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Numerous adverse effects (e.g., depression) have been reported for com-
bination antiretroviral therapy (cART) despite its remarkable success in vi-
ral suppression in people with HIV (PWH). To improve long-term health
outcomes for PWH, there is an urgent need to design personalized optimal
cART with the lowest risk of comorbidity in the emerging field of preci-
sion medicine for HIV. Large-scale HIV studies offer researchers unprece-
dented opportunities to optimize personalized cART in a data-driven manner.
However, the large number of possible drug combinations for cART makes
the estimation of cART effects a high-dimensional combinatorial problem,
imposing challenges in both statistical inference and decision-making. We
develop a two-step Bayesian decision framework for optimizing sequential
cART assignments. In the first step, we propose a dynamic model for individ-
uals’ longitudinal observations using a multivariate Gaussian process. In the
second step, we build a probabilistic generative model for cART assignments
and design an uncertainty-penalized policy optimization using the uncertainty
quantification from the first step. Applying the proposed method to a dataset
from the Women’s Interagency HIV Study, we demonstrate its clinical utility
in assisting physicians to make effective treatment decisions, serving the pur-
pose of both viral suppression and comorbidity risk reduction.

1. Introduction. The emergence of antiretroviral therapy (ART) has transformed HIV
infection from a fatal to chronic disease by effectively reducing the viral load and decreas-
ing HIV-related morbidity and mortality. Common ART drugs fall into six drug classes
with different mechanisms, including nucleotide reverse transcriptase inhibitor (NRTI), non-
nucleotide reverse transcriptase inhibitor (NNRTI), protease inhibitor (PI), integrase inhibitor
(INSTI), entry inhibitor (EI), and pharmacokinetic enhancer (Booster). Despite the effective-
ness of combination ART (cART) consisting of three or more ART drugs from different drug
classes in viral suppression, numerous ART-related adverse effects have been reported, in-
cluding mental health disorders, chronic kidney failure, and cardiovascular diseases (Checa
et al., 2020; Dietrich et al., 2021). The U.S. Department of Health and Human Services pro-
vides a general guideline on initiating cART for treatment-naive people with HIV (PWH);
however, the guideline mainly focuses on viral suppression but does not account for the re-
ported adverse effects. Furthermore, ART-related adverse effects can vary greatly from per-
son to person due to various individualized risk factors such as sociodemographic, clinical,
and behavioral characteristics. Therefore, personalizing cART that not only suppresses viral
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load but also manages ART-related adverse effects is now one of the most pressing challenges
in the field of HIV, especially considering that cART is recommended for PWH indefinitely.
In this paper, we aim to develop a decision-making framework for optimizing personalized
cART in PWH.

In many medical applications with chronic conditions (e.g., diabetes, HIV infections, and
chronic kidney diseases), it is often important for treatments to be adaptive to individuals’
disease progression and treatment responses over time. Such scenarios can be formalized as
a dynamic treatment regime (DTR, Robins 1986; Murphy 2003), which is a sequence of treat-
ment decision rules at multiple stages, each of which maps an individual’s up-to-date infor-
mation to a recommended treatment. For example, PWH are recommended to follow up with
their physicians semiannually by the current HIV treatment guidelines. At each visit, their so-
ciodemographics, medication use, and laboratory test results are collected. Then physicians
prescribe their cARTs based on clinical observations such as staying on the previous cART
or switching to a new cART until the next visit.

Many statistical methods have been developed to estimate the optimal sequential treatment
assignments from observational data such as marginal structural model (Wang et al., 2012),
G-computation formula (Robins, 2004), stochastic tree search (Sun and Wang, 2021), and
likelihood-based approaches (Xu et al., 2016; Hua et al., 2021). Most of these methods only
consider a small number of possible actions at each decision stage. However, the number of
possible drug combinations in cART assignments can be enormous since there are over 30
U.S. Food and Drug Administration (FDA)-approved ART drugs. Another related research
area is offline reinforcement learning (RL) (Lange, Gabel and Riedmiller, 2012), in which a
policy (a sequence of actions) model is reinforced, by the feedback from the offline (previ-
ously collected) data including individuals’ longitudinal observations (also called the state)
and treatments (also called the action), to optimize sequential decisions that maximize a re-
ward. While they have been proven useful in applications such as robotics (Yu et al., 2020a),
traditional model-free offline RL methods can result in unstable policy learning when out-of-
distribution actions are evaluated (Fujimoto, Meger and Precup, 2019). In contrast, model-
based offline RL methods (Yu et al., 2020b) learn a probabilistic dynamic model from the
observational data to evaluate out-of-distribution actions and are more sample efficient. Most
of the offline RL methods depend on the Markov decision process assumption, however, the
dynamics in our setting is not Markov since how clinical measurements evolve over time may
depend on the full history of these measurements and cARTs.

Large-scale HIV studies, such as the Women’s Interagency HIV Study (WIHS), provide
us unprecedented opportunities to learn personalized optimal sequential cART assignments.
The WIHS is a large prospective, observational, multicenter study designed to investigate the
impact of HIV infection on multimorbidity in women with HIV or at risk for HIV in the
United States (Adimora et al., 2018). The complexity of cART assignments, longitudinal ob-
servations, individual heterogeneity, and long-term sequential decisions present three major
analytical and modeling challenges, which we explain in detail below.

• Learn how individuals’ longitudinal states (i.e., health outcomes) evolve over time condi-
tional on their preceding states and cART histories. This requires us to estimate the longi-
tudinal cART effects from a high-dimensional and unbalanced space. With more than 30
FDA-approved ART drugs, there are a large number of possible drug combinations, mak-
ing the estimation a high-dimensional problem. In addition, some cARTs are frequently
used whereas others are rarely used. For example, 3TC+D4T+NFV (two NRTIs + one PI)
was recorded 993 times in the WIHS, while a similar cART 3TC+D4T+ATV (two NRTIs
+ one PI) was only recorded 12 times. Most prior studies only used simplistic cART repre-
sentations that do not account for drug-drug interactions, such as using a binary variable to
indicate whether an individual is on cART (Lundgren et al., 2002; Bogojeska et al., 2010).
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One recent work (Jin et al., 2022) proposed a Bayesian approach to estimate the cross-
sectional cART effects incorporating drug-drug iterations. However, it cannot be used to
learn the longitudinal cART effects.

• Generate a realistic cART from a large discrete space. Assume there are a total number N
of ART drugs. A straightforward way of representing a cART is an N -dimensional binary
vector with each element indicating whether the cART contains that corresponding drug.
Then we can generate possible cARTs using a multivariate logistic model. However, this
leads to 2N possible drug combinations, in which most of them are unrealistic and would
never be prescribed in clinical practice. To the best of our knowledge, there are no existing
methods that build a generative model for cART assignments to effectively explore the
high-dimensional cART space.

• Mitigate the distribution shift issue. The fundamental challenge of optimizing sequential
treatments from observational data is distributional shift: the offline training data may be
collected under different policies from the one we try to evaluate. In other words, the dis-
tribution of states visited by the learned policy inevitably deviates from the distribution of
offline data. Therefore, without accounting for the distribution shift in policy optimization,
the learned policy may not achieve the expected optimality.

To address the aforementioned challenges, we propose a two-step Bayesian decision
framework for optimizing sequential cART assignments, which is illustrated in Figure 1. In
the first step, we develop a probabilistic dynamic model for individuals’ irregular longitudi-
nal observations using a multivariate Gaussian process (MGP, Alvarez et al. 2012), where the
irregularity is caused by missing values in measurements. The MGP learns the transition dy-
namics that describes how individuals’ states evolve over time conditional on their historical
states and treatment histories, which not only mitigates the Markov assumption required in
traditional RL methods but also captures the longitudinal drug combination effects of cART
on individuals’ states. We use the subset-tree (ST) kernel (Jin et al., 2022) that converts the
drug combination into a conceptually simple but mathematically powerful representation.
The ST kernel induces an appropriate similarity measure among different cARTs by explic-
itly accounting for known clinical knowledge on ART drugs. This formulation enables us
to efficiently borrow information across cARTs and thus reduces the dimension of the drug
combination space to a manageable size. We fit the Bayesian dynamic model to the observed
data and obtain the posterior estimates of the dynamics with uncertainty quantification.

