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The starting point of this paper is a duality for sequences of 
natural numbers which, under mild hypotheses, interchanges 
subadditive and superadditive sequences and inverts their 
asymptotic growth constants.
We are motivated to explore this sequence duality since it 
arises naturally in at least two important algebraic-geometric 
contexts. The first context is Macaulay-Matlis duality, where 
the sequence of initial degrees of the family of symbolic powers 
of a radical ideal is dual to the sequence of Castelnuovo-
Mumford regularity values of a quotient by ideals generated 
by powers of linear forms. This philosophy is drawn from an 
influential paper of Emsalem and Iarrobino. We generalize this 
duality to differentially closed graded filtrations of ideals.
In a different direction, we establish a duality between the 
sequence of Castelnuovo-Mumford regularity values of the 
symbolic powers of certain ideals and a geometrically inspired 
sequence we term the jet separation sequence. We show that 
this duality underpins the reciprocity between two important 
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geometric invariants: the multipoint Seshadri constant and the 
asymptotic regularity of a set of points in projective space.

© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

As Michael Atiyah [1] points out, “Duality in mathematics is not a theorem, but a 

principle”. Indeed, forms of duality occur in all branches of mathematics manifesting 

in ways specific to the subject area. In this paper we study manifestations of duality 

which take effect primarily in an algebraic-geometric context. More precisely, our start-

ing point is a notion of duality for sequences of natural numbers. This prompts the 

question of determining the dual sequences for certain numerical sequences which occur 

in commutative algebra, for example, the sequence of initial degrees of a graded family 

of homogeneous ideals, or the sequence of Castelnuovo-Mumford regularity values of a 

family of ideals. Our techniques allow to relate the asymptotic growth factors of these 

sequences to those of the dual sequences. We explore this theme in contexts where these 

asymptotic growth factors carry significant meaning.

At the level of numerical sequences we single out two transformations which act on 

nondecreasing sequences of integers. Given a sequence α = {αn}n∈N , the transformed 

sequences are as follows:

←−α n = inf{d | αd ≥ n},

−→α n = sup{d | αd ≤ n}.

It turns out that these transformations are mutual inverses [36]. If furthermore α is either 

a subadditive or superadditive sequence (see Definition 2.3) then it has a well-defined 

asymptotic growth factor α̂ = limn→∞
αn

n . The above transformations interchange the 

classes of subadditive and superadditive sequences. Moreover, under these hypotheses, 
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we are able to derive the following reciprocation formulas for the respective asymptotic 

growth factors in Theorem 2.6:

−̂→α = α̂−1 and ←̂−α = α̂−1.

In fact, we generalize the above transformations as well as the reciprocation formulas in 

Theorem 2.5. The more technical statement of this result is relegated to section 2.

We apply the duality principle described above to several numerical sequences. Our 

interest in such sequences is spurred by the study of the family of symbolic powers 

{I(d)}d∈N of a homogeneous ideal I. In the case when I is the defining ideal of an algebraic 

variety X, this family features prominently in algebraic geometry by encoding the set of 

functions vanishing to higher order on X. In commutative algebra, the symbolic powers 

have been studied most recently by means of comparison with the family of ordinary 

powers {In}n∈N ; see [16,31,39,4].

A sequence of interest in this area of study is given by the initial degrees for the 

symbolic power ideals. Its asymptotic growth factor, dubbed the Waldschmidt constant, 

is α̂(I) = limd→∞
α(I(d))

d . It is well-known that this sequence is subadditive. The same is 

true for any sequence that results from applying a discrete valuation to a graded family 

of ideals (see Lemma 3.3). Taking this more general perspective leads to considering 

valuative sequences for any discrete valuation ν

βν
n = βν

n(I) = sup{d : ν(I(d)) < ν(In)}.

In Proposition 3.8 we apply our duality results to relate the growth factor β̂ν of this 

sequence to those of the sequences {ν(I(d))}d∈N and {ν(In)}n∈N . This has consequences 

on the containment problem between the ordinary and symbolic powers of I. Building on 

[11,10], we show that there exists a valuation ν for which the asymptotic growth factor 

of βν recovers the asymptotic resurgence of [23].

In section 4 we study the dual of a sequence closely related to the initial degree 

sequence of the family of symbolic powers. In this pursuit, we are led to consider a 

notion of inverse systems which dates back to Macaulay [38]. Emsalem and Iarrobino 

determined in an influential paper [17] the inverse system for the symbolic powers of a 

radical ideal. We generalize their results by introducing a new notion of differentially 

closed graded filtrations of ideals for which the inverse systems behave particularly well. 

Examples of differentially closed graded filtrations include many families of powers of a 

homogeneous ideal (differential, ordinary, symbolic, and integral Frobenius powers) and 

any family obtained by intersecting these.

Theorem (Theorem 4.9 and Theorem 4.20). Suppose I = {In}n∈N is a differentially 

closed graded filtration of proper ideals in R = K[x0, . . . , xN ]. Let D =
⊕

i≥0 Hom(Ri, K), 

equipped with the structure of a divided power algebra. For each s ∈ N put
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Ls(I) :=
⊕

d≥s+1

(
I⊥

d−s

)
d

⊆ D.

Then Ls(I) is an ideal of D for each s ∈ N. The sequence αn = α(In) is subadditive and 

βs = sup{d : (D/Ls(I))d �= 0} is superadditive. Assuming that the sequence {αn −n}n∈N

is not bounded above, we have

β̂ =
α̂

α̂ − 1
and α̂ =

β̂

β̂ − 1
.

Several forms of algebraic duality manifest themselves in the setup above. The degree-

wise vector space duality between R and D manifests itself via apolarity (orthogonality). 

The inverse systems considered in section 4 are a form of Matlis duality. Finally the 

projective duality between points in p = (p0 : · · · : pN ) ∈ P N and linear forms 

Lp = p0x0 + · · ·+pnxn ∈ R yields a celebrated description of Ls(I) when I is the family 

of symbolic powers for the defining ideal of a projective variety; see Example 4.15.

In contrast to the above setting where the algebraic duality is more evident while the 

numerical duality of asymptotic invariants is more elusive, we study a different setup 

where duality of asymptotic invariants has been observed before (see [37, §5.1]), but the 

underpinning reasons have not previously been discovered.

Theorem (Theorem 5.5 and Corollary 5.8). Let I be the defining ideal of a set X of 

r ≥ 2 points in P N . Set sd = s(X, d − 1) to be the jet separation sequence of X (Defini-

tion 5.3) and rk = reg(I(X)(k+1)) the sequence of Castelnuovo-Mumford regularities for 

the symbolic powers of I(X). There is a duality between these sequences

s = −→r and r = ←−s .

This duality underlies the following identity relating the Seshadri constant ε(X) (see 

Definition 5.1) of X and the asymptotic regularity of X

ε(X) = lim
d→∞

sd

d
=

(
lim

k→∞

I(X)(k)

k

)−1

=: r̂eg(I(X))−1.

In section 6 we take the opportunity to revisit the celebrated conjectures of Nagata 

and Iarrobino regarding linear systems of polynomials vanishing to higher order at a 

finite set of points in projective space. We give homological reformulations for these 

conjectures based on the results discussed above. This leads into further open problems 

presented in the final section 7.

2. Duality for numerical sequences

In this paper the set N of natural numbers does not include 0.
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The purpose of this section is to study duality of sequences of natural numbers. 

To define this duality we first generalize two operations on sequences introduced in 

[36]. These operations are discrete analogues for the notion of pseudo-inverse functions 

described in [43].

Definition 2.1. Given sequences α = {αd}d∈N and β = {βn}n∈N of real numbers define 

new sequences ←−α β , −→α β associated to the pair α, β in the following manner, where we 

allow that ←−α β
n, −→α β

n ∈ N ∪ {−∞, ∞} (by convention sup(∅) = −∞, inf(∅) = ∞):

←−α β
n = inf{d ∈ N | αd ≥ βn},

−→α β
n = sup{d ∈ N | αd ≤ βn}.

Setting idn = n yields the two particularly important sequences previously studied in 

[36], for which we use the shortened notation ←−α id = ←−α and −→α id = −→α . They are given 

by

←−α n = inf{d | αd ≥ n},

−→α n = sup{d | αd ≤ n}.

In the remainder of the paper we will be interested in situations when the sequences 

α, β consist of natural numbers and for all n ∈ N they yield ←−α β
n ∈ N and −→α β

n ∈ N.

Example 2.2. If α is a sequence of natural numbers there are identities 
−→
idα =

←−
idα = α.

We shall be interested in applying the transformations in Definition 2.1 to subadditive 

and superadditive sequences respectively. We now recall these notions.

Definition 2.3. A sequence of real numbers α = {αn}n≥n0
for some n0 ∈ N is called

• subadditive if it satisfies αi+j ≤ αi + αj for all i, j ≥ n0.

• superadditive if it satisfies αi + αj ≤ αi+j for all i, j ≥ n0.

Fekete’s lemma [19] guarantees the existence of α̂ = limn→∞
αn

n for any subadditive or 

superadditive sequence of real numbers α = {αn}n∈N , allowing for the value of the limit 

to be −∞ in the subadditive case and ∞ in the superadditive case respectively. In the 

subadditive case, the value of the limit coincides with infn∈N
αn

n and in the superadditive 

case with supn∈N
αn

n .

Definition 2.4. Given a subadditive or superadditive sequence of real numbers α =

{αn}n≥n0
, the asymptotic growth factor of α is the value of the limit

α̂ = lim
n→∞

αn

n
∈ R ∪ {−∞, ∞}.
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If additionally α consists of natural numbers, we have α̂ ∈ R≥0 ∪ {∞}.

We now arrive at our first main result. It shows, how the transformations in Defini-

tion 2.1 interact with the classes of subadditive and superadditive sequences and how 

they transform the respective asymptotic growth factors. In the statement we adopt the 

conventions that r/0 = ∞ and r/∞ = 0 for r ∈ R>0 and ∞/0 = ∞, 0/∞ = 0.

Theorem 2.5. Let α, β be sequences of positive real numbers such that α is subadditive 

and β is superadditive. Assume also that −→α β
n, 

←−
β α

n ∈ N for each n ∈ N. Then we have

(1) the sequence −→α β is superadditive and satisfies −̂→α β = β̂/α̂.

(2) the sequence 
←−
β α is subadditive and satisfies 

←̂−
β α = α̂/β̂.

Proof. (1) Let m, n ∈ N and set d = −→α β
m and d′ = −→α β

n. By definition we have αd ≤ βm

and αd′ ≤ βn whence we deduce using subadditivity of α and superadditivity of β

αd+d′ ≤ αd + αd′ ≤ βm + βn ≤ βm+n.

It follows that −→α β
m+n ≥ d + d′ = −→α β

m + −→α β
n, establishing superadditivity for −→α β .

Assume first that α̂ �= 0 and β̂ ∈ R (i.e., β̂ �= ∞). Since −→α β is superadditive, we have

−̂→α β = sup
n∈N

{−→α β
n

n

}
= sup

{
d

n
| αd ≤ βn

}
. (2.1)

The identities α̂ = lim
d→∞

{
αd

d

}
= inf

d∈N

{
αd

d

}
and β̂ = lim

n→∞

{
βn

n

}
= sup

n∈N

{
βn

n

}
yield

β̂

α̂
= sup

n,d∈N

{
βn

αd
· d

n

}
,

whence we deduce that β̂
α̂ ≥ βn

αd
· d

n ≥ d
n whenever αd ≤ βn. Combining this with (2.1)

we arrive to the conclusion β̂
α̂ ≥ −̂→α β .

To establish the converse inequality it suffices to show that for all n, d ∈ N with 
d
n < β̂

α̂ we have d
n ≤ −̂→α β . Assuming that d

n < β̂
α̂ or equivalently that d

n · α̂ < β̂ and 

writing d
n · α̂ = lim

t→∞

d
n · αdt

dt and β̂ = lim
t→∞

βnt

nt allows to conclude that for t � 0 we have

d

n
· αdt

dt
<

βnt

nt
, that is, αdt < βnt for t � 0. (2.2)

In view of the above inequality, (2.1) yields −̂→α β ≥ dt
nt for t � 0, which leads to the 

desired conclusion −̂→α β ≥ d
n . This concludes the proof of the claim −̂→α β = β̂/α̂.
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Now we treat the cases α̂ = 0 and β̂ = ∞. In both of these situations our convention 

yields β̂/α̂ = ∞. For arbitrary d, n ∈ N the inequality d
n · α̂ < β̂ is satisfied, therefore the 

same argument as in (2.2) yields −̂→α β ≥ d
n for all d, n ∈ N. It follows that −̂→α β = ∞ = β̂/α̂, 

as claimed.

(2) The second part is entirely analogous to the first. �

Specializing the previous theorem to the case when one of the sequences involved is 

id allows for a result that better portrays the duality of the transformations −→α and ←−α . 

To obtain a true duality theory one must restrict to the case when the input sequence α

is a sequence of natural numbers unbounded above. Specifically, the next result, which 

constituted the starting point of our project, shows that the transformations −→α , ←−α are 

mutual inverses and interchange the classes of subadditive and superadditive sequences, 

that, when restricted to these classes of sequences, the transformations −→α , ←−α reciprocate 

the respective asymptotic growth factors.

For the next result we utilize the convention that 0−1 = ∞ and ∞−1 = 0.

Theorem 2.6. Let α be a nondecreasing sequence of natural numbers.

(1) There are identities 
−→←−α = α and

←−−→α = α.

(2) If α is increasing, then there are identities 
−→−→α = α and 

←−←−α = α.

(3) If α is subadditive then {−→α n}n≥α1
is nondecreasing superadditive with −̂→α = α̂−1.

(4) If α is superadditive, then ←−α is nondecreasing subadditive with ←̂−α = α̂−1.

Proof. Assertion (1) as well as the assertions that whenever α is superadditive, ←−α is 

subadditive and whenever α is superadditive, then ←−α is subadditive are shown in [36, 

Corollary 2.8].

For part (2), note that whenever α is increasing the following hold

−→α αn
= sup{t : αt ≤ αn} = n (2.3)

←−α αn
= inf{t : αt ≥ αn} = n (2.4)

Given this, we obtain by applying equation (2.3) for α, −→α the following identity

−→−→α n =
−→−→α −→α αn

= αn.

Similarly, applying equation (2.4) for each of the sequences α, ←−α we obtain

←−←−α n =
←−←−α ←−α αn

= αn.

