

PLDI ’22, June 13–17, 2022, San Diego, CA, USA M. Christensen, G. Tzimpragos, H. Kringen, J. Volk, T. Sherwood, and B. Hardekopf

In this case, priorities let the designer identify and explicitly
handle cases of simultaneous arrivals deterministically.

Multi-Output: To model arbitrary SFQ cells, we should
also be able to associate a set of outputs with each edge and
de�ne their timing; the Firing Outputs portion does just
that. As can be seen in the provided example, the singleton
set {&gprop } indicates that an output pulse will be emitted
during this state transition. The time that it will take for this
pulse to appear is gprop time units. Therefore, we can use the
edge’s �ring delay to model the cell’s propagation delay; e.g.,
by setting gfire ≔ gprop.

Constraints on Past: The Past Constraints portion is
used to model the setup time constraint; e.g., by setting
gdist ≔ gsetup. In the provided example, any input pulse
(indicated by the *) that appears within gsetup time units
after the arrival of CLK is considered illegal.

3.1 Formalization of the PyLSE Machine

In this section, we de�ne PyLSE Machines, their semantics,
and how they interact in larger designs.

De�nition 3.1 (PyLSE Machine). A �nite state machine
with timed prioritized transitions, an output set, and past
constraints, which we call a PyLSE Machine, is a tuple" =

⟨&,@init, Σ,Λ, X, `, \⟩, where

(@ ∈)& is a set of states

@init ∈ & is the initial state

(f ∈)Σ is a set of input symbols

(_ ∈)Λ is a set of output symbols

X : & × Σ→ & × N × R is the transition function

` : & × Σ→ P(Λ × R) is the output function

\ : & × Σ→ P(Σ × R) is the past constraints function

We write".Σ to extract Σ, and likewise".Λ for Λ.

The �rst three domains — & , Σ, and Λ — are similar to a
typical Mealy machine de�nition. The transition function X

maps a state and input symbol to (1) the next state it should
transition to, (2) a natural number corresponding to the pri-
ority of that transition, and (3) a real number corresponding
to the physical time it takes to complete. The output function,
`, maps tuples of states and inputs to sets of tuples consisting
of output symbols and the time it takes for them to appear
(i.e. a �ring delay). The past constraints function \ maps the
current state and input to a input–real number tuple. This
tuple indicates a precondition for the given transition to be
allowed to proceed (speci�cally, the setup time constraint).
The transition semantics of our PyLSE Machine is found

in Figure 6. To de�ne the semantics, we use a con�guration
^ ∈ K = &×R×(Σ→ R), parameterized over a current state
@ ∈ & , a real-valued time gdone, and a mapping Θ : Σ → R

that associates each input with the last time it was seen.

This is written as ^ ⟨@,gdone,Θ⟩ , with the gdone being used to
represent the end of the unstable period during which time
the machine is transitioning. The initial con�guration is
^"init = ^ ⟨@init,0,{f ↦→−∞|f ∈".Σ}⟩ .

Transition Relation. Given the current con�guration
^ ⟨@curr,gdone,Θ⟩ , the Transition Relation is interpreted as fol-
lows. If the machine receives an input f at time garr and
it has been long enough to have �nished entering state
@curr (i.e. garr ≥ gdone), it proceeds to a new con�guration
^ ⟨@next,g′done,Θ

′⟩ . It does so by remembering (1) the next state

@next, (2) the time at which the new transition should be com-
pleted g ′

done
= gtran +garr, and (3) the time it saw this current

input, via Θ′ = Θ[f ↦→ garr] (see Normal-^). Otherwise, if
it is not yet ready to receive inputs because garr < gdone (see
Error-^ Tran) or because any input f ′ was received less
than \ (@, f ′) + gdist ago (see Error-^ Cons), it proceeds to
the special @err state. @err is the target state of any transition
whose timing conditions can’t be satis�ed.

Dispatch and Trace Relations. The Dispatch Relation
enables the machine to continue processing inputs. It works
by retrieving the highest priority transition that leaves @curr

for all the inputs f in the set of simultaneous inputs
⇀

f arriv-
ing at garr. It chooses one nondeterministically if multiple
candidate transitions have the same priority. The Trace Rela-
tion is used to determine the outputs that result from running
the Dispatch Relation over the entirety of the inputs.

3.2 Formalizing a Network of PyLSE Machines

While each individual PyLSE Machine models a particular
type of SCE cell, a network of communicating PyLSE Ma-
chines models a larger design.

De�nition 3.2 (Network Domain of PyLSE Machines). A
network of PyLSE Machines, which we call a circuit, is a

tuple� = ⟨
⇀

",
⇀

F, Σ,Λ⟩ composed of a set of PyLSE Machines
⇀

" (accessed as �.machines), a set of connective wires
⇀

F

(accessed as �.wires), and a set of circuit inputs �.Σ and
outputs �.Λ. A wire is a tuple F = ⟨U, V⟩ such that U ∈

" ′.Λ
⋃
�.Σ and V ∈ " ′′.Σ

⋃
�.Λ for some" ′, " ′′ ∈

⇀

" .

Network Relation. The Network Relation of Figure 6
shows the semantics of how a sequence of externally de-
rived time-tagged pulses CB propagate through the network.
We de�ne an initial circuit con�guration ^�init , composed of

(1) all individual PyLSE Machine initial con�gurations
⇀

^

and (2) a list of input pulses ?B tagged with the wires where

they are headed, i.e. ^�init = ⟨
⇀

^ , ?B⟩, where
⇀

^ = {^"init

��" ∈
�.machines} and ?B = {⟨f ′, garr⟩

��⟨f, garr⟩ ∈ CB ∧ ⟨f, f ′⟩ ∈

�.wires}. The network proceeds until there is no more work

to do, such that ⟨^�init, ?B⟩ ↠net ⟨^
� ′, ?B ′⟩. In other words, all

pending pulses in ?B are directed toward the circuit output.

