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ABSTRACT: Short aromatic peptides have been observed to
assemble into diverse nanostructures, including fibers, tubes, and
vesicles, using computational techniques. However, the computa-
tional studies have employed top-down coarse-grained (CG)
models, which are unable to capture the assembly along with the
conformation, packing, and organization of the peptides within the
aggregates in a manner that is consistent with the all atom (AA)
representation of the molecules. In this study, a hybrid structure-
and force-based approach is adapted to develop a bottom-up CG
force field of triphenylalanine using reference data from AA
trajectories. This approach follows a flexible methodology to
approximate the chemical complexity of the underlying AA
representation with the chosen CG representation. Two CG
models are developed with distinct representations of the aromatic side chains. The first uses a simple single-bead representation,
while the second uses a three-bead representation to more accurately represent the planarity of the ring. The one-bead model yields
nanorods, while the three-bead model results in nanospheres. The role of different chemical groups in the assembly of
nanostructures is identified, along with the importance of steric effects on the packing of the peptides within assemblies.

■ INTRODUCTION
The assembly of aromatic peptides is pertinent to diverse
disciplines, including human health and electronics. In the
overarching area of human health, the assembly of aromatic
peptides has been attributed to the kinetics of formation and
thermodynamics of the stability of amyloid proteins.1,2 These
proteins have been found as deposits in several diseases
including Alzheimer’s Disease and Parkinson’s Disease.3

Another example is self-assembled nanostructures, such as
vesicles, encompassing aromatic peptides that have been used
to encapsulate, store, and deliver therapeutics to targeted
regions in the human body.4−7 In the broad area of electronics,
self-assembly of short aromatic peptides has been observed to
yield stable nanotubes8 which have been further utilized to
grow metallic and semiconducting nanowires. Another
example is the self-assembly of π-conjugated oligopeptides
with aromatic cores that have yielded nanostructures with
optoelectronic properties.9 The diverse functionalities of the
nanostructures encompassing aromatic peptides are a testa-
ment to their multifunctionality and are predicated upon the
packing and organization of the aromatic groups within the
self-assembled nanostructures. The latter is dependent upon
the conformation of the peptides within the assemblies. Given
the wide prevalence of self-assembled peptides with aromatic
residues in diverse disciplines of critical importance to society,

it becomes imperative to understand the packing and
organization of the molecules within assemblies encompassing
aromatic peptides. This study focuses on the self-assembly of
the small aromatic tripeptide Triphenylalanine (FFF) along
with their molecular conformation, packing, and organization
within the assembly. This peptide sequence is chosen due to its
simplicity.

Experimental studies10 on the assembly of charged-terminal-
capped FFF peptides (N-terminal with NH3

+, C-terminal with
COO−) reported the formation of plate-like structures with β-
sheet content. Another study11 using uncapped FFF peptides
reported diverse self-assembled structures including laminated
helical-ribbons, leaflike dendrimers, flowers, doughnuts, and
needles. The results seemed to indicate that the FFF molecules
adopt both parallel and antiparallel β-sheets, although the
former is surmised to be energetically preferred due to the π−π
stacking between the aromatic rings of molecules that have
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hydrogen bonding. Still another study reported nanofiber
aggregates encompassing uncapped FFF.12

Using different capping groups13 such as tert-butyloxycar-
bonyl (Boc) group for the N terminal and carboxylic acid for
the C terminal, the FFF derivative adopts a turnpike
conformation and self-assembles into crystalline nanospheres
which are thermally and chemical stable. FFF capped with two
fluorenyl functionalities self-assembled into stacked braids
which further formed corkscrew-like microstructures at higher
peptide concentrations.14 Microtubes were also observed
under different solvent conditions. Peptides capped with
fluorenyl and benzyl groups have formed spherulitic or sheaf-
like aggregates, as well as flower-like aggregates comprising
twisted ribbons with a common spherical origin.15 Hybridized
L- and D-phenylalanine peptides have produced γ-turn
oligomers with high thermal stability.16 FFF has also been
grafted to synthetic polymers to induce the self-assembly of
fiber networks to form bioinspired hydrogels.17 However, due
to constraints in resolution, experimental approaches are
unable to provide insight into the mechanisms and processes
underlying the self-assembly of FFF. This difficulty can be
addressed via the adoption of suitable computational
approaches.

All atom (AA) Molecular Dynamics (MD) simulations10

have been used to investigate the assemblies formed by FFF
peptides. Due to the computational cost of running AA MD
simulations, 8 FFF peptides were simulated using the
generalized Born with simple smoothing (GBSW) implicit
solvent model. FFF was observed to assemble into open and
closed networks. Also, the two-stranded sheets always had
antiparallel organization. However, the three-stranded sheets
had both parallel and antiparallel organization. Whereas AA
MD simulations provide insight into the detailed dynamics of
the molecules while accurately representing the chemistry of
the system, they are computationally expensive. Beginning
from a random dispersion of molecules in solution, their self-
assembly spans multiple length and time scales. Hence, the
process of self-assembly is inherently multiscale. The extended
dynamics underlying the self-assembly process can be captured
using reduced models, such as coarse-grained (CG)
representations of the molecules.18−23 To that end, another
study24 adopted the CG explicit solvent Martini model to
resolve the mechanisms underlying the self-assembly of FFF.
The study reported the spontaneous formation of solid core
nanospheres and nanorods within which the peptides were
predominantly antiparallel to each other. This enabled the
aggregates encompassing FFF to form β-sheet-like structures.
The study used a top-down CG model20,25 which successfully
resolved the morphology of the intermediate aggregates and
equilibrium nanostructures resulting from the self-assembly of
FFF peptides. However, the study did not elucidate the
conformation, packing, or organization of these molecules
within the aggregates or nanostructures.