The remaining assertions of the theorem regard the asymptotic growth factors. These 

can be recovered from Theorem 2.5 as follows: first, observe that setting idn = n in yields 
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îd = 1, ←−α id = ←−α and −→α id = −→α . Note that if α is nondecreasing, so are −→α and ←−α by 

definition.

If α is a superadditive sequence of natural numbers then it is unbounded above as 

αn ≥ nα1 ≥ n. It follows that ←−α n ∈ N for all n ∈ N whenever the sequence α is 

superadditive. If α is a nondecreasing sequence it follows that −→α n ∈ N for all n ≥ α1.

Since id is both subadditive and superadditive, setting β = id in part (1) of Theo-

rem 2.5 yields for subadditive α that −̂→α = α̂−1 as in part (3) of Theorem 2.6, and setting 

α = id in part (2) of Theorem 2.5 yields for superadditive β that 
←̂−
β = β̂−1 as in part 

(4) of Theorem 2.6. �

Example 2.7. In the absence of the hypothesis that α is nondecreasing, it need not be 

true that 
←−−→α = α. Consider the sequence αn =

{
n if n is odd

n/2 if n is even.
Then we compute

n 1 2 3 4 5

αn 1 1 3 2 5
−→α n 2 4 6 8 10←−−→α n 1 1 2 2 3.

Likewise, in the absence of the hypothesis that α is increasing, it need not be true 

that 
−→−→α = α. Consider αn = 
n/2�. Then α is subadditive and nondecreasing (but not 

increasing), −→α n = 2n and 
−→−→α = αn = �n/2�.

Example 2.8. In the more general setting of Definition 2.1 one does not obtain a satis-

factory duality theory in the sense that the operations −→α β , ←−α β need not be mutually 

inverse even when both sequences α, β are nondecreasing. Indeed, consider αn = 
 n
2 �

and βn = � n
2 � which yield α �=

←−−→α β
β

and α �=
←−−→α β

α

according to the table below

n 1 2 3 4 5

αn 1 1 2 2 3

βn 0 1 1 2 2
−→α β

n −∞ 2 2 4 4
←−−→α β

β

n 2 2 2 2 2
←−−→α β

α

n 2 2 2 2 4.

We conclude by considering the transfer of the subadditive and superadditive prop-

erties from a sequence to its subsequences.

Lemma 2.9. Let α = {αn}n∈N be a sequence. Define for k ∈ Z the subsequence α[k] =

{αn+k}n∈N,n>−k, that is, the n-th member of the sequence α[k] is αn+k, provided n +k >

0.
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(1) If k ≥ 0 and α is subadditive and nondecreasing, then α[k] is subadditive.

(2) If k ≤ 0 and α is superadditive and nondecreasing, then α[k] is superadditive.

(3) If α̂ exists then α̂[k] exists as well and α̂[k] = α̂.

Proof. We focus on assertion (1), the second numbered assertion being similar. Under 

the hypotheses of (1)

α[k]a+b = αa+b+k ≤ αa+b+2k ≤ αa+k + αb+k = α[k]a + α[k]b

follows from the nondecreasing property of α for the first inequality and subadditivity 

of −→α for the second. Part (3) follows from

α̂[k] = lim
n→∞

an+k

n
= lim

n→∞

an+k

n + k
· lim

n→∞

n + k

n
= α̂ �

3. Subadditive and superadditive sequences from graded families

We are interested in subadditive and superadditive sequences which occur in algebraic 

contexts. The following considerations introduce types of sequences we shall focus our 

attention on in the remainder of the manuscript.

3.1. Valuations and initial degree

Recall that a discrete valuation on a field K is a homomorphism ν : K
∗ → Z on 

the units of K satisfying ν(xy) = ν(x) + ν(y) and ν(x + y) ≥ min{ν(x), ν(y)}. If K is 

the fraction field of a domain R then a valuation is determined by its values on R via 

ν(f/g) = ν(f) − ν(g), so we abuse notation by referring to valuations on R instead of its 

field of fractions. We furthermore restrict ourselves to valuations which are non-negative 

on R, which we call R-valuations.

Example 3.1. Given a maximal ideal m in a regular ring R, a simple example of an R-

valuation is αm(f) = max{k : f ∈ m
k}. If m is not a maximal ideal, αm need not be 

a valuation; αm(xy) ≤ αm(x) + αm(y) is always true but equality may not hold [32, 

Section 6.7].

Definition 3.2. If ν is an R-valuation, denote the minimum value taken by ν on I by

ν(I) = min{ν(f) : 0 �= f ∈ I}

If R is a standard graded ring with homogeneous maximal ideal m, then the initial degree

of I is the minimum value taken by the valuation αm in Example 3.1 on I

α(I) = min{deg f : 0 �= f ∈ I} = max{k : I ⊆ m
k}.
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Recall that a graded family of ideals I = {In}n≥1 of a ring R is a family which satisfies 

IaIb ⊂ Ia+b for all a, b ∈ N.

Lemma 3.3. Given a graded family I = {In}n≥1 of ideals of a domain R and an R-

valuation ν the sequence αn = ν(In) is subadditive.

Proof. The property ν(xy) = ν(x) + ν(y) implies that ν(IaIb) = ν(Ia) + ν(Ib) for all 

a, b ∈ N. It follows from the containment IaIb ⊂ Ia+b for all a, b ∈ N that αa+b =

ν(Ia+b) ≤ ν(IaIb) = ν(Ia) + ν(Ib) = αa + αb. �

One of the graded families of interest for this paper is formed by symbolic powers.

Definition 3.4. Given an ideal I of a ring R, the nth symbolic power of I is

I(n) =
⋂

P ∈Ass(I)

(InRP ∩ R) .

We set I(0) = R by convention.

The growth of initial degree of the symbolic powers of an ideal is captured by the 

Waldschmidt constant. This invariant, was first introduced by Waldschmidt [46] in the 

late 70s for finite sets of points in n-dimensional space and formally defined in terms of 

symbolic powers in [4]. It has often been featured implicitly in the geometric literature; 

see section 6 for further details and connections. More generally, the asymptotic growth 

factor of an arbitrary valuation applied to the symbolic powers of an ideal is dubbed a 

skew Waldschmidt constant in [11].

Definition 3.5. The Waldschmidt constant of a homogeneous ideal I is the real number

α̂(I) = lim
n→∞

α(I(n))

n
= inf

n∈N

α(I(n))

n
.

Given a valuation ν : R → Z, the skew Waldschmidt constant of a homogeneous ideal I

is the real number

ν̂(I) = lim
n→∞

ν(I(n))

n
= inf

n∈N

ν(I(n))

n
.

Throughout the paper J denotes the integral closure of an ideal J . The valuative 

criterion for integral closures [32, Theorem 6.8.3] states that for a fixed ideal I ⊂ R and 

every f ∈ R, f ∈ I if and only if ν(f) ≥ ν(I) for every R-valuation ν : R → Z. From 

this we get the following ideal membership test: there is containment J ⊂ I between 

two ideals if and only if ν(J) ≥ ν(I) for every R-valuation ν : R → Z. We now define 
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a sequence inspired by this criterion and its applications to the containment problem 

between the ordinary and symbolic powers of an ideal (see section 3.2).

We say that a valuation ν is supported on an ideal I if ν(I) > 0.

Definition 3.6. Given an ideal I ⊂ R and an R-valuation ν supported on I, define

βν
n = βν

n(I) = sup{d : ν(I(d)) < ν(In)}.

Remark 3.7. The fact that if R is Noetherian βν
n ∈ N ∪ {0} for each n ∈ N follows from 

Swanson’s theorem on linear equivalence of the symbolic and ordinary I-adic topologies. 

In detail, it is shown in [44] that there exists an integer � (possibly dependent upon I) 

such that I(�n) ⊆ In for all n ∈ N. This yields

ν(I(�n)) ≥ ν(In) = nν(I) > ν(R) = ν(I(0)).

Consequently, since the sequence {ν(I(d))}d∈N is nondecreasing, we have 0 ≤ βν
n < �n.

We come to our first application of Theorem 2.5.

Proposition 3.8. For any Noetherian domain R, any ideal I ⊂ R and any R-valuation ν

supported on I the sequence βν
n = βν

n(I) is superadditive and satisfies

β̂ν = lim
n→∞

βν
n

n
= sup

n∈N

{
βν

n

n

}
=

ν(I)

ν̂(I)

Proof. We first give an alternate definition for βν. Set γd = ν(I(d)) and δn = ν(In) −1 =

nν(I) −1 for n, d ∈ N. Note that γ is subadditive by Lemma 3.3, δ is superadditive by its 

definition, and we have γ̂ = ν̂(I) and δ̂ = ν(I). Then Definition 3.6 can be rewritten as 

βν =
−→
γδ. An application of Theorem 2.5 (1) yields that the sequence βν is superadditive 

and β̂ν = ν(I)/ν̂(I). The first equality in the claim follows from superadditivity of βν

and Fekete’s lemma. �

In the next subsection we interpret the asymptotic growth factor β̂ν in terms of an 

invariant of I termed asymptotic resurgence.

3.2. Asymptotic resurgence

The various invariants defined below under the name of resurgence were introduced 

to study the containment problem which asks for pairs of natural numbers d, n for which 

I(d) ⊆ In.

Definition 3.9. The resurgence of an ideal I, introduced in [4], is the quantity

ρ(I) = sup

{
d

n
: I(d) � In

}
.
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Its asymptotic counterpart is the asymptotic resurgence of I, introduced in [23]

ρ̂(I) = sup

{
d

n
: I(dt) � Int for t � 0

}
.

Versions of these invariants using integral closures were defined in [11]. These are the

ic-resurgence

ρic(I) = sup

{
d

n
: I(d) � In

}

and the ic-asymptotic resurgence

ρ̂ic(I) = sup

{
d

n
: I(dt) � Int for t � 0

}
.

It is shown in [11, Corollary 4.14] that ρic(I) = ρ̂ic(I) = ρ̂(I). By contrast, in general 

we have ρ̂(I) �= ρ(I); see [13]. Another resurgence number, ρint(I), introduced in [28], is 

given by

ρint(I) = sup

{
d

n
: Id � In

}
.

In this section we discuss two numerical sequences which arise in conjunction with 

these notions of resurgence:

λn = λn(I) = max{d : I(d) � In} and βn = βn(I) = max{d : I(d) � In}.

Notice that

ρ(I) = sup
n∈N

{
λn

n

}
and ρ̂(I) = sup

n∈N

{
βn

n

}

follows from the definition of resurgence and asymptotic resurgence, respectively. If R is 

a regular ring and I is radical then [10, Remark 5.5] implies that in fact

lim
n→∞

λn

n
= lim

n→∞

βn

n
= ρ̂(I).

The assumption that I is radical can be removed (see [10, Remark 4.23]). Thus we see 

that the sequence {βn} behaves like a superadditive sequence in the sense that

lim
n→∞

βn

n
= sup

n∈N

{
βn

n

}
.

Since there are examples where ρ(I) �= ρ̂(I) (see [13]), {λn} is not necessarily superad-

ditive. We do not know if β = {βn}n∈N is always a superadditive sequence. However, 
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we are able to replace β by a valuative sequence of the type discussed in Definition 3.6

which is superadditive and whose asymptotic growth rate is also equal to the asymptotic 

resurgence.

Proposition 3.10. Let I be an ideal in a regular ring R. For any valuation ν : R → Z, 

we have βν
n ≤ βn ≤ λn. Moreover there is a choice of valuation ν so that

β̂ν = lim
n→∞

βν
n

n
= lim

n→∞

βn

n
= lim

n→∞

λn

n
= ρ̂(I).

Proof. The inequalities βν
n ≤ βn ≤ λn follow from the definitions of the sequences and 

the valuative criterion for integral closures. The equalities

lim
n→∞

βn

n
= lim

n→∞

λn

n
= ρ̂(I)

follow from [10, Remark 5.5], as noted above. By [11, Theorem 4.10], ρ̂(I) = ν(I)/ν̂(I)

for some choice of valuation (in fact, one of the Rees valuations of I will accomplish this). 

Hence, for this valuation, Proposition 3.8 yields that limn→∞ βν
n/n = ρ̂(I), completing 

the proof. �

3.3. Castelnuovo-Mumford regularity

Definition 3.11. Suppose R =
⊕

i≥0 Ri is a graded ring with residue field K = R/R+

where R+ =
⊕

i>0 Ri. The Castelnuovo-Mumford regularity of a graded module M over 

R is

reg(M) = max{j − i | TorR
i (M, K)j �= 0}.

When M has finite length and R is standard graded the regularity can also be expressed 

as reg(M) = end(M) := max{i | Mi �= 0}. For arbitrary graded modules M over a 

standard graded ring R, there is an alternate definition in terms of the local cohomology 

modules of M supported at the homogeneous maximal ideal m

reg(M) = sup{end
(
Hi

m
(M)

)
+ i | 0 ≤ i ≤ dim(M)}.

Keeping with the theme of our writing, we are interested in families of ideals or 

modules whose Castelnuovo-Mumford regularities give subadditive or superadditive se-

quences. The subadditive case is considered in the following lemma, while a family with 

superadditive regularity sequence is illustrated in Remark 4.19.

Lemma 3.12. Given a graded family I = {In}n∈N of homogeneous ideals of a standard 

graded ring R so that each quotient ring R/In is Cohen-Macaulay of the same dimension 

dim(R/In) = d. Then the sequence of Castelnuovo-Mumford regularities of the members 

in the family {reg(In)}n∈N is subadditive.
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Proof. We may assume that the residue field of R is infinite by tensoring with an infinite 

extension of the base field if necessary; this does not change the Castelnuovo-Mumford 

regularity of the given ideals. Thanks to the Cohen-Macaulay property one may reduce to 

the Artinian case. In detail, fix a, b ∈ N and choose a sequence of linear forms �1, . . . , �d

which is simultaneously a regular sequence on R/Ia, R/Ib and also on R/Ia+b. Now 

set R̃ = R/(�1, . . . , �d) and Ĩn = In + (�1, . . . , �d)/(�1, . . . , �d) for n ∈ {a, b, a + b}. 

This gives that reg(Ĩn) = reg(In) for n ∈ {a, b, a + b}. Moreover, setting m to be the 

homogeneous maximal ideal of R̃, since each of the quotients R̃/Ĩn is Artinian we have 

for n ∈ {a, b, a + b}

rn = reg(In) = reg
(

Ĩn

)
= min{d :

(
R̃/Ĩn

)
d

= 0} = min{d : md ⊆ Ĩn}.