674

PyLSE: A Pulse-Transfer Level Language for Superconductor Electronics PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Transition Relation −→tran⊆ K × Σ × R × (K ∪ {@err})

⟨@next, _, gtran⟩ = X (@curr, f) garr ≥ gdone ∀⟨f ′, gdist⟩ ∈ \ (@curr, f), garr ≥ Θ[f ′] + gdist

^ ⟨@curr,gdone,Θ⟩
⟨f,garr ⟩
−−−−−−−→tran ^ ⟨@next,gtran+garr,Θ[f ↦→garr] ⟩

(Normal-^)

garr < gdone

^ ⟨@curr,gdone,_⟩
⟨f,garr ⟩
−−−−−−−→tran @err

(Error-^ Tran)
∃⟨f ′, gdist⟩ ∈ \ (@curr, f), garr < Θ[f ′] + gdist

^ ⟨@curr,gdone,Θ⟩
⟨f,garr ⟩
−−−−−−−→tran @err

(Error-^ Cons)

Dispatch Relation Trace Relation

→38B?⊆ K × (P(Σ) × R) × K × (P(Σ) × R) × P(Λ × R) y
trace
⊆ K × (P(Σ) × R)∗ × (P(Λ × R))∗

f ∈ 0A6<8=

f′∈
⇀

f

(c2 (X (@curr, f
′)) >DCB = ` (@curr, f)

^ ⟨@curr,_,_⟩
⟨f,garr ⟩
−−−−−−−→tran ^=4GC

⇀

f A4BC =

⇀

f /f
〈
^ ⟨@curr,_,_⟩, ⟨

⇀

f , garr⟩
〉
→38B?

〈
^=4GC , ⟨

⇀

f A4BC , garr⟩
〉��>DCB

〈
^, ⟨

⇀

f , garr⟩
〉
→38B?

〈
^ ′, GB

〉��>DCB
〈
^ ′, GB

〉
y
trace

〈
^ ′′, >DCB ′

〉

>DCB ′′ = >DCB + >DCB ′〈
^, ⟨

⇀

f , garr⟩
〉
y
trace

〈
^ ′′, >DCB ′′

〉 (Trc-Cont)

〈
^, ⟨∅, _⟩

〉
y
trace

〈
^,∅

〉 (Trc-Done)
Network Relation →net ⊆ P(K) × (Σ × R)

∗ × P(K) (Σ × R)∗

〈
⟨
⇀

f , garr⟩" , ?B ′
〉
= getSimPulses(?B) ^" ∈

⇀

^

⟨^" , ⟨
⇀

f , garr⟩" ⟩ytrace ⟨^
′
"
, >DCB⟩

⇀

^
′
=

⇀

^ [^ ′
"
/^"] ?B ′′ = ?B ′ + >DCB

⟨
⇀

^ , ?B⟩ →net ⟨
⇀

^
′
, ?B ′′⟩

(Net-Cont) ∀⟨f, garr⟩ ∈ ?B. f ∈ �.Λ

⟨_, ?B⟩ →net ⟨_, ?B⟩
(Net-Done)

Figure 6. Semantics of the Transition, Dispatch, and Trace relation of the PyLSE Machine ⟨&,@0, Σ,Λ, X, `⟩ as well as the
Network relation for larger composite designs. c8 (⟨..., G8 , ...⟩) = G8 is standard tuple projection. Θ[f ↦→ g] produces an updated
mapping where f now maps to g . We use ([~/G] to denote ~ replacing G in (. The helper function getSimPulses extracts the
pulse heap ?B into the earliest set of simultaneous pulses destined for the same PyLSE Machine and the rest for later use. If
both G and ~ are heaps of pulses, we use G + ~ to denote merging them into a single ordered heap.

Nondeterminism occurs when there are multiple simultane-
ous pending pulses on the heap ?B going to di�erent PyLSE
Machines; the helper function getSimPulses chooses one
before proceeding with the next.

4 PyLSE Language Design

We use the above PyLSE Machine formalism to develop a
practical embedded DSL that eases the description and anal-
ysis of SCE designs at multiple levels.3 Its abstract syntax is
found in Figure 7. By being embedded in Python, we lower
the barrier of entry for new users and gain the productivity
bene�ts of using Python’s libraries.

4.1 Design Levels

Cell De�nition Level: Given that there is still no domi-
nant logic scheme for SCE designs, the ability to easily de-
�ne new cells is crucial for the advancement of the �eld. We
enable this by providing a Transitional Python abstract
class. Each SCE cell is modeled as a class that implements
Transitional, de�ning the set of input and output names

3The language implementation is available at h�ps://github.com/

UCSBarchlab/PyLSE.

pt ∈ Port st ∈ State f ∈ Store e ∈ Exp n ∈ Z g ∈ Time

p ∈ ProgramF ins pt+ outs pt+ cells cell+ conns 2>=+

cell ∈ Cell F pm | h

pm ∈ PyLSEMachine F states st+ start st

ins ?C+ outs ?C+ edges ed+

h ∈ Hole F ins pt+ outs pt+ func (_ pt+ f g .4)

ed ∈ Edge F priority n src st dest st trigger pt

transtime g firing ` constraints \

con ∈ ConnectionF m.pt ← m.pt

m ∈ Entity F cell | p

`, \ ∈ TimingMap F [pt ≔ g]∗

Figure 7. The Abstract Syntax for the PyLSE language. A
program is a collection of input and output ports, cells, and
connections between them.

and a list of transitions as class attributes. Each transition
in this list is represented as a Python dictionary, storing
key-value pairs matching the information found in Figure 4.

675

PLDI ’22, June 13–17, 2022, San Diego, CA, USA M. Christensen, G. Tzimpragos, H. Kringen, J. Volk, T. Sherwood, and B. Hardekopf

Table 1. Functions used in the code in Figure 12a. The �rst four return a named wire, while simulate() returns a mapping
from each named wire to the ordered list of pulses that appeared on it. The last two are methods on the Simulation class.

Function Description

inp_at(*times, name=None) Produce pulses at each time in *times.

inp(start=0, period=0, n=1, name=None) Produce pulses starting at start, occurring n more times every period picoseconds.

split(wire, n=2, names=None, **overrides) Split a wire n ways, creating n-1 splitter elements in a binary tree.

inspect(wire, name) Give a wire a name for observation during simulation.

simulate(self, until, variability=False) Simulate the circuit until a certain time or all pulses are processed.

plot(self) Produce a graph plotting the pulses against time.

inputs; instead, a splitter cell must be used, which is speci�-
cally designed to forward an incoming pulse to two di�erent
outgoing wires. The example in Figure 11b includes two split-
ter cells (lines 3 and 4) to allow a and b to be used in two
di�erent places; PyLSE reports an error on instantiation if,
for example, input a is used in both lines 5 and 6.

