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Abstract: Generation of realistic scenarios is an important prerequisite for analyzing the reliability of
renewable-rich power systems. This paper satisfies this need by presenting an end-to-end model-free
approach for creating representative power system scenarios on a seasonal basis. A conditional recur-
rent generative adversarial network serves as the main engine for scenario generation. Compared to
prior scenario generation models that treated the variables independently or focused on short-term
forecasting, the proposed implicit generative model effectively captures the cross-correlations that
exist between the variables considering long-term planning. The validity of the scenarios generated
using the proposed approach is demonstrated through extensive statistical evaluation and investiga-
tion of end-application results. It is shown that analysis of abnormal scenarios, which is more critical
for power system resource planning, benefits the most from cross-correlated scenario generation.

Keywords: dynamic time warping; generative adversarial network; power system planning;
renewable energy; scenario generation

1. Introduction

Reliability planning for the transmission system of the electric power system is essen-
tial in keeping the grid operational in times of high uncertainty/variability. Traditionally,
this exercise involved managing only one variable—load. The scenarios used to evaluate
the system operation and resilience were worst-case loading scenarios derived from his-
torical data with some growth projections. However, globally coordinated initiatives for
carbon emission reduction have led to increased emphasis on planning integrated energy
systems that feature rapid growth in renewable generation (RG), energy efficiency, and
high electrification rates [1–3]. Particularly, due to the increasing proliferation of large RG
sources, power system resource planning studies must include additional variables, viz.,
solar and wind generation. The variability associated with these new variables, which
depends on weather conditions, such as solar irradiation and/or wind speed, makes re-
liability evaluation of renewable-rich power systems a more complex and challenging
problem [4–7]. To address this problem, power system planners create synthetic scenarios
that are aimed at capturing actual system conditions [8–10]. Two strategies that have
been extensively used for creating synthetic scenarios are: classical techniques, which try
to fit a model onto the distribution and then attempt to generate scenarios from the fitted
model, and machine learning approaches, which learn the distribution from large amounts of
historical data and are then able to produce similar scenarios. A brief overview of these
two strategies is provided below.

The classical techniques typically rely on probabilistic modeling to generate new
scenarios. These include methods that employ Latin hypercube sampling (LHS) [11],
generalized dynamic factor model (GDFM) [12], generalized auto-regressive score (GAS)
models [13], vine copula methods [14], principal component analysis (PCA) [15], and gen-
eralized Gaussian mixture models (GGMM) [16], amongst others. However, despite their
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complexity, these models cannot fully capture all the correlations between the variables.
Consequently, many classical studies still focus on one variable at a time [17]. As the power
systems become more complex, it will become increasingly hard to extract models that
capture all of the system’s characteristics using probabilistic methods.

Machine learning models offer flexibility and versatility when generating new scenar-
ios. Particularly, neural-network-based approaches eliminate the need for the extraction
of relevant features from the available data. In [18,19], a simple single-layered neural
network and radial basis function network (RBFN) were used to forecast wind power ramp-
up events and distributions, respectively. However, complex tasks, such as multivariate
scenario generation that is being considered in this paper, would require more complex
(deeper) architectures.

In recent times, generative adversarial networks (GANs) [20] have emerged as a
popular deep-learning algorithm for scenario generation. This implicit generative model is
capable of transforming raw noise into meaningful information. Therefore, it can work on a
variety of datasets, such as two-dimensional images and one-dimensional time-series data.
Furthermore, it can generate samples that replicate the ones available in the data and other,
more varied samples not present in the original dataset. The performance of a stand-alone
GAN has been improved for scenario generation applications by using a hybrid model
strategy, tweaking the error function, and/or adding appropriate conditions. For example,
recurrent neural networks (RNN) with long short-term memory (LSTM) and reinforcement
learning algorithms were added to the GAN model to produce wind power generation
scenarios in [21]. This hybrid model strategy was tested on two case studies, and it created
varied and believable scenarios in both of them. Similarly, a Wasserstein distance-based
error function was embedded into convolutional GANs to improve performance in [22].
This approach was extended to condition-based solar and wind power scenario generation
in [23,24]. These models accurately predicted wind ramp events and peak values but
treated the variables (namely, solar and wind), independently.