It follows from the containment IaIb ⊂ Ia+b that ĨaĨb ⊂ Ĩa+b. We deduce

m
ra+rb = m

ra
m

rb ⊆ ĨaĨb ⊆ Ĩa+b

and thus it follows that ra+b = reg
(

Ĩa+b

)
≤ ra + rb. �

Definition 3.13. Ideals I for which every member of the sequence of symbolic powers 

{I(n)} yields a Cohen-Macaulay quotient are dubbed aspCM ideals in [47].

The aspCM class includes complete intersection ideals, saturated ideals with 

dim R/I = 1, that is defining ideals for finite sets of points or fat points (not neces-

sarily reduced schemes supported at finite sets of points) in P N , ideals defining matroid 

configurations in P N [21], and generic determinantal ideals.

Remark 3.14. Even under the hypotheses of Lemma 3.12, the closely related sequence 

{reg(R/In)}n∈N need not be subadditive. Take for example In = (fn) where f is a 

homogeneous element of degree d > 0 in a standard graded polynomial ring R. Then 

reg(R/In) = dn − 1 is not subadditive.

We define an invariant which captures the asymptotic growth of the regularity for a 

family of ideals.

Definition 3.15. The asymptotic regularity of a family I = {In}n∈N of homogeneous 

ideals is the following limit, provided it exists,

r̂eg(I) = lim
n→∞

reg(In)

n
.

By way of Fekete’s lemma, Lemma 3.12 provides a set of assumptions under which 

the limit in Definition 3.15 exists. We shall be primarily interested in the asymptotic 

regularity for the family of symbolic powers I = {I(n)}n∈N of a given ideal I, which we 
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denote r̂eg(I). This family does not always satisfy the conditions of Lemma 3.12, but it 

does so, for example, when I defines a finite set of points in projective space. In this case, 

the existence of r̂eg(I) also follows from the much more general result in [7, Theorem 

B]. There are a few other instances where the existence of r̂eg(I) is known, for example, 

when I is a monomial ideal cf. [15, Theorem 3.6.], or more generally, when the symbolic 

Rees algebra of I is Noetherian, which is shown in the ongoing work of the second author 

with Hop and Hà.

The next example points out that in general the sequence {reg(In)}n∈N need not be 

subadditive for a graded family of ideals I = {In}n∈N even when that family consists 

of symbolic powers of monomial ideals and thus r̂eg(I) exists. The ideals J(m, s) in the 

next example yields Cohen-Macaulay quotient rings, but their symbolic powers do not, 

thus they are not aspCM.

Example 3.16. In [15, Theorem 5.15] Dung, Hien, Nguyen, and Trung produce examples 

of squarefree monomial ideals J(m, s) such that

reg
(

J(m, s)(t)
)

=

{
m(s + 1)n t = 2n

m(s + 1)n + m + s − 1 t = 2n + 1
.

Combinatorially the ideals J(m, s) are described as cover ideals for corona graphs ob-

tained by adding s pendant edges to each vertex of a complete graph Km. The ideals 

in this family were singled out as examples of squarefree monomial ideals for which the 

function t �→ reg(J(m, s)(t)) is not eventually linear. For these symbolic power ideals 

the regularity matches the largest degree of a minimal generator, which shows that if an 

ideal J is generated in degrees ≤ d one cannot conclude that J (t) is generated in degrees 

≤ td. This relates to a question of Huneke [33, Problem 0.4].

A necessary condition for the sequence {reg(J(m, s)(t))}t∈N to be subadditive is

reg(J(m, s)(2t1+2t2+2)) ≤ reg(J(m, s)(2t1+1)) + reg(J(m, s)(2t2+1))

which can be written equivalently as

m(s + 1) ≤ 2m + 2s − 2 or (m − 2)(s − 1) ≤ 0.

It is thus evident that the regularity sequence for the symbolic powers of J(m, s) is not 

subadditive whenever m > 2 and s > 1.

4. Inverse systems of differentially closed graded filtrations

One situation in which the duality between subadditive sequences and superadditive 

sequences naturally arises is in the theory of inverse systems. In this section we extend 

a construction using inverse systems from an influential paper of Emsalem and Iarra-

bino [17]; two sequences naturally associated to this construction exhibit the duality 
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of Section 2. We begin by recalling some details about contraction and differentiation, 

following the survey of Geramita [20, Lecture 9].

4.1. Contraction, differentiation, and inverse systems

Let K be a field and R = K[x0, . . . , xN ]. We use a standard shorthand for monomials 

– if a = (a0, . . . , aN ) ∈ ZN+1
≥0 , then xa = xa0

0 · · · xaN

N is the corresponding monomial in 

R. We define D =
⊕

i≥0 Hom(Ri, K), the graded K-dual of R. If xa is in Rd, we write 

Y [a] for the functional (in Dd) on Rd which sends xa to 1 and all other monomials in 

Rd to 0. As a vector space, D is isomorphic to a polynomial ring in N + 1 variables. 

However, as we recall shortly, D has the structure of a divided power algebra. For this 

reason, we call Y [a] a divided monomial.

The ring R acts on D by contraction, which we denote by •. That is, if xa is a monomial 

in R and Y [b] is a divided monomial in D, then

xa • Y [b] = Y [b−a] if b ≥ a,

and 0 otherwise. This action is extended linearly to all of R and D. This action of R on 

D gives a perfect pairing of vector spaces Rd × Dd → K for any degree d ≥ 0. Suppose 

U is a subspace of Rd. We define

U⊥ = {g ∈ Dd : f • g = 0 for all f ∈ U}.

Macaulay [38] introduced the inverse system of an ideal I of R to be

I−1 := AnnS(I) = {g ∈ D : f • g = 0 for all f ∈ I}.

If I is a homogeneous ideal of R then the inverse system I−1 can be constructed degree 

by degree using the identification (I−1)d = I⊥
d [20, Proposition 2.5]. In general, I−1 is 

an R-submodule of D which is finitely generated if and only if I is an Artinian ideal.

A priori, D is simply a graded R-module. However, D can be equipped with a 

multiplication which makes it into a ring, called the divided power algebra. Suppose 

a = (a0, . . . , aN ), b = (b0, . . . , bN ) ∈ ZN+1
≥0 . The multiplication in D is defined on mono-

mials by

Y [a]Y [b] =

(
a + b

a

)
Y [a+b], (4.1)

where

a! =

N∏

i=0

ai! and

(
a + b

a

)
=

(a + b)!

a!b!
=

N∏

i=0

(
ai + bi

ai

)
. (4.2)
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This multiplication is extended linearly to all of D. Let ei be the ith standard basis 

vector in ZN+1 and put Yi := Y [ei]. For a nonnegative integer n let Y n
i :=

(
Y [ei]

)n
and 

Y
[n]

i := Y [nei]. We see from equation (4.1) that Y n
i = n!Y [nei] = n!Y

[n]
i . More generally 

for a = (a0, . . . , aN ) set Y a =
∏N

i=0 Y ai

i . Since Y a =
∏N

i=0 Y ai

i =
∏N

i=0 ai!Y
[aiei] =

a! 
∏N

i=0 Y [aiei], another application of (4.1) allows to deduce that

Y a = a!Y [a]. (4.3)

See [20, Lecture 9] for additional details. In characteristic zero, a! never vanishes and so 

D is generated as an algebra by Y0, . . . , YN , just like the polynomial ring. However, in 

characteristic p, D is infinitely generated by all the divided power monomials Y
[pk]

j for 

all j = 0, . . . , N and integers k ≥ 0. The proof of this fact follows from Lucas’ identity: 

given base p expansions a =
∑

aip
i and b =

∑
bip

i for a, b ∈ N, then

(
b

a

)
=

∞∏

i=0

(
bi

ai

)
mod p.

In particular, suppose a = (a0, . . . , aN ) where aj has base p expansion aj =
∑

aijpi

for j = 0, . . . , N . Then, by Lucas’ identity and equation (4.1), Y
[aj ]

j =
∏

i Y
[aijpi]

j and 

(Y
[pi]

j )aij = aij !Y
[aijpi]

j . We have

Y [a] =
N∏

j=0

∏

i

Y
[aijpi]

j =
N∏

j=0

∏

i

(Y
[pi]

j )aij

aij !
,

where each denominator is invertible modulo p since 0 ≤ aij < p for all i, j. Hence D is 

infinitely generated by all the divided power monomials Y
[pk]

j for all j = 0, . . . , N and 

integers k ≥ 0.

We now revisit the characteristic zero case. Suppose K is a field of characteristic 

zero and let S = K[y0, . . . , yN ] be a polynomial ring. Consider the action of R on S by 

partial differentiation, which we represent by ‘◦’. That is, if a = (a0, . . . , aN ) ∈ ZN+1
≥0 , 

xa = xa0
0 · · · xaN

N is a monomial in R, and g ∈ S, we write

xa ◦ g =
∂ag

∂xa

for the action of xa on g (extended linearly to all of R). In particular, if a ≤ b, then

xa ◦ yb =
b!

(b − a)!
yb−a,

where we use (4.2). This action gives a perfect pairing Rd × Sd → K, and, given a 

homogeneous ideal I ⊂ R, we define I⊥
d and I−1 in the same way as we do for contraction.
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Since we are in characteristic zero, the map of rings Φ : S → D defined by Φ(yi) = Yi

extends to all monomials via (4.3) to give Φ(ya) = Y a = a!Y [a]. Thus S and D are 

isomorphic. Moreover, if F ∈ R and g ∈ S, then Φ(F ◦ g) = F • Φ(g) [20, Theorem 9.5], 

so S and D are isomorphic as R-modules.

4.2. Differential operators and differentially closed filtrations

If a = (a0, . . . , aN ) ∈ ZN+1
≥0 , we extend our convention on monomials to differential 

operators, letting ∂a

∂xa = ∂a0

∂x
a0
0

· · · ∂aN

∂x
aN
N

. Independent of characteristic, the ring of K-linear 

differential operators DR, which acts on R, can be written as DR = ∪n∈NDn
R, where

Dn
R = R

〈
1

a!

∂a

∂xa

∣∣∣ |a| ≤ n

〉
,

where we use the convention (4.2) for a!. See [8, Remark 2.7]. For simplicity, we will 

write Da = 1
a!

∂a

∂xa . The factors 1
ai! appearing in 1

a! do not represent elements in the field; 

Da is a formal representation for the K-linear operator defined by Da(xb) =
(

b

a

)
xb−a if 

b ≥ a, and otherwise Da(xb) = 0. Note that in characteristic 0, a!Da = ∂a

∂xa is the usual 

partial differential operator. Thus in characteristic 0, DR is generated as an R-algebra 

by either Dei
for i = 0, . . . , N (where ei is the ith standard basis vector) or by ∂

∂xi
for 

i = 0, . . . , N .

In characteristic p, using Lucas’ identity as in the divided power ring, one can show 

that if a = (a0, . . . , aN ) where aj =
∑

aijpi, then Da =
∏N

j=0

∏
i(Dpiej

)aij /(aij !) where 

the product just means the composition of the operators. This computation shows that 

DR is generated as an R-algebra by {Dpiej
: 0 ≤ j ≤ N, 0 ≤ i}. Recall that a filtration

of ideals I = {In}n≥1 of a ring R is a family which satisfies Ia+1 ⊆ Ia for all a ∈ N. 

Note that we don’t require a filtration to be a graded family.

Definition 4.1. Suppose R = K[x0, . . . , xN ] and let I = {In}n≥1 be a filtration of ideals. 

We say that I is differentially closed if, for every n ≥ 0, every Da ∈ Dn−1
R , and every 

F ∈ In, DaF ∈ In−|a|.

The following two lemmas follow immediately from our discussion of the R-algebra 

generators of DR.

Lemma 4.2. Suppose R = K[x0, . . . , xN ], where K has characteristic zero, and I =

{In}n≥1 is a filtration of ideals so that for every n ≥ 1 and every F ∈ In+1, ∂F
∂xi

∈ In

for i = 0, . . . , N . Then I is differentially closed.

Lemma 4.3. Suppose R = K[x0, . . . , xN ], where K has characteristic p > 0, and I =

{In}n≥1 is a filtration of ideals so that for every i ∈ N, n ≥ 1 + pi and every F ∈ In, 

Dpiej
F ∈ In−pi for j = 0, . . . , N , where ej is the jth standard basis vector of ZN+1. 

Then I is differentially closed.
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Example 4.4. Let I ⊂ R = K[x0, . . . , xN ] be a homogeneous ideal. The nth differential 

power of I is

I<n> = {f ∈ R | Da(f) ∈ I for all Da ∈ Dn−1
R }.

Every differential power of I is an ideal by [8, Proposition 2.4]. The family I =

{I<n>}∞
n=1 is clearly a differentially closed graded filtration of ideals.

If I = I(X) is the ideal of a projective variety X ⊂ P N for K characteristic 0 or a 

radical ideal for K a perfect field, the Zariski-Nagata theorem [49,41] and its extension 

to perfect fields [8, Proposition 2.14] states that the symbolic powers and differential 

powers of I coincide, that is I(n) = I<n> for n ≥ 1. In either case, I = {I(n)}n≥1 is a 

differentially closed graded filtration. We will see in Example 4.14 that, by using Zariski’s 

main lemma on holomorphic functions [49] instead of the Zariski-Nagata theorem, we 

can drop the assumption that K is perfect.

Example 4.5. Suppose R = K[x0, . . . , xN ], I ⊂ R is any ideal, and I = {In}n≥1 is the 

graded filtration consisting of powers of I. We prove that I is differentially closed.

In characteristic 0, I is differentially closed by Lemma 4.2 and the product rule. To 

prove that I = {In} is a differentially closed graded filtration in arbitrary characteristic, 

it suffices by Lemma 4.3 to prove that

if f ∈ In then Dkei
(f) ∈ In−k for k ≤ n − 1. (4.4)

We prove this using the following extension of the product rule for differential operators 

of the form Dkei
: for any f, g ∈ R

Dkei
(fg) =

k∑

j=0

Djei
(f)D(k−j)ei

(g). (4.5)

We include a proof of this identity in Appendix A. From (4.5) an induction yields

Dkei
(f1 · · · fn) =

∑

j1+···+jn=k

Dj1ei
(f1)Dj2ei

(f2) · · · Djnei
(fn), (4.6)

where the sum runs over non-negative integers j1, . . . , jn. To prove (4.4) it suffices, by 

linearity, to prove it in the case f = f1 · · · fn, where fi ∈ I for i = 1, . . . , n. Since k < n, 

at least n − k of the indices j1, . . . , jn are zero. Thus each term in (4.6) is a product 

that includes at least n − k factors in I, and so each term is in In−k. This proves that 

I = {In}n≥1 is differentially closed in arbitrary characteristic.