In the second step, we build a probabilistic generative model for the cART assignment
by representing the selection of a cART via a tree structure with three levels. The math-
ematically analytic formulation of the three-level decision process allows for direct policy
optimization by applying the stochastic gradient descent (SGD, Robbins and Monro 1951)
algorithm. Moreover, the uncertainty quantification of posterior inference from the first step
allows us to penalize the reward of each state-action pair by its uncertainty when optimizing
the sequential cART assignments. Such a procedure can help mitigate the distribution shift
issue via a trade-off between the reward gain and risk for exploring new policies and new
state-action pairs. Through both simulations and the WIHS application, we demonstrate the
capability of the proposed method in making effective personalized treatment decisions to
optimize individual-level health outcomes. As expected, individual-level improvement accu-
mulates to population-level health betterment.

The rest of paper is organized as follows. In Section 2, we outline the proposed two-step
Bayesian decision framework for optimizing personalized sequential cART assignments. In
Section 3, we elaborate on the first step of developing an MGP model for individuals’ longitu-
dinal states. In Section 4, we elaborate on the second step of an uncertainty-penalized policy
optimization procedure. We evaluate the performance of the proposed approach through sim-
ulation studies and compare it to alternative methods in Section 5, and apply it to the WIHS
dataset in Section 6. Lastly, we conclude with a discussion in Section 7.



4 W. JIN, Y. NI, J. O’HALLORAN, A. SPENCE, L. RUBIN, AND Y. XU

Environment

Dataset

Diagnosis Survey Lab Test

Step I: Bayesian 
MGP Model

Learned Dynamics t

y

Step II: Offline 
Reinforcement 

Learning

Policy Optimizer

Combination
Antiretroviral Therapy

Pessimistic Environment 
with Uncertainty Penalization

FIG 1. Illustration of the proposed two-step Bayesian decision framework for optimizing sequential cART assign-
ments with proper uncertainty propagation.

2. Two-Step Bayesian Decision Framework Formulation. For each individual i =
1,2, . . . , I , assume that we have an S-dimensional vector of baseline covariates denoted
by Xi0. At times ti = (ti1, . . . , ti,Ji

), we have M time-varying variables that characterize
the individual’s health state such as depression score, denoted by Yi = (Yi1, . . . ,Yi,Ji

) with
Yij ∈ RM for each visit j = 1,2, . . . , Ji. Let Zi = (Zi1, . . . ,Zi,Ji

) with Zij denoting the
cART used by individual i during the time period (ti,j−1, tij ], where ti0 = 0. Thus our data
can be summarized as D = {Di}Ii=1 = {Xi0, ti,Yi,Zi}Ii=1. Assume that the physician as-
signs a cART Zi,j+1 at time tij for the individual i to take during the time period (tij , ti,j+1]
based on her baseline covariates Xi0, longitudinal state history Yij = {Yij′ : j′ ≤ j}, and
treatment history Zij = {Zij′ : j′ ≤ j}. Then the individual takes the prescribed cART until
the next visit at time ti,j+1, and her state is updated to Yi,j+1 following a probabilistic dy-
namic model parameterized by ϕ : Yi,j+1 = f(Yij ,Zi,j+1;ϕ). The objective is to optimize
personalized sequential cART assignments to maximize the individual’s long-term health
outcomes, e.g., lowest cumulative depression scores in the next two years. We first define our
problem in an optimization framework.

For any individual i with baseline covariates Xi0, suppose that she already has Ji visits
with recorded states history Yi = (Yi1, . . . ,Yi,Ji

) and treatment historyZi = (Zi1, . . . ,Zi,Ji
).

Let Y new
i = {Yij : j > Ji} and Znew

i = {Zij : j > Ji} denote her future longitudinal states
and cART assignments, respectively. Assume for any future visit j > Ji, the cART is as-
signed through a policy function parameterized by θ : π(Zi,j+1 | Yij ,Zij ;θ). We assign to
each individual some stochastic reward function of future longitudinal states: ri(Y new

i ). For
example, if our goal is to select sequential cARTs that result in the lowest cumulative de-
pression scores (higher is worse) in the next two years (i.e., the next 4 visits if 2 visits per
year), and let Yij1 denote the predicted depression score at the future visit j, we will define
ri(Y

new
i ) =−

∑Ji+4
j=Ji+1 Yij1. Denote the expected reward for any individual i to be:

(2.1) Ri(θ) =

∫
E(Y new

i ,Znew
i )∼p(Y new

i ,Znew
i |D,ϕ,θ)[ri(Y

new
i )]p(ϕ | D)dϕ.

Note that even though the reward function ri(Y new
i ) only depends on Y new

i , the expectation
in (2.1) is taken over all stochastic realizations of both Y new

i and Znew
i to highlight their

coupled relationship, which is equivalent to taking the expectation over Y new
i only with re-

spect to its marginal distribution p(Y new
i | D,ϕ,θ) with Znew

i integrating out. We aim to find
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the optimal personalized cART assignment policy π(·, ·;θ⋆i ) that maximizes the expected re-
ward Ri(θ), θ⋆i = argmaxθRi(θ), while accounting for the uncertainty in the longitudinal
dynamic model by integrating out its parameter ϕ with respect to the posterior p(ϕ | D).

To find θ⋆i and the optimal sequential cART assignments from (2.1), we will use stochastic
gradient descent (SGD, Robbins and Monro 1951), i.e., θi,q+1 = θi,q + si,q∇θRi(θ) |θ=θi,q

,
which requires computing the gradient of the expected reward: ∇θRi(θ). As the expectation
is taken over realizations of the joint distribution p(Y new

i ,Znew
i | D,ϕ,θ), it is intractable to

directly compute ∇θRi(θ). Fortunately, we can indirectly compute this gradient by taking
the expectation of the reward-weighted gradient of log-policy:
(2.2)

∇θRi(θ) =

∫
E(Y new

i ,Znew
i )∼p(Y new

i ,Znew
i |D,ϕ,θ)

ri(Y new
i )∇θ log

 ∏
j≥Ji

π(Zi,j+1 | Yij ,Zij ;θ)

p(ϕ | D)dϕ,

where the policy π(Zi,j+1 | Yij ,Zij ;θ) maps the individual’s up-to-date longitudinal states
and treatment history to a recommended cART at each future visit j, j > Ji. We provide the
proof of equation (2.2) in Supplementary Material Section B.

The form of (2.2) allows us to use Monte Carlo to approximate ∇θRi(θ). Specifically,
we need to 1) sample future longitudinal states Y new

i , which requires us to learn how the
individual’s states evolve over time conditional on her preceding states and treatment his-
tory from the data D; and 2) parameterize the cART assignment policy π so that we can
compute the gradient of log-policy ∇θ log

(∏
j≥Ji

π(Zi,j+1 | Yij ,Zij ;θ)
)

. To fulfill these
two objectives, we propose a two-step approach. In the first step (Section 3), we propose
to use a multivariate Gaussian process (MGP) to model the joint distribution of individ-
ual’s longitudinal states. The transition dynamics Yi,j+1 = f(Yij ,Zij ;ϕ) is then induced
by the conditional distribution of the MGP model, and can be subsequently used for sam-
pling future longitudinal states. The MGP is able to model multivariate longitudinal data
observed at irregular time points with uncertainty quantification, which will be incorporated
into the optimization. In the second step (Section 4), to mitigate the distribution shift issue
arising from optimizing sequential cART assignments from observational data, we construct
a pessimistic environment as a surrogate for the underlying true environment, by equipping
the reward function with uncertainty penalization for safe exploration in the cART space.
We conduct policy optimization with respect to the following uncertainty-penalized reward:
r̃i(Y

new
i ) = ri(Y

new
i )−λu(Y new

i ,Znew
i ), where the function u(·, ·) quantifies the uncertainty

of the estimated dynamic model at future states Y new
i with cART assignments Znew

i , and
λ≥ 0 is a hyperparameter that controls the degree of uncertainty penalization to the reward
function. To find the gradient of the log-policy, we develop a probabilistic generative model
for the cART assignment Zi,j+1 = π(Yij ,Zij ;θ) by representing the decision process of
selecting cARTs via a tree structure with three levels. The functional form of the cART as-
signment π allows us to directly compute ∇θ log

(∏
j≥Ji

π(Zi,j+1 | Yij ,Zij ;θ)
)

, which can
be then used for estimating θ⋆i from (2.1) though SGD.