4.3 Simulation

PyLSE’s built-in simulator can be used to validate designs
for a given set of input signals. Its design follows the princi-
ples of other discrete-event simulation frameworks [32]. So,
according to the semantics provided in Figure 6, it maintains
a priority heap of pending pulses tagged with their destina-
tion cells. These pulses are extracted from the heap one at
a time and propagate through the PyLSE circuit under test.
Any newly generated pulses get pushed into the heap and
the process continues iteratively until the heap is empty or
the user-de�ned target time is reached. This target time is
needed when there are loops in the system.

b = inp_at(99, 185, 225, 265, name='B')

...

events = sim.simulate()

pylse.pylse_exceptions.PylseError: Error while sending

input(s) 'clk' to the node with output wire '_0':

Prior input violation on FSM 'AND'. A constraint on

transition '7', triggered at time 100.0, given via the

'past_constraints' field says it is an error to trigger

this transition if input 'b' was seen as recently as

2.8 time units ago. It was last seen at 99.0, which is

1.7999999999999998 time units to soon.

Figure 13. Changing the �rst time at which a pulse is pro-
duced on B in the simulation of Figure 12a rightfully results
in a past constraint error due to the setup time.

Figure 12a shows how a single Synchronous And Ele-
ment gets instantiated and simulated, using the functions
described in Table 1. In lines 2 and 3, we create two inputs
named A and B, producing four pulses on each. Line 4 creates
a periodic clock signal, while lines 6 and 7 create and start a
simulation object. Line 8 veri�es the correctness of pulses
appearing on output Q; here, the �rst appears at 209.2 ps, ex-
actly firing_delay after the input pulse on CLK that ended

the �rst clock period in which both A and B appeared. Line 9
produces the graph in Figure 12b. Finally, Figure 13 shows
the PyLSE simulator catching a past constraints violation
(the setup time constraint). The �rst pulse produced on B

arrives too soon before the next pulse that arrives on CLK.

4.4 Correspondence with Timed Automata

Timed Automata (TA) are a related formalism with a rich
theoretical foundation, used extensively to model real-time
systems with timing constraints. A Timed Automaton [2] is
a �nite state machine whose state transitions are guarded
by conditions on a set of resettable clocks, de�ned as follows:

De�nition 4.1 (TimedAutomata). ATimedAutomaton� =

⟨!, ;0, Σ,�, �, � ⟩ is a tuple where (; ∈)! is a set of locations,
;8=8C ∈ ! is the initial location, (U ∈)Σ is the set of actions,
(2 ∈)� is a set of clocks, � : ! → Φ(�) are clock invariants
at each location, and

(4 ∈)� ⊆ ! × Σ × Φ(�) × P(�) × !

is the set of transitions. 4 = ⟨;, U, i, _, ; ′⟩ ∈ � is a transition
from location ; to ; ′ on action U , i is the guard specifying
conditions that must be true on the clocks, and _ is the set
of clocks to be reset after the transition.

To directly obtain the bene�ts of TA, we convert a PyLSE
Machine to a network of Timed Automata running in par-
allel. Figure 14 graphically shows this conversion process
for a single edge of the Synchronous And Element. This is
the same edge highlighted in Figure 5, but here we have
replaced the state named a and b arrived with both be-
cause of space constraints. At a high level, this process works
by expanding the edges from the original PyLSE Machine
into TA transition sequences. We �rst create TA clocks for
each PyLSE Machine input — 2A, 2B, and 2CLK — in addition
to a clock, 2ℎ , that measures the time elapsed on transitions.
These clocks are available to all edges of this TA. Given edge
CLK0ghold/{Qgprop }/{*gsetup } emerging from state both, transla-
tion proceeds incrementally. The input symbol CLK of the
PyLSE Machine becomes a TA channel CLK on which mes-
sages are only received by this automaton. The time it takes
to complete the transition, ghold, becomes part of the inequal-
ity in both location q0’s invariant and in the guard involving
clock 2ℎ as part of the �nal edge to idle. In addition, clocks

678

PyLSE: A Pulse-Transfer Level Language for Superconductor Electronics PLDI ’22, June 13–17, 2022, San Diego, CA, USA

both idle

CLK0ghold/{Qgprop }/{*gsetup }

(a) Original PyLSE Machine transition, moving

from both to idle on CLK only if ghold time has

passed, producing output Q after gprop time. It is

an error if any inputs (i.e. *) arrived in the last

gsetup time units prior to starting this transition.

The priority 0 is ignored here in isolation.

both q0

{2ℎ ≤ ghold}

idle

errAB errBB errCLKB

CLK?;{
∧

U ∈{A,B,CLK} 2U ≥ gsetup};{2ℎ, 2CLK} f ;∅;∅

CLK?;0 ≥ 2A < gsetup;∅ CLK?;0 ≥ 2B < gsetup;∅ CLK?;0 ≥ 2CLK < gsetup;∅

(b) (Intermediary step) Expanding the original transition into two intermediate

TA transitions that handle receiving a message on channel CLK (corresponding to

original symbol CLK) (left edge), checking for the transition time to have passed

(right edge), and erroring out (to errAB , errBB , or errCLKB) if the gsetup is violated.

both q0 q1

{2ℎ ≤ ghold}

idle

errAℎ errBℎ errCLKℎ

... 5 !;∅;∅ f ;{2ℎ = ghold};{2ℎ}

A?;{0 ≥ 2ℎ < ghold};∅ B?;{0 ≥ 2ℎ < ghold};∅

CLK?; 0 ≥ 2ℎ < ghold;∅

... ...
...

(c) (Final step, part 1) Further expanding the transition to include transitions for

�ring output 5 and erroring out (to errAℎ , errBℎ , or errCLKℎ) if unexpected inputs

are received during a transitionary period.

f0 f1

{2? ≤ gprop}
5 ?;∅;{2? }

Q!;{2? = gprop};∅

(d) (Final step, part 2) Auxiliary TA created for

modeling �ring delay. The TA in Figure 14c sends

a message on channel 5 , which is received here.