Since the power system is a complex network of interconnected generation sites and
electricity consumers, both residential and large-scale, the relationship between the differ-
ent modes of power production and the nuances of load demand (i.e., their correlations)
must be systematically considered. In line with this realization, a convolutional GAN with
an LSTM-based sequence encoder was proposed in [25] to perform day-ahead forecasting
of correlated photovoltaic (PV) and wind production sequences from meteorological data.
In [26], correlated scenarios were generated to determine the most cost-effective generation
procedure for optimizing a large-scale hydro–wind–solar hybrid system. Correlated GANs
were also used in the cost-optimal scheduling of a battery energy storage system (BESS) to
increase the BESS-PV system’s incentive revenue [27]. Although GAN-based architectures
have been applied to generate correlated scenarios for power systems, the cross-correlation
between RG and load has not been well-explored. In addition, the scenario-generation tech-
niques developed in [25–27] only focused on generating short-term forecasting scenarios.

To better facilitate long-term reliability planning, there is a genuine need to capture the
cross-correlation present between the variables (RG and loads) while creating representative
scenarios. The interdependence between these variables occurs naturally in the historical
data. However, if the variables are treated independently during the scenario generation
process, there is a risk of losing this interdependence and generating less meaningful
scenarios. Particularly, under abnormal conditions, ignoring these cross-correlations and
using the independent scenario generation approach can result in grossly misleading
outcomes (see Section 4). At the same time, note that incorporating cross-correlation during
multivariate scenario generation is a more challenging task. To accomplish this task, a
sophisticated implicit generative model is proposed, as explained below.

1.1. Major Contributions

In this paper, a conditional recurrent GAN is proposed to generate cross-correlated
scenarios on a seasonal basis. The labeling of the historical data for GAN training is an
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important aspect of the methodology. In the presence of multiple variables, the determina-
tion of normal/abnormal days is not straightforward. Instead of relying on normal and
abnormal labels assigned based on visual inspection, a data-driven technique is developed
to create seasonal labels. Then, based on the labels, normal and abnormal day assignments
are made for each season. Along with cross-correlation, this approach also captures the
temporal correlations present in the time-series data of each variable.

For the generation of statistically similar but distinct correlated scenarios, the condi-
tional recurrent GAN is modeled with the use of RNN-LSTM. An RNN-LSTM incorporated
GAN is able to better process and reproduce the long-term modalities and temporal as-
pects in time-series data compared to a conventional GAN which does not consider these
properties. Exploiting the temporal modeling capabilities of RNN-LSTMs along with the
latent conditional feature modeling power of label-incorporated GANs helps enhance the
relevance of the generated scenarios for different end-applications.

An extensive validation of the proposed approach is also provided in which correlated
scenarios are compared against uncorrelated scenarios for an actual power system applica-
tion, namely, optimal power flow (OPF). For normal conditions, uncorrelated synthesis of
scenarios has a performance similar to correlated scenarios. However, during abnormal
conditions, the results obtained using correlated scenario generation are more realistic than
those obtained using uncorrelated scenario generation.

In summary, the novel contributions of this paper are as follows:

• Creation of a fine-tuned cross-correlated conditional recurrent GAN (C2RGAN) for
multivariate scenario generation. This implicit generative model is scalable and yields
relevant abnormal scenarios to augment limited historical data.

• Formulation of a data-driven labeling process for historical data to eliminate the
subjectivity associated with manual labeling.

• Demonstration of the validity of correlated scenario generation for the power system
OPF application in terms of cost and voltage angle distribution.

1.2. Paper Organization and Key Terms

Some of the salient terms used in this paper are explained here to provide the appro-
priate context.

• Normal day refers to a day that follows the typical seasonal pattern.
• Abnormal day refers to a day where one of the variables (RG and/or load) deviates

significantly from the typical seasonal pattern. This is different from an abnormal
operating condition/event that typically refers to line faults and sudden or unexpected
load-shed/generator shut-down.

• Scenario generation refers to creation of representative scenarios for long-term resource
planning. This is different from scenario forecasting, which is typically used for
short-term day-ahead planning.

• Cross-correlated scenarios, one of the main contributions of this paper, refer to those
representative scenarios that capture the inherent correlations between the variables.
Implicit generative models are employed to extract these correlations.

The rest of the paper is structured as follows. Section 2 presents relevant insights
drawn from the data-driven label assignment of the historical data used for the analysis
conducted here. Section 3 provides a detailed look into the GAN architecture, selection,
design, training, and implementation. Section 4 delves into an extensive analysis of the
results obtained using the proposed method and their comparison with the uncorrelated
scenario generation results. The conclusion is provided in Section 5.

