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geometric invariants: the multipoint Seshadri constant and the
asymptotic regularity of a set of points in projective space.
© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

As Michael Atiyah [1] points out, “Duality in mathematics is not a theorem, but a
principle”. Indeed, forms of duality occur in all branches of mathematics manifesting
in ways specific to the subject area. In this paper we study manifestations of duality
which take effect primarily in an algebraic-geometric context. More precisely, our start-
ing point is a notion of duality for sequences of natural numbers. This prompts the
question of determining the dual sequences for certain numerical sequences which occur
in commutative algebra, for example, the sequence of initial degrees of a graded family
of homogeneous ideals, or the sequence of Castelnuovo-Mumford regularity values of a
family of ideals. Our techniques allow to relate the asymptotic growth factors of these
sequences to those of the dual sequences. We explore this theme in contexts where these
asymptotic growth factors carry significant meaning.

At the level of numerical sequences we single out two transformations which act on
nondecreasing sequences of integers. Given a sequence a = {ay, }nen, the transformed
sequences are as follows:

&= inf{d | ag > n},
o, =sup{d | aq < n}.
It turns out that these transformations are mutual inverses [36]. If furthermore « is either
a subadditive or superadditive sequence (see Definition 2.3) then it has a well-defined
asymptotic growth factor @ = lim,, o, 5*. The above transformations interchange the
classes of subadditive and superadditive sequences. Moreover, under these hypotheses,
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we are able to derive the following reciprocation formulas for the respective asymptotic
growth factors in Theorem 2.6:

1 1

o and o =a .

=a
In fact, we generalize the above transformations as well as the reciprocation formulas in
Theorem 2.5. The more technical statement of this result is relegated to section 2.

We apply the duality principle described above to several numerical sequences. Our
interest in such sequences is spurred by the study of the family of symbolic powers
{I (d) taen of a homogeneous ideal I. In the case when I is the defining ideal of an algebraic
variety X, this family features prominently in algebraic geometry by encoding the set of
functions vanishing to higher order on X. In commutative algebra, the symbolic powers
have been studied most recently by means of comparison with the family of ordinary
powers {I"},en; see [16,31,39,4].

A sequence of interest in this area of study is given by the initial degrees for the
symbolic power ideals. Its asymptotic growth factor, dubbed the Waldschmidt constant,

~ . (4) . . . . .
is a(l) = limg— oo a(Id ) It is well-known that this sequence is subadditive. The same is

true for any sequence that results from applying a discrete valuation to a graded family
of ideals (see Lemma 3.3). Taking this more general perspective leads to considering
valuative sequences for any discrete valuation v

By = Bu(1) = sup{d : v(ID) < v(I")}.

In Proposition 3.8 we apply our duality results to relate the growth factor B; of this
sequence to those of the sequences {v(I(?)} gen and {v(I™)},en. This has consequences
on the containment problem between the ordinary and symbolic powers of /. Building on
[11,10], we show that there exists a valuation v for which the asymptotic growth factor
of B¥ recovers the asymptotic resurgence of [23].

In section 4 we study the dual of a sequence closely related to the initial degree
sequence of the family of symbolic powers. In this pursuit, we are led to consider a
notion of inverse systems which dates back to Macaulay [38]. Emsalem and Iarrobino
determined in an influential paper [17] the inverse system for the symbolic powers of a
radical ideal. We generalize their results by introducing a new notion of differentially
closed graded filtrations of ideals for which the inverse systems behave particularly well.
Examples of differentially closed graded filtrations include many families of powers of a
homogeneous ideal (differential, ordinary, symbolic, and integral Frobenius powers) and
any family obtained by intersecting these.

Theorem (Theorem 4.9 and Theorem 4.20). Suppose T = {I,}nen is a differentially
closed graded filtration of proper ideals in R = K[zo, ..., xn]. Let D = P, Hom(R;, K),
equipped with the structure of a divided power algebra. For each s € N put
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LI =@ (1i,),<D

d>s+1

Then L3(T) is an ideal of D for each s € N. The sequence o, = a(l,,) is subadditive and
Bs = sup{d: (D/L*(T))q # 0} is superadditive. Assuming that the sequence {a, —n}neN
is not bounded above, we have

® _ anda= ,\B .

B=

a

Several forms of algebraic duality manifest themselves in the setup above. The degree-
wise vector space duality between R and D manifests itself via apolarity (orthogonality).
The inverse systems considered in section 4 are a form of Matlis duality. Finally the
projective duality between points in p = (py : --- : py) € PV and linear forms
L, =poxo+---+pnxy € R yields a celebrated description of £°(Z) when 7 is the family
of symbolic powers for the defining ideal of a projective variety; see Example 4.15.

In contrast to the above setting where the algebraic duality is more evident while the
numerical duality of asymptotic invariants is more elusive, we study a different setup
where duality of asymptotic invariants has been observed before (see [37, §5.1]), but the
underpinning reasons have not previously been discovered.

Theorem (Theorem 5.5 and Corollary 5.8). Let I be the defining ideal of a set X of
r > 2 points in PN. Set sq = s(X,d — 1) to be the jet separation sequence of X (Defini-
tion 5.3) and rj, = reg(I(X)*+1) the sequence of Castelnuovo-Mumford regularities for
the symbolic powers of I(X). There is a duality between these sequences

s=7 andr ="5.

This duality underlies the following identity relating the Seshadri constant £(X) (see
Definition 5.1) of X and the asymptotic reqularity of X

-1
SX) = Tim 24— <nm I(XW“)) (10,
d k—o0 k

In section 6 we take the opportunity to revisit the celebrated conjectures of Nagata
and larrobino regarding linear systems of polynomials vanishing to higher order at a
finite set of points in projective space. We give homological reformulations for these
conjectures based on the results discussed above. This leads into further open problems
presented in the final section 7.

2. Duality for numerical sequences

In this paper the set N of natural numbers does not include 0.
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The purpose of this section is to study duality of sequences of natural numbers.
To define this duality we first generalize two operations on sequences introduced in
[36]. These operations are discrete analogues for the notion of pseudo-inverse functions
described in [43].

Definition 2.1. Given sequences o = {aq}aen and = {B,}nen of real numbers define
new sequences E'B P associated to the pair @, 8 in the following manner, where we
allow that &’ a% € N U {—oc,00} (by convention sup()) = —oo, inf(f)) = co):

af =inf{d e N | ag > B},
P =sup{d e N | ag < fBn}.

Setting id,, = n yields the two particularly important sequences previously studied in

[36], for which we use the shortened notation &'d = & and @' = @. They are given

by

@y =inf{d | ag >n},
o

n =sup{d | ag < n}.

In the remainder of the paper we will be interested in situations when the sequences
a, B consist of natural numbers and for all n € N they yield « B € N and 2 € N.

<_
Example 2.2. If o is a sequence of natural numbers there are identities id® = 1d® = «

We shall be interested in applying the transformations in Definition 2.1 to subadditive
and superadditive sequences respectively. We now recall these notions.

Definition 2.3. A sequence of real numbers a = {ay, }n>n, for some ng € N is called

 subadditive if it satisfies a;4; < o; + a; for all 4,7 > ng.
 superadditive if it satisfies o;; + o; < a4 for all ¢, 7 > ng.

Fekete’s lemma [19] guarantees the existence of & = lim,, ;. %= for any subadditive or
superadditive sequence of real numbers o = {ay, }ren, allowing for the value of the limit
to be —oo in the subadditive case and oo in the superadditive case respectively. In the
subadditive case, the value of the limit coincides with inf,cn <2 and in the superadditive
case with sup,,cn 5.

Definition 2.4. Given a subadditive or superadditive sequence of real numbers a =
{an}n>n,, the asymptotic growth factor of o is the value of the limit

a= lim —ERU{ 00,00}

n—oo N
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If additionally a consists of natural numbers, we have & € R>¢ U {oo}.

We now arrive at our first main result. It shows, how the transformations in Defini-
tion 2.1 interact with the classes of subadditive and superadditive sequences and how
they transform the respective asymptotic growth factors. In the statement we adopt the
conventions that r/0 = oo and /oo = 0 for r € R and c0/0 = 0o, 0/0c0 = 0.

Theorem 2.5. Let o, 8 be sequences of positive real numbers such that a is subadditive

<_
and f3 is superadditive. Assume also that 3%, 8o eN for eachn € N. Then we have

(1) the sequence AP is superadditive and satisfies a8 = 3/62.

- = ~
(2) the sequence B is subadditive and satisfies 3> = a/p.

Proof. (1) Let m,n € N and set d = oF, and d’ = @#. By definition we have ag < B
and ag < 3, whence we deduce using subadditivity of o and superadditivity of 3

Qgyar < ag+ag < Bm + Bn < ﬂm+n~

It follows that _>£I m>d+d = @8 4+ P, establishing superadditivity for @?

Assume first that @ # 0 and B eR (ie., B # 00). Since a# is superadditive, we have
— B d
Ew:sup{%}:sup{ghydgﬂn}. (2.1)

The identities a = hm {O‘d} = mf { } and ,6 = lim {7"} = sup {%} yield

n—oo neN

B {Bn d}
~ = sup {— - — ¢,
« n,deN (Qd T
whence we deduce that % > gz . % > % whenever oy < f3,,. Combining this with (2.1)

we arrive to the conclusion g > 35

To establish the converse inequality it suffices to show that for all n,d € N with

% < % we have % < ﬁ Assummg that 4 < g or equivalently that d sa < ﬁ and
writing 4 - & = lim 4. 24 and B = lim But allows to conclude that for t > 0 we have
n t—oo ™ dt t—oo Nt
d g
- = ﬁnt , that is, agy < By for £ > 0. (2.2)
n d nt’

In view of the above inequality, (2.1) yields b > dt for ¢ > 0, which leads to the

desired conclusion @8 > %. This concludes the proof of the claim @8 = 8 / Q.
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Now we treat the cases @ = 0 and B = 00. In both of these situations our convention
yields B /& = oo. For arbitrary d,n € N the inequality % ca< 3 is satisfied, therefore the
same argument as in (2.2) yields b > % for all d,n € N. It follows that WP =00 = E/a,
as claimed.

(2) The second part is entirely analogous to the first. O

Specializing the previous theorem to the case when one of the sequences involved is
id allows for a result that better portrays the duality of the transformations o and &.
To obtain a true duality theory one must restrict to the case when the input sequence o
is a sequence of natural numbers unbounded above. Specifically, the next result, which
constituted the starting point of our project, shows that the transformations @, & are
mutual inverses and interchange the classes of subadditive and superadditive sequences,
that, when restricted to these classes of sequences, the transformations @)7 o reciprocate
the respective asymptotic growth factors.

For the next result we utilize the convention that 0~! = oo and co™! = 0.

Theorem 2.6. Let o be a nondecreasing sequence of natural numbers.

= o
There are identities E =« and Q = q.

S

:Q'

=a 1.

3) If a is subadditive then {EZ}nZal is nondecreasing superadditive with o
= 1

(1)
(2) If « is increasing, then there are identities § =« and
(3)
(4)

4) If a is superadditive, then o is nondecreasing subadditive with a=a
Proof. Assertion (1) as well as the assertions that whenever «a is superadditive, o is
subadditive and whenever « is superadditive, then & is subadditive are shown in [36,
Corollary 2.8].

For part (2), note that whenever « is increasing the following hold

Do, =sup{t:a; <ay}=n (2.3)
Wo, =inf{t oy >an}=n (2.4)

Given this, we obtain by applying equation (2.3) for a, @ the following identity

?n: d—=  =ay,.

Xap
Similarly, applying equation (2.4) for each of the sequences «, & we obtain

Unp=0%, =an.

The remaining assertions of the theorem regard the asymptotic growth factors. These
can be recovered from Theorem 2.5 as follows: first, observe that setting id,, = n in yields
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id = 1, Eid = E and Qid = @). Note that if « is nondecreasing, so are Q and E by
definition.