Bottom-up coarse-grained models are required to capture
the conformation, packing, and organization of peptides within
aggregates.26 These CG models are parametrized with data
derived from AA MD simulations. This approach emphasizes
the influence of the local structure and forces that govern the
conformation of individual peptides, as observed in the AA
reference. Previous studies have employed various techniques
to develop bottom-up CG models.26−31

Nonbonded potentials play an especially important role in
CG models, where the strength of the solute interactions will

largely determine the association and packing of many solute
molecules. All CG potentials attempt to reproduce the effective
potential energy surface of the reference system, usually
represented as a potential of mean force (PMF).28 Villa and
colleagues present models in which nonbonded potentials are
derived by estimating the PMF from simulations of a pair of
solute molecules whose pair distance is constrained.30,31 In the
model with explicit solvent effects,31 multibody effects are
eliminated from CG pair potentials by iteratively targeting the
AA PMF. Carmichael and Shell apply relative entropy
minimization, which aims to minimize the difference between
the configurational ensembles of modeled and reference
systems.32 Ozgur and Sayar parameterize a reduced set of
nonbonded interactions with functional forms designed to
directly reproduce the secondary structures observed in
relevant experiments.33

This study adapts structure- and force-based methods to
parameterize two CG models to approximate the physics of an
underlying AA model. This hybrid approach has been
previously implemented to study systems with multiple
amphiphilic peptides in aqueous solution.20,34 A structure-
based method, i.e., the Iterative Boltzmann Inversion (IBI)
technique, is used to sample the bonded interactions in the
peptide. This method samples the bonded distributions in the
AA MD trajectories to derive the CG potentials. IBI ensures
that the structure of the individual peptides is preserved in the
CG simulations. However, it has been shown that IBI does not
work well for nonbonded interactions, namely, interpeptide
interactions. IBI generates multiwell potentials that are
unsuitable for the transferability of the CG force field to
other peptide concentrations. Hence, force-matching (FM),
i.e., a force-based method, is employed to derive the
nonbonded potentials. FM generates single-well potentials
that can be transferred within a limited peptide concentration
range. Finally, the interactions between the peptides and water
are derived by IBI. This ensures that the structure of the
peptide−water interface is preserved in the CG simulations.
This hybrid approach has been adapted to capture the
solvation, structure, and self-assembly of lipid-like aliphatic
peptides20 and amphiphilic helical peptoids18 along with their
conformation, packing, and organization within the aggregates.

In this study, the bottom-up hybrid approach is used to
investigate the self-assembly of FFF along with the
conformation, packing, and organization of the molecules
within the aggregates. To that end, two CG mapping schemes
are employed, which yield two CG models. The first scheme
uses one bead to represent the aromatic ring, whereas the
second model uses three beads. The rationale underlying the 3-
bead model is to resolve the planarity and ‘2-Dimensional’
excluded areas characteristic of aromatic rings. Each model
yields a distinct self-assembled nanostructure, which agrees
with experimental results. This difference is observed despite
the fact that the models share both their underlying AA model
and the CG model procedure by which salient AA features are
extracted. This highlights the influence of molecular
representation in bottom-up CG models. The 1-bead
representation of the aromatic ring yields a solid core nanorod
with a “layercake’’ arrangement. Within each layer, interactions
between N-terminal and C-terminal beads suggest that the
charged groups that they represent are important to early
aggregation. The final aggregate demonstrates predominant
interactions between the amide groups, possibly arising due to
hydrogen bonding. In contrast, the 3-bead representation of
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the aromatic ring yields a solid core nanosphere with the
aromatic rings tightly packed inside the sphere. In this model,
the side chains drive the formation of micelles which shield the
hydrophobic side chains from the aqueous solvent. Over time,
those micelles coalesce into larger spherical aggregates with
amide interactions slowly forming at the surface.

■ METHODS
Mapping Schemes. Two CG schemes for the zwitterionic

triphenylalanine (PHE) peptide (FFF) sequence are used. The
CG mapping schemes are summarized in Figure 1. In the first

CG scheme (AR1), five bead types are used: backbone carbon;
amide group; N-terminal; C-terminal; and aromatic side chain.
Each peptide molecule in the AR1 model comprises ten beads:
three backbone, two amide groups, three side chains, one for
C-terminal and one for N-terminal. In the second CG scheme
(AR3), each side chain is represented by three beads. Hence,
each peptide molecule in the AR3 model has 16 beads.

The mass of each CG bead is equivalent to the sum of the
masses of its constituent atoms. Also, the center of mass of
each CG bead is equivalent to the center of mass of its
constituent atoms. Water is represented as a single bead
(Figure 1). No CG bead carries an explicit charge. Since the
peptide sequence in this study has a zero net charge,
counterions are not required to maintain charge neutrality of
the system.

Codes and simulation input files developed to run
simulations, develop CG potentials, and analyze the results

are available in a Github repository.35 All molecular visual-
izations are prepared using VMD.36

All Atom Simulations. A set of reference AA MD
simulations are performed at several peptide concentrations
(see Supporting Information (SI) Table SI.1) in aqueous
solution to enable sampling of equilibrium configurations for
the development of the CG potentials and its validation. The
AA MD simulations are run using the AMBER99 force field37

which is chosen for its accurate resolution of peptide
conformations37 and solvation in water. Water is explicitly
modeled using the three-point SPC/E model.38 Prior to
sampling MD trajectories (using production simulations),
energy minimization, and equilibration simulations are
performed. The production MD simulations sample the NPT
ensemble. A cubic box with a 4 nm edge length and periodic
boundaries is used except where noted. For the initial
configuration in each system, the peptide and water molecules
are randomly distributed in the simulation box. The temper-
ature is set to 300 K via the Nose−Hoover thermostat. The
system pressure is set to 1.0 bar via the Parrinello−Rahman
barostat. The Lennard−Jones cutoff is set to 1.2 nm with long-
range dispersion correction for energy and pressure applied.
The particle mesh Ewald (PME) method39 is used to calculate
electrostatics with a cutoff of 1.2 nm. All bonds are restrained
with the LINCS40 algorithm. The MD calculations are
performed using a leapfrog integrator and a time step of 2 fs
via the MD simulation package GROMACS 2018.41−44

Coarse-Grained Potential Development. The CG
beads interact with each other via CG bonded and nonbonded
potentials. The bonded potentials capture the interactions
associated with bonds, angles, and proper dihedrals. The
nonbonded potentials resolve the interpeptide, peptide−water,
and water−water interactions.