After gprop time units, output �nally appears on

output channel Q. This �ring TA, including a fresh

clock 2? , is duplicated by a soaking factor B =

⌈gprop/ghold⌉ to allow the network to �re again

if needed during the transition.

Figure 14. Expanding a PyLSE Machine transition into its corresponding TA transitions, using an edge from the Synchronous
And Element (for brevity, we’ve replaced the state named a and b arrived with both). We assume clocks 2ℎ , 2B , and 2? and
channels A, B, CLK, 5 and Q. Shaded states (or ... edges) indicate old states (edges) repeated from the previous �gure.

2A, 2B, and 2CLK are compared against the past constraint value,
gsetup, in the �rst edge’s guard. The TA goes to an error state
if these constraints are violated and otherwise transitions to
q0. Figure 14b is the result of this �rst conversion.
To detect inputs while in the transitional period, Figure

14c inserts three additional states – erra, errb and errclk
– to cover all possible input messages. Figure 14c also adds
the intermediate state q1, for sending a �ring message 5 to
an auxiliary TA created in Figure 14d and for setting up the
clock that is used for checking that the transitional timing
period has been satis�ed before going to state idle. The
auxiliary TA in Figure 14d is created entirely alongside the
previous TA.When it receives a message 5 to �re, it waits the
designated �ring delay time gprop before sending a message
on channel Q. Here, producing output Q in the original PyLSE
Machine corresponds to sending a message on the channel
Q. This channel, created solely for sending, allows an output
action and transition to occur in parallel.

There is a signi�cant increase in complexity as one moves
down from the PyLSEMachine to the TA. For example, Figure
14 shows that at least 12 TA locations and 11 edges must be
created to describe a single PyLSE Machine transition. The
entire resultant TA network for a single Synchronous And

Element PyLSE Machine has 102 locations and 110 edges.
PyLSE properly encapsulates this complexity, allowing this
much larger TA network to be represented by the four states
and twelve edges of the original PyLSE Machine of Figure 5.
Timed-arc Petri nets also o�er a broad, descriptive for-

malism for concurrent systems. However, we discovered
that TA o�er a better balance between expressivity and us-
ability. Speci�cally, computing reachability for unbounded
timed-arc Petri nets is undecidable, while for TA it is decid-
able in PSPACE [8]. Additionally, the complexity results for
other constructions such as bisimilarity are not any more
performant for Petri nets than TA, and TA are equivalent in
expressive power to bounded timed-arc Petri nets [10].

5 Evaluation

The goal of our evaluation is to prove the following claims:

Claim 1. PyLSE can be used to accurately model the func-

tional and timing behavior of basic SCE cells and larger designs.

Claim 2. PyLSE o�ers signi�cant productivity gains over

state-of-art HDLs for designing and simulating basic SCE cells

and larger designs.

679

PLDI ’22, June 13–17, 2022, San Diego, CA, USA M. Christensen, G. Tzimpragos, H. Kringen, J. Volk, T. Sherwood, and B. Hardekopf

assert all(x[0] <= y[0] for x, y

in zip(ranked, ranked[1:]))

Evaluating Robustness Given Timing Variability. In
the circuit world, propagation delays of these basic cells
vary from the expected values when chaining them together.
This is apparent in the bitonic sort example of Section 5.1,
where the circuit’s delay varied between 100 and 110 ps.
Such variance can lead to pulses arriving at their destination
cells too early or late, causing the design to fail unexpect-
edly. At a PyLSE Machine level, these failures are detected
by violations of transition and past constraint times during
simulation or by erroneous outputs seen after simulation,
and might signify that the network needs to be redesigned
to make it less sensitive to variability. PyLSE makes it easy
to add variability to existing designs and evaluate their ro-
bustness in the presence of these variations; simply pass
the �ag variability=True to simulate(). Every individ-
ual propagation delay that occurs during the simulation will
then have a small amount of delay, by default taken from a
Gaussian distribution, added to or subtracted from it. The
variability argument can be used to specify the cell types
or the individual cell instances where the default variability
should be added, or it can be set to a user-de�ned function
for even greater �ne-tuning.

5.3 Model Checking in UPPAAL

Model checking [12] is a formal veri�cation technique used
to check that a particular property, typically written in a
temporal logic, holds for certain states on a given model
of a system. Before it can be used, however, a model of the
system must be created. Timed Automata is one such model,
and as we have shown in Section 4, PyLSE can automatically
transform PyLSEMachines into a network of communicating
Timed Automata; in this way, designs written in PyLSE are

the models themselves, and immediately amenable to formal
veri�cation.

We have chosen to integrate with UPPAAL, a state-of-
the-art framework for modeling real-time systems based
on TA [7]. The conversion process is straightforward: the
PyLSE circuit is traversed, with every transition of every
element being converted according to the steps in Figure
14 into a network UPPAAL-�avored TA. The result is saved
to an XML �le, which can then be simulated in UPPAAL or
veri�ed against certain properties on the command line via
the verifyta program their distribution provides.

Query 1: Correctness. To verify that our translation pro-
cess works, we automatically converted all 16 basic cells and
six larger designs into UPPAAL, as shown in Table 3, where
we note the resulting size of the TA network. Once in UP-

PAAL, we checked that their internal simulator agrees with
ours from an input/output perspective. We also automati-
cally generate a correctness formula in UPPAAL-�avored
timed computation tree logic (TCTL) [6, 21] for each, based

on a given PyLSE simulation’s events, to formally verify that
the given design generates the expected output. For example,
here is a PyLSE-generated TCTL formula for the correctness
of min-max pair, given pulses on A at 115, 215, and 315, on B

at 64, 184, and 304, and a network delay of 25 ps:

A[] (((firingauto3.fta_end imply ((global == 890) ||
(global == 2090) || (global == 3290))) &&
(firingauto4.fta_end imply ((global == 890) ||
(global == 2090) || (global == 3290))) &&
(firingauto5.fta_end imply ((global == 890) ||
(global == 2090) || (global == 3290)))) &&
((firingauto12.fta_end imply ((global == 1400) ||
(global == 2400) || (global == 3400)))))