If « is a superadditive sequence of natural numbers then it is unbounded above as
a, > na; > n. It follows that En € N for all n € N whenever the sequence « is
superadditive. If « is a nondecreasing sequence it follows that dn€eNforaln>a.

Since id is both subadditive and superadditive, setting 8 = id in part (1) of Theo-
rem 2.5 yields for subadditive a that /@\ = a~!asin part (3) of Thecg\em 2.6, and setting
a = id in part (2) of Theorem 2.5 yields for superadditive 3 that E = 3_1 as in part
(4) of Theorem 2.6. O

Example 2.7. In the absence of the hypothesis that « is nondecreasing, it need not be

Ry ) n if n is odd
true that o = «a. Consider the sequence «,, = Then we compute
n/2 if n is even.

n 1 2 3 4 5

ap, |11 3 2 5

a2 4 6 8 10

%

a, |1 1 2 2 3.

Likewise, in the absence of the hypothesis that « is increasing, it need not be true
that '@ = a. Consider a,, = [n/2]. Then « is subadditive and nondecreasing (but not

increasing), @, = 2n and @ = o, = |n/2].

Example 2.8. In the more general setting of Definition 2.1 one does not obtain a satis-

@? need not be mutually

inverse even when both sequences a, 8 are nondecreasing. Indeed, consider o, = [5]
L &5° 5
and 3, = | 5] which yield o # o and o # o

factory duality theory in the sense that the operations @,

iey

according to the table below

NN N = N W
NN R NN
[l " R ORI

2
1
1
b -0 2
2
2

We conclude by considering the transfer of the subadditive and superadditive prop-
erties from a sequence to its subsequences.

Lemma 2.9. Let a = {ay, }nen be a sequence. Define for k € Z the subsequence alk] =
{04k tneN n>—k, that is, the n-th member of the sequence alk] is a1, provided n+k >
0.
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(1) If k > 0 and « is subadditive and nondecreasing, then alk] is subadditive.
(2) If k<0 and o z's/ﬂapemddz’tive and nonie\creasing, then alk] is superadditive.
(3) If & exists then a[k] exists as well and alk] = @.

Proof. We focus on assertion (1), the second numbered assertion being similar. Under
the hypotheses of (1)

alklats = Qatprk < Qatvpor < Qark + 0y = afklq + afk]p

follows from the nondecreasing property of a for the first inequality and subadditivity
of @ for the second. Part (3) follows from

= . Qptk . Gnyk 4. ntk
alk] = lim = lim 2 Jim
n—oo N n—oo N + n—o00 n

=a O

3. Subadditive and superadditive sequences from graded families

We are interested in subadditive and superadditive sequences which occur in algebraic
contexts. The following considerations introduce types of sequences we shall focus our
attention on in the remainder of the manuscript.

3.1. Valuations and initial degree

Recall that a discrete valuation on a field K is a homomorphism v : K* — Z on
the units of K satisfying v(zy) = v(z) + v(y) and v(z + y) > min{v(z),v(y)}. If K is
the fraction field of a domain R then a valuation is determined by its values on R via
v(f/g) = v(f)—v(g), so we abuse notation by referring to valuations on R instead of its
field of fractions. We furthermore restrict ourselves to valuations which are non-negative
on R, which we call R-valuations.

Example 3.1. Given a maximal ideal m in a regular ring R, a simple example of an R-
valuation is am(f) = max{k : f € m*}. If m is not a maximal ideal, a, need not be
a valuation; ay(2y) < am(x) + an(y) is always true but equality may not hold [32,
Section 6.7].

Definition 3.2. If v is an R-valuation, denote the minimum value taken by v on I by
v(I) =min{v(f):0# f eI}

If R is a standard graded ring with homogeneous maximal ideal m, then the initial degree
of I is the minimum value taken by the valuation a,, in Example 3.1 on [

a(I) =min{deg f : 0 # f € I} = max{k: [ Cm"}.
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Recall that a graded family of ideals Z = {I,, },,>1 of a ring R is a family which satisfies
I Iy C Iyyyp for all a,b € N.

Lemma 3.3. Given a graded family T = {I,}n>1 of ideals of a domain R and an R-
valuation v the sequence oy, = v(I,) is subadditive.

Proof. The property v(zy) = v(x) 4+ v(y) implies that v(I,Ip) = v(I,) + v(Ip) for all
a,b € N. It follows from the containment I, I, C I, for all a,b € N that a,4p =
V(lgs) <v(IDp) =v(ly) +v(lp) = ag +op. O

One of the graded families of interest for this paper is formed by symbolic powers.

Definition 3.4. Given an ideal I of a ring R, the n'" symbolic power of I is

™= () ("RpNR).
PeAss(I)

We set 1(®) = R by convention.

The growth of initial degree of the symbolic powers of an ideal is captured by the
Waldschmidt constant. This invariant, was first introduced by Waldschmidt [46] in the
late 70s for finite sets of points in n-dimensional space and formally defined in terms of
symbolic powers in [4]. It has often been featured implicitly in the geometric literature;
see section 6 for further details and connections. More generally, the asymptotic growth
factor of an arbitrary valuation applied to the symbolic powers of an ideal is dubbed a
skew Waldschmidt constant in [11].

Definition 3.5. The Waldschmidt constant of a homogeneous ideal I is the real number

(n) (n)
a(l) = lim oI™) = inf M.

n— 00 n neN n

Given a valuation v : R — Z, the skew Waldschmidt constant of a homogeneous ideal
is the real number

7(n) 7"
o) = tim 2 e )
n—o00 n neN n

Throughout the paper J denotes the integral closure of an ideal J. The valuative
criterion for integral closures [32, Theorem 6.8.3] states that for a fixed ideal I C R and
every f € R, f € I if and only if v(f) > v(I) for every R-valuation v : R — Z. From
this we get the following ideal membership test: there is containment J C I between
two ideals if and only if v(J) > v(I) for every R-valuation v : R — Z. We now define
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a sequence inspired by this criterion and its applications to the containment problem
between the ordinary and symbolic powers of an ideal (see section 3.2).
We say that a valuation v is supported on an ideal I if v(I) > 0.

Definition 3.6. Given an ideal I C R and an R-valuation v supported on I, define

B2 = BU(1) = sup{d : v(I'D) < (1"},

Remark 3.7. The fact that if R is Noetherian 5% € N U {0} for each n € N follows from
Swanson’s theorem on linear equivalence of the symbolic and ordinary I-adic topologies.
In detail, it is shown in [44] that there exists an integer ¢ (possibly dependent upon I)
such that 7¢" C I™ for all n € N. This yields

v(I)) > u(I") = nw(I) > v(R) = v(IV).
Consequently, since the sequence {v(I (d))}deN is nondecreasing, we have 0 < g% < /n.
We come to our first application of Theorem 2.5.

Proposition 3.8. For any Noetherian domain R, any ideal I C R and any R-valuation v
supported on I the sequence Y = Br(I) is superadditive and satisfies

B;: lim %:sup{%}:ﬂ

oo n ek Un f T B(0)

Proof. We first give an alternate definition for 3%. Set vq = v(I'?) and 6,, = v(I") —1 =
nv(I)—1for n,d € N. Note that v is subadditive by Lemma 3.3, § is superadditive by its
definition, and we have ¥ = U(I) and 5= v(I). Then Definition 3.6 can be rewritten as

<)

BY = 7? . An application of Theorem 2.5 (1) yields that the sequence ¥ is superadditive
and ¥ = v(I)/v(I). The first equality in the claim follows from superadditivity of 8”
and Fekete’s lemma. O

In the next subsection we interpret the asymptotic growth factor BE in terms of an
invariant of I termed asymptotic resurgence.

3.2. Asymptotic resurgence
The various invariants defined below under the name of resurgence were introduced
to study the containment problem which asks for pairs of natural numbers d, n for which

1@ c .

Definition 3.9. The resurgence of an ideal I, introduced in [4], is the quantity

p(I) = Sup{% A I"}.
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Its asymptotic counterpart is the asymptotic resurgence of I, introduced in [23]

N d
p(I) :sup{g . [t ¢ I for ¢t > 0}.

Versions of these invariants using integral closures were defined in [11]. These are the
ic-resurgence

d —
pic(I) :SUP{E 1 Z In}

and the ic-asymptotic resurgence
5 d . pan ¢ e
pic(I) =sups — : I\ g It for t >0 ¢ .
n

It is shown in [11, Corollary 4.14] that p;.(I) = p;.(I) = p(I). By contrast, in general
we have p(I) # p(I); see [13]. Another resurgence number, piyt(I), introduced in [28], is
given by

ot s {275 1),

In this section we discuss two numerical sequences which arise in conjunction with
these notions of resurgence:

An = An(I) = max{d : IV ¢ I"} and f3,, = B, (I) = max{d : 1@ ¢ In}.

Notice that

/\'n, ~ n
p(I) = sup {—} and p(I) = sup {B—}
neN (T neN L 1
follows from the definition of resurgence and asymptotic resurgence, respectively. If R is
a regular ring and [ is radical then [10, Remark 5.5] implies that in fact

An o~
lim — = lim Bu = p(I).
n—oo N n—oo N

The assumption that I is radical can be removed (see [10, Remark 4.23]). Thus we see
that the sequence {3, } behaves like a superadditive sequence in the sense that

iy 22— aup {8
im — =sup q— /.

n—oo 1 neN (T

Since there are examples where p(I) # p(I) (see [13]), {\n} is not necessarily superad-
ditive. We do not know if 8 = {3, }nen is always a superadditive sequence. However,
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we are able to replace 8 by a valuative sequence of the type discussed in Definition 3.6
which is superadditive and whose asymptotic growth rate is also equal to the asymptotic
resurgence.

Proposition 3.10. Let I be an ideal in a regular ring R. For any valuation v : R — Z,
we have BY < By, < M. Moreover there is a choice of valuation v so that
Y y n )\n ~
B¥ = lim B _ lim B _ lim — = p(I).
n—oo mn n—oo mn n—oo mn
Proof. The inequalities 8} < 8, < A, follow from the definitions of the sequences and
the valuative criterion for integral closures. The equalities
n An
lim Bu = lim — =p()
n—oo N n—oo N
follow from [10, Remark 5.5], as noted above. By [11, Theorem 4.10], p(I) = v(I)/v(I)
for some choice of valuation (in fact, one of the Rees valuations of I will accomplish this).
Hence, for this valuation, Proposition 3.8 yields that lim,_, 8% /n = p(I), completing
the proof. O

3.3. Castelnuovo-Mumford regularity
Definition 3.11. Suppose R = (P, R is a graded ring with residue field K = R/Ry

where Ry =
Ris

>0 Fti- The Castelnuovo-Mumford regularity of a graded module M over

reg(M) = max{j — i | Torf(M,K); # 0}.

When M has finite length and R is standard graded the regularity can also be expressed
as reg(M) = end(M) := max{i | M; # 0}. For arbitrary graded modules M over a
standard graded ring R, there is an alternate definition in terms of the local cohomology
modules of M supported at the homogeneous maximal ideal m

reg(M) = sup{end (H},(M)) +i |0 < i < dim(M)}.

Keeping with the theme of our writing, we are interested in families of ideals or
modules whose Castelnuovo-Mumford regularities give subadditive or superadditive se-
quences. The subadditive case is considered in the following lemma, while a family with
superadditive regularity sequence is illustrated in Remark 4.19.