Boltzmann Inversion. Boltzmann inversion (BI) is a
popular technique for deriving a potential energy function
from a corresponding structural feature of a reference system.
To provide such a reference, a pairwise radial distribution
function (RDF) of a target degree of freedom (DOF) is
derived by mapping a well-equilibrated AA trajectory into its
CG representation and sampling the pairwise distances. The
resulting reference distributions are inverted by BI using eqs
1−427,30,31 to obtain tabulated CG potentials U for bonds d,
angles θ, dihedrals φ, and interparticle distances r, respectively.
The potentials are state dependent and so depend on the
temperature, here measured in Kelvin and scaled by the
Boltzmann constant kB.
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B= (4)

Iterative Boltzmann Inversion. Iterative Boltzmann
Inversion (IBI) is a corrective scheme in which an input
potential is applied to a simulation from which a sample of
structural measures is calculated. The difference between the
simulated structural measures and the reference is calculated,
and the input potential is recalculated as shown in eq 5. It has

Figure 1. CG mapping schemes for the two models of
triphenylalanine. Schemes depict AA molecules (solid lines), with
transparent CG beads overlaid. Terminal and amide group beads are
identical in the two schemes. (a) AR1 peptides comprise 10 beads of
5 types. Water is a single bead. (b) AR3 peptides comprise 16 beads
of 7 types. Water is the same as in AR1.
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been shown that successive iterations of IBI are capable of
efficiently correcting BI potentials27 to better approximate a
target structural measure, for example, an RDF.

V V k T
P T

T
( ) ( ) ln

( , )

P ( , )i i
i

ref1 B= ++
i
k
jjjjj

y
{
zzzzz (5)

Force Matching. Force matching (FM) is another scheme
used to extract CG potential functions from AA MD reference
trajectories.28 Rather than targeting a specific structure, FM
projects the multibody AA forces onto the CG-mapped
representation.45 Differences in the CG force relative to the
net AA force are minimized using least-squares, as shown in eq
6, resulting in a system of linear equations. With a suitable
number of frames from an AA reference trajectory, these
equations are overdetermined and can be solved to
approximate the potential of mean force (PMF). Typically,
several blocks of frames of trajectories are sampled, with their
PMFs solved and averaged to produce the final potential
function.

F F
m

M

n

N

mn
ref

mn
CG2 2= | |

(6)

In this study, an extension to the FM technique in which all
bonded and nonbonded intrapeptide interactions are excluded
from the calculation (that is, FM with exclusions)46 is used.
The FM with exclusions method samples only the interpeptide
interactions. Models using this technique have been capable of
recovering the nonbonded pairwise RDFs of reference AA
systems.20

Sampling Reference AA Trajectory. The Versatile
Object-oriented Toolkit for Coarse-graining Applications
(VOTCA)47 version 1.6 contains implementations of BI, IBI,
and FM. The VOTCA package is used for the development of
the CG potentials, mapping to CG representation, and RDF
calculations.

For BI, coordinates from a sample of 250,000 frames of AA
MD simulation of a single peptide in water is used to produce
smooth target RDFs. IBI is applied successively to correct the
resulting potentials.

The FM method uses forces calculated from a sample of
50,000 frames of AA MD simulation for 25 peptides solvated
in aqueous solution in a cubic simulation box of length 4 nm.
In practice, FM calculations are limited by the number of AA
reference frames that can be held in memory for computation
of the forces. Therefore, several blocks of FM are performed
with 1000 frames per block. The VOTCA implementation of
FM uses cubic splines to fit force data across all blocks. The
number of splines used is a function of the distance over which
FM is performed and the grid spacing in that range. The range
and grid spacing are set such that an average of 14 splines per
interaction are used.

Coarse-Grained Simulations. A frame from the equili-
brated AA reference trajectory is mapped to its corresponding
CG representation to provide an initial configuration for the
CG simulation. The CG simulations are run at constant
volume, with a box length of approximately 4 nm set to match
those from the “equilibrated” AA system. Tabulated potentials
presented in the Results and Discussion section are used for
the CG simulations. The potential energy cutoff is set to 1.2
nm. This is consistent with the minimum image convention in
which pairwise interactions are truncated to prevent a particle

from interacting with its own periodic image.48 The MD
calculations are performed using a leapfrog stochastic dynamics
integrator with a time step of 1 fs via the MD package
GROMACS 2018.41−44 Temperature is set to 300 K via the
stochastic integrator with an inverse friction coefficient of 1 ps.

Backmapping and Backmapped-Atomistic Simula-
tions. The method presented by Wassenaar et al.49 has been
adapted to project AA coordinates onto CG coordinates,
creating a backmapped atomistic configuration. The back-
mapped configuration is energy minimized excluding non-
bonded interactions and then energy minimized again with no
exclusions. Four consecutive, short, position-restrained NVT
simulations are run in which the time step is set to 0.2, 0.5, 1,
and 2 fs, respectively. A final, short MD simulation results in a
stable backmapped AA configuration. Following these steps,
the system is simulated for 10 million iterations using a time
step of 2 fs and the NPT ensemble. Root mean square
deviation (RMSD) of all peptide atoms is measured with
respect to the initial relaxed frame of the simulation.

The final CG configurations for both models for the 1, 8,
and 32 peptide systems are backmapped. After the energy
minimization routine, each backmapped configuration is
simulated using the same parameters as those corresponding
to the AA reference. The RMSD of all peptide atoms in the
simulated trajectory is measured relative to the initial
backmapped configuration. The AA reference trajectories are
sampled from 300 to 320 ns of the production simulation in
the respective systems.

■ RESULTS AND DISCUSSION
Water−Water Potentials. The CG water−water poten-

tials are derived from AA trajectories using the AA water−
water RDF. The AA trajectories are obtained from an AA MD
simulation run for 200 ns using a time step of 2 fs and sampled
at intervals of 2 ps (yielding 100,000 frames). The water−
water RDF is calculated using the AA trajectory and inverted
using BI to yield an initial estimate of the CG water−water
potential.

A CG MD simulation of a pure water system is run for 200
ps using a time step of 2 fs and sampled at 200 fs intervals.
Details of the CG MD simulations are provided in Methods.
The first 20 samples of the CG MD trajectory are discarded,
and the remaining samples are used to calculate the CG RDF.
The CG water−water RDF is compared to the AA water−
water RDF, and IBI is used to refine the CG water−water
potential. After 299 iterations of IBI, the CG RDF matches the
reference AA RDF, thereby yielding the final CG water−water
potential.

The potential derived in this manner reproduces the water−
water RDF in box-of-water simulations as well as when a single
peptide solute is introduced (Figure S2 and Figure S9). The
CG water−water potential is derived by only using interactions
between water molecules and is therefore transferable over
some suitably low range of peptide concentrations.20

Furthermore, it is suitable for CG models that use the same
coarse-graining scheme for water as the two models in this
study. Conversely, this potential may not be suitable for higher
solute concentrations or systems that have a significant impact
on the local packing of water.