Example 4.6. Suppose I ⊂ K[x0, . . . , xN ] is an ideal and K has characteristic p. If q = pe

for some integer e ≥ 0 then the qth Frobenius power of I is the ideal
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I [q] = 〈fq : f ∈ I〉.

In [30], Hernández, Teixera, and Witt introduce integral Frobenius powers

I [n] = In0In1[p] · · · Ins[ps],

where n has base p expansion n = n0 + n1p + · · · + nsps and Ia[q] = (Ia)[q] = (I [q])a. Let 

I = {I [n]}. We show that I is a differentially closed filtration.

First we show that if q = pt (for any integer t ≥ 0) then differential operators of order 

not divisible by q vanish on I [q]. By Lemma 4.3 it suffices to show that Dkei
(f) = 0

when q � k and f ∈ I [q]. To this end, suppose that f = gq for q = pt and k is a positive 

integer so that q � k. Since f is a linear combination of qth powers of monomials, it 

suffices to show that Dkei
(f) = 0 when f is a monomial. So suppose that f = xqa, where 

a = (a0, . . . , aN ). Then Dkei
(f) = Dkei

(xqa) =
(

qαi

k

)
xqa−kei . Since q does not divide 

k the base p expansion k =
∑

i≥0 kip
i satisfies ku �= 0 for some u < t. On the other 

hand, the base p expansion qai =
∑

j≥0 aijpj satisfies aij = 0 for all j < t. In particular, 

aiu = 0. By Lucas’ identity, 
(

qai

k

)
= 0 and we are done. Notice that since Ia[q] = (Ia)[q], 

this also shows that differential operators of order not divisible by q vanish on Ia[q] for 

any a ≥ 1.

Next we show that, if 1 ≤ k ≤ a and f ∈ Ia[q], then Dkqei
(f) ∈ I(a−k)[q] (where we take 

I0 = R by convention). It suffices by linearity to consider the case f = f1 · · · fa ∈ Ia[q], 

where f1, . . . , fa ∈ I [q]. By (4.6),

Dkei
(f1 · · · fa) =

∑

j1+···+ja=kq

Dj1ei
(f1)Dj2ei

(f2) · · · Djaei
(fa),

and by the previous discussion we may assume that in the sum above j1, . . . , ja are all 

divisible by q. Hence in each term of the sum above there are a − k factors which are in 

I [q], thus the entire sum is in I(a−k)[q].

Finally, we induct on the length of the base p expansion of n to show that Djei
(I [n]) ⊂

I [n−j] for j < n. If n < p then integral Frobenius powers agree with regular powers and 

the result follows from Example 4.5. So suppose that n ≥ p with base p expansion 

n = n0 + n1p + · · · + nsps. Put n′ = n − nsps. Clearly the base p expansion of n′ has 

length at least one less than the base p expansion of n. By definition, I [n] = I [n′]Ins[ps], 

so it suffices to show that Djei
(fg) ∈ I [n−j] where f ∈ I [n′] and g ∈ Ins[ps]. Put q = ps

and suppose j = aq + r where 0 ≤ r < q (we must have a ≤ ns since j < n). By (4.5),

Djei
(fg) =

j∑

m=0

Dmei
(f)D(j−m)ei

(g) = Drei
(f)Daqei

(g),

since all differential operators of order not divisible by q vanish on g and all differential 

operators of order at least q vanish on f . By induction, Drei
(f) ∈ I [n′−r]. By the previous 

argument, Daqei
(g) ∈ I(nk−a)[q]. Since there are no base p carries in the addition (n′−r) +
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(ns − a)q, we have I [n′−r]I(ns−a)[q] = I [n′+nsq−(aq+r)] = I [n−j] by [30, Proposition 3.4]. 

By Lemma 4.3, this completes the proof that the integral Frobenius powers of an ideal 

form a differentially closed filtration.

4.3. The inverse system of a differentially closed filtration

Emsalem and Iarrobino made a remarkable observation in [17]: even though the inverse 

system of an ideal is not finitely generated, one could put together the graded pieces of 

the inverse systems of successive symbolic powers of an ideal to get an ideal of S or D, 

respectively. We show that this observation of Emsalem and Iarrobino can be extended 

to a differentially closed graded filtration of ideals, using the following definition.

Definition 4.7. Suppose that I = {In}n∈N is a filtration of homogeneous ideals. For each 

integer s ≥ 1 we define

Ls(I) :=
⊕

d≥s+1

(
I−1

d−s

)
d

=
⊕

d≥s+1

(
I⊥

d−s

)
d

.

If the graded filtration I is understood, we write Ls instead of Ls(I). If the inverse system 

is computed using the partial differentiation action of R on S, Ls(I) is a subspace of S, 

while if the inverse system is computed using the contraction action of R on D, Ls(I) is 

a subspace of D.

If I = {In}n∈N is a graded family of ideals of R, we have defined Ls(I) so that

(
I−1

n

)
d

= Ld−n(I)d

and hence

(In)d
∼=
(

S

Ld−n(I)

)

d

or equivalently

(
S

Ls(I)

)

d

∼= (Id−s)d. (4.7)

Example 4.8. Suppose p = [a0 : · · · : aN ] ∈ P N , let mp ⊂ R = K[x0, . . . , xN ] be the 

ideal of homogeneous polynomials vanishing at p, and put I = {mn
p }n≥1. According 

to Example 4.5 this is a differentially closed graded filtration.

For the action of R on S by partial differentiation, let Lp = a0y0 + . . . + aN yN ∈ S be 

the dual linear form of the point p ∈ X. It follows from Definition 4.7 and Lemma B.1

that
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Ls(I) =
⊕

d≥1

(md
p)⊥

d+s =
⊕

d≥1

〈Ls+1
p 〉d+s = 〈Ls+1

p 〉.

For the action of R on D by contraction, let Lp = a0Y0 + · · · + aN YN ∈ D be the dual 

linear form of p and put L
[k]
p =

∑
|b|=k ab0

0 · · · abN

N Y [b]. It follows from Definition 4.7

and Lemma B.1 that

Ls(I) =
⊕

d≥1(md
p)⊥

d+s

=
⊕

d≥1 span{Y [a]L
[c]
p : s + 1 ≤ c ≤ d + s, |a| = d − c}

= 〈L[c]
p : c ≥ s + 1〉.

Note that Ls(I) is an ideal of S (respectively D), although it is not a finitely generated 

ideal of D in positive characteristic.

Our main result in this section is that Ls is an ideal of D (or S) precisely when I is 

a differentially closed filtration of homogeneous ideals.

Theorem 4.9. Suppose R = K[x0, . . . , xN ] and let I = {In}n≥1 be a filtration of homoge-

neous ideals. Then Ls(I) is an ideal of D (arbitrary characteristic) or S (characteristic 

0) if and only if I is differentially closed.

In the proof of Theorem 4.9, we will use the following formula which we expect is 

known to experts. We give a proof of this identity (and others) in Appendix A.

Lemma 4.10. Suppose F ∈ R is a homogeneous polynomial and g ∈ D is a homogeneous 

divided power polynomial. In arbitrary characteristic,

F • (Y
[k]

j g) =

k∑

i=0

Y
[k−i]

j (Diej
(F ) • g)

for j = 0, . . . , N .

Proof of Theorem 4.9. We prove the result for R acting on D by contraction. Put Ls =

Ls(I). Note that Ls is an ideal of D if and only if Y [b]g ∈ Ls for every algebra generator 

Y [b] of D. In any characteristic, Ls is an ideal if and only if Y
[k]

j g ∈ Ls for every 

j = 0, . . . , N and any k ≥ 1 by Lemma 4.2 and Lemma 4.3. Since Ls is clearly graded, 

we may assume g is homogeneous, say of degree d. By Definition 4.7, g ∈ Ls
d if and only 

if g ∈
(
I−1

d−s

)
d
. It follows that Ls is an ideal if and only if Y

[k]
j g ∈ Ls

d+k =
(
I−1

d+k−s

)
d+k

for all d ≥ s + 1, 0 ≤ j ≤ N , k ≥ 1, and g ∈
(
I−1

d−s

)
d
.

Fix a degree d and an index 0 ≤ j ≤ N . Then Y
[k]

j g ∈
(
I−1

d+k−s

)
d+k

for all g ∈
(
I−1

d−s

)
d

if and only if F •(Y
[k]

j g) = 0 for every F ∈ (Id+k−s)d+k and g ∈
(
I−1

d−s

)
d
. By Lemma 4.10,
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F • (Y
[k]

j g) = Dkej
(F ) • g + Y

[1]
j (D(k−1)ej

(F ) • g) + · · · + Y
[k]

j (F • g)

= Dkej
(F ) • g,

where the final equality follows because Dtej
(F ) has degree at least d +1 for 0 ≤ t ≤ k−1

and g has degree d. It follows that Y
[k]

j g ∈
(
I−1

d+k−s

)
d+k

if and only if Dkej
(F ) •g = 0 for 

all F ∈ (Id+k−s)d+k, which is to say Dkej
(F ) ∈ (Id−s)d for all F ∈ (Id+k−s)d+k. Thus I

is differentially closed if and only if Ls is an ideal.

If R is acting on either S or D in characteristic 0, the proof can be simplified. The 

use of Lemma 4.10 can be replaced by Lemma A.2 (for S) or Lemma A.3 (for D). �

Remark 4.11. Our interest is primarily in graded filtrations of homogeneous ideals, so 

we have stated Definition 4.1 and Theorem 4.9 for a filtration of homogeneous ideals. 

However, Definition 4.1 and Theorem 4.9 only use the hypothesis that I is a family of 

homogeneous ideals.

4.4. Intersecting differentially closed graded filtrations

In this section we describe how Ls(I) behaves under intersection of filtrations. This 

will give us a number of additional examples of families of differentially closed graded 

filtrations. Suppose A is an index set and Ia = {Ia,n}n∈N is a filtration of ideals of R

for each a ∈ A. We write ∩a∈AIa for the filtration {∩a∈AIa,n}n∈N .

Proposition 4.12. Suppose A is an index set and Ia is a differentially closed graded 

filtration of ideals for each a ∈ A. Then

(1) ∩a∈AIa is a differentially closed graded filtration of ideals and

(2) Ls(∩a∈AIa) =
∑

a∈A Ls(Ia)

Proof. For (1), it is clear that ∩a∈AIa is a filtration. We show that it is graded. Given any 

two positive integers m, n, suppose f ∈ (∩a∈AIa)m = ∩a∈AIa,m and g ∈ (∩a∈AIa)n =

∩a∈AIa,n. Since Ia is a graded family for every a ∈ A, fg ∈ Ia,m+n for every a ∈ A

and thus fg ∈ ∩a∈AIa,m+n = ( ∩a∈AIa)m+n. Now we show that ∩a∈AIa is differentially 

closed. Suppose f ∈ (∩a∈AIa)n = ∩a∈AIa,n Since Ia is a differentially closed family for 

every a ∈ A, Da(f) ∈ Ia,n−|a| for every a ∈ A and Da ∈ Dn−1
R . Therefore Da(f) ∈

∩a∈AIa,n.

Now we prove (2). Since the construction of Ls is accomplished by putting together 

graded pieces, it suffices to show that

Ls(∩a∈AIa)d =
∑

a∈A

Ls(Ia)d,

for any integer d ≥ 0. From Definition 4.7, it suffices to show that
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(∩a∈A(Ia,n)d)
⊥

=
∑

a∈A

(I⊥
a,n)d.

For any fixed d ≥ 0, the intersection on the left hand side and the sum on the right 

hand side need only run over finitely many of the graded filtrations {Ia}a∈A (since the 

intersection occurs in the finite dimensional vector space Rd and the sum occurs in 

the finite dimensional vector space Sd). Then the equality follows from the fact that 

(U ∩ V )⊥ = U⊥ + V ⊥ for any vector subspaces U, V ⊂ Rd [20, Lemma 2.7]. �

Example 4.13. Let A be an index set, Ia an ideal of R, and {ra,n}n∈N an increasing 

subadditive sequence for every a ∈ A. For an ideal Ia ⊂ R, consider the filtration 

Ia = {I
ra,n
a }n∈N . Since {ra,n}n∈N is increasing, this filtration is differentially closed 

by Example 4.5. It is graded because

Ira,i
a Ira,j

a = Ira,i+ra,j
a ⊂ Ira,i+j

a ,

where the final containment follows because ra,i+j ≤ ra,i + ra,j . Thus {I
ra,i
a }n∈N is a 

differentially closed graded filtration for every a ∈ A. It follows from Proposition 4.12 that 

I = ∩a∈AIa is a differentially closed graded filtration, Ls(I) is an ideal, and Ls(I) =∑
a∈A Ls(Ia). If {ra,n}n∈N is simply an increasing sequence for every a ∈ A, Ia is a 

differentially closed filtration, but not necessarily a graded family. The same conclusions 

still follow, that is, I = ∩a∈AIa is a differentially closed filtration, Ls(I) is an ideal, and 

Ls(I) =
∑

a∈A Ls(Ia), but we may lose a reciprocity for asymptotic growth factors that 

we explore in Section 4.5.

Example 4.14. If K is a field and I is a radical ideal of R = K[x0, . . . , xN ], we show that 

I = {I(n)} is a differentially closed graded filtration. Let Max(R) be the collection of 

maximal ideals of R. According to Zariski’s Main Lemma on Holomorphic Functions [49]

(see also [8, Theorem 2.12]), I(n) =
⋂

m∈Max(R)
I⊂m

m
n. The conclusion now follows from Ex-

ample 4.5 and Proposition 4.12.

Example 4.15. In this example we state the main results of [17] in terms of the notation 

we have introduced. Let K be an algebraically closed field. We can build on Example 4.14

to compute Ls(I) where I = {I(X)(n)} ⊂ R consists of the symbolic powers of the ideal 

of a projective variety X ⊂ P N . For a point p ∈ P N , write mp ⊂ R for the ideal of p. In 

this context, Zariski’s Main Lemma on Holomorphic Functions reads

I(X)(n) =
⋂

p∈X

m
n
p .

Put Ls(X) = Ls(I). For a point p ∈ X write Ip = {mn
p }n∈N and Ls(p) = Ls(Ip). 

From Example 4.8, Ls(p) = 〈Ls+1
p 〉 ⊂ S if we consider the action of R on S and Ls(p) =

〈L[c]
p : c ≥ s + 1〉 if we consider the action of R on D.
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Proposition 4.12 yields that Ls(X) =
∑

p∈X Ls(p). Thus we obtain

Ls(X) = 〈Ls+1
p : p ∈ X〉

for the action of R on S in characteristic 0. In arbitrary characteristic, for the action of 

R on D, we have

Ls(X) = 〈L[c]
p : p ∈ X, c ≥ s + 1〉.