Lemma 3.12. Given a graded family T = {I,}nen of homogeneous ideals of a standard
graded ring R so that each quotient ring R/I, is Cohen-Macaulay of the same dimension
dim(R/I,) = d. Then the sequence of Castelnuovo-Mumford reqularities of the members
in the family {reg(I,)}nen is subadditive.
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Proof. We may assume that the residue field of R is infinite by tensoring with an infinite
extension of the base field if necessary; this does not change the Castelnuovo-Mumford
regularity of the given ideals. Thanks to the Cohen-Macaulay property one may reduce to
the Artinian case. In detail, fix a,b € N and choose a sequence of linear forms ¢1,..., ¢4
which is simultaneously a regular sequence on R/I,, R/I, and also on R/I,i;. Now
set R = R/(ty,...,0g) and I, = I, + ({1,...,0q)/(C1,...,04) for n € {a,b,a + b}.
This gives that reg(l,,) = reg(l,) for n € {a,b,a + b}. Moreover, setting m to be the
homogeneous maximal ideal of ﬁ, since each of the quotients E/ fn is Artinian we have
for n € {a,b,a + b}

rn =reg(l,) = reg (fn) = min{d : (ﬁ/fn)d =0} = min{d: m? C I,}.
It follows from the containment I,I, C I,y that EE, - E+b. We deduce

m™ T = mem™ C I,I, C I,

and thus it follows that 7,45 = reg (Ia+b> <re+rmp. O

Definition 3.13. Ideals I for which every member of the sequence of symbolic powers
{1} yields a Cohen-Macaulay quotient are dubbed aspCM ideals in [47].

The aspCM class includes complete intersection ideals, saturated ideals with
dim R/I = 1, that is defining ideals for finite sets of points or fat points (not neces-
sarily reduced schemes supported at finite sets of points) in PV, ideals defining matroid
configurations in PV [21], and generic determinantal ideals.

Remark 3.14. Even under the hypotheses of Lemma 3.12, the closely related sequence
{reg(R/I,)}nen need not be subadditive. Take for example I, = (f™) where f is a
homogeneous element of degree d > 0 in a standard graded polynomial ring R. Then
reg(R/I,) = dn — 1 is not subadditive.

We define an invariant which captures the asymptotic growth of the regularity for a
family of ideals.

Definition 3.15. The asymptotic regularity of a family Z = {I,},en of homogeneous
ideals is the following limit, provided it exists,

__ I
reg(Z) = lim w.
n—oo n
By way of Fekete’s lemma, Lemma 3.12 provides a set of assumptions under which
the limit in Definition 3.15 exists. We shall be primarily interested in the asymptotic
regularity for the family of symbolic powers Z = {I(™}, cn of a given ideal I, which we
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denote teg(I). This family does not always satisfy the conditions of Lemma 3.12, but it
does so, for example, when I defines a finite set of points in projective space. In this case,
the existence of reg(I) also follows from the much more general result in [7, Theorem
BJ. There are a few other instances where the existence of reg(I) is known, for example,
when I is a monomial ideal cf. [15, Theorem 3.6.], or more generally, when the symbolic
Rees algebra of I is Noetherian, which is shown in the ongoing work of the second author
with Hop and Ha.

The next example points out that in general the sequence {reg(l,)},en need not be
subadditive for a graded family of ideals Z = {I,,},en even when that family consists
of symbolic powers of monomial ideals and thus reg(Z) exists. The ideals J(m, s) in the
next example yields Cohen-Macaulay quotient rings, but their symbolic powers do not,
thus they are not aspCM.

Example 3.16. In [15, Theorem 5.15] Dung, Hien, Nguyen, and Trung produce examples
of squarefree monomial ideals J(m, s) such that

reg (J(m78)(t)) _ e b=
m(s+1n+m+s—1 t=2n+1

Combinatorially the ideals J(m,s) are described as cover ideals for corona graphs ob-
tained by adding s pendant edges to each vertex of a complete graph K,,. The ideals
in this family were singled out as examples of squarefree monomial ideals for which the
function t — reg(J(m,s)®) is not eventually linear. For these symbolic power ideals
the regularity matches the largest degree of a minimal generator, which shows that if an
ideal J is generated in degrees < d one cannot conclude that J® is generated in degrees
< td. This relates to a question of Huneke [33, Problem 0.4].
A necessary condition for the sequence {reg(J(m,s)®)},en to be subadditive is

reg(.J(m, s)#1+22+2)) < yeg(J(m, s) 2 HY) 4 reg(J(m, )22 HY)
which can be written equivalently as
m(s+1)<2m+2s—2or (m—2)(s—1)<0.

It is thus evident that the regularity sequence for the symbolic powers of J(m, s) is not
subadditive whenever m > 2 and s > 1.

4. Inverse systems of differentially closed graded filtrations

One situation in which the duality between subadditive sequences and superadditive
sequences naturally arises is in the theory of inverse systems. In this section we extend
a construction using inverse systems from an influential paper of Emsalem and Iarra-
bino [17]; two sequences naturally associated to this construction exhibit the duality
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of Section 2. We begin by recalling some details about contraction and differentiation,
following the survey of Geramita [20, Lecture 9.

4.1. Contraction, differentiation, and inverse systems

Let K be a field and R = K[z, ..., 2zx]. We use a standard shorthand for monomials
—if a = (ag,...,an) € ZJ>VO+1, then 2 = z(° - - - 2}V is the corresponding monomial in
R. We define D = @, Hom(R;,K), the graded K-dual of R. If 2 is in Ry, we write
Y@l for the functional_(in D4) on Ry which sends 2 to 1 and all other monomials in
R; to 0. As a vector space, D is isomorphic to a polynomial ring in NV 4+ 1 variables.
However, as we recall shortly, D has the structure of a divided power algebra. For this
reason, we call Y2 a divided monomial.

The ring R acts on D by contraction, which we denote by e. That is, if * is a monomial
in R and YP! is a divided monomial in D, then

2eYlPl =yP-aljf > gq
and 0 otherwise. This action is extended linearly to all of R and D. This action of R on

D gives a perfect pairing of vector spaces Ry x Dy — K for any degree d > 0. Suppose
U is a subspace of R;. We define

Ut={geDy: feg=0forall fcU}.
Macaulay [38] introduced the inverse system of an ideal I of R to be
I™' :=Anng(I)={geD: feg=0forall fcI}.
If I is a homogeneous ideal of R then the inverse system I~! can be constructed degree
by degree using the identification (I71); = I3 [20, Proposition 2.5]. In general, I=1 is
an R-submodule of D which is finitely generated if and only if I is an Artinian ideal.

A priori, D is simply a graded R-module. However, D can be equipped with a
multiplication which makes it into a ring, called the divided power algebra. Suppose

a=(ag,...,an),b=(bg,...,bn) € Zg&'l. The multiplication in D is defined on mono-
mials by
vyl = (a + b) yla+bl (4.1)
a
where

N N
a+b (a+b)! a; +b;
a!:Hail and ( a )a'b'H( o > (4.2)
i=0

=0
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This multiplication is extended linearly to all of D. Let e; be the ith standard basis
vector in ZNV*! and put Y; := Y[®l. For a nonnegative integer n let Y= (Y[ei])n and
Yi[n} := Yreid, We see from equation (4.1) that Y;* = nlyreil = n!Y;[n]. More generally
for a = (ag,...,an) set Y2 = Hil\io Y. Since Y2 = Hil\io Y = HzN:O a;lYleied —
al Hf\;o Y@l another application of (4.1) allows to deduce that

Y2 =alyll (4.3)

See [20, Lecture 9] for additional details. In characteristic zero, a! never vanishes and so
D is generated as an algebra by Yp,..., Yy, just like the polynomial ring. However, in
characteristic p, D is infinitely generated by all the divided power monomials Yj[p g for
all j =0,...,N and integers k£ > 0. The proof of this fact follows from Lucas’ identity:
given base p expansions a = > a;p® and b= >_ b;p* for a,b € N, then

() =T1(2) o

In particular, suppose a = (ao,...,an) where a; has base p expansion a; = Zaijpi
for j = 0,...,N. Then, by Lucas’ identity and equation (4.1), Yj»[aﬂ =11 Yj[a”pl] and
(yj[Pl])am = aij!Yj[a”pl}. We have

N (s, p'] N (Y[PL])a”
Y[a] — HHY’] Pl _ H H ]aij! ,

=0 i =0 i

where each denominator is invertible modulo p since 0 < a;; < p for all ¢, j. Hence D is
infinitely generated by all the divided power monomials Yj[p g forall j =0,...,N and
integers k > 0.

We now revisit the characteristic zero case. Suppose K is a field of characteristic
zero and let S = K[yo,...,yn]| be a polynomial ring. Consider the action of R on S by

partial differentiation, which we represent by ‘o’. That is, if a = (ag,...,an) € Zggfl,
x® = x3°--- 23 is a monomial in R, and g € S, we write
0%g
rog=——=
9= ora

for the action of 22 on ¢ (extended linearly to all of R). In particular, if a < b, then

b!
2 o b _ b—a7

Y b _an?
where we use (4.2). This action gives a perfect pairing Ry X Sq — K, and, given a
homogeneous ideal I C R, we define I3 and ! in the same way as we do for contraction.
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Since we are in characteristic zero, the map of rings ® : S — D defined by ®(y;) = Y;
extends to all monomials via (4.3) to give ®(y*) = Y2 = a!Y'[2l. Thus S and D are
isomorphic. Moreover, if F' € R and g € S, then ®(F o g) = F ¢ ®(g) [20, Theorem 9.5],
so S and D are isomorphic as R-modules.

4.2. Differential operators and differentially closed filtrations

If a = (ag,...,an) € Z]>V6Ll, we extend our convention on monomials to differential
operators, letting aa% = ;:fo e 8‘9:5\,; . Independent of characteristic, the ring of K-linear
0 N

differential operators Dp, which acts on R, can be written as Dr = Upen D%, where

where we use the convention (4.2) for al. See [8, Remark 2.7]. For simplicity, we will
192
al dz=°

D, is a formal representation for the K-linear operator defined by D,(zP) = (g)xb_a if

write Dy =

The factors a%, appearing in ﬁ do not represent elements in the field;
b > a, and otherwise D, (zP) = 0. Note that in characteristic 0, alD,, = 88—; is the usual
partial differential operator. Thus in characteristic 0, Dy is generated as an R-algebra
by either D, for ¢ = 0,..., N (where e; is the ith standard basis vector) or by 6%1- for
1=0,...,N.

In characteristic p, using Lucas’ identity as in the divided power ring, one can show
that if a = (ag, . ..,an) where a; = Y a;;p’, then D, = H;‘V:o [1;(Dpie;)* /(aij!) where
the product just means the composition of the operators. This computation shows that
Dp, is generated as an R-algebra by {Dpiej :0 < j < N,0 < }. Recall that a filtration
of ideals Z = {I,,},>1 of a ring R is a family which satisfies I,41 C I, for all a € N.
Note that we don’t require a filtration to be a graded family.

Definition 4.1. Suppose R = K[xo, ..., 2] and let Z = {I,,},>1 be a filtration of ideals.
We say that Z is differentially closed if, for every n > 0, every D, € D?{l, and every
Fel,, D.F € In—|a\'

The following two lemmas follow immediately from our discussion of the R-algebra
generators of Dg.

Lemma 4.2. Suppose R = Klzo,...,xn|, where K has characteristic zero, and T =
{L.}n>1 s a filtration of ideals so that for every n > 1 and every F € I,,41, % el,
fori=0,...,N. Then T is differentially closed.

Lemma 4.3. Suppose R = K[xo,...,xn], where K has characteristic p > 0, and T =
{I,}n>1 is a filtration of ideals so that for every i € N, n > 1+ p' and every F € I,
Dyie,F' € I, i for j = 0,...,N, where €; is the jth standard basis vector of ZN+1,
Then T is differentially closed.
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Example 4.4. Let I C R = K[, ..., 2zxn] be a homogeneous ideal. The nth differential
power of I is

I<"> = {f € R| Da(f) € I for all D, € D'},

Every differential power of I is an ideal by [8, Proposition 2.4]. The family Z =
{I<">}>, is clearly a differentially closed graded filtration of ideals.

If I = I(X) is the ideal of a projective variety X C P¥ for K characteristic 0 or a
radical ideal for K a perfect field, the Zariski-Nagata theorem [49,41] and its extension
to perfect fields [8, Proposition 2.14] states that the symbolic powers and differential
powers of I coincide, that is (™ = I<"> for n > 1. In either case, 7 = {I(”)}nzl is a
differentially closed graded filtration. We will see in Example 4.14 that, by using Zariski’s
main lemma on holomorphic functions [49] instead of the Zariski-Nagata theorem, we
can drop the assumption that K is perfect.