Initial Bonded Potentials. The initial potentials for bonds
and angles are generated via BI. An AA MD simulation of a
single peptide solvated in water is run for 500 ns using a time
step of 2 fs and is sampled at a rate of 2 ps (yielding 250,000
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frames). The frames are used to calculate the CG-mapped
RDFs corresponding to the bonded interactions for each CG
model. The BI method is used to invert these RDFs and
provide an initial set of potentials to maintain the rudimentary
intrapeptide structure of a single solvated peptide in the CG
MD simulation.

These initial BI potentials, derived from a single peptide in
water, exclude information about interpeptide interactions.
Since one of the goals of the study is to examine the self-
assembly of peptides in aqueous solution, the simulations of
interest will have multiple peptides and water molecules and
require intermolecular nonbonded potentials. These non-
bonded potentials will affect the conformation of a single
peptide in solution, causing a change in the bonded parameter
distributions. Therefore, for aggregation studies, the BI
potentials must be refined in the presence of interpeptide
interactions. This refinement is achieved using the iterative
process described in Refined Bonded Potentials below.

Peptide−Water Potentials. Peptide−water potentials are
derived by using IBI. The AA peptide−water RDFs are
calculated using a trajectory sampled from an AA simulation of
a single peptide solvated in an aqueous medium. The
simulation spans a duration of 500 ns and is sampled at a
rate of 2 ps (yielding 250 K frames). The AA trajectory is
inverted by BI to yield the initial potentials. IBI iterations are
based on CG simulations spanning 5 ns and sampled at 1 ps
intervals (5,000 frames). No dihedral potentials are applied in
the CG simulations.

An AA solvation RDF derived from a single peptide in water
is set as the IBI target. The IBI potentials implicitly depend on
the sampled peptide structure, which leads to a somewhat slow
convergence of iterated CG RDFs. The peptide−water RDFs
obtained after successive iterations of IBI are compared with
the AA reference. This is to aid the selection of a potential that
maximizes their qualitative similarity without excessive refine-
ments and therefore overfitting. The potentials were selected
after 99 iterations of IBI for model AR1 and after 69 iterations
for model AR3.

Refined Bonded Potentials. A CG simulation using all
potentials that have been developed at this point is run for 5 ns
and sampled at an interval of 2 ps (yielding 5000 frames).
Distributions are calculated for the bonds and angles. Bond
distributions agree well with corresponding measurements
from the AA reference, so the potentials for the bonds are
excluded from further refinement. For both the angles and
dihedrals, refined IBI potentials are chosen which produce CG
structural distributions whose peak locations agree with those
seen in AA reference (see Figure S1 and Figure S8). Applying
IBI to only a subset of potentials means that one must accept a
trade-off between improving the target distributions and
negatively impacting some of the other structural measures.
In practice, the selected number of iterations yields the
maximum possible improvement in the behavior of the
structural target without noticeably degrading other para-
metrized degrees of freedom.

Existing angle potentials are refined using IBI. The iterations
are based on a CG simulation spanning 20 ns which is sampled
at an interval of 2 ps (yielding 10,000 frames). Convergence of
the angle distributions is much quicker than in the case of the
nonbonded peptide−water potentials, as the angle potentials
depend only on the internal structure of the peptide. The angle
potentials are refined by three iterations of IBI.

Potentials for dihedrals are introduced at this step. Initial
estimates of the distributions are calculated using the AA
simulation of a single peptide solvated in water spanning 500
ns (as previously described in Initial Bonded Potentials).
Potentials are selected after one iteration of IBI, using the same
CG simulation parameters as those described for angles.

Peptide−Peptide Potentials. Nonbonded peptide−pep-
tide potentials are derived using the FM with exclusions
method as described in Methods. These potentials are derived
from AA trajectories that are sampled from an AA MD
simulation encompassing 25 peptides and 1573 water
molecules (see Table SI.1). The AA MD simulation uses a
time step of 2 fs and is run for 500 ns. The final 200 ns of the
MD simulation is sampled at the rate of 2 ps to yield 100,000
frames which are used to derive the potentials via the FM with
exclusions method.

The FM with exclusions method removes the impact of
nonbonded intrapeptide interactions, which are represented in
the AA reference system. It has been noted that the resulting
CG potentials may therefore fail to replicate the intramolecular
conformations of their respective AA counterparts.18 It should
also be noted that FM potentials will depend on the sample of
many-body interactions in the target AA trajectory, implicitly
limiting the transferability of such potentials.

Time Scales and Computational Efficiency. The utility
of a CG model depends on its ability to accelerate system
dynamics. Further, the model should scale efficiently with
computational resources. Therefore, the performance of the
two CG models is examined by using two measures.

The first measure is the diffusion coefficient of a single
isolated peptide. The diffusion coefficient is an effective
characteristic of the dynamics of a system and, therefore, may
be used to compare different systems. The mean square
displacement (MSD) of the peptide is measured from the MD
trajectories, and the Einstein relation is used to calculate the
diffusion coefficients. Using this approach, the diffusion
coefficients of a single, isolated peptide in the AA, AR1, and
AR3 models are, respectively, 0.2431, 2.2079, and 0.9175 ×
10−5 cm2/s. The speedup in dynamics of a CG model is given
by the ratio of the diffusion coefficients of the single isolated
peptide in the CG to AA representation. This ratio is measured
to be 9.08 and 3.77, respectively, for AR1 and AR3 models.
This is a somewhat coarse measure of efficiency, since single-
peptide diffusion coefficient measurements exclude the role of
interpeptide interactions, which are an important contributor
to the dynamics of multipeptide systems.

The ultimate goal in developing a CG model is to use it for
efficiently examining the behavior of large systems (namely,
multiple peptides) over extended spatiotemporal scales. This
acceleration is achieved by producing a smoother potential
energy landscape than what is observed for AA models.50,51

This difference in smoothness implies that the AA and CG
time scales are not directly comparable. Instead, the
acceleration of the particle motion by the CG system and
execution of enough CG MD cycles to achieve an equilibrium
state far beyond what is accessible to AA is validated. This will
require the efficient use of high-performance computing
resources. Hence, the second measure of computational
efficiency is the core performance scaling of each CG
representation relative to the AA representation.