At the top of this formula, � is a path quanti�er that
expresses “for all subsequent time points”, while [] is a
branch quanti�er meaning “for all possible branches.” The
firingauto* correspond to �ring TA instances, and fta_end
is the location in that instance that immediately follows send-
ing a �re message to a particular network output sink. As
many �ring TA may be associated with each network out-
put (see Figure 14d), there are multiple states to check for
each time. This says that it is only possible to produce a
pulse at the given output at the given time. These times
have been upscaled to integers to meet the requirements
UPPAAL places on numbers involved in clock constraints;
thus global == 2090 is 209.0 ps in PyLSE.
In Table 3, we also show the time it took to verify this

property (customized to each cell). For the basic cells and
the min-max pair, veri�cation consistently took less than 1
second. The race tree, with 440 locations, took 127 seconds
and explored 262559 states, while the synchronous full adder,
with nearly 43% more locations, took 669 seconds (5.26×)
and visited 7.077× more states. Model checking becomes
infeasible due to the state explosion as we reach the bitonic
sorters and xSFQ [54] full adder, which failed to �nish in a
day. Table 3 also shows how much larger the network of TA
is compared to the original PyLSE Machines. On average,
each cell (i.e. PyLSE Machine) requires 3.02 UPPAAL TA,
each PyLSE Machine state requires 18.99 UPPAAL locations,
and each PyLSE Machine transition requires 9.05 UPPAAL
transitions.

Query 2: Unreachable Error States. Our translation pro-
cess inserts error states that are entered when transition time
or past constraint violations occur (for example, errAℎ and
errAB , respectively, from Figure 14). Since these states have
no outgoing edges, they cannot respond to additional input
nor allow time to pass and so are terminal. Entering such a
state would deadlock the TA, and verifying that no deadlock
occurs (i.e. A[] not deadlock) would normally be su�cient
to show that the inputs to a design meet timing constraints.
Unfortunately, this form of deadlock detection is not useful
for our purposes, since “good” deadlock also occurs when
the sequence of user-de�ned inputs has been exhausted and
no more cells can progress. Instead, we automatically gen-
erate an UPPAAL veri�cation query that checks that it is

682

PyLSE: A Pulse-Transfer Level Language for Superconductor Electronics PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Table 3. Basic cells (�rst 16 rows) and larger designs (last six rows) implemented in PyLSE. Each has been validated via PyLSE
simulation for functional correctness and timing constraint violation detection, and automatically converted into TA that
have been simulated and veri�ed in UPPAAL. The PyLSE columns display counts for size, cells, states, and transitions; for
basic cells, these are numbers for an individual cell, while for the larger designs, it is the accumulation of every instantiated
cell in the network. The size corresponds to the number of transitions written in the DSL (roughly equal to the number of
lines) for basic cells, and the number of lines for the larger designs. The �rst four UPPAAL columns are the number of TA,
locations, transitions, and channels in the cell’s generated TA network, while the latter two columns contain the time to verify
the Queries 1 and 2 listed in Section 5.3 and the number of total states explored (only one number is listed in each column if
the results for Queries 1 and 2 were the same). It took less than 1 second to simulate all of these designs in PyLSE.

Name
PyLSE UPPAAL Comparison

Size Cells States Tran. TA Locs. Tran. Chan. Time (s) States TA/Cells Locs./States Tran.(U)/Tran.(P)

C 6 1 3 6 2 39 42 3 <1 38 2 13 7

InvC 6 1 3 6 4 45 48 3 <1 69 4 15 8

M 2 1 1 2 2 17 18 3 <1 37 2 17 9

S 1 1 1 1 3 13 13 3 <1 56 3 13 13

JTL 1 1 1 1 2 9 9 2 <1 17 2 9 9

And 11 1 4 12 5 102 110 4 <1 69 5 25.5 9.17

Or 4 1 2 6 2 49 53 4 <1 48 5 24.5 8.83

Nand 12 1 4 12 2 95 103 4 <1 42 2 23.75 8.58

Nor 6 1 2 6 2 49 53 4 <1 36 2 24.5 8.83

Xor 9 1 3 9 3 75 81 4 <1 45 3 25 9

Xnor 12 1 4 12 2 94 102 4 <1 45 2 23.5 8.5

Inv 4 1 2 4 3 30 32 3 <1 14 3 15 8

DRO 4 1 2 4 2 27 29 3 <1 11 2 13.5 7.25

DRO SR 6 1 2 6 2 49 53 4 <1 23 2 24.5 8.83

DRO C 4 1 2 4 3 31 33 4 <1 14 3 15.5 8.25

2x2 Join 20 1 5 20 5 206 221 8 <1 58 5 41.2 11.05

Min-Max 5 5 9 15 24 149 155 14 <1 2471 4.8 16.56 10.33

Race Tree 16 18 32 56 50 440 464 54 127/84 262559 2.78 13.75 8.29

Adder (Sync) 13 19 33 71 57 627 665 62 669/515 1858153 3 19 9.37

Adder (xSFQ) 31 83 121 183 193 1449 1511 211 ∞ N/A 2.33 11.98 8.26

Bitonic Sort 4 6 30 54 90 144 894 930 84 ∞ N/A 4.8 16.56 10.33

Bitonic Sort 8 24 120 216 360 576 3576 3720 336 ∞ N/A 4.8 16.56 10.33

impossible to reach any error state in the network (here, for
the min-max pair):
A[] not (c0.C_err_a_1 || c0.C_err_a_11 || c0.C_err_a_16 ||

...18 more lines...
c_inv0.C_INV_err_b_8 || c_inv0.C_INV_err_b_9 ||
s0.S_err_a_1 || s0.S_err_a_2 || jtl0.JTL_err_a_1 ||
jtl0.JTL_err_a_2 || s1.S_err_a_1 || s1.S_err_a_2)

UPPAAL explores the same number of states as for Query 1
in under one second for all basic cells, with the larger designs
similarly encountering exponential blowup di�culties. If the
above property is not satis�ed, UPPAAL will return a trace
showing the path that led to the particular error state.

As of this writing, additional properties must be explicitly
written out in UPPAAL’s DSL for expressing TCTL formulas.
As far as we know, we are the �rst to use timed automata-

based model checking to check the correctness of SFQ circuits.