Example 4.16. Suppose {In}n≥1 is a differentially closed graded filtration in R and J ⊂ R

is an ideal. We leave it to the reader to verify that {In : J∞}n≥1 is also a differentially 

closed graded filtration. This gives yet another way to see that symbolic powers are dif-

ferentially closed, since symbolic powers may be obtained by saturating ordinary powers 

with respect to an appropriate ideal J , and we have seen in Example 4.5 that ordinary 

powers form a differentially closed graded filtration.

4.5. Dual sequences for a differentially closed graded filtration

We now return to duality of sequences. One of the sequences we study is the sequence 

α(In) for a graded family of ideals {In}n≥1. The next lemma begins our study of the 

interaction of this sequence with Ls(I).

Lemma 4.17. Suppose I = {In}n≥1 is a differentially closed graded filtration of ideals, 

and put αn = α(In). The following are equivalent:

• S/Ls(I) (respectively D/Ls(I)) has finite length,

• αn > n + s for all n large enough.

In particular, S/Ls(I) has finite length for all s ≥ 1 if and only if {αn − n}n∈N is not 

bounded above.

Proof. Fix a positive integer s and put Ls = Ls(I). Suppose S/Ls has finite length. 

Then

(
S

Ls(I)

)

n+s

= 0

for all n large enough. By (4.7), (In)n+s = 0 and hence α(In) > n + s for all n large 

enough.

Now suppose α(In) > n + s. Then (In)n+s = 0, hence (S/Ls(I))n = 0. If this holds 

for all n large enough, S/Ls(I) clearly has finite length. The proof for D is identical. �

Remark 4.18. When X ⊂ P N is a projective variety in characteristic 0, we claim that 

S/Ls(X) has finite length if and only if X is non-degenerate (meaning X is not contained 
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in a hyperplane). To see this, note that if X is contained in a hyperplane defined by 

� = 0 for some linear form � ∈ R, then �n ∈ I(X)(n) for all n ∈ N. Since we cannot have 

α(I(X)(n)) < n, we have α(I(X)(n)) = n and α(I(X)(n)) − n = 0 for all n ∈ N. Thus 

S/Ls(X) does not have finite length by Lemma 4.17. On the other hand, suppose X is 

non-degenerate. Then X contains points p0, . . . , pN which span P N . By Example 4.15, 

Ls(X) contains the ideal 〈Ls+1
p0

, . . . , Ls+1
pN

〉. Since these are linearly independent, we may 

change coordinates so that Lp0
= y0, . . . , LpN

= yN . Since S/〈ys+1
0 , . . . , ys+1

N 〉 has finite 

length, so does S/Ls(X). In arbitrary characteristic, we also have a similar result that 

D/Ls(X) has finite length if and only if X is non-degenerate. The proof is the same as 

that in the case of characteristic 0. Notice that by Example 4.15, Ls(X) contains the 

ideal 〈L[c]
p0 , . . . , L

[c]
pN , c ≥ s + 1〉, and it is clear that D/〈y[c]

0 , . . . , y
[c]
N , c ≥ s + 1〉 has finite 

length.

The second sequence we will study is the largest non-zero degree of D/Ls(I), which 

we call the end of D/Ls(I). That is,

end

( D
Ls(I)

)
= max

{
d :

( D
Ls(I)

)

d

�= 0

}
.

Similarly, in characteristic 0, we define end(S/Ls(I)) as the largest non-zero degree of this 

quotient. If end(S/Ls(I)) < ∞ then it is well known that end(S/Ls(I)) = reg(S/Ls(I)), 

where the latter is the Castelnuovo-Mumford regularity of S/Ls(I).

Remark 4.19. Let I be a graded family of ideals. The sequence βs = end(S/Ls(I))

(respectively βs = end(D/Ls(I))) can be seen to be superadditive by interpreting it as

βs = end(S/Ls(I)) = max{d : (Id−s)d �= 0} by (4.7).

The containment (Id−s)d(Id′−t)d′ ⊆ (Id+d′−(s+t))d+d′ thus implies βs + βt ≤ βs+t.

Below we give a more refined version of this observation.

Theorem 4.20. Suppose I = {In}n∈N is a differentially closed graded family of proper 

homogeneous ideals in R. Put αn = α(In) and βs = end(S/Ls(I)) (respectively, βs =

end(D/Ls(I))). Assume that the sequence {αn − n} is nondecreasing and not bounded 

above. Then

(1) {αn − n}n∈N is a nondecreasing subadditive sequence.

(2) {βs − s}s∈N and {βs}s∈N are nondecreasing superadditive sequences.

(3) βs − s = (
−−−−→
αn − n)s

(4) αn − n = (
←−−−−
βs − s)n
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Write α̂ = α̂(I) = limn→∞
αn

n and β̂(I) = lims→∞
βs

s . Then

β̂ =
α̂

α̂ − 1
and α̂ =

β̂

β̂ − 1
.

Remark 4.21. Under the hypotheses of Theorem 4.20 in characteristic 0, {αn − n}n≥1

is always nondecreasing, which we can see as follows. Since I is differentially closed, if 

f ∈ In is a homogeneous polynomial of degree equal to α(In) (n > 1), then ∂f
∂xi

∈ In−1

for i = 0, . . . , N . Thus α(In) < α(In+1) unless all partials of f vanish. This happens 

if and only if f is constant, which is impossible since I consists of proper ideals. Thus 

α(In−1) − (n − 1) ≤ α(In) − n, which shows {αn − n}n≥1 is nondecreasing.

Proof. For (1), the sequence αn is subadditive by Lemma 3.3. Since n is linear, αn − n

is also subadditive.

We next prove (3). Set γn = αn − n. By Definition 4.7, we have

βs = end(S/Ls)

= max{d : α(I(d−s)) ≤ d}
= max{d − s : α(I(d−s)) − (d − s) ≤ s} + s

= max{t : α(I(t)) − t ≤ s} + s

= −→γ s + s,

which proves (3). Part (4) follows immediately from (3) and Theorem 2.6 (1).

For (2), since βs −s = (
−−−−→
αn − n)s by (3), the definition of the transform 

−−−−→
αn − n implies 

{βs − s} is also nondecreasing. That {βs − s} is superadditive follows from (3), (1), and 

Theorem 2.6 (3). Clearly, we have βs = (βs−s) +s. Since each of the sequences {βs−s}s∈N

and id = {s}s∈N are nondecreasing and superadditive, the same is true of their sum, β.

Finally we prove the last two equalities, which are clearly equivalent. By Theorem 2.6

(3), the desired result follows by means of the identity

β̂ − 1 = lim
s→∞

βs − s

s
=

(
lim

n→∞

αn − n

n

)−1

=
1

α̂ − 1
,

which is equivalent to the claims regarding α̂ and β̂. The proof is identical for βs =

end(D/Ls(I)). �

Corollary 4.22. With the same setup as Theorem 4.20, we have inequalities

end

( D
Ls(I)

)
≤ sα̂

α̂ − 1
and

nβ̂

β̂ − 1
≤ α(In).

The same statements follow with D replaced by S.
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Proof. Put αn = α(In) and βs = end(D/Ls(I)). By Theorem 4.20, β̂ = α̂
α̂−1 . Since βs is 

superadditive, βs

s ≤ β̂ = α̂
α̂−1 . Multiplying both sides by s gives the first inequality. Like-

wise, by Theorem 4.20, α̂ = β̂

β̂−1
. Since αn is subadditive, αn

n ≥ α̂ = β̂

β̂−1
. Multiplying 

by n gives the second inequality. The proof is identical for S. �

Example 4.23. Continuing from Example 4.15, we consider the ideal I(X) of a projective 

variety X ⊂ P N in characteristic 0, the filtration I = {I(X)(n)}, and the ideal Ls(X) =

〈Ls+1
p : p ∈ X〉 ⊂ S. We assume X is non-degenerate so that S/Ls(X) has finite length by 

Example 4.18. Following Theorem 4.20, put αn = α(I(X)(n)), βs = reg(S/Ls(X)). Then 

α̂ is the Waldschmidt constant of I(X) (see Definition 3.5). Theorem 4.20 yields that 

the Waldschmidt constant can be expressed in terms of β̂ (and vice-versa). Moreover, 

Corollary 4.22 yields the bounds

nβ̂

β̂ − 1
≤ α(I(X)(n)) and reg

(
S

Ls(X)

)
≤ sα̂

α̂ − 1
.

The right-hand bound was observed in [12], where it was used to determine a lower 

bound for the dimension of certain multivariate spline spaces.

5. Asymptotic regularity and the Seshadri constant

Throughout this section we consider a finite set of distinct points X = {p1, . . . , pr} ⊂
P N and denote by I(X) ⊆ R = K[x0, . . . , xN ] the saturated ideal defining X with its 

reduced scheme structure.

Definition 5.1. The multipoint Seshadri constant for X is the real number

ε(X) = inf
C

{
deg(C)∑r

i=1 multpi
C

}

where C is any curve with C ∩X �= ∅, deg(C) is the multiplicity of R/I(C), and multpi
C

is the multiplicity of C at pi, that is, the multiplicity of the local ring (R/I(C))Pi
, where 

Pi = I(pi). It suffices in fact to consider irreducible curves in the definition. Since we 

only consider Seshadri constants of varieties X ⊆ P N with respect to the line bundle 

OP n(1), we suppress this information from the notation.

Seshadri constants were introduced in [9]. For nice expositions of the circle of ideas 

this has led to in the intervening years see [37, §5.1] or [2].

In this section we establish a limit description for the multipoint Seshadri con-

stant ε(X). This generalizes a similar result in [37, Theorem 5.1.17] for single point 

Seshadri constants. Moreover we establish a duality between the sequence of jet sep-

aration indices, whose limit is the multipoint Seshadri constant, and the sequence of 
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Castelnuovo-Mumford regularities of the symbolic powers for the ideal I(X); see Theo-

rem 5.5. We further demonstrate how this duality underpins the well known reciprocity 

between the Seshadri constant ε(X) and the asymptotic regularity (alternately termed 

the s-invariant) of X; see [37, Remark 5.4.3]. Our methods recover this reciprocity rela-

tion; see Theorem 5.8 for the specific statement

A relevant sequence for our purposes requires the following definition.

Definition 5.2. Let I be a homogeneous ideal of a standard graded ring R with homoge-

neous maximal ideal m and d ∈ N. Define the jet separation sequence of I by

s(I, d) = sup{k ∈ N | reg(R/I(k+1)) ≤ d}.

The terminology “jet separation sequence” is justified by the following notion previ-

ously developed in the literature; see [37, Definitions 5.1.15 and 5.1.16] building on the 

related notion of k-jet ampleness; see [3].

Definition 5.3. A finite set of points X = {p1, . . . , pr} ⊂ P N with defining ideals 

P1, . . . , Pr is said to separate (uniform) k-jets in degree d if the following map obtained 

by canonical projection onto each direct summand is surjective

K[x0, . . . , xn]d →
r⊕

i=1

(
K[x0, . . . , xn]/P k+1

i

)
d

(5.1)

We define the jet separation index of X in degree d to be the integer

s(X, d) = sup{k ∈ N | X separates k-jets in degree d}.

The name coincidence gives an indication that the two notions defined above are 

related, a fact that we make precise in the next proposition.

Proposition 5.4. Let X be a finite set of r ≥ 2 points in P N with defining ideal I(X) and 

N ≥ 2. Then for each d ∈ N the jet separation indices of Definition 5.2 and Definition 5.3

agree, that is, s(X, d) = s(I(X), d).

Proof. In geometric language the map (5.1) can be written as

H0(P N , OP n(d)) → H0(P N , OP N (d)/mk+1
1 ) ⊕ · · · ⊕ H0(P N , OP N (d)/mk+1

r ), (5.2)

where mi is the ideal sheaf corresponding to Pi. A necessary and sufficient condition for 

the surjectivity of (5.2) is H1(P N , I(k+1) ⊗ OP N (d)) = 0, where I(k+1) is the ideal sheaf 

corresponding to I(X)(k+1). This follows from the long exact sequence in cohomology 

arising from the short exact sequence of sheaves

0 → I(k+1) ⊗ OP N (d) → OP N (d) → OP N (d)/mk+1
1 ⊗ · · · ⊗ OP N (d)/mk+1

k → 0
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and the vanishing of H1(P N , OP N (d)) due to N ≥ 2. Expressing regularity in terms of 

local cohomology (see Definition 3.11) yields

reg(R/I(X)(k+1)) = end H1
m

(R/I(X)(k+1)) + 1 = end H2
m

(I(X)(k+1)) + 1

= min{d | H1(P n, I(X)(k+1) ⊗ OP N (d)) = 0}.

It follows that reg(R/I(X)(k+1)) ≤ d if and only if (5.1) is surjective in degree d. Thus 

the claim follows by comparing Definition 5.2 and Definition 5.3. �

We can now relate the jet separation sequence of an ideal with the sequence of regu-

larities of its symbolic powers in the style of section 2.

Theorem 5.5. Let I be a homogeneous ideal of a graded ring R, set sd = s(I, d − 1) for 

d ∈ N, and set rk = reg(I(k+1)). Then

(1) the sequences {sd}d∈N and {rk}k∈N are nondecreasing and dual as follows:

sd = −→r d and rk = ←−s k.

(2) If I is aspCM, the sequence {rk}k∈N is subadditive and {sd}d≥r1
is superadditive.

(3) In particular the shifted jet separation sequence s(X)[−1] = {s(X, d −1)}d≥reg I(X)(2)

for a finite set of points X in P N with N ≥ 2 is superadditive.

(4) If I is aspCM, the asymptotic regularity of I is related to the asymptotic growth of 

the jet separation sequence by

lim
d→∞

s(I, d)

d
= r̂eg(I)−1

Proof. We have directly from Definition 5.2 that

sd = sup{k | reg(R/I(k+1)) ≤ d − 1} = sup{k | reg(I(k+1)) ≤ d} = sup{k | rk ≤ d}.

This establishes the first part of claim (1) as well as giving that {sd}d∈N is nondecreasing. 

Applying the operator ←− to the identity sd = −→r d and using Theorem 2.6 (1) yields 
←−s k =

←−−→r k = rk. It follows from the definition of ←−s k that {rk}k∈N is nondecreasing.