For the second measure, the model is tested for strong
scaling in which doubling the number of processors halves the
compute time required to solve a problem of a fixed size. To
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test this, 8 peptides are solvated in a simulation box (of
dimension 4 nm) with 2000 water molecules in the AA, AR1,
and AR3 model representations. Each system is simulated for 2
million iterations (that is, at time steps of 2 and 1 fs,
respectively for the AA and two CG representations). The core
performance is measured in nanoseconds per day, as reported
by the simulation package. Test simulations are performed
using 1, 2, 4, and 8 cores on a Regular Memory node of the
Pittsburgh Supercomputing Center Bridges-2 cluster.52,53 The
results from these tests are summarized in Figure S16, showing
that both CG models exhibit strong scaling up to 8 CPU cores.

Structure of a Single CG Peptide. The fully parametrized
AR1 and AR3 models are each used to simulate a single
peptide solvated in water, to examine the behavior of
parametrized degrees of freedom and overall peptide
conformation. Distributions of the DOFs which are explicitly
parametrized in each model generally sample the same ranges
as the AA reference, with most DOFs also correctly resolving
the locations of peaks in the reference distribution. It is noted
that the smooth CG potentials may introduce biases in the
sampled configurational ensemble, leading to peak heights of
structural distributions that differ from the AA reference. While
such deviations are not necessarily unphysical,30 they do
suggest a CG model which imperfectly captures the details of

the underlying AA system. Some instances are observed in
which parametrized CG angles are able to take on values not
represented in the AA reference. See Figures S1 and S8 and
Overview of Calculated Structural Distributions in the SI.
These relatively small deviations emerge from the over-
constraint of the internal peptide geometry and therefore
may be seen as a consequence of the parametrization scheme.

To assess whether the models give rise to a plausible overall
conformation, peptide length and mass distribution are
calculated. The length of the peptides is characterized by the
end-to-end distance, which is given by the distance from the
center of mass (CoM) of the first to the CoM of the third
backbone bead. The mass distribution is characterized by the
radius of gyration (Rg), as determined by the weighted spatial
organization of the particles. The AA reference data are CG-
mapped for comparison of observables from the two models.

End-to-end distance distributions for a single peptide in each
model are shown in Figure 2a−c. In the AR1 model, the
backbone beads include both the α and β carbon, whereas in
the second model, only the α carbon is used. The AR1
mapping of the AA reference data shows a single peak in the
distribution of end-to-end distances, whereas the AR3 mapping
shows two peaks. The AR1 model produces a substantial
proportion of peptides that appear shorter than those seen in

Figure 2. Distributions of peptide backbone end-to-end distances calculated from simulations of the AR1 and AR3 models. The left column reflects
systems of a single peptide, and the right column reflects systems of 32 peptides. In the upper panels (a, b, d, e) the CG model results are compared
with AA reference data. AA reference coordinates are mapped into the appropriate CG representation. It can be seen that the AA reference data
produce different distributions for each of the two mapping schemes, owing to the difference in the definition of the backbone beads (see Figure 1
and SI file). The bottom panels (c, f) show residual values, calculated as the difference between the simulated CG results and the respective CG-
mapped AA results.
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the AA reference data and a somewhat smaller sample of
peptides that are longer. These deviations are apparently due
to the model’s biased sampling of the angle distributions (see
Figure S1). The AR3 model performs better, with the end-to-
end distance sampling the same range as the AA reference data
and recovering the same peaks of the distribution. Peptides
from both models closely reproduce the range of Rg values
observed in AA reference data (see Figure 3a−c).

The appearance of unexpectedly short or long conforma-
tions in the AR1 model suggests that its parametrization is
insufficient to produce a rigid conformation. Despite a similar
parametrization strategy, the AR3 model produces peptide
lengths comparable to the AA reference data. This suggests a
role for steric interference of the AR3 side chain beads in
extended conformations, a factor that cannot be replicated by
the single-bead side chains of the AR1 model.

Systems with Multiple Peptides. Both fully parametrized
models are also used to simulate systems of 2, 4, 8, 16, and 32
peptides solvated in water. Individual peptide structures are
checked to ensure consistency with corresponding character-
istics resulting from the AA reference systems. The formation
of multipeptide solid nanostructures is observed in the 32
peptide simulations for both models. The formation of
nanostructures via self-assembly is inaccessible via AA MD
simulations, primarily due to extended relaxation times

corresponding to the association of peptides into tightly
packed formations, which are characteristic of equilibrium
nanostructures. The CG MD simulations are able to resolve
the self-assembly of these structures very quickly, owing to the
smoother energy landscapes corresponding to the CG force
field. Hence, the self-assembled nanostructures from the CG
simulations are compared to the corresponding results from
experiments to validate the predictions. Interparticle contacts
(or interactions) in CG and backmapped atomistic-scale
trajectories are used to investigate the contribution of the
CG groups of atoms to the final nanostructures.

Peptide lengths in multipeptide simulations with the AR1
model show a pattern of deviation similar to that observed in
the single peptide case (see Figure 2 and Figure S6). This
behavior is mitigated in assemblies, where the mean of the CG
length distribution is shifted toward that of the AA reference.

For the AR3 model, the distribution of lengths has better
qualitative agreement with the corresponding results in the AA
reference, reproducing the peak locations and the correct range
of the distribution at all concentrations. The AR3 model tends
to yield end-to-end distances at the high end of the distances
sampled by the AA reference. This contrasts with the low end
of the distances sampled by the AR1 model. Comparison of the
distribution of the end-to-end distances from the CG models

Figure 3. Distributions of peptide radius of gyration (Rg), calculated from simulations of the AR1 and AR3 models. The left column reflects
systems of a single peptide, the right column reflects systems of 32 peptides. In the upper panels (a, b, d, e) the CG model results are compared
with AA reference data. AA reference coordinates are mapped into the appropriate CG representation. Rg calculations based on the AA reference
data produce nearly identical distributions when they are mapped into each of the two mapping schemes. The bottom panels (c, f) show residual
values, calculated as the difference between the simulated CG results and the respective CG-mapped AA results.
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with those corresponding to the AA reference is shown in
Figure 2.

Both models yield Rg values consistent with corresponding
values from the AA reference when simulating a single peptide
in solution (Figure 3). At a high concentration of peptides,
both models yield values of Rg that are significantly lower in
the CG representation than in the AA representation, despite
the differences in overall peptide length observed for the two
models. This result arises due to rearrangement of the peptide
into a nearly planar conformation in which side chains project
from the backbone in the same direction to minimize their
interactions with water. The associations between the side
chains within the aggregate help overcome the energetic
barrier to this cis-conformation of the side chains, which in
turn reduces the Rg.