3. First Step: Modeling Longitudinal States.

3.1. Probability model. In this section, we describe the proposed MGP model for in-
dividuals’ longitudinal states. MGPs are a popular choice for modeling irregularly spaced
multivariate longitudinal data with great flexibility and natural uncertainty quantification (Al-
varez et al., 2012). Motivated by our application, we focus on continuous states but if desired,
MGPs can be extended to handle non-normal states (e.g., binary) by introducing an appropri-
ate link function (e.g., the probit link) between the non-normal states and the latent Gaussian
processes (Albert and Chib, 1993).
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Let Yim(t) denote the m-th variable for individual i at time t. Note that Yim(t) can
be missing at any time t, and we assume they are missing at random. We construct a
sampling model for individuals’ longitudinal states Yim(t) = fim(t) + ϵim, where fim(t)
is a smooth function representing the mean of variable m for individual i at time t and
ϵim

i.i.d∼ N (0, σ2m). We place independent GP priors over functions fim(t)’s with a shared
time correlation kernel Ct(t, t′) for ease of computation. Because we do not expect fim(t)
to be overly smooth, we consider the Ornstein-Uhlenbeck (OU) kernel Ct(t, t′) = ρ

|t−t′|
t

whose realizations are only first-order continuous. Given Ct(t, t′), (fi1(t), . . . , fiM (t))
are MGP-distributed with mean (µi1(t), . . . , µiM (t)) and a separable covariance function
cov(fim(t), fim′(t′)) = CMmm′Ct(t, t′), where CM is an M ×M covariance matrix charac-
terizing the dependence among the variables.

We model the GP mean µim(t) with a mixed-effects model,

(3.1) µim(t) =Xi0βm +V (t)αim + hm(Zi(t)),

where Zi(t) denotes the treatment history of individual i until time t, βm is the baseline fixed
effects including an intercept, V (t) = (1, t), and αim ∼N (0,Σαm

) represents the random
effects. The last term hm(Zi(t)) is the key component of the GP mean, which measures not
only the instantaneous effect of the current cART Zi(t) at time t for variable m, but also the
accumulated effects of preceding cARTs,
(3.2)

hm(Zi(t)) =

∑D
d=1 κ(Zi(t), zd)γmd∑D

d=1 κ(Zi(t), zd)
+

S∑
s=1

∑D
d=1 κ(Zi(t), zd)Xi0sγ̃mds∑D

d=1 κ(Zi(t), zd)︸ ︷︷ ︸
instantaneous drug effect

+

N∑
n=1

δmn

∫ t

0
I(An ∈ Zi(t′))e−(t−t′)dt′

︸ ︷︷ ︸
accumulated drug effect

,

where An represents the n-th individual ART drug recorded in the dataset, n= 1,2, . . . ,N .
In the WIHS dataset, N = 31. The instantaneous drug effect includes the cART main effect
and cART-covariate interaction effect. Since the cART space is high dimensional due to the
large number of possible drug combinations, we use the subset-tree (ST) kernel approach
(Jin et al., 2022) to reduce the dimension to a manageable size and encourage similar effects
for similar cARTs. Specifically, we first pick a number D of representative cARTs that are
commonly prescribed in clinical practice, denoted by z1, . . . , zD . Then we calculate the sim-
ilarities between the cART Zi(t) and those representatives using a similarity score function
κ(Zi(t), zd) induced by the ST kernel, which will be described later. The accumulated drug
effect models the long-term effect δnm of each ART drug n that has been used by the indi-
vidual i before time t on variable m, denoted by an indicator function I(An ∈ Zi(t′)), t < t′.
This accumulated effect decays with time and will eventually decline to zero after an ART
drug is terminated for a long time. In practice, the instantaneous drug effect is usually bene-
ficial (e.g., viral suppression), while the accumulated drug effect can be toxic. For example,
the long-term use of EFV (efavirenz) is associated with worse neurocognitive functioning
(Ma et al., 2016).

Here we give a brief description of the ST kernel. We first represent each cART as a rooted
tree T with three levels: 1) the first level indicates which drug classes are used; 2) the second
level indicates how many drugs are used within each drug class; 3) the third level indicates
which specific individual ART drugs are used within each drug class. Figure 2 illustrates
the representation using two cARTs as an example. The main idea of the ST kernel is to
compute the number of common substructures between two trees (highlighted by the yellow
and blue boxes in Figure 2). Let RT denote the set of nodes for any tree T and let ch(r)
denote the set of children nodes of the node r ∈RT . The similarity score, κ(Ta,Tb) between
two cART trees Ta and Tb, is calculated by κ(Ta,Tb) =

∑
ra∈RTa

∑
rb∈RTb

ρ(ra, rb), where
ρ(ra, rb) is defined for each pair of nodes as follows. (i) If ra and rb are terminal nodes
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(ch(ra) = ch(rb) = ∅), then ρ(ra, rb) = 0. (ii) If ra and rb have different sets of children
nodes (ch(ra) ̸= ch(rb)), then ρ(ra, rb) = 0. (iii) If ra and rb have the same nonempty set of
children nodes, then ρ(ra, rb) = η

∏|ch(ra)|
s=1

{
1 + ρ(chsra , ch

s
rb)

}
, where | · | is the cardinality

of a set and chsra is a child of ra for s= 1, . . . , |ch(ra)|. The ST kernel is able to incorporate
the known clinical knowledge on drug classes and capture the similarity between cARTs
across all levels of the tree representation. The hyperparameter η ∈ (0,1] is a decay factor
to control the relative influence from nodes near the root to alleviate the peakiness of the ST
kernel when the tree depth is large (Beck et al., 2015).

(a) cART: FTC+TDF+EFV (b) cART: FTC+TDF+DTG

FIG 2. Tree representations of cARTs.

In summary, the likelihood for Yi ∈ RM×Ji can be represented as vec(Yi)∼N (µi,Σi),
where µi vectorizes {µim(tij)}M,Ji

m=1,j=1 and Σi = CM
⊗
CJi +D

⊗
IJi

. Here CJi is a
Ji×Ji time correlation matrix specified by Ct(t, t′) andD is a diagonal matrix of {σ2m}Mm=1.

3.2. Posterior inference. There are two computational challenges in the estimation pro-
cedure for the MGP. First, the ST kernels κ(·, ·) in (3.2) are potentially high-dimensional if
the number of selected knots D is large, and are highly correlated for similar cARTs. There-
fore, we consider a principal component regression method (Kendall, 1957). Specifically, let
Hij be a D-dimensional vector whose d-th element is κ(Zij , zd)/

∑D
d=1 κ(Zij , zd) for indi-

vidual i at time tij , and letH = (HT
11, . . . ,H

T
1J1
, . . . ,HT

I1, . . . ,H
T
IJI

)T be the
∑I

i=1 Ji×D-
dimensional ST kernel design matrix in (3.2). We perform the principal component analysis
onH and retain the firstD⋆ principal components that explain at least 99.9% of the total vari-
ance, where the resulting

∑I
i=1 Ji ×D⋆ matrix is denoted by H⋆. Then the instantaneous

drug effect, i.e., the first two terms in (3.2), can be approximated by γ⋆H⋆
ij + γ̃

⋆H⋆
ij

⊗
Xi0,

where γ⋆ and γ̃⋆ are the M ×D⋆ main effect matrix and M × (S ×D⋆) interaction effect
matrix that need to be estimated. Second, estimating the covariance matrix CM requires fit-
ting M(M + 1)/2 parameters, which can be computationally inefficient if M is moderately
large (e.g., M ≥ 4). We speed up the computation by dimension reduction following the
idea of intrinsic coregionalization model (ICM, Alvarez et al. (2012)). Specifically, in ICM,
each state function fim(t) is assumed be a linear combination of L independent latent GPs
gi1(t), . . . , giL(t) with common correlation kernel Ct(t, t′) such that fi(t) =

∑L
l=1 blgil(t),

where bl = (b1l, . . . , bMl)
T is the vector representing the collection of linear coefficients as-

sociated with the l-th latent function. It follows that the covariance function for fi(t) is
cov(fi(t),fi(t

′)) =BBT
⊗
Ct(t, t′), where B = (b1, . . . ,bL) is an M × L matrix. There-

fore, the number of parameters to be estimated in the covariance matrix decreases from
M(M + 1)/2 to M ×L by using the ICM.