6 Related Work

Existing HDLs. Existing HDLs, like Verilog [56], model
SCE timing constraints by coupling asynchronously-updated
registers with complicated series of conditionals to track
whether these constraints are satis�ed [1, 28, 33, 60]. Designs
using this approach have many downsides:

• They tend to be extremely verbose, spanning tens to
hundreds of lines per cell module. For example, in [18],
90 lines of codes were needed to model a destructive
readout (DRO) cell, while the PyLSE Machine equiva-
lent takes four lines. Similarly, a model of the OR cell
in [37] takes 18 lines of Verilog, with an autogenerated
model taking 58 lines of Verilog in [44].
• Anumber of ambiguous internal signals must be gener-
ated for synchronization purposes. For example, for the
implementation of said DRO cell, �ve edge-triggered
always blocks and three arti�cial synchronization sig-
nals were required.
• There are no clear boundaries between functional and
timing speci�cation, leading to obfuscated code and
an enlarged surface for programming bugs.
• They rely on the peculiar semantics of Verilog or the
chosen simulator, instead of being based on a suitable
formal foundation.

Recent approaches [49, 50] are more modular and compact,
but the resemblance of their proposed coding scheme to

683

PLDI ’22, June 13–17, 2022, San Diego, CA, USA M. Christensen, G. Tzimpragos, H. Kringen, J. Volk, T. Sherwood, and B. Hardekopf

multithreaded socket programming raises the barrier to en-
try and again makes them prone to bugs. Finally, other ap-
proaches [17, 38, 39, 44] automatically extract state machine
models and timing characteristics of SFQ cells from SPICE
�les, but in the end, still use them to generate Verilog HDL
code that must be integrated with the rest of the user-coded
design. PyLSE can serve as a more compact and easier-to-
comprehend way to analyze such models, but more impor-
tantly it has well-de�ned methods by which such state mod-
els compose into larger circuits – something not found in
any of that work. Besides this, PyLSE allows for the easy
modeling of proprietary or experimental SCE cells, where
only their Mealy machine description is publicly available
(and not their schematic implementation).

Existing Simulators and Logic Synthesis Tools. SFQ
cell functionality is commonly veri�ed through analog sim-
ulators catered to the unique physics of superconducting
devices [15, 16, 48, 57]. Other tools such as PSCAN and
PSCAN2 perform similar timing analyses, and are geared
towards optimizing circuit-level parameters based on device
switching events internal to the cells [42, 43, 46]. By lifting
the focus to a higher level of abstraction in PyLSE, an im-
plementation gap emerges between these simulators and
PyLSE machines. While there are no theoretical limitations
that prohibit the translation of PyLSE machines to schematic
models, we consider such hardware synthesis to be a sepa-
rate problem outside the scope of this paper. We foresee the
integration of PyLSE with SCE-oriented EDA tools, such as
IARPA’s SuperTools, upon their public release.

Functional andDataflowLanguages. There have been
e�orts in the past to describe traditional hardware using
data�ow programming languages. The language Lustre, a
modeling framework for reactive, real-time systems, has
been used for deriving an automaton from code and sub-
sequently model checking it for safety properties[20]. The
language Esterel has similarly been used to describe hard-
ware that is then translated into equation systems inside the
theorem prover HOL, motivating the possibility of formal
analysis of circuit correctness as well as circuit synthesis [45].
PyLSE di�ers in a few respects. While data�ow languages
describe hardware as a set of recursive equations, PyLSE
o�ers a straightforward way to describe arbitrary SCE cells
as transition systems, which matches the intuitions of the
SCE community. Further, work using data�ow languages has
focused on synchronous programs which orchestrate events
and data �ow according to one or more clocks. Meanwhile,
PyLSE makes no requirements on synchrony, allowing the
designer to more easily describe circuits with or without
clocks.

Veri�cation. There have been many attempts to formally
check the correctness of SCE designs at the HDL level. Re-
cent work [29] uses a delay-based time frame model, which

assumes that pulses arrive periodically according to a unique
clock period. This assumption allows them to discretize the
behavior of these pulse-based systems into a veri�able syn-
chronous model. PyLSE instead imposes no requirements
about clock periodicity and therefore is also able to model
systems that include asynchronous cells. VeriSFQ [59] is a
semi-formal veri�cation framework that uses UVM [55] to
validate that designs are properly path-balanced, have cor-
rect fanout, and that all synchronous gates receive a clock
signal. In comparison, PyLSE is an entirely new DSL for SCE
design, statically preventing the creation of designs with
these basic issues, and so a formal framework for checking
them is unneeded. Finally, qMC [37] relies on SMT-based
model checkers to verify the correct functionality of post-
synthesis netlists via SystemVerilog assertions. However,
their gate models do not include information on hold or
setup times or propagation delay, such that outputs take a
single time unit to go high. PyLSE instead represents and
model checks against these timing constraints via a Timed
Automata-based model checker like UPPAAL.

7 Conclusion

In this paper, we presented PyLSE, a language for the design
and simulation of pulse-based systems like superconductor
electronics (SCE). PyLSE simpli�es the process of precisely
de�ning the functional and timing behavior of SCE cells
using a new transition-system based abstraction, which we
call the PyLSE Machine. It facilitates a multi-level design ap-
proach by allowing the construction of scalable SCE systems
through the mix of basic transition-based cells and higher-
level abstract design models. We evaluate PyLSE by simulat-
ing and dynamically checking the correctness of 22 di�erent
designs, comparing these simulations against analog SPICE
models, and verifying their timing constraints using the UP-
PAAL model checker. Compared to analog circuit designs,
PyLSE designs take 16.6× fewer lines code and take several
orders of magnitude less time to simulate, all while main-
taining the needed level of timing accuracy. Compared with
speci�cations directly made using Timed Automata, PyLSE
requires 18.9× fewer states and 9.0× fewer transitions. We
believe, with the end of traditional transistor scaling, pulse-
based logic systems will only continue to grow in importance.
PyLSE, with its expressive timing, composable abstractions,
and connection to well-understood theory, has the potential
to provide a new foundation for that growth for years to
come.

Acknowledgments

We thank our shepherd, Sara Achour, and the anonymous
reviewers for their excellent suggestions on improving the
paper. This material is based upon work supported by the Na-
tional Science Foundation under Grants No. 1763699, 2006542,
and 1717779.

684

PyLSE: A Pulse-Transfer Level Language for Superconductor Electronics PLDI ’22, June 13–17, 2022, San Diego, CA, USA

References
[1] V. Adler, Chin-Hong Cheah, K. Gaj, D. K. Brock, and E. G. Friedman.