Example 4.5. Suppose R = K[z, ...,zn], I C R is any ideal, and Z = {I"},,>1 is the
graded filtration consisting of powers of I. We prove that Z is differentially closed.

In characteristic 0, Z is differentially closed by Lemma 4.2 and the product rule. To
prove that Z = {I"™} is a differentially closed graded filtration in arbitrary characteristic,
it suffices by Lemma 4.3 to prove that

if f € I" then Dye,(f) € I" % for k <n —1. (4.4)

We prove this using the following extension of the product rule for differential operators
of the form Dye,: for any f,g € R

k
Dkel fg ZDJel D(k —j)eq (9) (4'5)
7=0

We include a proof of this identity in Appendix A. From (4.5) an induction yields

Diei(fi--fa) =Y, Dje;(f)Djse;(f2) -+ Djpe;(fn), (4.6)

Ji+-+in=k

where the sum runs over non-negative integers ji, ..., j,. To prove (4.4) it suffices, by
linearity, to prove it in the case f = f1--- f,,, where f; € [ for i =1,...,n. Since k < n,
at least n — k of the indices ji,...,j, are zero. Thus each term in (4.6) is a product
that includes at least n — k factors in I, and so each term is in I”~*. This proves that
Z = {I"},>1 is differentially closed in arbitrary characteristic.

Example 4.6. Suppose I C K[z, ...,z n] is an ideal and K has characteristic p. If ¢ = p®
for some integer e > 0 then the qth Frobenius power of I is the ideal
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9 = (e fer.
In [30], Hernandez, Teixera, and Witt introduce integral Frobenius powers

I = propmalel ... prelp]

where n has base p expansion n = ng +nyp+--- +ngp® and 1%l = (1%)ld = (1ld)a, Let
T = {I"]}. We show that Z is a differentially closed filtration.

First we show that if ¢ = p! (for any integer ¢ > 0) then differential operators of order
not divisible by ¢ vanish on I'9. By Lemma 4.3 it suffices to show that Dye,(f) = 0
when ¢t k and f € T4 To this end, suppose that f = ¢? for ¢ = p* and k is a positive
integer so that ¢ { k. Since f is a linear combination of gth powers of monomials, it
suffices to show that Dye,(f) = 0 when f is a monomial. So suppose that f = %%, where
a = (ag,...,an). Then Dye,(f) = Dye, (z9?) = (737)2%2 . Since ¢ does not divide
k the base p expansion k = ) ., kip® satisfies k, # 0 for some u < t. On the other
hand, the base p expansion qa; :_ijo aijpj satisfies a;; = 0 for all j < ¢. In particular,
a;, = 0. By Lucas’ identity, (qZ‘) =0 and we are done. Notice that since 119 = (1)ld],
this also shows that differential operators of order not divisible by ¢ vanish on I for
any a > 1.

Next we show that, if 1 <k < aand f € %9, then Dye, (f) € I(@=PNa (where we take
I° = R by convention). It suffices by linearity to consider the case f = f; --- f, € 1%,
where fi,..., fo € I'9. By (4.6),

Dkei(fl"'fa>: Z Djlei(fl)Djzei(f2)"'Djaei(fa)a

Jitetia=ka

and by the previous discussion we may assume that in the sum above j1,...,j, are all
divisible by ¢. Hence in each term of the sum above there are a — k factors which are in
119 thus the entire sum is in J(@=*)ld],

Finally, we induct on the length of the base p expansion of n to show that Dje, (I [”]) C
I"=Jl for j < n. If n < p then integral Frobenius powers agree with regular powers and
the result follows from Example 4.5. So suppose that n > p with base p expansion
n =mng+nip+---+ngp*. Put n’ = n — n,p*. Clearly the base p expansion of n’ has
length at least one less than the base p expansion of n. By definition, I = T ('] rslp®]
so it suffices to show that Dje,(fg) € I~ where f € I and g € 1™P°). Put ¢ = p*
and suppose j = aq + r where 0 < r < ¢ (we must have a < n; since j < n). By (4.5),

Djei(fg) = Z Dmei (f)D(jfm)ei (g) = Drei (f)Daqei (g),

m=0

since all differential operators of order not divisible by ¢ vanish on ¢g and all differential
operators of order at least ¢ vanish on f. By induction, D,.,(f) € T ('], By the previous
argument, Dy ge, (g) € I+~ @Il Since there are no base p carries in the addition (n/—7)+-
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(ns — a)gq, we have [ =r1[(na=a)la] — Jln'+n.a—(aq+n)] — Jn=i] by [30, Proposition 3.4].
By Lemma 4.3, this completes the proof that the integral Frobenius powers of an ideal
form a differentially closed filtration.

4.3. The inverse system of a differentially closed filtration

Emsalem and Iarrobino made a remarkable observation in [17]: even though the inverse
system of an ideal is not finitely generated, one could put together the graded pieces of
the inverse systems of successive symbolic powers of an ideal to get an ideal of S or D,
respectively. We show that this observation of Emsalem and Iarrobino can be extended
to a differentially closed graded filtration of ideals, using the following definition.

Definition 4.7. Suppose that Z = {1, },,cn is a filtration of homogeneous ideals. For each
integer s > 1 we define

cm= @ )= D U,

d>s+1 d>s+1

If the graded filtration Z is understood, we write £® instead of £3(Z). If the inverse system
is computed using the partial differentiation action of R on S, £5(Z) is a subspace of S,
while if the inverse system is computed using the contraction action of R on D, £5(Z) is
a subspace of D.

If 7T = {I,}nen is a graded family of ideals of R, we have defined £°(Z) so that

(11), = £4"(D)a

n

and hence

or equivalently

(%)d = (Iy_s)a- (4.7)

Example 4.8. Suppose p = [ag : -+ : ay] € PV, let m;, C R = K[zo,...,2n] be the
ideal of homogeneous polynomials vanishing at p, and put Z = {m}},>1. According
to Example 4.5 this is a differentially closed graded filtration.

For the action of R on S by partial differentiation, let L, = agyo+ ... +anyn € S be
the dual linear form of the point p € X. It follows from Definition 4.7 and Lemma B.1
that
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£(Z) = P )i = DLy ars = (LT

d>1 d>1

For the action of R on D by contraction, let L, = agYp + -+ + anYn € D be the dual
linear form of p and put LLk] = Zlblzk abe ---a?\}vY[b}. It follows from Definition 4.7
and Lemma B.1 that

L:I) = @d21(mg)j_+s
=@ oy span{YPL s +1<c<d+sfa] =d—c}
= <L£}C] re>s+1).

Note that £5(Z) is an ideal of S (respectively D), although it is not a finitely generated
ideal of D in positive characteristic.

Our main result in this section is that £° is an ideal of D (or S) precisely when 7 is
a differentially closed filtration of homogeneous ideals.

Theorem 4.9. Suppose R = K[z, ...,xn] and let T = {I,,}n,>1 be a filtration of homoge-
neous ideals. Then L5(T) is an ideal of D (arbitrary characteristic) or S (characteristic
0) if and only if T is differentially closed.

In the proof of Theorem 4.9, we will use the following formula which we expect is
known to experts. We give a proof of this identity (and others) in Appendix A.

Lemma 4.10. Suppose F' € R is a homogeneous polynomial and g € D is a homogeneous
divided power polynomial. In arbitrary characteristic,

k
k k—1
Fo(YMg) =3 "Y"U(Die;(F) 0 g)
1=0

forj=0,...,N.

Proof of Theorem 4.9. We prove the result for R acting on D by contraction. Put £° =
L5(T). Note that £* is an ideal of D if and only if Y'[Plg € £ for every algebra generator
Yl of D. In any characteristic, £° is an ideal if and only if Yj[k] g € L° for every
7=0,...,N and any k > 1 by Lemma 4.2 and Lemma 4.3. Since L? is clearly graded,
we may assume g is homogeneous, say of degree d. By Definition 4.7, g € £} if and only
if g € (Id__ls)d. It follows that £? is an ideal if and only if Yj[k]g €Ly = (Id__&k_s
foralld>s+1,0<j<N,k>1and g€ (I,2,),

Fix a degree d and an index 0 < 5 < N. Then Yj[k]g € (I;_&k_s)d+k

if and only if Fo(Yj[k]g) =0 for every F' € (lg1x—s)qy), and g € (Id:ls)d. By Lemma 4.10,

)d+k

forall g € (I;},),



M. DiPasquale et al. / Advances in Mathematics 430 (2023) 109208 23

Fo(YNg) =Die,(F)og+Y" (D_rye,(F) o g)+-+-+ Y (Feg)
= Dk:ej (F) ®4g,

where the final equality follows because Dye; (F) has degree at least d+1for 0 <t < k—1
and g has degree d. It follows that Yj[k]g € (]djrlk_s)d+k if and only if Dye, (F') e g = 0 for
all '€ (Ig1k—s) g4y Which is to say Die; (F) € (la—s)a for all F' € (layx—s)qy)- Thus Z
is differentially closed if and only if £° is an ideal.

If R is acting on either S or D in characteristic 0, the proof can be simplified. The
use of Lemma 4.10 can be replaced by Lemma A.2 (for S) or Lemma A.3 (for D). O

Remark 4.11. Our interest is primarily in graded filtrations of homogeneous ideals, so
we have stated Definition 4.1 and Theorem 4.9 for a filtration of homogeneous ideals.
However, Definition 4.1 and Theorem 4.9 only use the hypothesis that Z is a family of
homogeneous ideals.

4.4. Intersecting differentially closed graded filtrations

In this section we describe how £°(Z) behaves under intersection of filtrations. This
will give us a number of additional examples of families of differentially closed graded
filtrations. Suppose A is an index set and Z, = {I, n}nen is a filtration of ideals of R
for each a € A. We write NgeaZ, for the filtration {Necalon}neN-

Proposition 4.12. Suppose A is an index set and I, is a differentially closed graded
filtration of ideals for each a € A. Then

(1) NaeaZ, is a differentially closed graded filtration of ideals and
(2) L5(NaeaZa) = X gea £°(Za)

Proof. For (1), it is clear that N, 4Z, is a filtration. We show that it is graded. Given any
two positive integers m,n, suppose f € (NacaZa),, = Nacalam and g € (NacaZls), =
Nacalan. Since I, is a graded family for every a € A, fg € I myn for every a € A
and thus fg € Ngealymin = ( ﬂaeAIa)m+n- Now we show that Nge aZ, is differentially
closed. Suppose f € (NaeaZa), = Nacalan Since 7, is a differentially closed family for
every a € A, Da(f) € Iy pn—jal for every a € A and Dy € D%!. Therefore Da(f) €
Nacalan.

Now we prove (2). Since the construction of £* is accomplished by putting together
graded pieces, it suffices to show that

‘Cs(maEAIa)d = Z L® (Ia)d7

a€A

for any integer d > 0. From Definition 4.7, it suffices to show that
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(Naealan)a)™ =Y (IE,)a.

a€A

For any fixed d > 0, the intersection on the left hand side and the sum on the right
hand side need only run over finitely many of the graded filtrations {Z,},c (since the
intersection occurs in the finite dimensional vector space Ry and the sum occurs in
the finite dimensional vector space Sg). Then the equality follows from the fact that
(UNV)Lt =U+ +V+ for any vector subspaces U,V C Ry [20, Lemma 2.7]. O

Example 4.13. Let A be an index set, I, an ideal of R, and {r,,}nen an increasing
subadditive sequence for every a € A. For an ideal I, C R, consider the filtration
T, = {Is"" }nen- Since {74, nen is increasing, this filtration is differentially closed
by Example 4.5. It is graded because

Ta,i JTa,j — JTa,itTa,j Ta,it+j
[rei]red =] C ITeits,

where the final containment follows because rq;1; < 7q; + 74 ;. Thus {I;""}heN is a
differentially closed graded filtration for every a € A. It follows from Proposition 4.12 that
T = NaeaZ, is a differentially closed graded filtration, £%(Z) is an ideal, and £5(Z) =
Y oaca L£°(Za). If {ran}tnen is simply an increasing sequence for every a € A, Z, is a
differentially closed filtration, but not necessarily a graded family. The same conclusions
still follow, that is, Z = NyecaZ, is a differentially closed filtration, £°(Z) is an ideal, and
L3(T) = > ,ca L£L5(Za), but we may lose a reciprocity for asymptotic growth factors that
we explore in Section 4.5.