We complete the model by imposing the following priors. To encourage parsimony, we as-
sign the horseshoe prior (Carvalho, Polson and Scott, 2010) on the coefficients of baseline and
cART effects ψm = (βm,γ

⋆
m, γ̃

⋆
m). In particular, we assume that ψms | τ, νs ∼N (0, τ2ν2s ),
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τ ∼ C+(0,1), and νs ∼ C+(0,1), where s = 2, . . . , S + D⋆ + S × D⋆ and C+(0,1) is the
standard half-Cauchy distribution. Note that the intercept ψm1 is not shrunk by the horseshoe
prior; instead it is assigned a normal prior ψm1 ∼N (0, σ2ψ1

). The horseshoe prior is a global-
local shrinkage procedure in which the global parameter τ tries to push all of the coefficients
towards zero, while the heavy-tail property of the Cauchy distribution for the local parame-
ters νs allows sufficiently large coefficients (i.e., signals) to escape from the global shrinkage
effect. We assume the long-term effect δmn ∼ Unif[0,+∞) if a higher value of the variable
m indicates a worse symptom (e.g., depression); δmn ∼ Unif(−∞,0] if a lower value of the
variable m indicates a worse symptom (e.g., cognition). In addition, we assign a conjugate
Inverse-Wishart(a0,A−1

0 ) prior on Σαm
and a conjugate Inverse-Gamma(d1, d2) on σ2m for

ease of computation. We assume flat priors for ρt in the time correlation kernel Ct(t, t′) and
B. We carry out posterior inference using the Markov chain Monte Carlo (MCMC) sampler,
the details of which are included in the Supplementary Material Section A.

4. Second Step: Optimizing cART Assignments. In this section, we propose an
uncertainty-penalized policy optimization procedure to optimize personalized sequential
cART assignments that maximize individuals’ long-term health outcomes. We first intro-
duce an uncertainty-penalized reward function in the setting of a pessimistic environment to
mitigate the distribution shift issue, and then build a generative model for cART assignments
by developing a three-level decision process. Lastly, we describe the details of the SGD al-
gorithm for policy optimization.

4.1. An uncertainty-penalized reward. In HIV clinical practice, many factors contribute
to PWH’s long-term health and quality of life. Virologic control is the primary goal of cART
since failing to suppress viral load can significantly increase HIV-related mortality and mor-
bidity (Ledergerber et al., 1999). Moreover, PWH are at increased risks for a range of comor-
bidities, such as kidney diseases (D’Souza, Golub and Gange, 2019). Other clinical factors
such as depression and cognition are also important when physicians make treatment deci-
sions for PWH (Langebeek et al., 2017). Here we define our reward based on viral load,
kidney function, and depression to illustrate the proposed method, which can be easily ex-
tended to include other factors.

For individual i at a future visit j, j > Ji, let Yij1, Yij2, and Yij3 denote her future values
of depression, viral load, and estimated glomerular filtration rate (eGFR, a kidney function
indicator), respectively. We define a personalized reward function for the next two years (i.e.,
the next 4 visits for 2 visits per year),
(4.1)

ri(Y
new
i ) =−

Ji+4∑
j=Ji+1

wi1Yij1︸ ︷︷ ︸
depression

+wi2|Yij2 − TV |I(Yij2 > TV )︸ ︷︷ ︸
viral load

+wi3|Yij3 − TE |I(Yij3 < TE)︸ ︷︷ ︸
eGFR

 .

Here TV and TE denote the known clinical thresholds for viral load and eGFR, i.e., if Yij2 >
TV , or Yij3 < TE , then individual i’s viral load or eGFR at visit j is in the abnormal range
and immediate medical care is needed. If an individual’s viral load is in its normal range
(i.e., Yij2 ≤ TV ), it is not necessary to adjust the cART assignment to further reduce the viral
load; accordingly the proposed reward function does not warrant additional rewards due to
the term I(Yij2 > TV ). Same can be said for eGFR. In contrast, since lower depression is
always better, the proposed reward function always encourages lower depression scores. The
personalized weight wi = (wi1,wi2,wi3) determines the relative contribution of depression,
viral load, and eGFR to the reward, which should be chosen by practitioners. For example, for
one individual whose viral load and eGFR are within the normal range but whose depression
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score is high, a large weight can be assigned to the depression term so that the optimization
procedure can find the cART that reduces the depression score the most.

Inspired by Yu et al. (2020b) who developed a model-based uncertainty-penalized pol-
icy optimization method to mitigate the distribution shift issue in offline RL, we build a
pessimistic environment based on the uncertainty quantified from the learned probabilis-
tic dynamic model in the first step. Specifically, we define an uncertainty-penalized reward
r̃i(Y

new
i ) that penalizes ri(Y new

i ) in (4.1) for each pair of state (i.e., individual’s longitu-
dinal states Y new

i ) and action (i.e., cART assignments Znew
i ) by its estimated uncertainty

in the learned dynamics: r̃i(Y new
i ) = ri(Y

new
i ) − λu(Y new

i ,Znew
i ), where u(·, ·) quantifies

the uncertainty of the state-action pair (Y new
i ,Znew

i ). In this paper, we use u(Y new
i ,Znew

i ) =∑Ji+4
j=Ji+1

∑M
m=1

√
Var(Yijm | Zij ,D), where Yijm is the predicted value of them-th variable

for individual i at future visit j, and the variance is calculated by its posterior predictive dis-
tribution conditional on the cART assignment Zij and the observed data D. Our formulation
is motivated by the theoretical guarantee established in Yu et al. (2020b) who showed that the
learned policy from the pessimistic environment performed at least as well as the behavior
policy that generated the observational data.

4.2. Decision process for assigning cART. In order to find θ⋆ that maximizes the ex-
pected reward Ri(θ) defined in (2.1) for individual i via the policy optimization procedure,
we need to compute the gradient of the expected reward: ∇θRi(θ). After discussing with
clinicians, we construct a clinically meaningful policy π (i.e., the probabilistic generative
model for the cART assignment Zi,j+1 = π(Yij ,Zij ;θ)) by representing the decision process
of selecting a cART conditional on individuals’ preceding longitudinal states and treatment
histories via a tree structure with three levels, illustrated in Figure 3.

cART Switching?

Stay on the 
previous cART

Switch to a 
new cART

Switch

NRTI

NRTI NRTI

NNRTI

NNRTI

FTC TDF EFV

Which drug classes 
and how many drugs?

Which individual drugs 
within each class?

Start

End

Level  I

Level II

Level III

FIG 3. Illustration of the three-level decision process for selecting a cART conditional on individuals’ preceding
longitudinal states and treatment histories.

In the first level of the decision process, we determine whether individual i needs to switch
to a new cART or stay on her previous cART. In HIV clinical practice, physicians make
switch or no-switch decisions based on patients’ health outcomes. Specifically, at any future
visit j, j > Ji, individual i needs to switch to a new cART if any one of the outcomes is
abnormal, i.e., Yij1 > TD , Yij2 > TV , or Yij3 < TE , where TD is the clinical threshold for
depression; otherwise, she will stay on her previous cART.
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If switching is necessary, we need to determine the optimal new cART assignment. As
there are N = 31 individual ART drugs recorded in the WIHS, a straightforward approach is
to represent Zi,j+1 as an N -dimensional binary vector and apply logistic regression model to
each individual drug regressed on Yij and Zij . Although simple to use, this method ignores
the structure of cART such as drug class information and yields a large number of param-
eters to be estimated. Also, considering each drug independently leads to 2N possible drug
combinations, in which most of them would be unrealistic and never be prescribed in clinical
practice. For example, practical cARTs typically take two NRTI drugs as backbone then add
drugs from other drug classes.