2. Data-Driven Label Assignment

A two-variable (load and solar generation) dataset was employed in this research.
The primary requirement is to generate cross-correlated labels for normal and abnormal
days in the dataset so that the C2RGAN can be trained conditionally. Additionally, it
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was determined that the seasonal variations in load and solar generation are significant
enough to warrant the breakdown of the data by seasons first and then classify normal and
abnormal days within each season. This methodology creates more homogeneity within
each labeled dataset and allows the GAN to be trained better. For example, a normal winter
day is sufficiently different from a normal summer day as both load and solar generation
are significantly lower for the former in comparison to the latter.

2.1. Seasonal Classification

Rather than relying on a calendar-based approach to classify seasons, seasonal break-
downs are identified based on the available historical data. This enables us to capture
spatial determinants of seasonal variations, such as geographic insolation and local weather
patterns as well as geographic load patterns (e.g., heavy loads in winter for the colder
climates and heavy loads in summer for the hotter climates). Moving daily averages of load
and solar generation are plotted first, and the plot is then partitioned based on the pattern
transition in both load and solar generation. Figure 1 depicts the resultant partitioning for
the available historical data. The non-summer/non-winter days are classified as shoulder
days. The characteristics of each season are captured in Table 1. Note that Shoulder A and
Shoulder B are combined for training the GAN as they represent very similar (average)
characteristics despite different slope polarities.
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Figure 1. Seasonal classification of two years of historical data.

Table 1. Seasonal patterns.

Season Load Pattern Solar Pattern

Shoulder A Low (increasing at the end) Increasing to peak

Summer High (peaking in the middle) Decreasing

Shoulder B Decreasing Decreasing

Winter Flat and low Flat and low

2.2. Normal and Abnormal Days Classification

From a power system reliability planning perspective, understanding abnormal condi-
tions is much more critical than normal conditions. Abnormal conditions require special
attention, as any mismatch or sudden change in solar generation and load patterns could
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impact the net load significantly. If the generated abnormal scenarios have a good cor-
relation to the actual historical abnormal scenarios, they can enhance the analysis and
understanding of such scenarios. Additionally, since the historical data does not have many
abnormal scenarios, this type of scenario generation helps evaluate the system under such
conditions by generating additional scenarios that are similar but distinct.

Normal and abnormal classification must be based on a metric that can provide
clear and consistent differentiation between normal and abnormal days. In many cases,
the choices of normal and abnormal days are based on ad hoc decisions. Instead, the
methodology employed in this work uses the distance of any given day from a reference
normal day to decide on the labeling of that day. While this methodology is universally
applicable, it was determined that the application to the seasonally partitioned data was
more appropriate.

To implement this methodology, a reference normal day must be identified for each
season. The representative scenario generation methodology developed in [28] generates
median representations for all seasons. The reference normal day is selected from the seasonal
cluster by identifying the day with the shortest distance to the median seasonal repre-
sentation. Since the daily profiles are time-series representations, dynamic time warping
(DTW) is employed as it provides a better measure of (dis)similarity between days than the
Euclidean distance measure [29,30]. DTW computes the best alignment between two time
series by identifying the path with the minimum time-normalized distance between them.
This is given by (1).

P∗ = arg min
P

[
∑k

s=1 d(ps)

k

]
(1)

where d(ps) is the distance between time-series points is and js, k is the length of the
warping path, and P is the warping function. For univariate time-series data (e.g., hourly
solar profile per day), the time series is, js ∈ R24×1, and the DTW operation identifies the
smallest distance by permuting through the different paths from hour 1 to hour 24. When
considering multivariate time-series data, each day is represented by a matrix di ∈ R24×m

(where m is the number of variables), and the DTW operation is performed for each variable.
DTW is particularly important for the multivariate case as it can accurately capture the
cross-correlations between variables (such as load and solar generation), and it identifies
similarities between patterns even if they are time-displaced.

For n days in a given seasonal dataset, DTW creates a symmetrical Rn×n matrix that
has the DTW distances between each pair of days. Next, the distance of each day in a
season to its reference normal day is computed, and the sorted distances are plotted. The
slope change can be detected by taking the second derivative of the DTW distance plots.
The data points beyond this change point represent the abnormal days as they have farther
and faster-growing distances from the reference normal day. This is illustrated in Figure 2.
Applying the criterion outlined above, the summer season is split into 143 normal days
and 39 abnormal days (from 2 years of data). A similar classification was obtained for the
winter (146 normal and 36 abnormal days) and shoulder (327 normal and 40 abnormal
days) seasons.