Example 4.14. If K is a field and I is a radical ideal of R = K[z, ...,2n], we show that
T = {I™} is a differentially closed graded filtration. Let Max(R) be the collection of
maximal ideals of R. According to Zariski’s Main Lemma on Holomorphic Functions [49]

(see also [8, Theorem 2.12]), I(") = (1  m™. The conclusion now follows from Ex-

meMax(R)
ICm

ample 4.5 and Proposition 4.12.

Example 4.15. In this example we state the main results of [17] in terms of the notation
we have introduced. Let K be an algebraically closed field. We can build on Example 4.14
to compute £°(Z) where Z = {I(X)™} C R consists of the symbolic powers of the ideal
of a projective variety X C P¥. For a point p € P¥, write m, C R for the ideal of p. In
this context, Zariski’s Main Lemma on Holomorphic Functions reads

1(xX)™ = () my.
peEX
Put £°(X) = L£3(Z). For a point p € X write Z, = {m}},en and L%(p) = L(Z,).
From Example 4.8, £5(p) = (L3™!) C S if we consider the action of R on S and L*(p) =
(LLC] :¢ > s+ 1) if we consider the action of R on D.
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Proposition 4.12 yields that £°(X) = >_ .y £°(p). Thus we obtain
Lo(X)= (L :pe X)

for the action of R on S in characteristic 0. In arbitrary characteristic, for the action of
R on D, we have

L5(X) = (Ll[f] peX,c>s+1).

Example 4.16. Suppose {I,, },>1 is a differentially closed graded filtration in Rand J C R
is an ideal. We leave it to the reader to verify that {I,, : J>},>1 is also a differentially
closed graded filtration. This gives yet another way to see that symbolic powers are dif-
ferentially closed, since symbolic powers may be obtained by saturating ordinary powers
with respect to an appropriate ideal J, and we have seen in Example 4.5 that ordinary
powers form a differentially closed graded filtration.

4.5. Dual sequences for a differentially closed graded filtration

We now return to duality of sequences. One of the sequences we study is the sequence
a(I,) for a graded family of ideals {I,},>1. The next lemma begins our study of the
interaction of this sequence with £5(Z).

Lemma 4.17. Suppose T = {I,},>1 is a differentially closed graded filtration of ideals,
and put o, = a(I,). The following are equivalent:

o S/L3(T) (respectively D/L5(T)) has finite length,

e a, >n+ s forall n large enough.

In particular, S/L5(Z) has finite length for all s > 1 if and only if {an — n}luenN is not
bounded above.

Proof. Fix a positive integer s and put £° = £5(Z). Suppose S/L? has finite length.

Then
S
2 =0
(ﬁs () ) nts

for all n large enough. By (4.7), (In)n+s = 0 and hence a(I,) > n + s for all n large
enough.

Now suppose «(I,) > n+ s. Then (I,)n+s = 0, hence (S/L5(Z)),, = 0. If this holds
for all n large enough, S/L°(Z) clearly has finite length. The proof for D is identical. O

Remark 4.18. When X C PV is a projective variety in characteristic 0, we claim that
S/L%(X) has finite length if and only if X is non-degenerate (meaning X is not contained
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in a hyperplane). To see this, note that if X is contained in a hyperplane defined by
¢ = 0 for some linear form £ € R, then ¢" € I(X)™ for all n € N. Since we cannot have
a(I(X)™) < n, we have a(I(X)™) = n and a(I(X)™) —n = 0 for all n € N. Thus
S/L%(X) does not have finite length by Lemma 4.17. On the other hand, suppose X is

non-degenerate. Then X contains points po, ..., py which span PY. By Example 4.15,
L5(X) contains the ideal (L5, ..., L5t1). Since these are linearly independent, we may
change coordinates so that Ly, = Yo, .., Lyy = yn. Since S/(yst, ... y3") has finite

length, so does S/L£%(X). In arbitrary characteristic, we also have a similar result that
D/L%(X) has finite length if and only if X is non-degenerate. The proof is the same as
that in the case of characteristic 0. Notice that by Example 4.15, £5(X) contains the
ideal <L£fg, .. .,LLCJ]V,C > s+ 1), and it is clear that D/(yéc], .. 7yg\c,],c > s+ 1) has finite
length.

The second sequence we will study is the largest non-zero degree of D/L?(Z), which
we call the end of D/L3(Z). That is,

s (B el (), 19

Similarly, in characteristic 0, we define end(S/L£*(Z)) as the largest non-zero degree of this
quotient. If end(S/L%(Z)) < oo then it is well known that end(S/L?(Z)) = reg(S/L*(Z)),
where the latter is the Castelnuovo-Mumford regularity of S/L*(Z).

Remark 4.19. Let Z be a graded family of ideals. The sequence 85 = end(S/L%(Z))
(respectively Ss = end(D/L*(Z))) can be seen to be superadditive by interpreting it as

B, = end(S/L*(Z)) = max{d: (Iu—)a # 0} by (4.7).

The containment (Id—s)d(ld’—t)d’ - (Id+d’f(s+t))d+d' thus implies Bs + B < Byt
Below we give a more refined version of this observation.

Theorem 4.20. Suppose T = {I,}neN s a differentially closed graded family of proper

homogeneous ideals in R. Put oy, = a(I,,) and Bs = end(S/L3(T)) (respectively, Bs =

end(D/L5(Z))). Assume that the sequence {a, —n} is nondecreasing and not bounded

above. Then

{an — n}nen is @ nondecreasing subadditive sequence.
{Bs — s}sen and {Bs}sen are nondecreasing superadditive sequences.
—

)
)

3) Bs_sz(an_n)s
)
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Write & = a(Z) = lim, 00 %= and B(Z) = lims_, 0 % Then

a B
= and o = ———.
a—1 -1

B=

Remark 4.21. Under the hypotheses of Theorem 4.20 in characteristic 0, {a, — n}n>1
is always nondecreasing, which we can see as follows. Since Z is differentially closed, if
f € I, is a homogeneous polynomial of degree equal to «(I,,) (n > 1), then g—i el
for i = 0,...,N. Thus a(I,) < a(I,4+1) unless all partials of f vanish. This happens
if and only if f is constant, which is impossible since Z consists of proper ideals. Thus
a(l,—1) — (n —1) < a(I,) — n, which shows {a, — n},>1 is nondecreasing.

Proof. For (1), the sequence «, is subadditive by Lemma 3.3. Since n is linear, a;,, — n
is also subadditive.
We next prove (3). Set 7, = a,, — n. By Definition 4.7, we have

Bs =end(S/L®)
= max{d : a(I\?=%)) < d}
=max{d —s:a(I¢ %)) —(d—s5)<s}+s
=max{t: a(I®) -t <s}+s

:?S—FS,

which proves (3). Part (4) follows immediately from (3) and Theorem 2.6 (1).

For (2), since 8s—s = (o, — n)s by (3), the definition of the transform «,, — n implies
{Bs — s} is also nondecreasing. That {3; — s} is superadditive follows from (3), (1), and
Theorem 2.6 (3). Clearly, we have 3, = (/s—s)+s. Since each of the sequences {3s—s}sen
and id = {s}sen are nondecreasing and superadditive, the same is true of their sum, /3.

Finally we prove the last two equalities, which are clearly equivalent. By Theorem 2.6
(3), the desired result follows by means of the identity

—1
i~y s n 1
1= lim ” S_<lima ”) —

a—1’

which is equivalent to the claims regarding @ and B The proof is identical for 8; =

end(D/L5(1)). O

Corollary 4.22. With the same setup as Theorem 4.20, we have inequalities

D sa nf
end ([ﬁ(I)) < — and < a(lp).

The same statements follow with D replaced by S.
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Proof. Put «a,,

= a(1,) and B, = end(D/L*(Z)). By Theorem 4.20, 3 = . Since f; is
superadditive, % < 3 = % Multiplying both sides by s gives the first inequality. Like-

a—

wise, by Theorem 4.20, a = % Since ay, is subadditive, = > a = % Multiplying
by n gives the second inequality. The proof is identical for S. O

Example 4.23. Continuing from Example 4.15, we consider the ideal I(X) of a projective
variety X C P¥ in characteristic 0, the filtration Z = {I(X)(™}, and the ideal £5(X) =
(Lyt!:p e X) C S. We assume X is non-degenerate so that S/L*(X) has finite length by
Example 4.18. Following Theorem 4.20, put a,, = a(I(X)™), B, = reg(S/L£(X)). Then
@ is the Waldschmidt constant of I(X) (see Definition 3.5). Theorem 4.20 yields that
the Waldschmidt constant can be expressed in terms of E (and vice-versa). Moreover,
Corollary 4.22 yields the bounds

B—lga(l()o ) and reg(ﬁs(X)>§a1.

The right-hand bound was observed in [12], where it was used to determine a lower
bound for the dimension of certain multivariate spline spaces.

5. Asymptotic regularity and the Seshadri constant

Throughout this section we consider a finite set of distinct points X = {p1,...,p} C
P¥ and denote by I(X) C R = K][zo,...,zy] the saturated ideal defining X with its
reduced scheme structure.

Definition 5.1. The multipoint Seshadri constant for X is the real number

0 =g =50

where C'is any curve with CNX # (), deg(C') is the multiplicity of R/I(C), and mult,,C
is the multiplicity of C' at p;, that is, the multiplicity of the local ring (R/I(C))p,, where
P, = I(p;). Tt suffices in fact to consider irreducible curves in the definition. Since we
only consider Seshadri constants of varieties X C P with respect to the line bundle
Op= (1), we suppress this information from the notation.

Seshadri constants were introduced in [9]. For nice expositions of the circle of ideas
this has led to in the intervening years see [37, §5.1] or [2].

In this section we establish a limit description for the multipoint Seshadri con-
stant €(X). This generalizes a similar result in [37, Theorem 5.1.17] for single point
Seshadri constants. Moreover we establish a duality between the sequence of jet sep-
aration indices, whose limit is the multipoint Seshadri constant, and the sequence of
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Castelnuovo-Mumford regularities of the symbolic powers for the ideal I(X); see Theo-
rem 5.5. We further demonstrate how this duality underpins the well known reciprocity
between the Seshadri constant e(X) and the asymptotic regularity (alternately termed
the s-invariant) of X; see [37, Remark 5.4.3]. Our methods recover this reciprocity rela-
tion; see Theorem 5.8 for the specific statement

A relevant sequence for our purposes requires the following definition.

Definition 5.2. Let I be a homogeneous ideal of a standard graded ring R with homoge-
neous maximal ideal m and d € N. Define the jet separation sequence of I by

s(I,d) =sup{k € N | reg(R/I*+D)) < a}.

The terminology “jet separation sequence” is justified by the following notion previ-
ously developed in the literature; see [37, Definitions 5.1.15 and 5.1.16] building on the
related notion of k-jet ampleness; see [3].

Definition 5.3. A finite set of points X = {pi,...,p,} C PV with defining ideals
Py, ..., P, is said to separate (uniform) k-jets in degree d if the following map obtained
by canonical projection onto each direct summand is surjective

Klzo, ..., &nla = @D (Klzo, ..., n] /P, (5.1)

We define the jet separation index of X in degree d to be the integer
s(X,d) = sup{k € N | X separates k-jets in degree d}.

The name coincidence gives an indication that the two notions defined above are
related, a fact that we make precise in the next proposition.