To efficiently explore the high-dimensional cART space when treatment switching is nec-
essary, we represent the new cART as a tree rooted at node “Switch", as shown in Figure 3.
Then we determine which drug classes to use and how many drugs used in each drug class in
the second level of the decision process. Lastly, we determine what specific individual drugs
to be selected in the third level. For example, the new cART in Figure 3 is a combination
of two NRTI drugs FTC and TDF and an NNRTI drug EFV. During this decision process,
known clinical knowledge can be incorporated to reduce the dimension. For instance, except
for the NRTI drug class that is frequently used as the cART backbone, prescribing more than
one individual drug from other drug classes is uncommon in practice.

We represent this three-level decision process as a hierarchical model,
(4.2)

π(Zi,j+1 | Yij ,Zij ;θ) = p(a
(1)
ij | Yij ,Zij ;θ

(1))︸ ︷︷ ︸
first level

p(a
(2)
ij | a(1)ij ,Yij ,Zij ;θ

(2))︸ ︷︷ ︸
second level

p(a
(3)
ij | a(1)ij ,a

(2)
ij ,Yij ,Zij ;θ

(3))︸ ︷︷ ︸
third level

,

where a(1)ij is a binary indicator for cART switching, a(2)ij represents the number of drugs

used in each drug class, and a(3)ij contains the selected individual ART drugs in each drug
class, the details of which are given below.
First-level decision. We model the first level decision by applying hard thresholding on de-
pression, viral load, and eGFR at known clinically abnormal thresholds,

(4.3) p(a
(1)
ij = 1 | Yij ,Zij ;θ(1)) =

{
1, if Yij1 > TD or Yij2 > TV or Yij3 < TE ,

0, otherwise,

where a(1)ij = 1 indicates cART switching, and a(1)ij = 0 represents staying on the previous
cART Zij until the next visit j + 1.
Second-level decision. Assume that there are K different drug classes, and that the maxi-
mum number of drugs used in the k-th drug class is Ck, k = 1,2, . . . ,K . Conditional on the
cART switching, we model the number of drugs used in each drug class for the new cART
independently using the following multi-class logistic regression model,

(4.4) p(a
(2)
ij | a(1)ij = 1,Yij ,Zij ;θ

(2)) =

K∏
k=1

p(a
(2)
ijk | a

(1)
ij = 1,Yij ,Zij ;θ

(2)
k ),

where

(4.5) p(a
(2)
ijk = ck | a

(1)
ij = 1,Yij ,Zij ;θ

(2)
k ) =


exp

(
Y T
ij θ

(2)
kck

)
1+

∑Ck
c′
k
=1

exp

(
Y T
ij θ

(2)

kc′
k

) , ck = 1,2, . . . ,Ck,

1

1+
∑Ck

c′
k
=1

exp

(
Y T
ij θ

(2)

kc′
k

) , ck = 0.

Note that the second-level decision only depends on the individual’s most recent state Yij ,
which can be easily extended to her entire history if necessary.
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Third-level decision. Assume that there are a number ofNk possible individual ART drugs for
each drug class k. Note that

∑K
k=1Nk ≤N since some ART drugs are no longer available

due to their sub-optimal antiviral potency or unacceptable toxicities. Given ck drugs have
been selected for each drug class k in the second level, we select individual ART drugs using
the Wallenius’ noncentral hypergeometric distribution (WNH, Wallenius 1963),

(4.6) p(a
(3)
ij | a(1)ij ,a

(2)
ij ,Yij ,Zij ;θ

(3)) =

K∏
k=1

∫ 1

0

Nk∏
nk=1

(1− xξnk )
a
(3)
ijknk dx,

where ξnk
= ωnk

/{
∑Nk

n′
k=1ωn′

k
(1−a(3)ijkn′

k
)}, ωnk

= exp(Y T
ij θ

(3)
knk

)/{
∑Nk

n′
k=1 exp(Y

T
ij θ

(3)
kn′

k
)},

for nk = 1,2, . . . ,Nk. For each drug class k, a(3)ijknk
is a binary variable indicating whether

the nk-th ART drug is included in the cART. The binary vectors a(3)ijk = (a
(3)
ijk1, . . . , a

(3)
ijkNk

)

satisfy the natural constraint
∑NK

nk=1 a
(3)
ijknk

= a
(2)
ijk by the assumption of the WNH distribu-

tion. Specifically, we need to select ck out of Nk drugs for the drug class k, each of which has
weight ωnk

modeled by a logistic regression with covariates Yij . The odds ratio ξnk
measures

the relative probability of selecting the nk-th individual drug compared to other drugs that
have not been selected in the k-th drug class.

4.3. Policy optimization. The parametric form of the proposed three-level decision pro-
cess allows for computing the gradient of the expected reward ∇θRi(θ), a key quantity for
applying SGD to obtain θ⋆i that optimizes sequential cART assignments. The details of the
SGD algorithm are described in Algorithm 1. We first draw a number E samples of ϕ from
its posterior distribution p(ϕ | D). At each iteration of the SGD, given the current value of
θ, we simulate the individual’s future states Yij’s from its posterior predictive distribution
and sample the future cARTs Zij’s from the three-level decision model for each sample of ϕ,
j = Ji+1, . . . , Ji+4 (see details in Supplementary Material Section C). Next we compute the
gradient of the log-policy ∇θ log

(∏
j≥Ji

π(Zi,j+1 | Yij ,Zij ;θ)
)

(see Supplementary Mate-
rial Section D). Then we approximate ∇θRi(θ) in (2.2) using Monte Carlo. Note that in the
Step 11 of Algorithm 1, we subtract the average reward. This “baseline subtraction" trick
significantly reduces the variance while still yielding an unbiased estimate of the gradient
(Greensmith, Bartlett and Baxter, 2004). Lastly, we select the optimal policy parameter θ⋆ to
be the one yielding the highest expected reward across all SGD iterations.

5. Simulation Study. We conducted simulation studies to evaluate performance of the
proposed Bayesian decision framework and compared it to alternative methods in terms of
the expected rewards under the estimated optimal cARTs. To illustrate the clinical utility of
the proposed method, we demonstrated how the estimated personalized optimal sequential
cARTs can improve PWH’s health outcomes at both individual- and population-level.

5.1. Simulation setup. We simulated a dataset mimicking the WIHS dataset composed
of longitudinal measurements with missing data. Assume that there were I = 200 individuals
with M = 3 state variables including individuals’ depression scores, viral load (in log-scale),
and eGFR, and S = 3 baseline covariates with one intercept, one binary covariate, and one
continuous covariate, i.e., Xi0 = (1, xi1, xi2), where xi1’s and xi2’s were respectively gen-
erated from Bernoulli(0.6) and a standard normal distribution, i = 1,2, . . . , I . Individuals’
treatment histories Zi were randomly sampled from the WIHS dataset without replacement,
resulting in the number of visits per individual to range from 2 to 46. Conditional on the
number of visits Ji for individual i, the number of observed measurements for each variable
m was independently sampled from Poisson(25) truncated by 1 and Ji, for m= 1,2, . . . ,M ,
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Algorithm 1 Stochastic Gradient Descent for optimizing θ for any individual i
1: Input: initial value θ0, step size si,q(q = 1,2, . . . ,Q), posterior samples ϕ(e)(e = 1,2, . . . ,E), data D,

reward weight wi, known clinical thresholds TD, TV , TE , and hyperparameter λ.
2: Initialize: θi,1← θ0
3: for q = 1, . . . ,Q do
4: for e= 1, . . . ,E do
5: for j = Ji + 1, . . . , Ji + 4 do
6: Sample Yij(e) and Zij(e) conditional on D, ϕ(e), and θi,q
7: end for
8: Compute the uncertainty-penalized reward r̃i