Energies 2023, 16, 1636 6 of 20

Figure 2. Summer season distances to reference normal day and normal/abnormal classification.
Raw data (blue), fitted data for normal days (red), fitted data for abnormal days (purple).

3. Proposed Implicit Generative Model and Its Implementation

GANs are composed of two neural networks battling against one another (see Figure 3).
The first neural network is called the generator, which aims to generate the synthesized
samples. The second neural network is called the discriminator (or the critic). The dis-
criminator’s job is to differentiate between the real and the generated samples. The main
objective of a GAN is to learn the distribution of a real dataset and map it to a separate
latent space, from which more samples, similar to the original dataset, can be synthesized.

Figure 3. Architecture of generative adversarial networks (GANs).
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Let us have a dataset, X, with samples xt
i for time t ∈ T, and with dimensions i,

whose distribution, Px, is to be learned by the generative model. Noise vector inputs, z,
are sampled from a latent space, Pz, and the multi-layer perceptrons within the generator,
G(z, θg), are trained to map Pz to Px, without explicitly training on Px. This is accomplished
by the generator producing samples as close to the real data’s distribution as possible
(denoted by Px). In contrast, the discriminator, D(x, θd), tries to distinguish the real
samples from the generated ones and forces the generator to perform better. As the training
progresses, the generator becomes better at producing realistic-looking samples, while the
discriminator gets better at distinguishing generated samples from the real ones. The losses
of the generator and the discriminator are expressed as,

LG = −EZ[log(D(G(z)))] (2)

LD = −EX [log(D(x))] +EZ[log(D(G(z)))] (3)

The training of the generator and the discriminator can be summarised as a two-player
mini–max game with the value function V(G, D),

min
G

max
D

V(G, D) = EX [log(D(x))] +EZ[log(1− D(G(z)))] (4)

3.1. Proposed Conditional Recurrent GAN

GANs can be trained conditionally by incorporating labels in the training dataset,
allowing the generator the ability to generate samples based on a certain event or condition.
The label, y, can be any auxiliary information that can be appended to the real samples, x.
The generator will then learn to associate a certain class of data with its associated label.
After training has been finished, the generator can be forced to produce only a certain class
of samples by appending the corresponding label, y, to all the noise vectors. The value
function of the conditional GANs, conditioned on the label y, can be written as,

min
G

max
D

V(G, D) = EX [log(D(x|y))]−EZ[log(D(G(z|y)))] (5)

Since the available historical data was a multivariate time series, it was necessary to
include recurrent layers in both the generator and the discriminator. Recurrent layers in the
generator model retain the time-series long-term modulations and help generate sequences
that capture the fluctuations of the real data. In the discriminator, the recurrent layers help
identify the sequential data better. The recurrent model of choice was RNN-LSTM, making
the proposed machine learning model a conditional recurrent GAN. Note that the LSTM
layer ensures that the recurrent GAN is properly trained to capture both short-term (daily)
and long-term (seasonal) patterns in the time-series data. Furthermore, it leads to the
generation of more homogeneous and valid training data for the GANs, which eventually
leads to more consistent generated scenarios as the output of the GAN. The generator and
the discriminator models consist of three stacked LSTM layers, along with a linear output
layer. The hyperparameters of the models were tuned by comparing the observed outputs
to the expected results. To optimize the discriminator output, it was trained thrice as much
as the generator to maintain the best estimation ratio between the data density and the
model density [31]. The model details are given in Table 2.
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Table 2. Design details of cross-correlated conditional recurrent GAN (C2RGAN) model.

Layer Type Input Size Output Size

Generator LSTM 259 128

LSTM 128 128

LSTM 128 128

Fully connected 128 24 × 2

Discriminator LSTM 27 × 2 128

LSTM 128 128

LSTM 128 128

Fully connected 128 1

3.2. Overall Implementation

The proposed approach of systematic model-free data segmentation and scenario
generation using implicit generative models has been summarized in Figure 4. First, the
historical data is preprocessed by normalizing the different variables to their peak values
and creating daily profiles. Next, the data is segmented in preparation for GAN training.
The available data is classified by season, and a representative day is selected for each
season. Finally, the normal/abnormal classification is performed for each season, leading
to the generation of six datasets (three seasons and normal/abnormal for each season). The
next phase involves training the generator and discriminator using the labeled correlated
datasets. The hyperparameters are tuned, and the loss functions are monitored to achieve
an equilibrium that indicates a fully trained GAN model. In the next phase, the GAN model
is fed labeled noise to generate similar but distinct scenarios for each of the six datasets.
Finally, statistical validation of the generated scenarios is performed before moving onto
OPF-based validation concerning the historical data and against the existing methodology
of uncorrelated scenario generation.