Proposition 5.4. Let X be a finite set of r > 2 points in PN with defining ideal 1(X) and
N > 2. Then for each d € N the jet separation indices of Definition 5.2 and Definition 5.5
agree, that is, s(X,d) = s(1(X),d).

Proof. In geometric language the map (5.1) can be written as

HY(PY, Opn(d)) — HO(PY, Opn (d)/mi*h) @ - @ HO(PY, Opn (d)/miT),  (5.2)
where m; is the ideal sheaf corresponding to P;. A necessary and sufficient condition for
the surjectivity of (5.2) is HY(PN,Z(*+D @ Opn (d)) = 0, where Z(+:+1) is the ideal sheaf

corresponding to I(X)*+1)_ This follows from the long exact sequence in cohomology
arising from the short exact sequence of sheaves

0 — I+ @ Opn (d) = Opn (d) = Opn (d)/mr ' @ @ Opn (d)/miT -0



30 M. DiPasquale et al. / Advances in Mathematics 430 (2023) 109208

and the vanishing of H*(P™,Opn~ (d)) due to N > 2. Expressing regularity in terms of
local cohomology (see Definition 3.11) yields

reg(R/T(X) ) = end HY (R/T(X) D) + 1 = end 2 (1(X)*+9) 41
= min{d | H'(P",Z(X)**) © Opx (d)) = 0}.

It follows that reg(R/I(X)* 1)) < d if and only if (5.1) is surjective in degree d. Thus
the claim follows by comparing Definition 5.2 and Definition 5.3. O

We can now relate the jet separation sequence of an ideal with the sequence of regu-
larities of its symbolic powers in the style of section 2.

Theorem 5.5. Let I be a homogeneous ideal of a graded ring R, set sq = s(I,d — 1) for
d € N, and set rj, = reg(I*+1)). Then

(1) the sequences {sq}aen and {ri}ren are nondecreasing and dual as follows:
Sq = 7d and ri, = ?k.

(2) If I is aspCM, the sequence {ri}ren is subadditive and {sq}a>r, is superadditive.

(3) In particular the shifted jet separation sequence s(X)[—1] = {s(X,d—1)}>req 1(x)@
for a finite set of points X in PN with N > 2 is superadditive.

(4) If I is aspCM, the asymptotic reqularity of I is related to the asymptotic growth of
the jet separation sequence by

lim s(1,d)
d—oo

— reg(1)!
Proof. We have directly from Definition 5.2 that
sq = sup{k | reg(R/IT*+V) < d — 1} = sup{k | reg(I* V) < d} = sup{k | r, < d}.

This establishes the first part of claim (1) as well as giving that {sq}4en is nondecreasing.
Applying the operator < to the identity s; = 74 and using Theorem 2.6 (1) yields
?k = 7k = 7. It follows from the definition of ?k that {ry}ren is nondecreasing.

To establish the remaining claims, recall from Lemma 3.12 that for aspCM I the
sequence {reg(I®))},cn is subadditive and the sequence {r}ren is the subsequence
{reg(I™)}ren[1]. Since {r}ren is nondecreasing the same is true of {reg(I®))},en.
Thus, Lemma 2.9 (1) allows to conclude that {ry}ren is subadditive.

Having established that {ry}ren is subadditive and that s; = 7d, we deduce that
{sa}a>r, is a superadditive sequence of natural numbers by Theorem 2.6 (3). Claim (3)
follows from (2) by means of Proposition 5.4.
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Claim (4) follows from Theorem 2.6 (4) and part (2) of the current proposition, which

yield 3 = 7~1. Combining this with identities reg(/) = 7 and limg_, oo S(Id’d) = 5 deduced

from Lemma 2.9 (3), we obtain

I
dggo d

Our next goal is to relate the multipoint Seshadri constant €(X) to the asymptotic
growth of the jet separation sequence for I(X). For this we will need a multipoint ana-
logue of the well-known Seshadri criterion [37, Theorem 1.4.13], which we include for
lack of a suitable reference.

Proposition 5.6 (Multipoint Seshadri criterion). Consider a finite set of points X =
{p1,...,pr} C PN with N > 2 and let B be the blowup of PN at X with projection map
w: B — PN and exceptional divisor E = Y._| E;. Let H = p*(Opn(1)). Then the
Seshadri constant of Definition 5.1 can be alternatively described as

e(X) =sup {1—7 :p,q € Qso, qH — pE is ample}
q

=sup{A € R: H — \E is ample} (5.3)

Proof. Temporarily denote &’(X) := sup % :p,q € Qso, ¢H — pE is ample ;. For p,q €
Qso set Ly, 4 := qH — pE to be a Q-divisor on B. Suppose L, , is ample and hence nef.
Computing the intersection product with the pullback of a curve C C PV gives

Lpq 1" (C) = (qgH — pE) - " (C) = qdeg(C) —p (Z mult, (C)> >0
i=1

and hence £(X) > 2 by Definition 5.1. We conclude that (X) > &'(X).

Conversely, suppose & < £(X). We show that Ly, is nef. If D is a curve in B, then
D = D;+ Dy with D; contained in E and D5 not contained in E' (we allow the possibility
that D; = 0 or Dy = 0). We have that £- Dy = —deg(Ng/g|p,) < 0 (where Ng/p is
the normal bundle of the exceptional divisor) and u(Ds) = C is a curve in P¥, thus by a
computation similar to the above display we conclude from g < e(X) that L, ,- Dy > 0.
Therefore we have

Lyq-D=(qH —pE)-D=—pE-Di+ Lpq-D> >0,

which shows L, , is nef. Suppose now that % < e(X). By [29, Section II, Proposition

7.10] the divisor L1 4 = dH — E is ample for d € N,d > 0. Fix such a d. Since £ < (X))

and the expression qp:;d is a continuous function of § € R~ one can find 6 € Q,§ > 0

so that ;’:6‘2 < g(X). Then the identity
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Lpg= Lp—s4-6d+0L1,4

shows that L, , is ample since L,_5 4—sq is nef by the above considerations, § > 0, and
L, 4 is ample; see [37, Corollary 1.4.10]. We have obtained that &'(X) < ¢(X), hence
the first equality in (5.3) is established. The second equality follows from the first noting
that L, , is ample if and only if L, ,/, = H — %’E is ample and hence the last set in the
display (5.3) is the closure of the first in the topology on R. O

The following is a multipoint version of [37, Theorem 5.1.17]. Our proof follows the
single point case closely, however the prior knowledge that the limit in the statement
exists as a consequence of Theorem 5.5 allows for slight simplifications.

Theorem 5.7. If X is a finite set of r points in PN, N > 2, the limit of the jet separation
index sequence exists and is equal to the multi-point Seshadri constant

X
e(X) = dli{‘go S(faid)

Proof. Set dy = reg(I(X)®). By Theorem 5.5 (3) we have that s = {s(X,d — 1) }4>d,
is a superadditive sequence of natural numbers. Using Lemma 2.9 (3) applied to s[1] =

S(d%"lx) exists.

{s(X,d)}a>dy—1, we see that limg

Suppose X = {p1,...,pr} with I(p;) = P;. Let C be an irreducible curve that contains

at least one point p;, € X. Assume d > dy — 1 and set k = s(X,d). Take F; € PF/PF,
_ n

one for each p; € X, so that the image of F}, in % ®r T%) is nonzero. This is possible

since

k
P," R _ P — P
Pk0+1 R i) =~ —Ii+1 # 0, where P;, =

10

0

ey’

10

—k , =k
in view of P;, # P;, + by Krull’s intersection theorem. Due to the surjectivity of the
map in equation (5.1) recalled below

Klzo, ..., Tnlda — @ (Klzo, ... 7:rn]/PikH)d,
i=1

there exists F' € Ry that maps to the tuple (Fy,. .., F,). Since F; € Pik/Pf“7 we have
FeNi_, PF=1I(X)®. Since F;, is nonzero modulo I(C') we have F' € I(X)®) \ I(C).
Since I(C) is prime, F is regular on R/I(C) and thus the associativity formula for
multiplicities provides an inequality

R T T
deg(C)-d=e (I(C)+F) > ;multpio -mult, F >k (Z multpiC’> :

=1
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We have shown for each curve C' with C'N X # () and each d > do — 1 that the following
inequality holds

deg(C)  _ s(X.d)

s(X,d)
Soi_ymult,,C —  d '

d

, thus e(X) >

Taking limits we deduce

s(d, X)

e(X) > lim

d—oo

(5.4)

It remains to establish the opposite inequality to (5.4). For this, fix integers p, ¢ with
0<Z<e(X)andlet p: B — P™ be the blow up of PV at X, with exceptional divisor
E and H = p*(O(1)) as in Proposition 5.6. Then L,, = ¢H — pE is ample by the
aforementioned result. By asymptotic Serre vanishing [29, Chapter III, Proposition 5.3]
we have that there exists my € N so that

HY(B,0g(mL,,)) = 0 for m > my.

The leftmost cohomology group is in turn isomorphic to the one listed below, by [37,
Lemma 4.3.16), where Z(*+1) is the ideal sheaf corresponding to I(X)*+1). Its vanishing

HY(P"™, Z(™P) @ Opn (mq)) =0

indicates via the definition of regularity in terms of local cohomology with respect to the
maximal homogeneous ideal m or R = k[P (see Definition 3.11) that

reg(1™?)) — 1 = reg(R/I"™")) = end H), (R/1(™")) + 1 = end H2 (I'™P)) 41
=min{d | H*(P",Z"") @ Opn(d)) = 0} < mg,

J(mp)
M<@=gform>>0.

mp mp p
Taking the limit as m — oo we obtain reg(l) < %. Equivalently, by Theorem 5.5 it
follows that

X,d _
lim sX.d) =reg(l)~' > L
d—o0 q

Replacing % by a sequence of rational numbers that converges to £(X) shows that

limg—yeo s()é’d) > ¢(X) and completes the proof. O

The following corollary recovers a particular instance of the well-known reciprocity
between the Seshadri constant and the asymptotic regularity noted in [7, Remark 1.3
and Theorem B]. Our main contribution here is to show that this reciprocity holds for a
very precise structural reason, that is, the duality of the sequences in Theorem 5.5.
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Corollary 5.8. The asymptotic reqularity of a finite set X of r > 2 points in PN with
N > 2 is the reciprocal of the Seshadri constant. In symbols, we have

reg(1(X)) = e(X)™.

Proof. Theorem 5.5 (5) together with Proposition 5.4 and Theorem 5.7 yields the desired
conclusion

reg(I(X)) = (lim %‘lm))_l = <lim M>_l =e(X)"h O

d—o0 d—o0 d

6. Homological reformulations of the Nagata—Iarrobino conjecture

In the following we refer to a wvery general set of r points in PV to mean outside
countably many proper subvarieties of the symmetric product Sym” (P?) of P,

In [41] Nagata established the upper bound @(I(X)) < /r for any set X of r > 9 very
general points in P2. Note that this upper bound also holds true for all sets of points
(see, e.g., [27, Example 1.3.7]). Nagata also proposed, in different language, the following
conjecture to the effect that very general sets of points attain the maximum value of the
Waldschmidt constant permitted by this inequality.

Conjecture 6.1 (Nagata). Any set X of r > 10 very general points in P? over a field of
characteristic zero satisfies a(I(X)™) > ny/r for all n € N. Equivalently, there is an
equality

a(I(X)) = V.

This statement holds true for r a perfect square, by Nagata’s work in [41], but it
remains open for all other values of r > 10. We comment on the equivalence of the two
claims in the above conjecture. For \/r ¢ N (the case that is still open), the conjectured
inequality for initial degrees in Conjecture 6.1 is equivalent to al(I(X)™) > ny/r. Utiliz-
ing the known upper bound &(Ix) < 1/r and the description of the Waldschmidt constant
as an infimum (see Definition 3.5), we see that the two statements in Conjecture 6.1 are
indeed equivalent.

