEVABILITY

In this section, we present the general achievability re-
sults. We obtain exact alignment by applying the maximum a

posteriori probability (MAP) estimator, which minimizes the
probability of error. Lemma 1 states that the MAP estimator
simplifies to a minimum weighted distance estimator. Due
to space limitations, we present the achievability in Lem-
mas 2 and 3 without proofs (see [17] for proofs). Key proof
techniques include tools from enumerative combinatorics, such
as generating functions, which are inspired by [7, 8].

Lemma 1 (MAP estimator). Let (G1, G
0
2) be an observ-

able pair generated from the attributed Erdős–Rényi pair

G(n,p;m, q). The MAP estimator of the permutation ⇧⇤

based on (G1, G
0
2) simplifies to

⇡̂MAP(G1, G
0
2)

= argmin
⇡2Sn

{w1�
u(G1,⇡

�1(G0
2)) + w2�

a(G1,⇡
�1(G0

2))},
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where w1 = log
⇣

p11p00

p10p01

⌘
, w2 = log

⇣
q11q00
q10q01

⌘
, and

�u(G1,⇡
�1(G0

2)) =
X

(i,j)2Eu

1{G1((i, j)) 6= G
0
2((⇡(i),⇡(j)))},

�a(G1,⇡
�1(G0

2)) =
X

(i,v)2Ea

1{G1((i, v)) 6= G
0
2((⇡(i), v))}.

Lemma 2 (General achievability). Consider the attributed

Erdős–Rényi pair G(n,p;m, q). If

n u

2 +m a � log n = !(1), (10)

where  u = (
p
p11p00 � p

p10p01)2 and  a = (
p
q11q00 �p

q10q01)2, then the MAP estimator achieves exact alignment

w.h.p.

Lemma 3 (Achievability in sparse region). Consider the

attributed Erdős–Rényi pair G(n,p;m, q). If

p11 = O

⇣
logn
n

⌘
, (11)

p10 + p01 = O

⇣
1

logn

⌘
, (12)

p10p01

p11p00
= O

⇣
1

(logn)3

⌘
, (13)

np11 +m a � log n = !(1), (14)

then the MAP estimator achieves exact alignment w.h.p.

Proof of Theorem 1. We discuss two regimes p11 = !( logn
n )

and p11 = O( logn
n ). First suppose p11 = !( logn

n ). When
(3) is satisfied, we have  u = ⇥(p11) [17, Fact 4]. Then
n u

2 + m a � log n = !(log n) + m a � log n = !(1).
By Lemma 2, exact alignment is achievable. Now suppose
p11 = O( logn

n ). When (4) is satisfied, we have p10 = O(p11)
and p01 = O(p11) [17, Fact 4]. It follows that (11) (12) (13) in
Lemma 3 are all satisfied. Now if np11+m a� log n = !(1),
then exact alignment is achievable by Lemma 3.

V. PROOF OF CONVERSE

In this section, we give a detailed proof for Theorem 2. Let
(G1, G2) be an attributed Erdős–Rényi pair G(n,p;m, q). In
this proof, we will focus on the intersection graph of G1 and
G2, denoted as G1 ^G2, which is the graph on the vertex set
V = Vu [ Va whose edge set is the intersection of the edge
sets of G1 and G2. We say a permutation ⇡ on the vertex set
V is an automorphism of G1 ^ G2 if a vertex pair (i, j) is
in the edge set of G1 ^ G2 if and only if (⇡(i),⇡(j)) is in
the edge set of G1 ^ G2, i.e., if ⇡ is edge-preserving. Note
that an identity permutation is always an automorphism. Let
Aut(G1^G2) denote the set of automorphisms of G1^G2. By
Lemma 4 below, exact alignment cannot be achieved w.h.p. if
Aut(G1 ^ G2) contains permutations other than the identity
permutation. This allows us to establish conditions for not
achieving exact alignment w.h.p. by analyzing automorphisms
of G1 ^G2.

Lemma 4. Let (G1, G2) be an attributed Erdős–Rényi pair

G(n,p;m, q). Given |Aut(G1^G2)|, the probability that MAP

estimator succeeds is at most
1

|Aut(G1^G2)| .