The distributions of the bonded degrees of freedom
resulting from the trajectories for both the AR1 and AR3
models closely match the corresponding AA reference (Figure
S1 and Figure S8). For the AR1 model, the end-to-end length
systematically deviates from the AA reference, allowing
peptides to adopt very short or very long conformations
(Figure 2). The end-to-end length of the peptide is not a
parametrized property in either model and is treated as an
emergent property which is a function of the bonded
potentials. Viewing the deviation of the end-to-end distance
for the AR1 model from the corresponding result for the AA
reference as an error, the AA model is surmised to exhibit
coupling of the bonded degrees of freedom which is not
captured by the CG model. Given that this error is mitigated in
multipeptide assemblies (see Figure S3 and Figure S6)�and
that it is ameliorated in the AR3 model�it is hypothesized
that the extended peptide conformation is mediated by the
steric effects of the bulky side chains. The exact nature of these
effects within the CG models bears further study, but the key
assumption is that nonbonded interactions of the side chains,

with each other and with solvent, drive the stability of the
extended peptide conformation.

Interpeptide RDFs show that the CG model samples the
same ranges as the AA reference, with broad agreement overall
in the location of distribution peaks (Figure S5 and Figure
S11). There are however notable deviations reflecting the
degree of aggregation at higher concentrations. In the AR1 CG
system of 32 peptides, the terminal beads do not come into
close proximity with beads of the same type (COO−COO and
NH3−NH3) at the same frequencies seen in AA reference
data. This is explained by the regular antiparallel arrangement
of peptides seen in the final aggregate structure described
below. In contrast, close interactions of the amide groups
(AMD−AMD) are very highly sampled in the CG
representation despite being largely absent from the AA
representation. One possible explanation is that amide groups
in the AA model are strongly attracted, but that the many-body
nature of the AA representation results in a high free energy
barrier to their close approach, a barrier which is incorrectly
eliminated by the CG model.

Similarly, in the AR3 CG system of 32 peptides, interpeptide
RDFs sample ranges and peak locations similar to those of the
AA reference data, often at similar frequencies. Notably,
terminal beads (NH3 and COO) tend not to approach other
beads as closely in CG representation as they do in AA
representation. This is once again explained by the retreat of
the terminal beads to the surface of the final aggregates. The
amide groups in the AR3 model also show closer proximity
compared to the AA reference. Once again, this may be
explained by CG forces which represent a subset of the physics
associated with the AA reference but which are limited in
reproducing multibody effects.

Self-Assembly of Triphenylalanine into Nanostructures.
The jagged potential energy surface of the AA reference system
makes it impossible to resolve the assembly of multiple

Figure 4. Process of self-assembly of 32 peptides in simulation with the AR1 model yields a solid nanorod.
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peptides, which is a primary motivation for the development of
a CG force field. The bottom-up CG model smoothly
approximates the AA reference force field, subject to the
configurational ensemble sampled during CG force field
development. One commonly used method to validate a
bottom-up CG force field is to compare the derived CG
potentials to the potential of mean force (PMF) calculated
from the AA reference.30,31,33,54 However, the CG model is
generally used to explore very large spatiotemporal scales that
are far from the conditions under which the AA potential
energy surface is initially developed. Therefore, although
qualitative agreement of the PMF in small systems is a
reasonable desideratum, it is not necessarily a very informative
measure of the quality of a model for large systems. It is for this
reason that rather than evaluating the PMF, a direct

comparison is made with experimentally observed nanostruc-
tures, which is considered as the second way to calibrate the
model. Hence, one relies upon the rigorous design of the FM
procedure to produce a CG potential energy surface that at
least qualitatively mimics the underlying AA potential energy
surface.

The AR1 model was used to resolve the assembly of 32
peptides initially dispersed in an aqueous solvent. Ten
independent simulations were run ranging from 40 million to
500 million iterations. Aggregation is characterized by rapid
association of small numbers of peptides into trimers and
hexamers and then slow association of these oligomers into a
larger aggregate. In three simulations, each spanning 100
million iterations or more, a stable solid core nanorod is
formed. Figure 4 shows the process of forming a nanorod by

Figure 5. Nanorod observed in CG simulation with the AR1 model. (a) Side view of nanorod with all peptide beads in system. Bead colors as
follows: Yellow - side chain; Blue - N-terminal; Red - C-terminal; Purple - backbone; Green - amide. (b) Schematic of nanorod stacking. Peptide
trimers formed with main chain beads in planar arrangement, and side chain beads in a parallel plane. (c) Main chain and terminal beads of two
adjacent peptide trimers, viewed looking down normal to trimer plane (i.e., with nanorod longitude). Side chain beads are omitted for clarity. The
peptide beads in the lower trimer plane shown larger and transparent.

Figure 6. Process of self-assembly of 32 peptides in simulation with the AR3 model yields two solid nanospheres each roughly 3 nm in diameter.
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simulation spanning the longest duration. Individual peptide
lengths never exceed 1 nm (Figure S3). Therefore, in a 4 nm
simulation box with a 1.2 nm potential energy cutoff, no single
peptide will interact with its periodic image. This is a stronger
condition than the minimum image convention and is worth
noting, especially in this case where the resolved nanostructure
encounters the periodic boundary.

The nanorod encompasses multiple layers of peptides with
each layer encompassing 5 to 7 peptides. In each layer, the side
chain beads of the peptides are shielded from water, while the
main chain beads form the interface between consecutive
layers. The interfaces between the layers in the nanorods
include amide groups that are in close proximity to one
another. A view of a typical half-layer trimer is shown in Figure
5, where three peptides are distributed with radial symmetry in

the plane of the layer, in close contact with an adjacent trimer.
This result is consistent with elongated structures reported by
an earlier experimental study.10 That study reported that the
elongated structures contained a high β sheet content, which
the authors suggest is a result of close associations of amide
groups in the observed nanostructures.