(
Y new
i(e)

)
= ri

(
Y new
i(e)

)
− λu

(
Y new
i(e) ,Z

new
i(e)

)
9: end for

10: Ri(θi,q)←
∑E

e=1 r̃i
(
Y new
i(e)

)
E

11: ∇θRi(θi,q)←
∑E

e=1

(
r̃i
(
Y new
i(e)

)
−Ri(θi,q)

)
∇θ log

(∏
j≥Ji

π(Zi,j+1(e)|Yij(e),Zij(e);θi,q)
)

E
12: θi,q+1← θi,q + si,q∇θRi(θi,q)
13: end for
14: q⋆← argmaxqRi(θi,q)

15: Output: θ⋆← θi,q⋆

yielding an overall 20% missing rate. There were N = 30 individual ART drugs in treat-
ment histories of this simulated dataset. We selected representative cARTs z1, . . . , zD if a
cART zd has been used in more than 10 visits among all 200 individuals, yielding D = 67.
We performed the principal component analysis on the kernel design matrix H based on
these 67 representatives, and selected the first D⋆ = 41 principal components that explained
99.9% variation of the original matrix. We set the decay factor η = 0.5 and then computed
the similarity scores between different cARTs using the ST kernel.

We assumed that the simulated true fixed effect parameters were β1 = (25,1,2), β2 =
(4.5,−0.5,1), and β3 = (75,−4,2), corresponding to depression scores, viral load, and
eGFR, respectively. We randomly generated the cART coefficients γ⋆m and γ̃⋆m from standard
multivariate normal distributions. We set the drug toxicity coefficients to be δn = (1,0.5,−2)
for NRTI drugs, and δn = (0,0,0) for non-NRTI drugs. We assumed the random effect co-
variance matrices to be Σα1

= IQ, Σα2
= 0.5IQ, and Σα3

= 2IQ. We set CM to be a co-
variance matrix with diagonal elements (c11, c22, c33) = (5,1,10) and off-diagonal elements
(c12, c13, c23) = (1.67,−3.53,−0.79), ρt = 0.5, and σ2 = (10,1,20). Based on the proposed
MGP model in Section 3, we generated the individuals’ longitudinal states Yi’s.

In the decision process, we incorporated known clinical knowledge to make the cARTs
from the generative model π clinically meaningful. Specifically, we first divided the NRTI
drug class into two sub-classes (NRTI1 and NRTI2) so that drugs within the same sub-class
share similar profiles, and hence at most one drug from each sub-class would be used in
clinical practice. Furthermore, we removed individual ART drugs that were no longer recom-
mended by FDA or discontinued, yieldingK = 6 drug classes with

∑K
k=1Nk = 16 individual

ART drugs. They included NRTI1 drugs 3TC and FTC, NRTI2 drugs ABC, TAF, and TDF,
NNRTI drugs EFV, ETR, NVP, and RPV, PI drugs ATV, DRV, and LPV, INSTI drugs DTG,
EVG, and RAL, and EI drug MVC. In addition, the Booster RTV will be included in the
cART if any of the PI drugs is selected, and the Booster COBI will be included if the IN-
STI drug EVG is selected. Such a setup makes the maximum number of drugs used in each
defined drug class for a clinically meaningful cART to be Ck = 1 for k = 1,2, . . . ,K . The
thresholds for depression, viral load, and eGFR were set to be TD = 16 (Zich, Attkisson and
Greenfield, 1990), TV = log(20) (Raboud et al., 1998), and TE = 60 (Ma et al., 2017).

5.2. Simulation results. We first applied the proposed MGP model to the simulated
dataset. The hyperparameters were set to be σ2ψ1

= 100, a0 = 3, A−1
0 = I2, d1 = 1, d2 = 1,
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η = 0.5, and L = 1. We ran 10,000 MCMC iterations with an initial burn-in of 5,000 itera-
tions and a thinning factor of 10. The convergence diagnostic was assessed using R package
coda, including trace plots of the post-burn-in MCMC samples for some randomly selected
parameters (Supplementary Figure S1), showing no issues of non-convergence. Supplemen-
tary Figure S2 plots the 95% estimated credible intervals (CI) for selected parameters, show-
ing that all 95% CIs are centered around the simulated true values. Supplementary Table S3
summarizes the mean squared error (MSE) of the post-burn-in MCMC posterior samples,
indicating that the proposed method performs well in terms of parameter estimation.

To demonstrate that the MGP can handle discrete state variables, we conducted an addi-
tional simulation study in Supplementary Section F1, where individuals’ longitudinal states
consist of both binary and continuous outcomes. The proposed MGP was able to recover
the simulated true parameter values. In Supplementary Section F2, we compared the perfor-
mance of the proposed MGP model to the random forest model and found that the MGP
outperformed the random forest in terms of prediction accuracy. To demonstrate the robust-
ness of the MGP model with respect to model misspecification, we conducted an additional
simulation study with a sequential data generation scheme in Supplementary Section F3. The
MGP yielded satisfactory prediction performance under this model misspecification scenario.

We then applied the proposed uncertainty-penalized policy optimization in Section 4 to the
simulated dataset to estimate the personalized optimal sequential cART assignments under
different choices of λ= 0,0.1,0.25,0.5. We implemented the SGD algorithm with 1000 steps
and used a fixed step size, i.e., si,q = 0.1, q = 1,2, . . . ,Q. The starting parameter values θ0 in
Algorithm 1 were set to be all zeros, so that all possible drug combinations can be generated
with equal probabilities.

At the individual level, we considered two randomly-selected subjects (denoted by I1 and
I2) to demonstrate that the proposed method can recommend personalized optimal sequential
cART. We assigned equal weights to depression, viral load, and eGFR in the reward func-
tion for both individuals, i.e., wi = (1/3,1/3,1/3), i= 1,2. Individual I1 had J1 = 7 visits
and stayed on the same cART 3TC+AZT+NFV (two NRTIs + one PI) all the time, while
individual I2 had J2 = 21 visits, and used the cART 3TC+AZT+NVP (two NRTIs + one
NNRTI) in her first seven visits, then switched to FTC+TDF+ATV+RTV (two NRTIs + one
PI + one Booster) for the rest of her visits. As shown in Figure 4(a, b), the depression scores
of both I1 and I2 at their last visits were beyond the normal range, indicating that switching
to a new cART would be desired according to the first-level decision in (4.3). Note that the
discontinuity of the curve in Figure 4(b) is due to missing data.

For individual I1, switching to the cART FTC+ABC+NVP+MVC (two NRTIs + one
NNRTI + one EI) for the next three visits (i.e., visits 8-10) and then replacing the NNRTI
drug NVP with another NNRTI drug ETR at the last visit was her personalized optimal se-
quential cART when λ = 0. The sequence of cARTs 3TC+ABC+NVP (two NRTIs + one
NNRTI) for her next four visits was optimal under λ = 0.1, while the sequence of cARTs
3TC+ABC+NVP+ATV+RTV (two NRTIs + one NNRTI + one PI + one Booster) was opti-
mal under λ= 0.25 and 0.5. For individual I2, prescribing FTC+ABC+RPV (two NRTIs +
one NNRTI) for the next two years (i.e., visits 22 to 25) was optimal when λ = 0 and 0.1,
and the sequence of cARTs FTC+TDF+EFV (two NRTIs + one NNRTI) was optimal under
λ = 0.25 and 0.5. As shown in Figure 4(c,d), all the recommended cARTs under different
choices of λ would alleviate depressive symptoms for both individuals, while the optimal
cARTs under λ= 0 and λ= 0.1 can reduce their depression scores to the normal range. Fur-
thermore, Supplementary Figure S4 plots the predicted viral loads and eGFRs for individual
I1 and I2 under their personalized optimal sequential cART with respect to different choices
of λ, indicating that all the recommended cARTs can successfully suppress their viral load
and control their eGFR within the normal range.
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FIG 4. Panels (a, b) plot the longitudinal health states for two randomly selected individuals I1 and I2 in the sim-
ulation study. The dashed lines represent the thresholds for depression score, viral load, and eGFR. Panels (c, d)
plot the predicted depression scores for I1 and I2 under their personalized optimal sequential cART assignments
with respect to λ= 0,0.1,0.25,0.5. The dashed red lines represent the thresholds for depression score.