To establish the remaining claims, recall from Lemma 3.12 that for aspCM I the 

sequence {reg(I(k))}k∈N is subadditive and the sequence {rk}k∈N is the subsequence 

{reg(I(k))}k∈N [1]. Since {rk}k∈N is nondecreasing the same is true of {reg(I(k))}k∈N . 

Thus, Lemma 2.9 (1) allows to conclude that {rk}k∈N is subadditive.

Having established that {rk}k∈N is subadditive and that sd = −→r d, we deduce that 

{sd}d≥r1
is a superadditive sequence of natural numbers by Theorem 2.6 (3). Claim (3) 

follows from (2) by means of Proposition 5.4.
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Claim (4) follows from Theorem 2.6 (4) and part (2) of the current proposition, which 

yield ŝ = r̂−1. Combining this with identities r̂eg(I) = r̂ and limd→∞
s(I,d)

d = ŝ deduced 

from Lemma 2.9 (3), we obtain

lim
d→∞

s(I, d)

d
= ŝ = r̂−1 = r̂eg(I)−1. �

Our next goal is to relate the multipoint Seshadri constant ε(X) to the asymptotic 

growth of the jet separation sequence for I(X). For this we will need a multipoint ana-

logue of the well-known Seshadri criterion [37, Theorem 1.4.13], which we include for 

lack of a suitable reference.

Proposition 5.6 (Multipoint Seshadri criterion). Consider a finite set of points X =

{p1, . . . , pr} ⊂ P N with N ≥ 2 and let B be the blowup of P N at X with projection map 

μ : B → P N and exceptional divisor E =
∑r

i=1 Ei. Let H = μ∗(OP N (1)). Then the 

Seshadri constant of Definition 5.1 can be alternatively described as

ε(X) = sup

{
p

q
: p, q ∈ Q>0, qH − pE is ample

}

= sup {λ ∈ R : H − λE is ample} (5.3)

Proof. Temporarily denote ε′(X) := sup
{

p
q : p, q ∈ Q>0, qH − pE is ample

}
. For p, q ∈

Q>0 set Lp,q := qH − pE to be a Q-divisor on B. Suppose Lp,q is ample and hence nef. 

Computing the intersection product with the pullback of a curve C ⊂ P N gives

Lp,q · μ∗(C) = (qH − pE) · μ∗(C) = q deg(C) − p

(
r∑

i=1

multpi
(C)

)
≥ 0

and hence ε(X) ≥ p
q by Definition 5.1. We conclude that ε(X) ≥ ε′(X).

Conversely, suppose p
q ≤ ε(X). We show that Lp,q is nef. If D is a curve in B, then 

D = D1+D2 with D1 contained in E and D2 not contained in E (we allow the possibility 

that D1 = 0 or D2 = 0). We have that E · D1 = − deg(NE/B |D1
) ≤ 0 (where NE/B is 

the normal bundle of the exceptional divisor) and μ(D2) = C is a curve in P N , thus by a 

computation similar to the above display we conclude from p
q ≤ ε(X) that Lp,q · D2 ≥ 0. 

Therefore we have

Lp,q · D = (qH − pE) · D = −pE · D1 + Lp,q · D2 ≥ 0,

which shows Lp,q is nef. Suppose now that p
q < ε(X). By [29, Section II, Proposition 

7.10] the divisor L1,d = dH − E is ample for d ∈ N, d � 0. Fix such a d. Since p
q < ε(X)

and the expression p−δ
q−δd is a continuous function of δ ∈ R>0 one can find δ ∈ Q, δ > 0

so that p−δ
q−δd ≤ ε(X). Then the identity
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Lp,q = Lp−δ,q−δd + δL1,d

shows that Lp,q is ample since Lp−δ,q−δd is nef by the above considerations, δ > 0, and 

L1,d is ample; see [37, Corollary 1.4.10]. We have obtained that ε′(X) ≤ ε(X), hence 

the first equality in (5.3) is established. The second equality follows from the first noting 

that Lp.q is ample if and only if L1,p/q = H − p
q E is ample and hence the last set in the 

display (5.3) is the closure of the first in the topology on R. �

The following is a multipoint version of [37, Theorem 5.1.17]. Our proof follows the 

single point case closely, however the prior knowledge that the limit in the statement 

exists as a consequence of Theorem 5.5 allows for slight simplifications.

Theorem 5.7. If X is a finite set of r points in P N , N ≥ 2, the limit of the jet separation 

index sequence exists and is equal to the multi-point Seshadri constant

ε(X) = lim
d→∞

s(X, d)

d
.

Proof. Set d0 = reg(I(X)(2)). By Theorem 5.5 (3) we have that s = {s(X, d − 1)}d≥d0

is a superadditive sequence of natural numbers. Using Lemma 2.9 (3) applied to s[1] =

{s(X, d)}d≥d0−1, we see that limd→∞
s(d,X)

d exists.

Suppose X = {p1, . . . , pr} with I(pi) = Pi. Let C be an irreducible curve that contains 

at least one point pi0
∈ X. Assume d ≥ d0 − 1 and set k = s(X, d). Take Fi ∈ P k

i /P k+1
i , 

one for each pi ∈ X, so that the image of Fi0
in 

Pi0
k

P k+1
i0

⊗R
R

I(C) is nonzero. This is possible 

since

Pi0

k

P k+1
i0

⊗R
R

I(C)
∼= Pi0

k

Pi0

k+1
�= 0, where Pi0

=
Pi0

I(C)
,

in view of Pi0

k �= Pi0

k+1
by Krull’s intersection theorem. Due to the surjectivity of the 

map in equation (5.1) recalled below

K[x0, . . . , xn]d →
r⊕

i=1

(
K[x0, . . . , xn]/P k+1

i

)
d

,

there exists F ∈ Rd that maps to the tuple (F1, . . . , Fr). Since Fi ∈ P k
i /P k+1

i , we have 

F ∈ ⋂r
i=1 P k

i = I(X)(k). Since Fi0
is nonzero modulo I(C) we have F ∈ I(X)(k) \ I(C). 

Since I(C) is prime, F is regular on R/I(C) and thus the associativity formula for 

multiplicities provides an inequality

deg(C) · d = e

(
R

I(C) + F

)
≥

r∑

i=1

multpi
C · multpi

F ≥ k

(
r∑

i=1

multpi
C

)
.
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We have shown for each curve C with C ∩ X �= ∅ and each d ≥ d0 − 1 that the following 

inequality holds

deg(C)∑r
i=1 multpi

C
≥ s(X, d)

d
, thus ε(X) ≥ s(X, d)

d
.

Taking limits we deduce

ε(X) ≥ lim
d→∞

s(d, X)

d
. (5.4)

It remains to establish the opposite inequality to (5.4). For this, fix integers p, q with 

0 < p
q < ε(X) and let μ : B → P N be the blow up of P N at X, with exceptional divisor 

E and H = μ∗(O(1)) as in Proposition 5.6. Then Lp,q = qH − pE is ample by the 

aforementioned result. By asymptotic Serre vanishing [29, Chapter III, Proposition 5.3]

we have that there exists m0 ∈ N so that

H1(B, OB(mLp,q)) = 0 for m ≥ m0.

The leftmost cohomology group is in turn isomorphic to the one listed below, by [37, 

Lemma 4.3.16], where I(k+1) is the ideal sheaf corresponding to I(X)(k+1). Its vanishing

H1(P n, I(mp) ⊗ OP N (mq)) = 0

indicates via the definition of regularity in terms of local cohomology with respect to the 

maximal homogeneous ideal m or R = k[P N ] (see Definition 3.11) that

reg(I(mp)) − 1 = reg(R/I(mp)) = end H1
m

(R/I(mp)) + 1 = end H2
m

(I(mp)) + 1

= min{d | H1(P n, I(mp) ⊗ OP N (d)) = 0} ≤ mq,

so
reg(I(mp))

mp
<

mq

mp
=

q

p
for m � 0.

Taking the limit as m → ∞ we obtain r̂eg(I) ≤ q
p . Equivalently, by Theorem 5.5 it 

follows that

lim
d→∞

s(X, d)

d
= r̂eg(I)−1 ≥ p

q
.

Replacing p
q by a sequence of rational numbers that converges to ε(X) shows that 

limd→∞
s(X,d)

d ≥ ε(X) and completes the proof. �

The following corollary recovers a particular instance of the well-known reciprocity 

between the Seshadri constant and the asymptotic regularity noted in [7, Remark 1.3 

and Theorem B]. Our main contribution here is to show that this reciprocity holds for a 

very precise structural reason, that is, the duality of the sequences in Theorem 5.5.



34 M. DiPasquale et al. / Advances in Mathematics 430 (2023) 109208

Corollary 5.8. The asymptotic regularity of a finite set X of r ≥ 2 points in P N with 

N ≥ 2 is the reciprocal of the Seshadri constant. In symbols, we have

r̂eg(I(X)) = ε(X)−1.

Proof. Theorem 5.5 (5) together with Proposition 5.4 and Theorem 5.7 yields the desired 

conclusion

r̂eg(I(X)) =

(
lim

d→∞

s(I(X), d)

d

)−1

=

(
lim

d→∞

s(X, d)

d

)−1

= ε(X)−1. �

6. Homological reformulations of the Nagata–Iarrobino conjecture

In the following we refer to a very general set of r points in P N to mean outside 

countably many proper subvarieties of the symmetric product Symr(P N ) of P N .

In [41] Nagata established the upper bound α̂(I(X)) ≤ √
r for any set X of r ≥ 9 very 

general points in P 2. Note that this upper bound also holds true for all sets of points 

(see, e.g., [27, Example 1.3.7]). Nagata also proposed, in different language, the following 

conjecture to the effect that very general sets of points attain the maximum value of the 

Waldschmidt constant permitted by this inequality.

Conjecture 6.1 (Nagata). Any set X of r ≥ 10 very general points in P 2 over a field of 

characteristic zero satisfies α(I(X)(n)) > n
√

r for all n ∈ N. Equivalently, there is an 

equality

α̂(I(X)) =
√

r.

This statement holds true for r a perfect square, by Nagata’s work in [41], but it 

remains open for all other values of r ≥ 10. We comment on the equivalence of the two 

claims in the above conjecture. For 
√

r /∈ N (the case that is still open), the conjectured 

inequality for initial degrees in Conjecture 6.1 is equivalent to α(I(X)(n)) ≥ n
√

r. Utiliz-

ing the known upper bound α̂(IX) ≤ √
r and the description of the Waldschmidt constant 

as an infimum (see Definition 3.5), we see that the two statements in Conjecture 6.1 are 

indeed equivalent.

Notable advances on Conjecture 6.1 have been made in [48,45,25,26], however in its 

full generality it currently seems out of reach. See [5] for further information and possi-

ble generalizations of this long-standing conjecture. Conjecture 6.1 can be equivalently 

reformulated in terms of the Seshadri constant as

ε(X) =
1√
r

. (6.1)

The inequality ε(X) ≤ 1/
√

r is known to hold in P 2; this is equivalent to the known 

upper bound α̂(IX) ≤ √
r by the arguments in the proof of Proposition 6.5. Below 
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we use this equivalence to give further equivalent homological formulations of Nagata’s 

conjecture. Intuitively, in homological terms this conjecture becomes the statement that 

the width of the Betti table of the symbolic powers of I(X) grows sub-linearly.

Conjecture 6.2. Any set X of r ≥ 10 very general points in P 2 over a field of character-

istic zero satisfies

α̂(I(X)) = r̂eg(I(X)), equivalently lim
n→∞

reg(I(X)(n)) − α(I(X)(n))

n
= 0.

Iarrobino [34] generalized Conjecture 6.1 to projective spaces of arbitrary dimension.

Conjecture 6.3 (Iarrobino). A set X of r very general points in the projective space 

P N over a field of characteristic zero with r ≥ max{N + 5, 2N } and (r, N) /∈
{(7, 2), (8, 2), (9, 3)} satisfies α(I(X)(n)) ≥ n N

√
r for all n ∈ N. Equivalently, apart from 

the given list of exceptions, there is an equality

α̂(I(X)) = N
√

r.

Conjecture 6.3 is known to hold only for the case r = sN ; see [18].

We use our results to reformulate Conjecture 6.3 in homological terms using inverse 

systems.

Conjecture 6.4. Under the hypotheses of Conjecture 6.3 the following holds

lim
s→∞

reg(S/Ls(X))

s
=

N
√

r
N
√

r − 1
,

where Ls(X) = 〈Ls+1
p1

, . . . , Ls+1
pr

〉 ⊂ S = K[y0, . . . , yN ].

Proposition 6.5. Conjectures 6.3 and 6.4 are equivalent. Moreover, Conjectures 6.1 and 

6.2 are equivalent.

Proof. The equivalence of Conjecture 6.4 to Conjecture 6.3 follows immediately from 

the duality of asymptotic invariants given by Theorem 4.20.

Now we show the equivalence of Conjectures 6.1 and 6.2. From Definition 5.1 one sees 

that there is an inequality relating the Waldschmidt constant, and the Seshadri constant

α̂(X) ≥ rε(X) (6.2)

Indeed, let C be a curve in P 2 with deg(C) = α(I(n)) and multpi
C = n for each i. Then 

one has ε(X) ≤ α(I(n))
nr by the definition of ε(X) and the inequality follows by passing to 

the limit. While equality need not hold in (6.2) in general, remarkably equality does hold 

for a very general set of points X; see [4, Lemma 2.3.1]; thus under the hypotheses of our 
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conjectures we have α̂(I(X)) = rε(X). This justifies the equivalence of Conjecture 6.1

asserting α̂(I(X)) =
√

r and the identity (6.1) mentioned above.

Rewriting the identity α̂(I(X)) = rε(X) using Corollary 5.8 yields

α̂(I(X)) · r̂eg(I(X)) = r.

It follows that the claim α̂(I(X)) =
√

r of Conjecture 6.1 is equivalent to r̂eg(I(X)) =
√

r

and also equivalent to α̂(I(X)) = r̂eg(I(X)). The second claim of Conjecture 6.2 follows 

from feeding the definitions of these asymptotic invariants into the equality. �

Example 6.6. Here we illustrate some of the exceptions to Conjecture 6.3 and Con-

jecture 6.4. By contrast to Conjecture 6.3, which predicts irrational values for the 

Waldschmidt constant whenever N
√

r /∈ N, the Waldschmidt constant and the asymp-

totic regularity for sets X of few general points in P N are given by rational functions in 

the number of points, in particular they are rational numbers given by

α̂(IX) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r
r−1 if #X = r ≤ N + 1,

r
r−2 if #X = r = N + 2,
r−1
r−3 if #X = r = N + 3 is even,
r(r−2)

r2−4r+2 if #X = r = N + 3 is odd.