Preprocess Raw 
Data

Sta�s�cal 
Valida�on

Noise 
Genera�on

Assign Label to
Each Class

Data 
Segmenta�on

Model 
Training

Scenario 
Genera�on Valida�on

OPF on IEEE Test 
System

Seasonal 
Classifica�on

Representa�ve 
Day Selec�on for 

Seasons

Normal/Abnormal 
Classifica�on

Set up 
Hyperparameters, 

Loss Func�ons

Training �ll 
Equilibrium

Concatenate 
Labels to 

Noise

Use Generator 
to Generate 
Sequences

Figure 4. Flowchart of the proposed methodology. The first column captures the steps described in
Section 2. The next two columns depict the training and use of the implicit generative model described
in Section 3. The final column captures the thorough validation of the proposed methodology, which
is described in Section 4.

4. Results and Analyses

The proposed approach was tested on a dataset provided by a power utility located in
the US Southwest. The dataset comprised two years of hourly solar generation and load
demand profiles at the transmission level. The nature of the data allowed for capture of
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temporal and cross-correlations within the variables. However, as no spatial information
was provided with the dataset, spatial correlations could not be captured. After preprocess-
ing and normalizing the dataset, it was segregated into summer, shoulder, and winter seasons,
followed by classification into normal and abnormal days. The C2RGAN was trained with
these datasets. The C2RGAN-generated scenarios were then evaluated for their similarity
to the historical data in the same category. Comparison of individual generated profiles
for each variable to the historical profiles showed a good match, as shown in Figure 5
for summer normal real and generated load, and Figure 6 for summer normal real and
generated solar, respectively. As is evident from the figures, the seasonal segmentation
results in scenarios that closely track the temporal variations of the real dataset.

7000

0 5 10 15 20 0 5 10 15 20

6000

5000

4000

3000

7000

6000

5000

4000

3000

(a) (b)

Figure 5. Selected summer season normal load profiles: (a) real; (b) generated.
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Figure 6. Selected summer season normal solar profiles: (a) real; (b) generated.

4.1. Statistical Validation of Proposed Implicit Generative Model

Going beyond visual confirmation, we performed rigorous statistical analysis to inves-
tigate the performance of the proposed scenario generation methodology. The statistical
measure employed was the auto-correlation function (ACF), which defines how data points
in a time series are related, on average, to the preceding data points.

Under normal conditions, the ACF shapes of the real and generated datasets for
both load and solar were found to be very similar (see Figure 7a,b). The highest positive
correlation at one hour for both variables confirms that the nearest temporal value has
the highest correlation to any data point. However, since the normal solar peak and zero
production times in summer are roughly 10 h each, the highest negative correlation occurs
at a 10-h lag for the solar profile. The normal summer load pattern shown in Figure 5 is
quasi-sinusoidal with peak and valley 12 h apart, which is consistent with the negative
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ACF peak for the load at a 12-h lag. A similar pattern is observed for normal days in other
seasons with slight variations in negative ACF peak location.
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Figure 7. Summer season ACF for: (a) normal load; (b) normal solar; (c) abnormal load; (d) abnormal
solar for generated and real data.

Under abnormal conditions, the load correlation shapes show a similar pattern as their
counterparts under normal conditions, but a slight difference is observed between real and
generated shapes for solar (see Figure 7c,d). This happens because the cross-correlated
nature of the C2RGAN can bias one or both of its outputs (solar ACF in Figure 7d), as it is
trained on both the variables. Therefore, its accuracy in producing matching scenarios for
any one variable might be lower. However, we demonstrate in Section 4.2.2 that for actual
power system applications, creating scenarios where the cross-correlations are considered
results in more realistic outcomes.

4.2. Comparison with Uncorrelated Scenario Generation for Power System Application

To highlight the value of the correlated scenario generation process, two additional
GANs were trained using the same historical data—one for the independent generation
of load sequences and one for the independent generation of solar sequences. These
univariate uncorrelated GANs (termed load GAN and solar GAN) generate seasonal
(normal/abnormal) scenarios for load and solar generation, respectively. Note that many
GAN-based scenario generation techniques proposed recently are univariate and hence,
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uncorrelated (e.g., [22,23]). Therefore, the subsequent analysis is a comparison of the
proposed methodology with the state of the art.