Using the AR3 model, ten independent simulations of 32
peptides were run ranging from 20 million to 47 million
iterations. Aggregation in this model typically occurs with an
initial rapid association of all peptides into a single aggregate.
This aggregate breaks into smaller nanospheres composed of
roughly 10 or more individual peptides. In a simulation
spanning the longest duration, the self-assembly of 32 peptides
in aqueous solution yielded two spheres of approximately the
same dimensions within 40 million iterations (Figure 6). An

Figure 7. Contact maps of 32 peptides in AA, CG, and backmapped models, with visualization of each system. (a) Simulation frames in the AR1
mapping scheme. (b) Simulation frames in the AR3 mapping scheme. A contact is defined as a pairwise distance of less than 0.6 nm.
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examination of the self-assembly pathway demonstrates the
initial formation of irregular elongated structures, which
evolved into two spheres around 25 million iterations. The
self-assembled nanospheres are also consistent with an earlier
experimental study of the self-assembly of Boc-FFF peptides
into nanostructures.13 The authors of that study posited side
chain packing as a likely driver of the dense spherical
structures, but they were unable to discern a mechanism.

Backmapping. The role of backmapping in this study is
twofold. First, it allows verification that the AA details can be
reinstated without any numerical instability. Both models in
this study passed this test. Second, the reintroduction of AA
degrees of freedom provides a method by which one can
evaluate the extent to which the CG model faithfully
approximates the AA reference at spatiotemporal scales
where AA MD simulations are cost-prohibitive. For this, one
checks for signs of stability in AA simulations of the
backmapped systems.

The ordered nanostructures obtained from both CG models
quickly dissolve when the systems are backmapped and
allowed to evolve in the AA representations. One explanation
for this instability is that the many-body AA representation
contains details which locally destabilize the nanostructures
and that the CG model fails to capture these details. This is a
strong possibility, since the production of the CG model
necessarily averages out many local effects, especially within
individual CG beads. Similarly, the FM approach used in this
study derives two-body nonbonded parameters that only
implicitly account for the many-body structures seen in the AA
reference.

Having failed the check for stability in the backmapped
models, it is useful to further explore which features of the CG
model seem to be in agreement with the AA reference and
which do not. To do this, AA contacts that persist when the
backmapped system is allowed to evolve under the Amber
force field were further investigated, as discussed below.

Contact Maps and Cluster Counts. Interpeptide contact
maps for the 32 peptide systems are used to estimate the
predominant interactions between the molecules in an
aggregate. To generate these maps, the last frame from the
AA reference, CG, and backmapped (BM) simulations are
extracted. The AA and BM configurations are mapped to the
CG representation, and contact maps are calculated.

Figure 7a shows representative contact maps for the AR1
model. The AA contact map shows dark areas at the
antidiagonal corners of the map, reflecting interactions
between the charged end groups. There are also dark patches
for side chain interactions between the first and third side
chain groups and second and third side chain groups. This
suggests an end-on-end arrangement of consecutive peptides in
which the first two side chain groups of the first peptide
interact with the third side chain group of the second peptide.

The CG contact map shows much greater interactions
adjacent to the second PHE residue as well as a continuing
preference for antiparallel arrangement. The most prevalent
contacts are between antiparallel amide groups and their
adjacent backbone carbons. This seems to imply that the
backbone interactions stabilize the nanorod configuration.

The BM contact map shows a clear preference for
interactions involving the second side chain. Interactions
between the first and third side chain groups remain less
common in the BM representation than in the AA
representation.

Figure 7b shows contact maps for the AR3 model. The AA
reference shows dark patches for the main diagonal and
antidiagonal side chain interactions. With the AR3 mapping
scheme, however, the finer differences in the nature of side
chain interactions can be discerned. For example, interactions
between first side chain groups are clearly dominated by the
exterior beads, suggesting a configuration in which the outer
tips of the rings are in proximity. Conversely, interactions
between the first and third side chain groups are much more
uniform over the three beads, suggesting a more planar
configuration of the side chains.

The contact map of the CG nanosphere shows many close
contacts and sharper peaks for the side chain interactions. The
interactions for the first and third side chain groups are
reduced. Moreover, the interactions between the third side
chain groups are drastically reduced as the C-terminal bead
retreats away from the spherical aggregate, with an analogous
decrease in interactions for the first side chain groups due to
the retreat of the N-terminal.

The BM system shows an even more pronounced preference
for side chain interactions. This is attributed to the smooth CG
energy landscape, which enables side chains to come into close
proximity in a reasonable duration of time. This is not possible
with AA MD simulations due to the prohibitively long
relaxation times.

The AR3 model allows for a direct comparison of the angle
between adjacent rings for the AA and CG representations of
the system. The distribution of the angles for the AA
representation shows peaks around 45° and 135°, correspond-
ing to a “herringbone” arrangement. The CG configuration
favors angles of 90° between aromatic rings, or “T-shaped”
stacking. The angle distributions for the BM trajectories are
qualitatively similar to those corresponding to the AA
trajectories (Figure S14).

It is noted that neither the CG interbead contact propensity
nor side chain orientation are specifically parametrized by the
CG models. Thus, the packing and orientation of peptides
present a valuable set of emergent characteristics of the CG
models. The jagged AA potential energy landscape yields very
slow dynamics once many peptides are in close proximity,
which creates a high energetic barrier to the evolution of a
tightly packed configuration, such as the ones seen in the CG
models. Therefore, the aggregates found in the CG model
cannot be validated by the AA model. In the future, we plan to
run AA simulations with some enhanced sampling to enable
validation for the CG model.

The contact maps and ring contact plots represent
nonbonded interactions in the AA, CG, and BM systems.
The higher maximum contact counts of the CG simulation
contact maps correspond to the aggregated states and reflect
distinct contact propensities that differ from those in the AA
simulation. The BM simulations use the evolved CG simulated
configurations as their initial condition. These systems are
evolved for sufficient duration to demonstrate the numerical
stability of these CG configurations under the AA force field.
This confirms the plausibility of the simulated CG config-
urations.

The contact maps from BM simulations show certain
similarities to their CG simulation counterparts. Comparison
clearly shows that there are contact motifs resolved by the CG
models that persist after short evolution of the dynamics of the
corresponding AA system. It is surmised that similarities
between the CG and BM contact maps indicate those packing
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features of the CG model that are most consistent with the AA
model. That is, those simulated CG contacts that do not
rapidly dissociate in the BM simulation are the ones that can
most stably be maintained by the AA model.