In the proof of Theorem 2, we will further focus on the
automorphisms given by swapping two user vertices. To this
end, we first define the following equivalence relation between
a pair of user vertices. We say two user vertices i and j

(i 6= j) are indistinguishable in G1 ^ G2, denoted as i ⌘ j,
if (G1 ^ G2)((i, v)) = (G1 ^ G2)((j, v)) for all v 2 V . It is
not hard to see that swapping two indistinguishable vertices
is an automorphism of G1 ^ G2, and thus |Aut(G1 ^ G2) \
{identity permutation}| � |{indistinguishable vertex pairs}|.
Therefore, in the proof below, we show that the number of
such indistinguishable vertex pairs is positive with a large
probability, which suffices for proving Theorem 2.

Proof of Theorem 2. Let G1 and G2 be an attributed Erdős–
Rényi pair G(n,p;m, q) and let G = G1 ^G2. Let X denote
the number of indistinguishable user vertex pairs in G, i.e.,

X =
X

i<j : i,j2Vu

1{i ⌘ j}.

We will show that P(X = 0) ! 0 as n ! 1 if the condition
(6) in Theorem 2 is satisfied.

We start by upper-bounding P(X = 0) using Chebyshev’s
inequality

P(X = 0)  Var(X)

E[X]2
=

E[X2]� E[X]2

E[X]2
. (15)

For the first moment term E[X], we have

E[X] =
X

i<j

P(i ⌘ j) =

✓
n

2

◆
P(i ⌘ j). (16)

For the second moment term E[X2], we expand the sum as

E[X2] = E

"
X

i<j

1{i ⌘ j} ·
X

k<l

1{k ⌘ l}
#

= E

"
X

i<j

1{i ⌘ j}+
X

i,j,k,l : i<j,k<l
i,j,k,l are distinct

1{i ⌘ j} · 1{k ⌘ l}

+
X

i,j,k,l : i<j,k<l
{i, j} and {k, l} share one element

1{i ⌘ j ⌘ k ⌘ l}
#

=

✓
n

2

◆
P(i ⌘ j) +

✓
n

4

◆✓
4

2

◆
P(i ⌘ j and k ⌘ l)

+ 6

✓
n

3

◆
P(i ⌘ j ⌘ k), (17)

where i, j, k, l are distinct in (17). With (16) and (17), the
upper bound given by Chebyshev’s inequality in (15) can be
written as
Var(X)

E[X]2
=

2

n(n� 1)P(i ⌘ j)
+

4(n� 2)

n(n� 1)

P(i ⌘ j ⌘ k)

P(i ⌘ j)2

+
(n� 2)(n� 3)

n(n� 1)

P(i ⌘ j and k ⌘ l)

P(i ⌘ j)2
� 1. (18)

To compute P(i ⌘ j), we look into the event {i ⌘ j}
which is the intersection of A1 and A2, where A1 = {8v 2
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Vu \ {i, j}, G((i, v)) = G((j, v))}, and A2 = {8u 2
Va, G((i, u)) = G((j, u))}. Recall that in the intersection
graph G = G1 ^G2, the edge probability is p11 for user-user
pairs and q11 for user-attribute pairs. Therefore,

P(A1) =
n�2X

i=0

✓
n� 2

i

◆
p
2i
11(1� p11)

2(n�2�i)

=
�
p
2
11 + (1� p11)

2
�n�2

,

P(A2) =
mX

i=0

✓
m

i

◆
p
2i
11(1� p11)

2(m�i)

=
�
q
2
11 + (1� q11)

2
�m

.

Since A1 and A2 are independent, we have

P(i ⌘ j) = P(A1)P(A2)

=
�
p
2
11 + (1� p11)

2
�n�2 �

q
2
11 + (1� q11)

2
�m

=
�
1� 2p11 + 2p211

�n�2 �
1� 2q11 + 2q211

�m
. (19)

Similarly, to compute P(i ⌘ j ⌘ k), we look into the event
{i ⌘ j ⌘ k} which is the intersection of events B0, B1 and
B2, where B0 = {G((i, j)) = G((j, k)) = G((i, k))}, B1 =
{8v 2 Vu \ {i, j, k}, G((i, v)) = G((j, v)) = G((k, v))}, and
B2 = {8u 2 Va, G((i, u)) = G((j, u)) = G((k, u))}. Then,
the probabilities of those three events are

P(B0) = p
3
11 + (1� p11)

3
,

P(B1) =
�
p
3
11 + (1� p11)

3
�n�3

,

P(B2) =
�
q
3
11 + (1� q11)

3
�m

.

Since the events B0, B1 and B2 are independent, we have

P(i ⌘ j ⌘ k) = P(B0)P(B1)P(B2)

= (1� 3p11 + 3p211)
n�2(1� 3q11 + 3q211)

m
.