The selection of baseline days for uncorrelated scenarios is an important but challeng-
ing consideration. As load and solar are processed independently, there is no guaranteed or
consistent overlap between the labeled training data for each set. This disjunction is more
clearly pronounced for abnormal days. For example, an abnormal summer day for the load
(very high load) can be vastly different from an abnormal summer day for solar generation
(cloudy or rainy day). Thus, it is impossible to determine baseline days satisfying the same
load and solar generation conditions.

One strategy could be to assume that the baseline days were identical for correlated
and uncorrelated data. However, doing so will yield consistently favorable results for the
correlated scenario generation approach since the baselines are drawn from its training
dataset. Consequently, to avoid this possible (implicit) bias in favor of the proposed
approach, the following strategy was devised in this paper: the baseline days for the
uncorrelated scenarios were synthesized independently from the two training datasets (load
and solar generation). Separate comparisons were then made between each approach’s
generated and baseline values.

4.2.1. Validation Using Optimal Power Flow (OPF) Analysis

To evaluate the performance of the generated scenarios for power systems applications,
the generated solar and load profiles were applied to a modified IEEE 30-bus system [32].
A futuristic generation scenario was evaluated, where all the load buses also have solar
generation. OPF was run under different ratios of solar generation peak to load peak,
ranging from 0.3 to 1.2. Since the scenarios are derived from the historical dataset, the OPF
converged for all the scenarios. To lend statistical validity to the exercise, 900 (=30 × 30)
scenarios were generated for both correlated and uncorrelated methodologies for each
of the 6 classes (3 seasons × normal/abnormal). This enabled application of 30 distinct
and randomly assigned profiles to all the buses of the system for one OPF computation.
The OPF itself was run 30 times—each time with a completely different set of profiles—to
ensure consistency of the results.

The distributions for each iteration were compared with the baseline to compute
the distance between the two; the Wasserstein distance was used as a measure for this
comparison. Additionally, the OPF results provided costs by the hour for each iteration.
Finally, the voltage-angle data based on the hour/iteration/bus were collected for further
analysis. The results were evaluated from multiple perspectives. Each methodology
(correlated and uncorrelated scenario generation) was compared against its baseline to
identify which would generate more realistic scenarios. Furthermore, comparisons were
made over iterations to evaluate the consistency and on an hourly basis to identify if
the gap between generated and baseline scenarios has any time-of-day dependence. The
voltage-angle distribution plots were plotted for three different hours: 07, 12, and 17.

4.2.2. Results and Discussion for Abnormal Conditions

Figure 8 shows the shoulder season hourly OPF costs, averaged over 30 OPF iterations,
for the solar-to-load ratio of 0.6. The correlated generated scenarios track their baseline
much more closely than the uncorrelated scenarios. In addition, the baselines for the
two cases show significant differences. The abnormal conditions typically signify lower
solar generation (due to cloudy or rainy conditions), which is often accompanied by a
lighter load (due to lower cooling requirements). However, the baseline of the uncorrelated
case shows significantly higher OPF costs that result from the unrealistic combination of
independently derived abnormal conditions (high load and no to low solar generation).
The generated scenarios overestimate the costs (i.e., a combination of higher load and lower
solar generation), resulting in grossly unrealistic scenarios.

A similar case is presented in Figure 9 for the summer abnormal situation, where
the correlated scenario’s costs are tracking the baseline costs well (similar to the shoulder
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abnormal). The baselines for correlated and uncorrelated cases are more closely aligned
compared to the shoulder abnormal (except for a few morning hours), but the uncorrelated
generated scenarios are underestimating the cost by a large margin. Although not shown
in the figures to ensure clarity, the behavior for the other solar-to-load ratio was consistent
with these results.
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Figure 8. Shoulder abnormal hourly costs (ratio = 0.6).
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Figure 9. Summer abnormal hourly costs (ratio = 0.6).

In the case of the winter abnormal shown in Figure 10, the baseline costs between
correlated and uncorrelated scenarios differ significantly—similar to the shoulder abnormal
case. The correlated scenarios are much closer to their baseline than the uncorrelated ones.
However, it is observed that the correlated scenarios are overestimating the costs between
the hours of 8 AM and 6 PM, indicating that the generated solar scenarios are lower than
the baseline. Under the winter abnormal conditions, the solar profiles are predominantly
low with a few exceptions, so the GAN is getting trained to generate lower solar profiles.
However, since the baseline does contain some higher solar generation profiles, there is
some gap between the baseline and the correlated scenarios.
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Figure 10. Winter abnormal hourly costs (ratio = 0.6).