Moreover, Figure 4(c,d) show that when λ increased, both individuals’ predicted depres-
sion scores also increased, while the predicted uncertainties decreased, demonstrating the
trade-off between the gain and risk introduced by the uncertainty-penalized policy optimiza-
tion. Specifically, high uncertainties when λ was small arose from the fact that these cARTs
were rarely used in the observed data, which was captured by our MGP model in the first step.
For example, in the simulated dataset, the optimal cART for individual I2 under λ= 0.25 and
0.5 (i.e., FTC+TDF+EFV) was observed for 265 times, while the optimal cART under λ= 0
and 0.1 (i.e., FTC+ABC+RPV) was never used. Therefore, there is a good practical reason
why FTC+TDF+EFV may be preferred over FTC+ABC+RPV for individual I2 even though
the latter has a lower predicted depression score.

At the (sub)population level, we demonstrated how the estimated optimal sequential cART
can improve PWH’s health outcomes. Specifically, we selected individuals who were de-
pressed but with normal viral load and kidney function at their last visits (i.e., Yi,Ji,1 > TD ,
Yi,Ji,2 ≤ TV , and Yi,Ji,3 ≥ TE), resulting in a subpopulation of 27 individuals. We set their
reward weights to be wi = (0.8,0.1,0.1) since reducing their depression scores is the prior-
ity for their long-term health. Under the personalized optimal sequential cART found by the
SGD algorithm when λ= 0, the average reward (4.1) for this subpopulation increased from
−88.5 during their last four visits to −25.1 during their future four visits. In addition, the
average depression scores of these 27 individuals reduced from 27.4 to 7.5, with 24 of them
being not depressed in the future two years (recall that TD = 16).

Lastly, to demonstrate the advantage of the proposed two-step Bayesian decision frame-
work, we compared its performance in estimating personalized optimal sequential cARTs
with three alternative strategies. The first alternative prescribes the same cART as what the
individual has been using. The second alternative optimizes the individual’s cARTs one step
at a time, each of which maximizes the expected reward of the next visit. The third alternative
is the neural fitted-Q (NFQ) learning (Riedmiller, 2005), which is a model-free RL algorithm
to estimate the Q-function using neural networks. The proposed method achieved the high-
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est expected reward compared to the three alternatives. The details of the three alternative
methods and comparison are described in Supplementary Material Section F4.

6. Application: WIHS Data Analysis. We applied the proposed method to the WIHS
dataset to demonstrate its clinical utility. We included all women from the Washington, D.C.
site with at least two visits, yielding a total of I = 339 individuals. Depression scores assessed
by the Center for Epidemiological Studies Depression Scale (CES-D, Radloff (1977)), viral
load (in log-scale), eGFR, and BMI were collected as individuals’ longitudinal state variables
(M = 4) at each follow-up visit, resulting in 8% missing data rate. We extracted the following
sociodemographic, behavioral, and clinical risk factors as baseline covariates: age, smoking
status, substance use (e.g., heroin), employment status, hypertension, and diabetes. A total of
N = 31 ART drugs inK = 6 drug classes were recorded in this dataset. We selectedD = 105
representative cARTs using the same criterion as in the simulation study.

6.1. Results: MGP model fitting. We first applied the proposed MGP to the WIHS dataset
using the same hyperparameters as in the simulation study. We retained the first D⋆ = 51
principal components that explained 99.9% variation of the original ST kernel matrix. We
ran 5,000 MCMC iterations after a burn-in of 20,000 iterations, and a thinning factor of 10.

We summarized the parameter estimation for some selected covariates effects on state
variables in Figure 5. Figure 5(a) plots the posterior means with 95% CIs for the estimated
coefficients with respect to baseline covariates age, employment, hypertension, and smok-
ing status. All these results are consistent with the findings in medical literature. Age was
negatively associated with eGFR, indicating that older people had an increased risk of renal
disease since kidney function declined over time due to aging (Islam et al., 2012). Unemploy-
ment status was associated with higher levels of depressive symptoms and viral load in PWH
(Zeng et al., 2019). Furthermore, there was a positive relationship between hypertension and
BMI since obesity is a major risk factor for hypertension (Bloomfield et al., 2011). Figure 5(a)
also indicates that smokers with HIV had a higher HIV viral load (Pollack et al., 2017). Fig-
ure 5(b) plots the posterior means and 95% CIs for selected ART drug toxicity coefficients.
The NRTI drug D4T was positively associated with depressive symptoms. Arenas-Pinto et al.
(2016) reported that D4T can cause a variety of systemic discomforts including peripheral
neuropathy. Figure 5(b) also shows that the NNRTI drug DLV was associated with a higher
level of viral load in the long term, which is also supported by existing studies (Yazdanpanah
et al., 2004). In fact, both D4T and DLV are no longer recommended by the U.S. Department
of Health and Human Services in the general guidelines. Furthermore, a positive relation-
ship was observed between the EI drug MVC and depression (Williams et al., 2020), and a
negative relationship was observed between NRTI drug TDF and eGFR (Surial et al., 2020).
Lastly, we analyzed the cART effects in Supplementary Material Section G.

6.2. Results: personalized optimal sequential cART assignments. We applied the pro-
posed policy optimization to estimate the personalized optimal sequential cART assignments
initially with λ = 0 (i.e., no uncertainty penalty) and later with different choices of λ. The
settings were the same as in the simulation study.

We demonstrate how the estimated optimal sequential cART improves individuals’ health
outcomes by randomly selecting two individuals: S1 and S2. Individual S1 had J1 = 13
visits with a depression score of 5, viral load of 4.4, and eGFR of 121.3 at her last visit.
In her reward function, the weights on depression score, viral load, and eGFR were set to
be w1 = (0.1,0.8,0.1) since her viral load was in the abnormal range (recall that TD = 16,
TV = log(20), and TE = 60). Individual S2 had J2 = 31 visits with a depression score of
16, viral load of 5, and eGFR of 102.8 at her last visit. We set the weights in her reward
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FIG 5. Posterior means and 95% CIs for the estimated effects of selected baseline covariates and ART drug
toxicities in the WIHS data analysis. The dots represent the posterior means.

function to be w2 = (1/3,1/3,1/3) since her health states were relatively normal. Figure
6(a) shows that S1’s personalized optimal sequential cART assignments (shown in Figure
6(c)) successfully suppressed her viral load from 4.4 at her last visit to 2.1 in the next four
visits, a 52% improvement. Figure 6(b) plots the predicted depression scores for individual S2
under her optimal sequential cART assignments (shown in Figure 6(d)), which decreased the
depression score from 16 at her last visit to 12.3 in the next four visits, a 23% improvement.

To further interpret the estimated optimal parameters θ⋆i and their corresponding decision
rules, we plot the probabilities of including the PI drug LPV for both individuals in their
optimal sequential cART assignments versus their predicted viral loads and depression scores
in Figure 6(e, f). The white lines represent decision boundaries. As shown in Figure 6(e, f),
a lower level of viral load and depression score led to a higher probability for selecting LPV
compared to the other two PI drugs ATV and DRV in both S1 and S2’s optimal cARTs. For
example, conditional on the viral load to be 4.4 and the depression score to be 5 at individual
S1’s visit 12, the probability of including LPV in her optimal cART at her visit 13 was greater
than 0.5. Since the selected cART FTC+ABC+EFV+LPV+RTV was able to control her viral
load and depression score in the normal range, the optimal cARTs always included LPV for
her next four visits. For individual S2, the probability of including LPV at her visit 32 was
less than 0.5, conditional on a viral load of 5 and a depression score of 16 at her visit 31.
However, the selected cARTs for her visits 32-34 decreased S2’s depression score and viral
load over time, which increased the probability of selecting LPV in her optimal cART to be
greater than 0.5 at her visit 35.