To compute P(i ⌘ j and k ⌘ l), we look into the event
{i ⌘ j and k ⌘ l} which is the intersection of C0, C1, C 0

1, C2

and C
0
2, where C0 = {G(i, k) = G(j, k) = G(i, l) = G(j, l)},

C1 = {8v 2 Vu \ {i, j, k, l}, G(i, v) = G(j, v)}, C 0
1 = {8v 2

Vu\{i, j, k, l}, G(k, v) = G(l, v)}, C2 = {8u 2 Va, G(i, u) =
G(j, u)} and C

0
2 = {8u 2 Va, G(k, u) = G(l, u)}. The

probabilities of those events are

P(C0) = p
6
11 + p

4
11(1� p11)

2 + p
2
11(1� p11)

4 + (1� p11)
6
,

P(C1) = P(C 0
1) = (p211 + (1� p11)

2)n�4
,

P(C2) = P(C 0
2) = (q211 + (1� q11)

2)m.

Since C0, C1, C 0
1, C2 and C

0
2 are independent, we have

P(i ⌘ j and k ⌘ l)

= P(C0)P(C1)P(C
0
1)P(C2)P(C

0
2)

= P(C0)(p
2
11 + (1� p11)

2)2n�8(q211 + (1� q11)
2)2m.

Now we are ready to analyze the terms in (18). For the last
two terms, note that (n�2)(n�3)

n(n�1) ! 1 and P(i⌘j and k⌘l)
P(i⌘j)2 ! 1

because p11 <
logn
n from the condition (6). Therefore, we

have (n�2)(n�3)
n(n�1)

P(i⌘j and k⌘l)
P(i⌘j)2 � 1 ! 0 as n ! 1. Then we

just need to bound the first two terms in (18). For the first
term 2

n(n�1)P(i⌘j) , plugging in the expression in (19) gives

� log
2

n(n� 1)P(i ⌘ j)

= 2 log n+ (n� 2) log (1� 2p11 + 2p211)

+m log (1� 2q11 + 2q211) +O(1)

� 2 log n� 2np11 � 2mq11 +O(1) (20)
= !(1). (21)

Here (20) follows from the inequality log (1� 2x+ 2x2) �
�2x for any x 2 [0, 1], which can be verified by showing
that function f1(x) = log (1� 2x+ 2x2) + 2x is monotone
increasing in [0,1] and thus f1(x) � f1(0) = 0. Equation (21)
follows from the condition (6) in Theorem 2. Therefore, the
first term in (18) 2

n(n�1)P(i⌘j) ! 0 as n ! 1.
Next, for the second term 4(n�2)

n(n�1)
P(i⌘j⌘k)
P(i⌘j)2 in (18), we have

� log

✓
4(n� 2)

n(n� 1)

P(i ⌘ j ⌘ k)

P(i ⌘ j)2

◆

= log n� (n� 2) log

✓
1� 3p11 + 3p211

(1� 2p11 + 2p211)
2

◆

�m log

✓
1� 3q11 + 3q211

(1� 2q11 + 2q211)
2

◆
+O(1)

� log n� np11 �mq11 +O(1) (22)
=!(1). (23)

Here (22) follows from the inequality log
⇣

1�3x+3x2

(1�2x+2x2)2

⌘
 x

for any x 2 [0, 1], which can be verified by showing that
the function f2(x) = log

⇣
1�3x+3x2

(1�2x+2x2)2

⌘
� x is monotone

decreasing in [0, 1] and thus f2(x)  f2(0) = 0. Equation
(23) follows from the condition (6) in Theorem 2. Hence, the
second term in (18) also converges to 0 as n ! 1, which
completes the proof for P(X = 0) ! 0 as n ! 1.

Now we derive an upper bound on the probability of exact
alignment under the MAP estimator, which is also an upper
bound for any estimator since MAP minimizes the probability
of error. Note that by Lemma 4, P(⇡MAP = ⇧⇤|X = x) 
1

x+1 , which is at most 1/2 when x � 1. Therefore,

P(⇡MAP = ⇧⇤) = P(⇡MAP = ⇧⇤|X = 0)P(X = 0)

+ P(⇡MAP = ⇧⇤|X � 1)P(X � 1)

 P(X = 0) +
1

2
P(X � 1)

=
1

2
+

1

2
P(X = 0),

which goes to 1/2 as n ! 1 and thus is bounded away from
1. This completes the proof that no algorithm can guarantee
exact alignment w.h.p.
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