In contrast to Figure 8, which provides averaged hourly OPF cost profiles over
30 iterations, Figure 11 depicts the average cost per hour for different OPF iterations for
the solar-to-load ratio of 0.6. The correlated variations are narrower in range and closer to
the baseline. This chart also underscores the baseline difference discussed above.

Figure 11. Shoulder abnormal OPF cost (ratio = 0.6).

Another perspective to view the differences between the correlated and uncorrelated
approaches is to look at the voltage angle distributions for the 30-bus system. Figure 12
shows the probability density functions (PDFs) of the voltage angles for 5 PM for correlated
and uncorrelated scenarios for all three seasons. The better overlap with the baseline
distribution is clearly visible for the correlated scenarios. These plots are for one of the
30 iterations, but a similar pattern was observed for other hours and for all iterations,
albeit with some variability. The larger difference between the correlated and uncorrelated
scenarios in the shoulder season may be partially attributable to the data segmentation
technique used in Section 2.2. However, the distinction between the two scenario generation
methods is still evident in the other seasons.
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Figure 12. Voltage angle PDFs−abnormal, all seasons.

Table 3 shows the numerical results for abnormal seasonal daily OPFs. It covers solar-
to-load ratios from 0.3 to 1.2 for all three seasons and correlated and uncorrelated conditions
and reinforces the results and conclusions from earlier plots. The Wasserstein distances for
correlated cases are lower than uncorrelated cases under most conditions, often by large
margins. The Wasserstein distance should be a low number, but not 0, as we are aiming
to obtain similar, but distinct scenarios. Correlated scenarios achieve this objective much
better than uncorrelated scenarios, with a minor exception of high solar-to-load ratios in
winter, for which the results are comparable. Moreover, the costs for the uncorrelated
scenarios for the summer and shoulder seasons point to totally misleading results. For
instance, even under abnormal conditions, summer costs should be highest due to high
load, and shoulder costs should be lowest due to a combination of low load and good solar
generation. However, the uncorrelated scenarios are showing the exact opposite behavior.

Table 3. Result summary for abnormal conditions.

Correlated Uncorrelated

Solar-to-Load Ratio 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2

Average Summer 0.43 0.58 0.77 0.85 1.52 1.59 1.69 1.66
Wasserstein Shoulder 0.40 0.57 0.71 0.77 1.00 1.06 1.12 1.17
Distance Winter 0.31 0.47 0.67 0.84 0.58 0.59 0.62 0.65

Solar-to-Load Ratio 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2

Average Summer 3951 3308 2762 2363 2992 2452 2007 1698
Daily Shoulder 2087 1749 1466 1246 3776 3515 3268 3035
Cost ($) Winter 2342 2211 2084 1961 2796 2674 2556 2443

4.2.3. Results and Discussion for Normal Conditions

The difference between correlated and uncorrelated scenarios is not as significant
under normal conditions. In fact, the uncorrelated scenarios showed a closer correlation
to the baseline data in the summer season than the correlated scenarios, as shown in
Table 4. This is understandable as the solar and load profiles for each season do not have
many deviations under normal conditions, and the single variable nature of uncorrelated
scenarios allows the corresponding GAN to be trained better for normal, independent
signals. However, it was observed that for winter (see Figure 13), the uncorrelated scenarios
are farther from their baselines (depicting lower costs) due to the overestimation of the solar
generation. The Wasserstein distances for shoulder normal shown in Figure 14 indicate
that the uncorrelated distances are higher than correlated ones for most hours of the day.
The voltage-angle plots for three different hours for winter normal correlated scenarios (see
Figure 15) demonstrate that the distributions are matching the baseline very well.
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Table 4. Results summary for normal conditions.

Correlated Uncorrelated

Solar-to-Load Ratio 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2

Average Summer 0.61 0.69 0.77 0.75 0.30 0.33 0.39 0.45
Wasserstein Shoulder 0.28 0.35 0.41 0.51 0.45 0.56 0.65 0.71
Distance Winter 0.23 0.35 0.36 0.52 0.21 0.36 0.32 0.33

Solar-to-Load Ratio 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2

Average Summer 3499 2616 1960 1523 3417 2574 1950 1548
Daily Shoulder 2038 1398 993 670 1832 1208 816 498
Cost ($) Winter 1978 1592 1323 1107 1940 1572 1333 1139
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Figure 13. Winter normal hourly OPF costs (ratio = 0.6, 1.2).
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Figure 15. Voltage angle PDFs for winter normal−correlated.