Notable advances on Conjecture 6.1 have been made in [48,45,25,26], however in its
full generality it currently seems out of reach. See [5] for further information and possi-
ble generalizations of this long-standing conjecture. Conjecture 6.1 can be equivalently
reformulated in terms of the Seshadri constant as

e(X) = (6.1)

Vr
1/4/r is known to hold in P?; this is equivalent to the known
\/7 by the arguments in the proof of Proposition 6.5. Below

The inequality e(X)

<
upper bound a(Ix) <
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we use this equivalence to give further equivalent homological formulations of Nagata’s
conjecture. Intuitively, in homological terms this conjecture becomes the statement that
the width of the Betti table of the symbolic powers of I(X) grows sub-linearly.

Conjecture 6.2. Any set X of r > 10 very general points in P2 over a field of character-
istic zero satisfies

a(l(X)) =rteg(I(X)), equivalently  lim reg(1(X)™) — a(I1(X)™)

n—00 n

=0.

Tarrobino [34] generalized Conjecture 6.1 to projective spaces of arbitrary dimension.

Conjecture 6.3 (Iarrobino). A set X of r wvery general points in the projective space
PN over a field of characteristic zero with v > max{N + 5,2V} and (r,N) ¢
{(7,2),(8,2),(9,3)} satisfies a(I(X)™) > n ¥/r for all n € N. Equivalently, apart from
the given list of exceptions, there is an equality

a(I(X)) = Vr.

Conjecture 6.3 is known to hold only for the case r = s™; see [18].
We use our results to reformulate Conjecture 6.3 in homological terms using inverse
systems.

Conjecture 6.4. Under the hypotheses of Conjecture 6.3 the following holds

L re(8/0°(X)
8—00 S % —-1’

where L3(X) = (L3F', ... L5t € S =Klyo, ..., yn].

Proposition 6.5. Conjectures 6.3 and 6./ are equivalent. Moreover, Conjectures 6.1 and
0.2 are equivalent.

Proof. The equivalence of Conjecture 6.4 to Conjecture 6.3 follows immediately from
the duality of asymptotic invariants given by Theorem 4.20.

Now we show the equivalence of Conjectures 6.1 and 6.2. From Definition 5.1 one sees
that there is an inequality relating the Waldschmidt constant, and the Seshadri constant

a(X) > re(X) (6.2)

Indeed, let C be a curve in P? with deg(C) = a(I™) and mult,,C = n for each i. Then
one has (X)) < a(fl—in)) by the definition of €(X) and the inequality follows by passing to
the limit. While equality need not hold in (6.2) in general, remarkably equality does hold
for a very general set of points X; see [4, Lemma 2.3.1]; thus under the hypotheses of our
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conjectures we have @(I(X)) = re(X). This justifies the equivalence of Conjecture 6.1
asserting a(I(X)) = /r and the identity (6.1) mentioned above.
Rewriting the identity a(I(X)) = re(X) using Corollary 5.8 yields

a(I(X)) - Fep(1(X)) = 7.

It follows that the claim @(I(X)) = /7 of Conjecture 6.1 is equivalent to reg(I(X)) = /7
and also equivalent to a(I(X)) = reg(I(X)). The second claim of Conjecture 6.2 follows
from feeding the definitions of these asymptotic invariants into the equality. O

Example 6.6. Here we illustrate some of the exceptions to Conjecture 6.3 and Con-
jecture 6.4. By contrast to Conjecture 6.3, which predicts irrational values for the
Waldschmidt constant whenever ¥/r ¢ N, the Waldschmidt constant and the asymp-
totic regularity for sets X of few general points in P are given by rational functions in
the number of points, in particular they are rational numbers given by

=3 if #X =r <N +1,
=1 if #X =7 = N 4 3 is even,

=2) S 4X =pr=N+3is odd.

See [14, Proposition B.1.1] for the last three cases and [42, Proposition 5.1] for a more
general result in this direction. Utilizing the formulas in Theorem 4.20 we obtain the
asymptotic growth factor for the regularity of the inverse systems £°(7)

r i #X <N +1,
5 reg(S/L5(X)) r/2 if#X =r=N+2,
im ——— 2~ =
s00 S (r—1)/2 it #X =r= N + 3 is even,

r(r—2)/2(r—1) i #X =r =N+ 3is odd.
The same result can be derived from [42, Theorem 4.4 and Theorem 4.7].
7. Closing comments and invitations for future work

We close with a number of questions which arose in the process of our writing. The
first two questions concern the subadditivity of sequences associated to the symbolic
powers of an ideal. We saw in section 3 that if v : R — Z is an R-valuation then the
sequence v(I (”)) is subadditive for any ideal I C R, and we relate sequences of this form
to the resurgence p(I) and asymptotic resurgence p(I). In section 3.2 we define

An(I) = max{d : IV ¢ 1"}t and f,(I) =max{d: @ ¢ I},
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where I™ is the integral closure of I". We have examples of ideals I where \,(I) is not
superadditive since p(I) = lim, o0 22 # sup{\,/n} = p(I). However, the sequence 3,
necessarily satisfies lim,,_, %" = sup{B,/n} = p(I) by Proposition 3.10, which is one
of the properties of a superadditive sequence. Thus it seems natural to ask if 5,(I) is a
superadditive sequence.

Question 7.1. For an ideal I in a reqular ring R, is the sequence 3, (I) = max{d : () ¢
1"} a superadditive sequence?

If T is an ideal so that Question 7.1 has a negative answer, then the failure of con-
tainment (%) ¢ I7 is necessarily detected by different valuations as n increases, which
is an interesting behavior.

Our next question concerns the (Castelnuovo-Mumford) regularity of symbolic powers.
If all symbolic powers of an ideal I are Cohen-Macaulay, Lemma 3.12 shows that reg(7 ("))
is a subadditive sequence, while Example 3.16 shows that this sequence may not be
subadditive even if I is a squarefree monomial ideal. This example is not so far from
being subadditive, however, which leads us to the following question.

Question 7.2. For a radical ideal I in a polynomial ring, is the sequence reg(I(”)) + K a
subadditive sequence for some appropriate integer K 2 In particular, is this true if K is
the number of variables in the polynomial ring?

In Example 3.16, a calculation shows that reg(J(m,s)®)) + K is subadditive for any
K > (m —2)(s—1); the number of variables in the ambient polynomial ring is m(s+1).

Our next question concerns the differentially closed graded filtrations of ideals in-
troduced in section 4. If T = {I,,},>1 is a differentially closed graded filtration of
ideals in R, we found in Theorem 4.20 a duality between the sequences o, = a(l,)
and 8, = end(D/L"(Z)) (with the contraction operation) or 5, = reg(S/L") (with the
differentiation action). This duality of sequences arose from Macaulay-Matlis duality.
Following the discussion of section 3, we note that «(I,) is a special case of the se-
quence v(I,) for an R-valuation v : R — Z. In general, v([,,) is subadditive and, in
case I, = I for a fixed ideal I, its asymptotic growth factor can be used to bound or
find the asymptotic resurgence of I (Proposition 3.8 and Proposition 3.10). With this in
mind, we ask the following open-ended question.

Question 7.3. Suppose T = {I,}n>1 s a differentially closed graded family. Does
Macaulay-Matlis duality give a meaningful algebraic interpretation for the sequence Im
for an arbitrary valuation v : R — Z, extending Theorem 4.207 If not, can the valua-
tion v be used to twist Macaulay-Matlis duality in a way that does give a meaningful
interpretation of v(I™)? As in Theorem /.20, we likely need to shift the sequence v(I,)
appropriately.
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If Z = {I,} consists of the symbolic powers of a radical ideal over an algebraically
closed field, then Emsalem and Iarrobino [17] give a concrete description for the ideal
L5(Z). Inspired by their description, we pose the following question.

Question 7.4. If T = {I,}n>1 is a differentially closed graded filtration, under what
conditions can we give a concrete description of the generators of L5(Z)? Under what
conditions do the generators have a geometric interpretation?

From the end of section 4, we have a large pool of differentially closed graded filtrations
for which we can ask Question 7.4.

If T = {I,},>1 is a graded family of monomial ideals, then one may associate to Z
its Newton-Okounkov body [24]. For instance, if Z consists of the symbolic powers of a
monomial ideal I, the Newton-Okounkov body of Z is the symbolic polyhedron introduced
in [6]. It is natural to ask if there is an appropriate dual body for the family £5(Z). We
plan to address aspects of the following question in an upcoming paper.

Question 7.5. If T is a differentially closed graded family of monomial ideals, is there an
associated convex body which encodes the monomials not in L5(Z)? If so, when do these
convex bodies limit to a polyhedron (like the symbolic polyhedron)? In what situations
can we determine the bounding inequalities?

In section 6, we saw a number of reformulations of the Nagata conjecture concern-
ing the Waldschmidt constant of at least 10 very general points in P2. Conjecture 6.2
rephrases this conjecture as an equality of the Waldschmidt constant with the asymp-
totic regularity. We ask which varieties X satisfy sub-linear growth for the width of the
Betti table of I(X)(™).

Question 7.6. What varieties X can Conjecture 6.2 be extended to? That is, for what
varieties X do we have the equality a(I(X)) = reg(I(X))?

Let w(I™) be the largest degree of a generator of I™). We always have a(I(™) <
w(I™) < reg(I™). If I = I(X) is the ideal of a variety answering Question 7.6 positively,
then w(I™) — a(I™) must also grow sub-linearly. There are many ideals for which it is
known that reg(1(™) differs from w(I(™) by a constant independent of n - for instance
star configurations of hypersurfaces [40]. However, in the case of star configurations
of hypersurfaces, w(I™) — a(I™) does not grow in a sublinear fashion, hence star
configurations of hypersurfaces do not satisfy a(I) = reg([).

If I is a monomial ideal, then [6] shows that &([) is the minimum sum of the coor-
dinates of a vertex of the symbolic polyhedron of I, while [15, Theorem 1.3] shows that
reg(]) is the maximum sum of the coordinates of a vertex of the symbolic polyhedron
of I. Thus Question 7.6 has a positive answer for a monomial ideal precisely when all
vertices of the symbolic polyhedron have the same coordinate sum. More concretely,
Question 7.6 has a positive answer for any monomial ideal I = (x®*,... %) whose
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symbolic polyhedron has a unique maximal bounded face (under inclusion) which can
be described as both:

e The convex hull of the vertices of the symbolic polyhedron or
o The intersection of the symbolic polyhedron with a hyperplane of the form |a| = ¢
for some rational number c.

For instance, both bullet points are satisfied if I is the edge ideal of a bipartite graph
(in this case it is known that the ordinary and symbolic powers coincide [22]). More
generally both bullet points are satisfied if I is a monomial ideal generated in a single
degree and I™ = 7 for all n > 1 (for squarefree monomial ideals this is also related
to the packing problem [8]). We are not aware of an algebraic characterization for those
monomial ideals which have a symbolic polyhedron whose vertices all have the same
coordinate sum.

Remark 7.7. If I is a squarefree monomial ideal which satisfies the two bullet points
above, then we can show that I is generated in a single degree and that the number c in
the second bullet point above is precisely the generating degree of I. To prove this, we
need only show that for a squarefree ideal I there is at least one generator of I whose
exponent vector is a vertex of the symbolic polyhedron SP([).

Recall that if I is squarefree then there are monomial prime ideals Py,...,Px C R =
Klzo,...,zn] such that P, ¢ P; for any 1 < i,j < k,and I = PyN---N P,. Take a
generator of I which has minimal support; re-indexing the variables if necessary we may
suppose that M = xzg...x; is the product of the first ¢ + 1 variables of R. Since M has
minimal support among generators of I, the monomial M; = M/x; is not in I for any
i =0,...,t. Re-ordering the primes Py, ..., Py if necessary, we may assume that M; ¢ P,
for ¢ = 0,...,t¢. This implies that P; is generated by z; and some subset of the variables
{zt41,...,xn} for i = 0,...,t. Recall that the defining inequalities of SP(I) are given
by Zm,;er a; > 1for j=1,... kand a; > 0 for : = 0,..., N. Consider the system of

equations given by a;11 = ... = ay = 0 and Z aj =1, =0,...,t. Since x; € F;
r;EP;

and P; is generated by a subset of {z;, €411, ..., 2N}, this system has a unique solution

a;=1,1=0,...,t and a;y; = ... = ay = 0. This is a vertex of SP(I) and is clearly the

exponent vector of the monomial M, completing the proof.