See [14, Proposition B.1.1] for the last three cases and [42, Proposition 5.1] for a more 

general result in this direction. Utilizing the formulas in Theorem 4.20 we obtain the 

asymptotic growth factor for the regularity of the inverse systems Ls(Z)

lim
s→∞

reg(S/Ls(X))

s
=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r if #X ≤ N + 1,

r/2 if #X = r = N + 2,

(r − 1)/2 if #X = r = N + 3 is even,

r(r − 2)/2(r − 1) if #X = r = N + 3 is odd.

The same result can be derived from [42, Theorem 4.4 and Theorem 4.7].

7. Closing comments and invitations for future work

We close with a number of questions which arose in the process of our writing. The 

first two questions concern the subadditivity of sequences associated to the symbolic 

powers of an ideal. We saw in section 3 that if ν : R → Z is an R-valuation then the 

sequence ν(I(n)) is subadditive for any ideal I ⊂ R, and we relate sequences of this form 

to the resurgence ρ(I) and asymptotic resurgence ρ̂(I). In section 3.2 we define

λn(I) = max{d : I(d) � In} and βn(I) = max{d : I(d) � In},
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where In is the integral closure of In. We have examples of ideals I where λn(I) is not 

superadditive since ρ(I) = limn→∞
λn

n �= sup{λn/n} = ρ̂(I). However, the sequence βn

necessarily satisfies limn→∞
βn

n = sup{βn/n} = ρ̂(I) by Proposition 3.10, which is one 

of the properties of a superadditive sequence. Thus it seems natural to ask if βn(I) is a 

superadditive sequence.

Question 7.1. For an ideal I in a regular ring R, is the sequence βn(I) = max{d : I(d) �
In} a superadditive sequence?

If I is an ideal so that Question 7.1 has a negative answer, then the failure of con-

tainment I(d) � In is necessarily detected by different valuations as n increases, which 

is an interesting behavior.

Our next question concerns the (Castelnuovo-Mumford) regularity of symbolic powers. 

If all symbolic powers of an ideal I are Cohen-Macaulay, Lemma 3.12 shows that reg(I(n))

is a subadditive sequence, while Example 3.16 shows that this sequence may not be 

subadditive even if I is a squarefree monomial ideal. This example is not so far from 

being subadditive, however, which leads us to the following question.

Question 7.2. For a radical ideal I in a polynomial ring, is the sequence reg(I(n)) + K a 

subadditive sequence for some appropriate integer K? In particular, is this true if K is 

the number of variables in the polynomial ring?

In Example 3.16, a calculation shows that reg(J(m, s)(t)) + K is subadditive for any 

K ≥ (m − 2)(s − 1); the number of variables in the ambient polynomial ring is m(s + 1).

Our next question concerns the differentially closed graded filtrations of ideals in-

troduced in section 4. If I = {In}n≥1 is a differentially closed graded filtration of 

ideals in R, we found in Theorem 4.20 a duality between the sequences αn = α(In)

and βr = end(D/Lr(I)) (with the contraction operation) or βr = reg(S/Lr) (with the 

differentiation action). This duality of sequences arose from Macaulay-Matlis duality. 

Following the discussion of section 3, we note that α(In) is a special case of the se-

quence ν(In) for an R-valuation ν : R → Z. In general, ν(In) is subadditive and, in 

case In = I(n) for a fixed ideal I, its asymptotic growth factor can be used to bound or 

find the asymptotic resurgence of I (Proposition 3.8 and Proposition 3.10). With this in 

mind, we ask the following open-ended question.

Question 7.3. Suppose I = {In}n≥1 is a differentially closed graded family. Does 

Macaulay-Matlis duality give a meaningful algebraic interpretation for the sequence 
−−−→
ν(In)

for an arbitrary valuation ν : R → Z, extending Theorem 4.20? If not, can the valua-

tion ν be used to twist Macaulay-Matlis duality in a way that does give a meaningful 

interpretation of 
−−−−→
ν(I(n))? As in Theorem 4.20, we likely need to shift the sequence ν(In)

appropriately.
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If I = {In} consists of the symbolic powers of a radical ideal over an algebraically 

closed field, then Emsalem and Iarrobino [17] give a concrete description for the ideal 

Ls(I). Inspired by their description, we pose the following question.

Question 7.4. If I = {In}n≥1 is a differentially closed graded filtration, under what 

conditions can we give a concrete description of the generators of Ls(I)? Under what 

conditions do the generators have a geometric interpretation?

From the end of section 4, we have a large pool of differentially closed graded filtrations 

for which we can ask Question 7.4.

If I = {In}n≥1 is a graded family of monomial ideals, then one may associate to I
its Newton-Okounkov body [24]. For instance, if I consists of the symbolic powers of a 

monomial ideal I, the Newton-Okounkov body of I is the symbolic polyhedron introduced 

in [6]. It is natural to ask if there is an appropriate dual body for the family Ls(I). We 

plan to address aspects of the following question in an upcoming paper.

Question 7.5. If I is a differentially closed graded family of monomial ideals, is there an 

associated convex body which encodes the monomials not in Ls(I)? If so, when do these 

convex bodies limit to a polyhedron (like the symbolic polyhedron)? In what situations 

can we determine the bounding inequalities?

In section 6, we saw a number of reformulations of the Nagata conjecture concern-

ing the Waldschmidt constant of at least 10 very general points in P 2. Conjecture 6.2

rephrases this conjecture as an equality of the Waldschmidt constant with the asymp-

totic regularity. We ask which varieties X satisfy sub-linear growth for the width of the 

Betti table of I(X)(n).

Question 7.6. What varieties X can Conjecture 6.2 be extended to? That is, for what 

varieties X do we have the equality α̂(I(X)) = r̂eg(I(X))?

Let ω(I(n)) be the largest degree of a generator of I(n). We always have α(I(n)) ≤
ω(I(n)) ≤ reg(I(n)). If I = I(X) is the ideal of a variety answering Question 7.6 positively, 

then ω(I(n)) − α(I(n)) must also grow sub-linearly. There are many ideals for which it is 

known that reg(I(n)) differs from ω(I(n)) by a constant independent of n - for instance 

star configurations of hypersurfaces [40]. However, in the case of star configurations 

of hypersurfaces, ω(I(n)) − α(I(n)) does not grow in a sublinear fashion, hence star 

configurations of hypersurfaces do not satisfy α̂(I) = r̂eg(I).

If I is a monomial ideal, then [6] shows that α̂(I) is the minimum sum of the coor-

dinates of a vertex of the symbolic polyhedron of I, while [15, Theorem 1.3] shows that 

r̂eg(I) is the maximum sum of the coordinates of a vertex of the symbolic polyhedron 

of I. Thus Question 7.6 has a positive answer for a monomial ideal precisely when all 

vertices of the symbolic polyhedron have the same coordinate sum. More concretely, 

Question 7.6 has a positive answer for any monomial ideal I = 〈xα1 , . . . , xαn〉 whose 
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symbolic polyhedron has a unique maximal bounded face (under inclusion) which can 

be described as both:

• The convex hull of the vertices of the symbolic polyhedron or

• The intersection of the symbolic polyhedron with a hyperplane of the form |α| = c

for some rational number c.

For instance, both bullet points are satisfied if I is the edge ideal of a bipartite graph 

(in this case it is known that the ordinary and symbolic powers coincide [22]). More 

generally both bullet points are satisfied if I is a monomial ideal generated in a single 

degree and I(n) = In for all n ≥ 1 (for squarefree monomial ideals this is also related 

to the packing problem [8]). We are not aware of an algebraic characterization for those 

monomial ideals which have a symbolic polyhedron whose vertices all have the same 

coordinate sum.

Remark 7.7. If I is a squarefree monomial ideal which satisfies the two bullet points 

above, then we can show that I is generated in a single degree and that the number c in 

the second bullet point above is precisely the generating degree of I. To prove this, we 

need only show that for a squarefree ideal I there is at least one generator of I whose 

exponent vector is a vertex of the symbolic polyhedron SP(I).

Recall that if I is squarefree then there are monomial prime ideals P0, . . . , Pk ⊂ R =

K[x0, . . . , xN ] such that Pi �⊂ Pj for any 1 ≤ i, j ≤ k, and I = P0 ∩ · · · ∩ Pk. Take a 

generator of I which has minimal support; re-indexing the variables if necessary we may 

suppose that M = x0 . . . xt is the product of the first t + 1 variables of R. Since M has 

minimal support among generators of I, the monomial Mi = M/xi is not in I for any 

i = 0, . . . , t. Re-ordering the primes P0, . . . , Pk if necessary, we may assume that Mi /∈ Pi

for i = 0, . . . , t. This implies that Pi is generated by xi and some subset of the variables 

{xt+1, . . . , xN } for i = 0, . . . , t. Recall that the defining inequalities of SP(I) are given 

by 
∑

xi∈Pj
ai ≥ 1 for j = 1, . . . , k and ai ≥ 0 for i = 0, . . . , N . Consider the system of 

equations given by at+1 = . . . = aN = 0 and 
∑

xj∈Pi

aj = 1, i = 0, . . . , t. Since xi ∈ Pi

and Pi is generated by a subset of {xi, xt+1, . . . , xN }, this system has a unique solution 

ai = 1, i = 0, . . . , t and at+1 = . . . = aN = 0. This is a vertex of SP(I) and is clearly the 

exponent vector of the monomial M , completing the proof.

In this paper we have explored the sequence duality of Definition 2.1 in the context of 

initial degree and regularity of symbolic powers (and more generally, differentially closed 

filtrations). We close with the following invitation to the reader.

Question 7.8. In what other algebraic-geometric contexts do subadditive and superaddi-

tive sequences naturally appear? For each such sequence, is there a meaningful algebraic 

interpretation for the dual sequence of Definition 2.1?
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Appendix A. Formulas involving differentiation and contraction

In this appendix we collect, for the convenience of the reader, proofs of some of the 

formulas that we use in Section 4. Let R = K[x0, . . . , xN ] be a polynomial ring, DR the 

ring of K-linear differential operators on R, D the divided power algebra on the divided 

power monomials Y [a], with a ∈ ZN+1
≥0 , and S the polynomial ring K[y0, . . . , yN ]. We 

have the action of R on D by contraction, written •, and R on S by partial differentiation, 

written ◦. First we prove the higher order product rule (4.5).

Lemma A.1. Let f, g ∈ R, i be an integer between 0 and N , and k ≥ 1 an integer. In 

characteristic 0 we have

∂k(fg)

∂xk
i

=
k∑

j=0

(
k

j

)
∂jf

∂xj
i

∂k−jg

∂xk−j
i

In arbitrary characteristic we have

Dkei
(fg) =

k∑

j=0

Djei
(f)D(k−j)ei

(g).

Proof. The first formula follows from induction and the ordinary product rule. It also 

follows from the second via the identification Da = 1
a!

∂a

∂xa , so we prove the second. We 

start by proving the formula for f = xm
i and g = xn

i where m, n are integers. Then 

Dkei
(xm+n) =

(
m+n

k

)
xm+n−k

i and

k∑

j=0

Djei
(xm

i )D(k−j)ei
(xn

i ) =

k∑

j=0

(
m

j

)
xm−j

i

(
n

k − j

)
xn−k+j

i

=

⎛
⎝

k∑

j=0

(
m

j

)(
n

k − j

)⎞
⎠xm+n−k

i

=

(
m + n

k

)
xm+n−k

i ,

where in the identity above, if either j > m or k − j > n, we interpret xm−j
i = 0 or 

xn−k+j
i = 0, respectively. The binomial coefficients are also interpreted in this way.
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Now suppose that f = xa = xm
i xa′

and g = xb = xn
i xb′

for a, b ∈ ZN+1
≥0 , where 

xa′

and xb′

are not divisible by xi. Then Dkei
(fg) = xa′+b′

Dkei
(xm+n

i ) and likewise 

Djei
(xa)D(k−j)ei

(xb) = xa′+b′

Djei
(xm

i )D(k−j)ei
(xn

i ) for j = 0, . . . , k. Since the same 

factor of xa′+b′

pulls out of both sides of the identity, it reduces to what we have already 

shown. To get the result where f is an arbitrary polynomial and g is a monomial, we use 

linearity of the differential operators in f . Finally, to get the full result we use linearity 

in g. �

Lemma A.2. Suppose g ∈ S is a homogeneous polynomial. Let F ∈ R be homogeneous of 

degree d ≥ 1. In characteristic 0, we have

F ◦ (yjg) =
∂F

∂xj
◦ g + yj (F ◦ g)

for every j = 0, . . . , N .

Proof. Suppose F is a monomial. We induct on the exponent of xj in F . First suppose 

that the exponent of xj in F is 0. In this case, yj acts as a constant as far as differentiation 

by F is concerned and thus F ◦(yjg) = yj(F ◦g). Since we also have (∂F )/(∂xj) = 0, this 

proves the lemma when the exponent of xj in F is 0. Now suppose that the exponent on 

xj is positive. Then we can write F = xjF0 for some monomial F0. We have

F ◦ (yjg) = (F0xj) ◦ (yjg) = F0 ◦ (xj ◦ (yjg)) = F0 ◦ g + F0 ◦ (yj(xj ◦ g)), (A.1)

where the last equality follows from the product rule. Since the exponent of xj in F0 is 

one less than the exponent of xj in F , our induction hypothesis yields

F0 ◦ (yj(xj ◦ g)) =
∂F0

∂xj
◦ (xj ◦ g) + yj(F0 ◦ (xj ◦ g)) =

∂F0

∂xj
◦ (xj ◦ g) + yj(F ◦ g).

Substituting this in to the last equality in (A.1) yields

F ◦ (yjg) = F0 ◦ g + F0 ◦ (yj(xj ◦ g))

= F0 ◦ g +
∂F0

∂xj
◦ (xj ◦ g) + yj(F ◦ g)

=

(
F0 + xj

∂F0

∂xj

)
◦ g + yj(F ◦ g)

=
∂F

∂xj
◦ g + yj(F ◦ g).

This proves the lemma when F is a monomial. The general result follows from linearity 

of the derivative. �
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Lemma A.3. Suppose g ∈ D is a divided power homogeneous polynomial (that is, all of it 

divided power monomials have the same degree). Let F ∈ R be homogeneous. In arbitrary 

characteristic, we have

F • (Yjg) = Dej
(F ) • g + Yj (F • g)

for every j = 0, . . . , N .