Table 4 shows the normal seasonal summary results for solar-to-load ratios from 0.3 to
1.2 for all three seasons and correlated and uncorrelated conditions. It can be observed from
the tables that the Wasserstein distances for normal conditions are similar (both are low)
for correlated and uncorrelated scenarios. Similarly, the cost distinctions are minor under
most conditions. However, the uncorrelated scenarios are consistently underestimating
the costs for the shoulder season, which is in direct contrast to their behavior under
abnormal conditions. As a result, the uncorrelated scenario-based OPF may demonstrate
unreasonably high variations in OPF costs between normal and abnormal scenarios, leading
to non-optimal outcomes from a long-term reliability planning perspective.

4.3. Practical Significance

Since many resource planning activities aim to distinguish abnormal conditions from
normal conditions, it is helpful to compare how the generated abnormal scenarios differ
from the generated normal scenarios. For correlated cases, the costs for the abnormal
scenarios are consistently and reasonably higher than the costs of the normal scenarios due
to the lower solar production on abnormal days. Winter days show the largest and most
consistent gap through the day (see Figure 16), indicating the need for a longer traditional
generation or battery backup requirements. For the shoulder (see Figure 17) and summer
seasons, the gap between normal and abnormal is smaller and restricted to fewer hours of
the day, indicating that the backup requirements may be less. For uncorrelated scenarios,
consistency is absent: for the shoulder season, the abnormal scenarios grossly overestimate
the net load (as shown in Figure 17); for summer, they show lower costs than the normal
scenario, and no reasonable conclusions can be drawn from them. In summary, through
the OPF application, we have demonstrated the ability of correlated scenario generation to
create valid representative power system scenarios that are a prerequisite for long-term
resource planning. In the future, we will apply the scenarios generated using the proposed
approach to solve the optimal BESS sizing and siting problem [33].
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Figure 16. Winter normal−abnormal comparison (ratio = 0.6).
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Figure 17. Shoulder normal−abnormal comparison (ratio = 0.6).

5. Conclusions

As the exploration of ways to understand and analyze the impacts of RG on grid relia-
bility continues, synthetically generated representative scenarios will play an increasingly
vital role. Due to legacy practices and/or ease of application, uncorrelated/univariate
scenario generation is often used for such exploration. However, this may lead to outcomes
that are not realistic. This paper demonstrates the utility of correlated multivariate scenario
generation in understanding and analyzing normal and abnormal system conditions.

The proposed systematic end-to-end methodology for correlated scenario generation
has the following components:

• Structured and model-free data segmentation.
• An informed selection/design of a cross-correlated conditional recurrent generative

adversarial network (C2RGAN).
• Generation of correlated representative scenarios that augment the original dataset.
• Extensive and application-oriented validation that proves the value of the

proposed methodology.

Overall, correlated scenario generation was seen to create more realistic profiles due
to the integration of both solar generation and load demand in the training of the C2RGAN.
From the OPF application evaluation, the following key conclusions are drawn:
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• The correlated scenario generation resulted in lower and more accurate average hourly
costs across the seasons (as shown in Figure 11 and Table 3).

• From the voltage angle distributions, it was observed that the correlated scenarios
are more similar to the real case compared to uncorrelated scenarios (as shown in
Figure 12).

• Seasonal performance analyses highlighted why inferences drawn from uncorrelated
scenarios might be misleading (results from Tables 3 and 4).

• It was also shown that the results from uncorrelated scenarios are adequate for normal
days, but it can lead to misplaced conviction about their applicability to abnormal
scenarios (results from Tables 3 and 4).

The proposed methodology is voltage-level agnostic, scalable, and portable to different
datasets, geographies, and end-application requirements. It can be used to analyze the
reliability and resilience issues with various renewable energy penetration levels and come
to definitive conclusions about deploying these resources. The proposed approach currently
captures cross-correlations and temporal correlations that exist between RG and loads.
With the right dataset and minor modifications, it can also be extended to capture spatial
correlations between the different variables.
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Nomenclature
The following abbreviations are used in this paper:

ACF Auto-correlation Function
C2RGAN Cross-Correlated Conditional Recurrent Generative Adversarial Network
DTW Dynamic Time Warping
GAN Generative Adversarial Network
LSTM Long Short-Term Memory
OPF Optimal Power Flow
PDF Probability Density Function
PV Photovoltaic
RG Renewable Generation
RNN Recurrent Neural Network
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