Dynamics of Self-Assembly. The dynamics of the
assembly along with the predominant interactions driving the
formation of the aggregates and their stability can be construed
from measurements of the time evolution of the cluster count
and the number of interactions between the different moieties.
Figure 8 summarizes interaction counts for several bead types:
backbone main chain (MC−MC); side chain (SC−SC); main
chain to side chain (MC−SC); amide (AMD−AMD); and N-
terminal to C-terminal (NH3−COO). Calculations of the
cluster count were overlaid in each plot. These measurements
were performed on 32 peptide systems using both the AR1 and
AR3 models for a simulation spanning 20 million iterations.

In the AR1 model, the clustering process is initiated by
interactions between the side chain groups closely followed by
interactions between the terminal groups, leading to the
formation of small platelet-like aggregates (Figure 4).
However, as the molecules come into proximity (leveling out
the interactions between the side chains and the terminal
groups), there is a steady increase in the interactions between
the main chain groups. When the cluster count reaches a
steady value, the AR1 model shows the interactions between
the amide groups followed by interactions between the
terminal groups to dominate. This is followed by interactions
between the main chains which are trailed by the interactions
between the side chains. Hence, the amide, terminal, and main
chain group associations play an important role in the
organization of the approximately 15 aggregates present at
the end of the simulation as the platelet-like aggregates further
assemble to form a nanorod (Figure 8). The interface between
the platelet-like aggregates within the nanorod is dominated by

associations between the amide, main chain, and terminal
groups. Furthermore, this result indicates a preference for
antiparallel or end-to-end orientation of individual peptides
within the aggregates.

In the AR3 model, the aggregation of the peptides is driven
by interactions between the side chains with the formation of
small micelles, which shield the side chain groups from the
solvent (Figure 6). As the molecules come within proximity,
the interactions between the main chains and those between
the main and side chain groups begin to increase. The
interactions between the amide groups grow at a slow and
steady pace as the small micelles diffuse and coalesce to form
larger sized micelles. After the cluster count reaches an
approximate value of ∼2, the interactions between the side
chains dominate and reach a steady value (Figure 8). This
result is consistent with the tight packing between the side
chains in the core of the nanosphere. The interactions between
the amide groups and the main chain groups are less frequent
than those observed for the AR1 model. In addition, the
interactions between the terminal groups play virtually no role
in the spherical aggregate.

■ CONCLUSIONS
Aromatic tripeptides have been observed to form regular
aggregate structures in experiments. Previous simulation
studies have focused on the formation of large-scale aggregates
using top-down modeling methodologies or have described
bottom-up methodologies which stop short of describing large
nanoscale aggregates. In this study, two CG models are
developed by using a bottom-up approach to elucidate
conformation and interpeptide behavior of individual FFF
peptides within assemblies.

The two models differ in their representation of the aromatic
side chain as either one or three pseudo atoms. The extended

Figure 8. Time series plots of selected interaction contacts and cluster count. Left vertical axis indicates normalized contact count, which is the
ratio of actual contacts to the maximum possible number of contacts for each select interaction. Right vertical axis indicates cluster count as a
moving average. Horizontal axis truncated at 2.5 M MD steps to show trend. Clusters are defined as collections of peptides with pairwise distance of
less than 0.35 nm between any constituent beads. (a) AR1 model results. AMD-AMD interactions rise sharply at the beginning of simulation,
indicating an influential role in the nanorod aggregate. The relatively large cluster count in the AR1 nanorod is due to the relatively large spacing
between consecutive layers of the aggregate, which nonetheless does not allow water to intervene near the axis of the nanorod. (b) AR3 model
results. SC-SC interactions far outnumber all other interactions during nanosphere formation.
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3-bead representation is chosen as a means to resolve the
planarity and ‘2-Dimensional’ excluded areas which are
characteristic of aromatic ring structure. With the hybrid
force field parametrization strategy described here, parameters
of the model force fields are calculated from the trajectories of
AA reference simulations.

Both of the resultant CG models resolve the solvation and
structure of individual peptides in an aqueous solution. Each
model also resolves the assembly of randomly dispersed
peptides in an aqueous solution. These self-assembled
nanostructures are consistent with the experimental observa-
tions. The 1-bead model produces solid core nanorod
aggregates which are longitudinally extended in a “layercake”
fashion. These nanorods show a high degree of association
between the amide groups and the carbon backbones of
neighboring peptides. The 3-bead model produces solid core
nanospheres with tight packing of side chains in the interior of
the sphere.

In both the nanorod and nanosphere assemblies, peptides
conform to shield the hydrophobic side chains and expose the
terminal groups to the solvent. The structure of the simulated
nanorods suggests that the CG model has extracted
information from AA reference trajectories, which leads to
preferential interactions between amide groups, approximately
analogous to hydrogen bonding. Likewise, the simulated
nanosphere shows a highly efficient packing of aromatic rings
not seen explicitly in the AA reference trajectories. These are
two important examples of emergent characteristics captured
by the CG models, which are derived using only AA structural
information. It is further surmised that the 3-bead
representation of aromatic side chains impacts the ability of
the models to pack tightly, which bears further study.

The two models AR1 and AR3 adopt different representa-
tions but use the same reference data and methods in their
force field development. This raises the interesting question of
the role of structural representation in the behavior of the CG
models. It is noted that the AR3 model more closely
recapitulates individual peptide conformations, which may be
interpreted in terms of steric effects. More generally, it is likely
that increasing the number of constrained degrees of freedom
simply produces a smoother approximation of the potential
energy surface for CG configurations that closely resemble
sampled AA configurations.

Nevertheless, these results demonstrate that the behavior of
CG models is sensitive to structural representation and that
different representations may be useful in discovering
correspondingly different mechanisms of aggregation. Using
the hybrid approach described here, an experimenter may
benchmark a relatively simple representation of the target
molecule and produce a contrasting model to uncover
elements of chemical behavior that the earlier representation
may have missed. The judicious introduction of additional
degrees of freedom allows one to resolve chemical details in
CG models of aromatic rings, but these improvements are not
limited to phenylalanine or rings either. Interesting moieties,
including anisotropic or rigid molecular structures, can be
targeted for finer-grained CG representation, therefore,
enabling a more exact analysis of their influence on the
mechanisms underlying aggregation.

The structure- and force-based methodologies provide a
convenient and rigorous platform for the ad hoc creation of CG
models of a broad range of soft matter systems. The loss of
structure in the backmapped simulations implies a mismatch

between the CG model and the AA model it approximates,
which diminishes direct comparison between the simulated
nanostructures and those found previously in experiments.
Conversely, backmapped simulations may in future provide a
useful feedback mechanism in the bottom-up model develop-
ment process.
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