Proof. First, we show that the formula holds when F = xm
j and g = Y

[n]
j . In fact, both 

sides are 0 if n ≤ m − 2, and if n = m − 1, F • (Yjg) = xm
j • ((n + 1)Y

[n+1]
j ) = m =

m + 0 = mxm−1
j • (Y

[m−1]
j ) + 0 = Dej

(F ) • g + Yj(F • g). Otherwise,

F • (Yjg) = (n + 1)Y
[n+1−m]

j = mxm−1
j • (Y

[n]
j ) + YjY

[n−m]
j = Dej

(F ) • g + Yj(F • g).

Now suppose F = xm
j and g = Y [b] = Y [b′]Y

[n]
j , where Y [b′] is not divisible by Yj . Then

F • (Yjg) = Y [b′](F • (YjY
[n]

j ))

= Y [b′](Dej
(F ) • Y

[n]
j ) + Y [b′]Yj(F • Y

[n]
j ) = Dej

(F ) • Y [b] + Yj(F • Y [b]),

since we have proved the identity for g = Y
[n]

j and we can pull Y [b′] in and out of the 

contraction with F because Y [b′] acts like a constant under contraction with F . Now 

suppose F = xa = xa′

xm
j , where xa′

is not divisible by xj , and g = Y [b]. Then

F • (Yjg) = x[b′] • (xm
j • (Yjg))

= x[b′] • (Dej
(xm

j ) • g) + xb′ • (Yj(xm
j • g) = Dej

(xb) • g + Yj(xb • g),

since we have proved the identity for any divided power monomial g = Y [b], contraction 

is linear, differentiation with respect to xj commutes with xb′

, and contraction by xb′

commutes with Yj because xb′

is not divisible by xj . Thus the desired equality holds if 

F is a monomial (if m = 0 we interpret xm−1
j as 0, not x−1

j ) and g is a monomial. The 

full result follows from linearity of the contraction. �

Lemma A.4. Suppose F ∈ R and g ∈ S are both homogeneous. In characteristic 0,

F ◦ (yk
j g) =

k∑

i=0

(
k

i

)
yk−i

j

(
∂iF

∂xi
j

◦ g

)

for every j = 0, . . . , N and every k ∈ N. If g ∈ D is homogeneous then we have, in 

arbitrary characteristic,
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F • (Y
[k]

j g) =

k∑

i=0

Y
[k−i]

j (Diej
(F ) • g)

for every j = 0, . . . , N and every k ∈ N.

Proof. In characteristic 0, both statements can be proven by induction on k, where the 

base case is Lemma A.2 for S and Lemma A.3 for D. We leave the details to the interested 

reader. The strongest statement is the second in arbitrary characteristic, and we prove 

this one. (Note that the first statement also follows from the second in characteristic 0

by the identification Diej
(F ) = 1

i!
∂iF
∂xi

j

and the R-module isomorphism between S and 

D.)

We start by proving the second statement when F = xm
j and g = Y

[n]
j for non-negative 

integers m and n. On the one hand, we have

F • (Y
[k]

j g) =

(
k + n

k

)
xm

j • Y
[k+n]

j =

(
k + n

k

)
Y

[k+n−m]
j . (A.2)

On the other hand,

k∑

i=0

Y [k−i](Diej
(F ) • g) =

k∑

i=0

Y [k−i]

((
m

i

)
xm−i

j ◦ Y
[n]

j

)

=
k∑

i=0

(
m

i

)
Y [k−i]Y

[n−m+i]
j (A.3)

=
k∑

i=0

(
m

i

)(
k + n − m

k − i

)
Y

[k+n−m]
j .

In the above sum, the terms when i > m (corresponding to Diej
(F ) = 0) or when 

k − i > k + n − m (corresponding to n < m − i, hence xm−i
j • y

[n]
j = 0) are 0. The lemma 

holds from the combinatorial identity

k∑

i=0

(
m

i

)(
k + n − m

k − i

)
=

(
k + n

k

)
.

Suppose F = xm
j and g = Y [b] = Y [b′]Y

[n]
j . Then the factor Y [b′] will pull out of (A.2)

and of every summand in (A.3). Thus the result follows from what has been shown. 

Now suppose F = xa = xa′

xm
j , where xa′

is not divisible by xj , and g = Y [b]. Then 

F • (Y
[k]

j ) = xa′ • (xm
j • (Y

[k]
j g)) = xa′ •

(∑k
i=0 Y

[k−i]
j (Diej

(xm
j ) • g)

)
. Now

xa′ •
(

k∑

i=0

Y
[k−i]

j (Diej
(xm

j ) • g)

)
=

k∑

i=0

xa′ •
(

Y
[k−i]

j (Diej
(xm

j ) • g)
)
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=

k∑

i=0

Y
[k−i]

j

(
xa′ • (Diej

(xm
j ) • g)

)

=
k∑

i=0

Y
[k−i]

j

(
(xa′

Diej
(xm

j )) • g
)

=
k∑

i=0

Y
[k−i]

j

(
Diej

(xa′

xm
j ) • g

)

=

k∑

i=0

Y
[k−i]

j

(
Diej

(xa) • g
)

,

where the first equality follows by linearity of contraction, the second because xa′

does 

not involve the variable xj , the third by the definition of contraction, and the fourth also 

because xa′

does not involve the variable xj . This proves the identity when F and g are 

monomials. The identity now follows when F and g are polynomials by linearity. �

Appendix B. The inverse system of powers of the ideal of a point

Emsalem and Iarrobino show in [17] that the fundamental computation when find-

ing the inverse system of the symbolic powers of a variety is finding the inverse system 

of the symbolic powers of the ideal of a single point. We revisit this computation us-

ing Lemma A.4. Let p = [b0 : b1 : . . . : bN ] ∈ P N and

mp = 〈b1x0 − b0x1, . . . , bN x0 − b0xN 〉 ⊂ R = K[x0, . . . , xN ].

be the ideal of homogeneous polynomials vanishing on p. We write Lp = b0y0 + . . . +

bN yN ∈ S for the dual linear form. An important observation in [17] is that, if F ∈ R is 

homogeneous of degree d ≤ k, then

F ◦ Lk
p =

k!

(k − d)!
Lk−d

p F (p), (B.1)

where F (p) is the evaluation of F at p.

In arbitrary characteristic, we also let Lp denote the dual linear form b0Y0 + · · · +

bN YN ∈ D, relying on context to differentiate between Lp ∈ S and Lp ∈ D. In D, we 

define the divided power of Lp by L
[k]
p =

∑
|a|=k ba0

0 · · · baN

N Y [a].

The definition of L
[k]
p is made precisely so that the analog of (B.1) holds. Namely, if 

F ∈ R is homogeneous of degree d ≤ k, then

F • L[k]
p = L[k−d]

p F (p), (B.2)

where again F (p) is the evaluation of F at p. Both (B.1) and (B.2) follow from a direct 

computation. The following result is shown in [17] (see also [20]).
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Lemma B.1. In characteristic 0,

(mn
p )⊥

d =

{
Sd if d < n

〈Ld−n+1
p 〉d if d ≥ n

.

In arbitrary characteristic,

(mn
p )⊥

d =

{
Dd if d < n

span{Y [a]L
[c]
p : d − n + 1 ≤ c ≤ d, |a| = d − c} if d ≥ n

.

Proof. We prove the formula for the action of R on D. The case when d < n is clear, so 

we assume that d ≥ n. It is straightforward to show that, when d ≥ n,

dim(mn
p )d =

(
d + N + 1

N + 1

)
−
(

n + N

N + 1

)
and hence dim(mn

p )⊥
d =

(
n + N

N + 1

)
.

Examining the terms of Y [a]L
[c]
p , we see that, for some 0 ≤ i ≤ N , the divided monomials 

of the form

{Y
[c]

i Y [a′] : Yi does not appear in Y [a′], d − n + 1 ≤ c ≤ d, and c + |a′| = d}

all appear as a term in some Y [a]L[c] on the right hand side. There are 
(

n+N
N+1

)
of 

these monomials, thus the dimension of the right hand side is at least the dimension 

of dim(mn
p )⊥

d . Thus it suffices to show that Y [a]L
[c]
p ∈ (mn

p )⊥
d for d − n + 1 ≤ c ≤ d and 

|a| = d − c. For this we take a form F ∈ (mn
p )d and show that F • (Y [a]L

[c]
p ) = 0.

We induct on n and |a|. If n = 1 or |a| = 0 then c = d and F • L
[c]
p = F • L

[d]
p = F (p)

by (B.2). Since F ∈ mp, F (p) = 0 and we are done. Now suppose n > 1 and |a| > 0. 

Then, for some 0 ≤ i ≤ N + 1, we can write Y [a] = Y
[k]

i Y [a′] where 0 < k ≤ d − c and 

Yi does not appear in Y [a′]. By Lemma A.4,

F • (Y [a]L[c]
p ) =

k∑

j=0

Y
[k−j]

i (Djei
(F ) • Y [a′]L[c]

p ). (B.3)

Note that if j = 0 then D0ei
(F ) = F and F • Y [a′]L

[c]
p = 0 by induction on |a|. If 

1 < j ≤ k then Djei
(F ) ∈ m

n−j
p by Example 4.5 and thus Djei

(F ) • Y [a′]L
[c]
p = 0 by 

induction on n. So all terms in (B.3) vanish and we are done.

An identical strategy can be used to show the formula for (mn
p )⊥

d for the action of R

on S; the proof can be simplified a little using Lemma A.2 instead of Lemma A.4. �

Remark B.2. A different proof of Lemma B.1 relies on the GLN+1-equivariance of the 

differentiation and contraction actions (see [35, Proposition A.3]), under which we may 

assume that p = [1 : 0 : · · · : 0].



46 M. DiPasquale et al. / Advances in Mathematics 430 (2023) 109208

References

[1] M. Atiyah, Duality in Mathematics and Physics, Lecture notes from the Institut de Matematica de 
la Universitat de Barcelona , 2007.

[2] T. Bauer, S. Di Rocco, B. Harbourne MichałKapustka, A. Knutsen, W. Syzdek, T. Szemberg, A 
primer on Seshadri constants, in: Interactions of Classical and Numerical Algebraic Geometry, in: 
Contemp. Math., vol. 496, Amer. Math. Soc., Providence, RI, 2009, pp. 33–70.

[3] M.C. Beltrametti, A.J. Sommese, On k-jet ampleness, in: Complex Analysis and Geometry, in: 
Univ. Ser. Math., Plenum, New York, 1993, pp. 355–376.

[4] C. Bocci, B. Harbourne, Comparing powers and symbolic powers of ideals, J. Algebraic Geom. 
19 (3) (2010) 399–417.

[5] C. Ciliberto, B. Harbourne, R. Miranda, J. Roé, Variations of Nagata’s conjecture, in: A Celebration 
of Algebraic Geometry, in: Clay Math. Proc., vol. 18, Amer. Math. Soc., Providence, RI, 2013, 
pp. 185–203.

[6] S.M. Cooper, R.J.D. Embree, H. Tài Hà, A.H. Hoefel, Symbolic powers of monomial ideals, Proc. 
Edinb. Math. Soc. (2) 60 (1) (2017) 39–55.

[7] S.D. Cutkosky, L. Ein, R. Lazarsfeld, Positivity and complexity of ideal sheaves, Math. Ann. 321 (2) 
(2001) 213–234.

[8] H. Dao, A. De Stefani, E. Grifo, C. Huneke, L.N. Betancourt, Symbolic powers of ideals, in: Sin-
gularities and Foliations. Geometry, Topology and Applications, in: Springer Proc. Math. Stat., 
vol. 222, Springer, Cham, 2018, pp. 387–432.

[9] J.-P. Demailly, Singular Hermitian metrics on positive line bundles, in: Complex Algebraic Varieties, 
Bayreuth, 1990, in: Lecture Notes in Math., vol. 1507, Springer, Berlin, 1992, pp. 87–104.

[10] M. DiPasquale, B. Drabkin, On resurgence via asymptotic resurgence, J. Algebra 587 (2021) 64–84.
[11] M. DiPasquale, C.A. Francisco, J. Mermin, J. Schweig, Asymptotic resurgence via integral closures, 

Trans. Am. Math. Soc. 372 (9) (2019) 6655–6676.
[12] M. DiPasquale, N. Villamizar, A lower bound for splines on tetrahedral vertex stars, SIAM J. Appl. 

Algebra Geom. 5 (2) (2021) 250–277.
[13] M. Dumnicki, B. Harbourne, U. Nagel, A. Seceleanu, T. Szemberg, H. Tutaj-Gasińska, Resurgences 

for ideals of special point configurations in PN coming from hyperplane arrangements, J. Algebra 
443 (2015) 383–394.

[14] M. Dumnicki, B. Harbourne, T. Szemberg, H. Tutaj-Gasińska, Linear subspaces, symbolic powers 
and Nagata type conjectures, Adv. Math. 252 (2014) 471–491.

[15] L.X. Dung, T.T. Hien, H.D. Nguyen, T.N. Trung, Regularity and Koszul property of symbolic 
powers of monomial ideals, Math. Z. 298 (3–4) (2021) 1487–1522.

[16] L. Ein, R. Lazarsfeld, K.E. Smith, Uniform bounds and symbolic powers on smooth varieties, Invent. 
Math. 144 (2) (2001) 241–252.

[17] J. Emsalem, A. Iarrobino, Inverse system of a symbolic powers. I, J. Algebra 174 (3) (1995) 
1080–1090.

[18] L. Evain, On the postulation of sd fat points in P d, J. Algebra 285 (2) (2005) 516–530.
[19] M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahli-

gen Koeffizienten, Math. Z. 17 (1) (1923) 228–249.
[20] A.V. Geramita, Inverse systems of fat points: Waring’s problem, secant varieties of Veronese varieties 

and parameter spaces for Gorenstein ideals, in: The Curves Seminar at Queen’s, Vol. X, Kingston, 
ON, 1995, in: Queen’s Papers in Pure and Appl. Math., vol. 102, Queen’s Univ., Kingston, ON, 
1996, pp. 2–114.

[21] A.V. Geramita, B. Harbourne, J. Migliore, U. Nagel, Matroid configurations and symbolic powers 
of their ideals, Trans. Am. Math. Soc. 369 (10) (2017) 7049–7066.

[22] I. Gitler, C. Valencia, R.H. Villarreal, A note on the Rees algebra of a bipartite graph, J. Pure Appl. 
Algebra 201 (1–3) (2005) 17–24.

[23] E. Guardo, B. Harbourne, A. Van Tuyl, Asymptotic resurgences for ideals of positive dimensional 
subschemes of projective space, Adv. Math. 246 (2013) 114–127.
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