In this paper we have explored the sequence duality of Definition 2.1 in the context of
initial degree and regularity of symbolic powers (and more generally, differentially closed
filtrations). We close with the following invitation to the reader.

Question 7.8. In what other algebraic-geometric contexts do subadditive and superaddi-
tive sequences naturally appear? For each such sequence, is there a meaningful algebraic
interpretation for the dual sequence of Definition 2.17
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Appendix A. Formulas involving differentiation and contraction

In this appendix we collect, for the convenience of the reader, proofs of some of the
formulas that we use in Section 4. Let R = K[z, ...,2 ] be a polynomial ring, D the
ring of K-linear differential operators on R, D the divided power algebra on the divided
power monomials Y2 with a € ZNH, and S the polynomial ring Klyo,...,yn]. We
have the action of R on D by contraction, written e, and R on S by partial differentiation,
written o. First we prove the higher order product rule (4.5).

Lemma A.1. Let f,g € R, i be an integer between 0 and N, and k > 1 an integer. In
characteristic 0 we have

2’“;( )aff ok=ig
= ox’? 8xk J

In arbitrary characteristic we have

k
Dkel fg ZD]el D(k—j)ei(g)'
7=0

Proof. The first formula follows from induction and the ordinary product rule. It also
follows from the second via the identification D, = i%, so we prove the second. We
start by proving the formula for f = 2* and g = 2}* where m,n are integers. Then

D, (™47 = ("f")a 7 and

k k

m n ek
ZDJ‘% D@ Z( )x j(k >x "
J=

S GIARIEES

J

m+4+n _

where in the identity above, if either j > m or kK — j > n, we interpret ac;n_j =0 or

x?_kﬂ = 0, respectively. The binomial coefficients are also interpreted in this way.

Kv

o~
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Now suppose that f = z® = x;"xa/ and g = 2P = x?xb/ for a,b € Z]>VO+1, where
22" and 2P are not divisible by x;. Then Dye. (fg) = 2 T® Dy, (zI"™) and likewise
Dije, (#*)D(j—jye, (z°) = 22+ Do, (@7")D(j—j)e, (x}) for j = 0,...,k. Since the same
factor of 22 T®" pulls out of both sides of the identity, it reduces to what we have already
shown. To get the result where f is an arbitrary polynomial and ¢ is a monomial, we use
linearity of the differential operators in f. Finally, to get the full result we use linearity

ing. O

Lemma A.2. Suppose g € S is a homogeneous polynomial. Let F' € R be homogeneous of
degree d > 1. In characteristic 0, we have

OF
Fo(y;g) = 9. 09T Ui (Fog)
J

for every 7 =0,...,N.

Proof. Suppose F' is a monomial. We induct on the exponent of x; in F'. First suppose
that the exponent of x; in F'is 0. In this case, y; acts as a constant as far as differentiation
by F is concerned and thus Fo(y;g) = y,;(Fog). Since we also have (OF)/(dz;) = 0, this
proves the lemma when the exponent of z; in F' is 0. Now suppose that the exponent on
x; is positive. Then we can write F' = x;F{ for some monomial Fy. We have

Fo(yjg) = (Forj) o (y;9) = Foo(zjo (y;9)) = Foog+Foo(yj(zjog9)),  (Al)

where the last equality follows from the product rule. Since the exponent of x; in Fy is
one less than the exponent of x; in F', our induction hypothesis yields

OF, OF,
Fyo(yj(zjoyg)) = axé o(zjog)+yj(Foo(zjog)) = 6; o(zjog)+y;(Fog).
J J

Substituting this in to the last equality in (A.1) yields

Fo(yjg) = Foog+ Foo (yj(zjog))

OF,
:Foog+87°0(xjog)+yj(Fog)
z;

OF,
= <F0+xj%?> og—l—yj(FOg)
J

OF
:870g+yj(FOg).

J

This proves the lemma when F' is a monomial. The general result follows from linearity
of the derivative. O
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Lemma A.3. Suppose g € D is a divided power homogeneous polynomial (that is, all of it
divided power monomials have the same degree). Let F' € R be homogeneous. In arbitrary
characteristic, we have

Fe(Yjg) = De,(F)eg+Y;(Feg)
for every 7 =0,...,N.

Proof. First, we show that the formula holds when F' = z7* and g = Yj["]. In fact, both
sides are 0 if n < m—2,andif n =m —1, Fe (Y,g) = x;.”o((nJrl)Yj[nH]) =m =
m+0= mz;"’_l D (Yj[m_l]) +0= D, (F)eg+Y;(Feg). Otherwise,

Fe(Yig)=(n+1)Y"" 7 =mam=te (V") + Y,y = D (F) e g+ Yj(F e g).

Now suppose F' = 27" and g = ylbl = Y[b/]Yj[n], where Y™l is not divisible by Y;. Then

Fe(Yig) =Y (Fe(v;y/")
= YPI(De,(F) o Y/") + YPIYj(F oY) = D, (F) e Y 4 Y;(F 0 YIPI),

since we have proved the identity for g = Yj[n] and we can pull Y™l in and out of the
contraction with F because Yl acts like a constant under contraction with F. Now

suppose F' = 12 = a:a,argn, where 22 is not divisible by z;, and g = Yl Then

Fe(Y;g) =2l e (a7 e (Y;g))

= 2™V o (Do, (27) 0 9) + 7 o (¥; (e 0 g) = De, () 0 g+ Y; (" 0 9),

since we have proved the identity for any divided power monomial g = Y[, contraction
is linear, differentiation with respect to x; commutes with 2*’, and contraction by z?
commutes with Y; because z*’ is not divisible by x;. Thus the desired equality holds if
F' is a monomial (if m = 0 we interpret :E;n71 as 0, not x;l) and g is a monomial. The

full result follows from linearity of the contraction. O
Lemma A .4. Suppose F € R and g € S are both homogeneous. In characteristic 0,

k .
K\ o, (0F
FO(yfg)—Z(i)y}“ <axi Og>
J

=0

for every 7 = 0,...,N and every k € N. If g € D is homogeneous then we have, in
arbitrary characteristic,
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for every 7 =0,...,N and every k € N.

Proof. In characteristic 0, both statements can be proven by induction on k, where the
base case is Lemma A.2 for S and Lemma A.3 for D. We leave the details to the interested
reader. The strongest statement is the second in arbitrary characteristic, and we prove
this one. (Note that the first statement also follows from the second in characteristic 0
by the identification Dje,(F') = L9E and the R-module isomorphism between S and

1! oz’
D.)
We start by proving the second statement when F' = 2’ and g = }/}["} for non-negative
integers m and n. On the one hand, we have
F Y[k] _ k+n m Y[k+n] o k+n Y[kJrnfm] A9
o (Y] g) = p )% oY = ) f . (A.2)
On the other hand,
k k m .
Y[k—i] Dio. (F _ Y[k—i] ™ % Y n
Sk D ) e0) - 0 ()
- m) iy o (A.3)

Mg

> (
()

In the above sum, the terms when i > m (corresponding to D, (F) = 0) or when

I
=

i

k—1i> k+n—m (corresponding to n < m — i, hence m;-”ﬂ' oy]w =0) are 0. The lemma
holds from the combinatorial identity

S ()= (1)

Suppose F' =z} and g = ybl = Y[b,]Yj[n]. Then the factor Yl will pull out of (A.2)
and of every summand in (A 3). Thus the result follows from what has been shown.
Now suppose F' = z® = 2 3: , where 2" is not divisible by x;, and g = YP!. Then

Fo(Y/)y=0"e(ae (ij g) =2 e (2;;0 Y N (Digy (27) g)). Now

(Zy[k Die,(z™) 0 g ) - iwa (Y[k (Dig, () .g))

1=
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where the first equality follows by linearity of contraction, the second because 22 does
not involve the variable x;, the third by the definition of contraction, and the fourth also
because z2 does not involve the variable z;. This proves the identity when F' and g are
monomials. The identity now follows when F' and ¢ are polynomials by linearity. O

Appendix B. The inverse system of powers of the ideal of a point

Emsalem and Iarrobino show in [17] that the fundamental computation when find-
ing the inverse system of the symbolic powers of a variety is finding the inverse system
of the symbolic powers of the ideal of a single point. We revisit this computation us-
ing Lemma A.4. Let p=1[by: by :...: by] € PV and

my, = <b1$0 —boﬂ?l,...,le’o — bol‘N> CR= K[Jjo,...,x]\/].

be the ideal of homogeneous polynomials vanishing on p. We write L, = boyo + ... +
byyn € S for the dual linear form. An important observation in [17] is that, if F € R is
homogeneous of degree d < k, then

FolLF = K

x (kid)!L’;_dF(p), (B.1)

where F(p) is the evaluation of F at p.

In arbitrary characteristic, we also let L, denote the dual linear form boYy + --- +
bnYNn € D, relying on context to differentiate between L, € S and L, € D. In D, we
define the divided power of L, by L,[,k] = jaj=k 00° b ylal,

The definition of LLk] is made precisely so that the analog of (B.1) holds. Namely, if
F € R is homogeneous of degree d < k, then

Fe LM = L= p(p), (B.2)

where again F(p) is the evaluation of F' at p. Both (B.1) and (B.2) follow from a direct
computation. The following result is shown in [17] (see also [20]).
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Lemma B.1. In characteristic 0,

S, ifd<n
nyL d
(mp )i = { L i n
In arbitrary characteristic,
L Dy ifd<n
(mp)d = [a]ylel . . . .
span{Y®I L, :d—n+1<c<d/al=d—-c} ifd>n

Proof. We prove the formula for the action of R on D. The case when d < n is clear, so
we assume that d > n. It is straightforward to show that, when d > n,

d+N+1)_<n+N
p

dim(mg)d:( N+1 N+1

Examining the terms of y[al LLC], we see that, for some 0 < i < N, the divided monomials

) and hence dim(m?); = (n + N).

N+1

of the form
{Y;-[C]Y[a/} :'Y; does not appear in YR d—n+1<c¢<d, and ¢+ [a'| = d}

all appear as a term in some Y[ILI on the right hand side. There are (7\,1]\1{) of
these monomials, thus the dimension of the right hand side is at least the dimension
of dim(m})7. Thus it suffices to show that Y[a]LI[,C] € (m)g ford—n+1<c<dand
l]a] = d — c. For this we take a form F' € (m}); and show that F' e (Y[a]L,[,c]) =0.

We induct on n and |a|. If n =1 or |a| = 0 then ¢ = d and FOLZ[)C} = FOLI[,d] = F(p)
by (B.2). Since F' € m,, F(p) = 0 and we are done. Now suppose n > 1 and |a|] > 0.
Then, for some 0 < i < N + 1, we can write Y2l = Yi[k]Y[a'] where 0 < k£ < d — ¢ and
Y; does not appear in Y27, By Lemma A .4,

3

k
o (VEILI) = SV (Dye, (F) e YIRILY). (B.3)
7=0

Note that if j = 0 then Dge,(F) = F and F o YL = 0 by induction on |a|. If
1 < j < k then Dje,(F) € m~7 by Example 4.5 and thus Dje, (F) e Y[al}LLC] =0 by
induction on n. So all terms in (B.3) vanish and we are done.

An identical strategy can be used to show the formula for (mg)j for the action of R
on S; the proof can be simplified a little using Lemma A.2 instead of Lemma A.4. O

Remark B.2. A different proof of Lemma B.1 relies on the GL y41-equivariance of the
differentiation and contraction actions (see [35, Proposition A.3]), under which we may
assume that p=[1:0:---:0].
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