1997. A Cadence-based design environment for single �ux quantum

circuits. IEEE Transactions on Applied Superconductivity 7, 2 (1997),

3294–3297. h�ps://doi.org/10.1109/77.622058

[2] Rajeev Alur and David L. Dill. 1994. A Theory of Timed Automata.

Theoretical Computer Science 126, 2 (April 1994), 183–235. h�ps:

//doi.org/10.1016/0304-3975(94)90010-8

[3] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew

Waterman, Rimas Avižienis, John Wawrzynek, and Krste Asanović.

2012. Chisel: Constructing Hardware in a Scala Embedded Language.

In Proceedings of the 49th Annual Design Automation Conference (San

Francisco, California) (DAC ’12). Association for Computing Machin-

ery, New York, NY, USA, 1216–1225. h�ps://doi.org/10.1145/2228360.

2228584

[4] R. S. Bakolo. 2011. Design and implementation of a RSFQ supercon-

ductive digital electronics cell library. Master’s thesis. University of

Stellenbosch.

[5] K. E. Batcher. 1968. Sorting Networks and Their Applications. In

Proceedings of the April 30–May 2, 1968, Spring Joint Computer Con-

ference (Atlantic City, New Jersey) (AFIPS ’68 (Spring)). Association

for Computing Machinery, New York, NY, USA, 307–314. h�ps:

//doi.org/10.1145/1468075.1468121

[6] Gerd Behrmann, Alexandre David, and Kim G. Larsen. 2004. A Tutorial

on Uppaal. In Formal Methods for the Design of Real-Time Systems:

International School on Formal Methods for the Design of Computer,

Communication, and Software Systems, Bertinora, Italy, September 13-

18, 2004, Revised Lectures, Marco Bernardo and Flavio Corradini (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 200–236. h�ps://doi.

org/10.1007/978-3-540-30080-9_7

[7] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and

Wang Yi. 1996. UPPAAL — a tool suite for automatic veri�cation

of real-time systems. In Hybrid Systems III, Rajeev Alur, Thomas A.

Henzinger, and Eduardo D. Sontag (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 232–243.

[8] Béatrice Berard, Franck Cassez, Serge Haddad, Didier Lime, and

Olivier Henri Roux. 2005. Comparison of the Expressiveness of Timed

Automata and Time Petri Nets. In FORMATS 2005 - 3rd International

Conference on Formal Modeling and Analysis of Timed Systems (Lec-

ture Notes in Computer Science, Vol. 3829). Springer-Verlag, Uppsala,

Sweden, 211–225. h�ps://doi.org/10.1007/11603009_17

[9] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. 1998.

Lava: Hardware Design in Haskell. In Proceedings of the Third ACM SIG-

PLAN International Conference on Functional Programming (Baltimore,

Maryland, USA) (ICFP ’98). Association for Computing Machinery,

New York, NY, USA, 174–184. h�ps://doi.org/10.1145/289423.289440

[10] Joakim Byg, Kenneth Yrke Jørgensen, and Jiří Srba. 2009. An E�cient

Translation of Timed-Arc Petri Nets to Networks of Timed Automata.

In Formal Methods and Software Engineering, Karin Breitman and Ana

Cavalcanti (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 698–

716.

[11] Ruizhe Cai, Ao Ren, Olivia Chen, Ning Liu, Caiwen Ding, Xuehai Qian,

Jie Han, Wenhui Luo, Nobuyuki Yoshikawa, and Yanzhi Wang. 2019. A

Stochastic-Computing Based Deep Learning Framework Using Adia-

batic Quantum-Flux-Parametron Superconducting Technology. In Pro-

ceedings of the 46th International Symposium on Computer Architecture

(Phoenix, Arizona) (ISCA ’19). Association for Computing Machinery,

New York, NY, USA, 567–578. h�ps://doi.org/10.1145/3307650.3322270

[12] Edmund M. Clarke and E. Allen Emerson. 1982. Design and synthesis

of synchronization skeletons using branching time temporal logic. In

Logics of Programs, Dexter Kozen (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 52–71.

[13] John Clow, Georgios Tzimpragos, Deeksha Dangwal, Sammy Guo,

Joseph McMahan, and Timothy Sherwood. 2017. A pythonic approach

for rapid hardware prototyping and instrumentation. In 2017 27th

International Conference on Field Programmable Logic and Applications

(FPL). IEEE, Ghent, Belgium, 1–7. h�ps://doi.org/10.23919/FPL.2017.

8056860

[14] Leon N. Cooper. 1956. Bound Electron Pairs in a Degenerate Fermi

Gas. Physical Review 104, 4 (Nov. 1956), 1189–1190. h�ps://doi.org/

10.1103/PhysRev.104.1189

[15] J. A. Delport, K. Jackman, P. l. Roux, and C. J. Fourie. 2019.

JoSIM—Superconductor SPICE Simulator. IEEE Transactions on Applied

Superconductivity 29, 5 (2019), 1–5. h�ps://doi.org/10.1109/TASC.2019.

2897312

[16] E. S. Fang and T. Van Duzer. 1989. A Josephson integrated circuit

simulator (JSIM) for superconductive electronics application. In Ex-

tended Abstracts of 1989 Intl. Superconductivity Electronics Conf. (ISEC

’89) (Tokyo, Japan). 407–410.

[17] Coenrad J. Fourie. 2018. Extraction of DC-Biased SFQ Circuit Verilog

Models. IEEE Transactions on Applied Superconductivity 28, 6 (2018),

1–11. h�ps://doi.org/10.1109/TASC.2018.2829776

[18] Kris Gaj, Chin-Hong Cheah, E.G. Friedman, and M.J. Feldman. 1997.

Functional modeling of RSFQ circuits using Verilog HDL. IEEE Trans-

actions on Applied Superconductivity 7, 2 (1997), 3151–3154. h�ps:

//doi.org/10.1109/77.622000

[19] Kris Gaj, Eby G. Friedman, and Marc J. Feldman. 1997. Timing of Multi-

Gigahertz Rapid Single Flux Quantum Digital Circuits. In High Perfor-

mance Clock Distribution Networks, Eby G. Friedman (Ed.). Springer US,

Boston, MA, 135–164. h�ps://doi.org/10.1007/978-1-4684-8440-3_11

[20] Nicolas Halbwachs, Daniel Pilaud, Farid Ouabdesselam, and Anne-

Cecile Glory. 1989. Specifying, programming and verifying real-time

systems using a synchronous declarative language. In International

Conference on Computer Aided Veri�cation. Springer, 213–231.