In addition, note that our decision rule was built using a probabilistic generative model.
Its stochastic nature informally accounts for exploration versus exploitation. If desired, one
can always turn an optimized stochastic policy into a deterministic policy by e.g., taking
the mode. On the other hand, compared to the deterministic policy, the stochastic policy as-
signs positive probabilities to several optimal or nearly-optimal deterministic policies, which
provides physicians more flexibility in clinical practice.



BAYESIAN DECISION FRAMEWORK FOR OPTIMIZING SEQUENTIAL CART 17

0

3

6

9

12

1 2 3 4 5 6 7 8 9 1011121314151617
Visit

V
ira

l L
oa

d
5

10

15

20

25

0 10 20 30
Visit

D
ep

re
ss

io
n

(a) Viral load for S1 (b) Depression for S2

LPV
FTC
ABC
EFV
RTV

LPV
FTC
ABC
EFV
RTV

LPV
FTC
ABC
EFV
RTV

LPV
FTC
ABC
EFV
RTV

0

1

2

3

4

5

14 15 16 17
Visit

N
um

be
r o

f D
ru

gs
 U

se
d

Class Booster
EI

INSTI
NNRTI

NRTI
PI

ATV
FTC
ABC
DTG
RTV

 

ATV
FTC
ABC
EVG
RTV
COBI

ATV
FTC
ABC
EVG
RTV
COBI

LPV
FTC
ABC
EVG
RTV
COBI

0

2

4

6

32 33 34 35
Visit

N
um

be
r o

f D
ru

gs
 U

se
d

Class Booster
EI

INSTI
NNRTI

NRTI
PI

(c) Optimal cART assignments for S1 (d) Optimal cART assignments for S2

0

5

10

15

0 25 50 75 100
Depression

V
ira

l L
oa

d

0.2

0.4

0.6

0.8

Pr

0.0

2.5

5.0

7.5

10.0

0 20 40 60
Depression

V
ira

l L
oa

d

0.40

0.45

0.50

0.55
Pr

(e) Probability of selecting LPV for S1 (f) Probability of selecting LPV for S2

FIG 6. Panels (a, b) plot the observed and predicted values of viral load and depression for two randomly selected
individuals S1 and S2 in the WIHS data analysis. The predictions are made under the scenarios where both
of them select their personalized optimal sequential cART assignments. The shaded areas represent the 95%
predictive credible bands, and the dashed red lines represent the thresholds for viral load and depression. Panels
(c, d) plot the personalized optimal sequential cART assignments for individual S1 and S2. Panels (e, f) plot the
probabilities of selecting LPV in the personalized optimal sequential cART assignments for S1 and S2 conditional
on their viral loads and depression scores. The white lines represent the contours for probability equals to 0.5.

Similarly to the simulation study, we selected all individuals who were depressed but with
normal viral load and kidney function at their last visits to illustrate the clinical utility of the
proposed approach at the subpopulation level, resulting in 29 individuals. We set the reward
weights wi = (0.8,0.1,0.1) to stress the importance of reducing their depression scores.
Under their personalized optimal sequential cART assignments, the average rewards (4.1)
for this subpopulation increased from −65.7 during their last four visits to −51.3 during
their future four visits. In addition, their average depression scores were reduced from 20.5
to 15.9, with 14 individuals becoming not depressed in the future two years.

To demonstrate the advantage of using uncertainty-penalized policy optimization, we in-
vestigated several different choices of hyperparameter λ= 0,0.05,0.1 for one randomly se-
lected individual P1 in the WIHS dataset who had a number of J1 = 21 visits. Individual
P1 initially received a cART with triple NRTI therapies 3TC+D4T+TDF, which was then
switched to a cART of two NRTIs FTC+TDF with a PI drug ATV boosted by RTV at her fifth
visit, and finally replaced the two NRTIs with two new NRTIs 3TC+ABC since her eighth
visit. We assigned a large reward weight on eGFR for individual P1, i.e.,w1 = (0.1,0.1,0.8),
as her renal function was abnormal for a long time, as shown in Figure 7(a). Figure 7(b) plots
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the posterior predictive distributions of eGFR under the three estimated optimal sequences
of cARTs (corresponding to three values of λ) for P1 at her next four visits (i.e., from visit
22 to 25). Specifically, the sequence of cARTs FTC+ABC+EFV (two NRTIs + one NNRTI)
was optimal under λ = 0, 3TC+ABC+EFV (two NRTIs + one NNRTI) was optimal under
λ= 0.05, and 3TC+ABC+ATV+RTV (two NRTIs + one PI + one Booster) was optimal un-
der λ= 0.1. Although none of these sequential cART assignments was able to improve P1’s
eGFR to the normal range, all of them stabilized her renal function around the threshold. As
shown in Figure 7(b), when λ increased, the predicted mean values of eGFR decreased but
the corresponding predicted uncertainties also decreased. In the WIHS dataset, the cARTs
3TC+ABC+ATV+RTV and 3TC+ABC+EFV were recorded for 96 and 71 times, respec-
tively, while the cART FTC+ABC+EFV was not recorded. The combination of 3TC and
ABC is sold under the brand name Epzicom as one pill, making it more commonly pre-
scribed than FTC+ABC in clinical practice since one pill usually lead to better adherence in
PWH than two pills (Weisser et al., 2020). The proposed method can easily take into account
the pill burden by adding a penalty term on the number of pills in the reward. In summary,
there is a trade-off between exploring cARTs that are rarely or never used in the data with
higher expected rewards and selecting commonly-prescribed cARTs with lower risks. We
leave the final decision to HIV physicians.
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FIG 7. Observed and predicted eGFR data for one randomly selected individual P1 in the WIHS data analysis.
The predictions are made under her personalized optimal sequential cART assignments with respect to different
choices of λ= 0,0.05,0.1 at her next four visits. The dashed red lines represent the threshold for eGFR.

7. Conclusion. To maximize long-term health outcomes for PWH, we developed a two-
step Bayesian decision framework for optimizing personalized sequential cART assignments
with proper uncertainty propagation. In the first step, we used an MGP model to charac-
terize how individuals’ longitudinal states evolve over time conditional on their historical
states and treatment histories. In the second step, we designed an uncertainty-penalized pol-
icy optimization procedure to find the optimal sequential cART assignments. The uncertainty
quantification in the first step was embedded in the decision framework by adding a penalty
term to the reward function to help mitigate the distribution shift issue via a trade-off between
the reward gain and risk for exploring new policies. Through simulation studies and the anal-
ysis of the WIHS dataset, we demonstrated that the proposed method has the potential to
assist physicians’ decisions on precision cART in PWH.

There are several potential extensions. First, for illustration purpose, we considered a per-
sonalized reward function depending on depression, viral load, and kidney function; other
clinical factors such as cognition, BMI, and pill burden can also be incorporated into the
decision framework. Second, the theoretical guarantee of the uncertainty-penalized policy
optimization method was proved by Yu et al. (2020b) in a frequentist setup; it will be interest-
ing to extend the theory to our Bayesian setup. Lastly, combination therapies are needed for
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many complex diseases beyond HIV. The proposed method can be applied to such electronic
health records datasets to learn the optimal treatment policies, potentially yielding better ther-
apy management and improving the quality of life for people with chronic health conditions.
For example, polypharmacy, the use of multiple drugs to treat different diseases and chronic
health conditions at the same time, is a growing concern for older adults (Masnoon et al.,
2017). The proposed approach can be used to optimize the combination of drugs for elders
with multiple diseases in order to optimize their long-term health outcomes. Suppose that one
or more drugs can be chosen from multiple possible drugs for treating each disease, then we
can use the proposed three-level decision process as the decision model. Specifically, at the
first level, we will determine whether we need to switch the individual’s combination therapy
to a new one or stay on the previous one. At the second level, we will determine how many
drugs we need for treating each disease. At the third level, we will determine which specific
drugs we will select for treating each disease.
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