[21] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. 1992. Symbolic

model checking for real-time systems. In [1992] Proceedings of the

Seventh Annual IEEE Symposium on Logic in Computer Science. IEEE,

Santa Cruz, CA, USA, 394–406. h�ps://doi.org/10.1109/LICS.1992.

185551

[22] Adam Holmes, Mohammad Reza Jokar, Ghasem Pasandi, Yongshan

Ding, Massoud Pedram, and Frederic T. Chong. 2020. NISQ+: Boosting

quantum computing power by approximating quantum error correc-

tion. In 2020 ACM/IEEE 47th Annual International Symposium on Com-

puter Architecture (ISCA). 556–569. h�ps://doi.org/10.1109/ISCA45697.

2020.00053

[23] D. Scott Holmes, Alan M. Kadin, and Mark W. Johnson. 2015. Super-

conducting Computing in Large-Scale Hybrid Systems. Computer 48,

12 (2015), 34–42. h�ps://doi.org/10.1109/MC.2015.375

[24] D. Scott Holmes, Andrew L. Ripple, and Marc A. Manheimer. 2013.

Energy-E�cient Superconducting Computing—Power Budgets and

Requirements. IEEE Transactions on Applied Superconductivity 23, 3

(2013), 1701610–1701610. h�ps://doi.org/10.1109/TASC.2013.2244634

[25] John E Hopcroft, Rajeev Motwani, and Je�rey D Ullman. 2001. Intro-

duction to automata theory, languages, and computation. Acm Sigact

News 32, 1 (2001), 60–65.

[26] K. Ishida, I. Byun, I. Nagaoka, K. Fukumitsu, M. Tanaka, S. Kawakami, T.

Tanimoto, T. Ono, J. Kim, and K. Inoue. 2020. SuperNPU: An Extremely

Fast Neural Processing Unit Using Superconducting Logic Devices. In

2020 53rd Annual IEEE/ACM International Symposium on Microarchitec-

ture (MICRO). 58–72. h�ps://doi.org/10.1109/MICRO50266.2020.00018

[27] B.D. Josephson. 1962. Possible new e�ects in superconductive tun-

nelling. Physics Letters 1, 7 (1962), 251–253. h�ps://doi.org/10.1016/

0031-9163(62)91369-0

[28] Naveen Katam, Soheil Nazar Shahsavani, Ting-Ru Lin, Ghasem

Pasandi, Alireza Shafaei, and Massoud Pedram. 2017. SPORT Lab

SFQ Logic Circuit Benchmark Suite. h�ps://ceng.usc.edu/techreports/

2017/Pedram%20CENG-2017-1.pdf. Accessed: 2021-10-22.

685

PLDI ’22, June 13–17, 2022, San Diego, CA, USA M. Christensen, G. Tzimpragos, H. Kringen, J. Volk, T. Sherwood, and B. Hardekopf

[29] T. Kawaguchi, K. Takagi, and N. Takagi. 2015. A Veri�cation Method

for Single-Flux-Quantum Circuits Using Delay-Based Time Frame

Model. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 98-A

(2015), 2556–2564.

[30] A. Krasniewski. 1993. Logic simulation of RSFQ circuits. IEEE

Transactions on Applied Superconductivity 3, 1 (1993), 33–38. h�ps:

//doi.org/10.1109/77.233410

[31] K.K. Likharev and V.K. Semenov. 1991. RSFQ logic/memory family: a

new Josephson-junction technology for sub-terahertz-clock-frequency

digital systems. IEEE Transactions on Applied Superconductivity 1, 1

(1991), 3–28. h�ps://doi.org/10.1109/77.80745

[32] Norm Matlo�. 2008. Introduction to discrete-event simulation and the

simpy language. Davis, CA. Dept of Computer Science. University of

California at Davis. Retrieved on August 2, 2009 (2008), 1–33.

[33] F. Matsuzaki, N. Yoshikawa, M. Tanaka, A. Fujimaki, and Y. Takai.

2003. A behavioral-level HDL description of SFQ logic circuits for

quantitative performance analysis of large-scale SFQ digital systems.

Physica C: Superconductivity 392-396 (2003), 1495 – 1500. h�ps:

//doi.org/10.1016/S0921-4534(03)00775-5 Proceedings of the 15th In-

ternational Symposium on Superconductivity (ISS 2002): Advances in

Superconductivity XV. Part II.

[34] RMcDermott, MGVavilov, B L T Plourde, F KWilhelm, P J Liebermann,

OAMukhanov, and TAOhki. 2018. Quantum–classical interface based

on single �ux quantum digital logic. Quantum Science and Technology

3, 2 (jan 2018), 024004. h�ps://doi.org/10.1088/2058-9565/aaa3a0

[35] George H. Mealy. 1955. A Method for Synthesizing Sequential Circuits.

The Bell System Technical Journal 34, 5 (Sept. 1955), 1045–1079. h�ps:

//doi.org/10.1002/j.1538-7305.1955.tb03788.x

[36] O.A. Mukhanov, S.V. Rylov, D.V. Gaidarenko, N.B. Dubash, and V.V.

Borzenets. 1997. Josephson output interfaces for RSFQ circuits. IEEE

Transactions on Applied Superconductivity 7, 2 (1997), 2826–2831. h�ps:

//doi.org/10.1109/77.621825

[37] Mustafa Munir, Aswin Gopikanna, Arash Fayyazi, Massoud Pedram,

and Shahin Nazarian. 2021. QMC: A Formal Model Checking Veri�ca-

tion Framework For Superconducting Logic. In Proceedings of the 2021

on Great Lakes Symposium on VLSI (Virtual Event, USA) (GLSVLSI ’21).

Association for Computing Machinery, New York, NY, USA, 259–264.

h�ps://doi.org/10.1145/3453688.3461522

[38] Louis C. Müller and Coenrad J. Fourie. 2014. Automated State Ma-

chine and Timing Characteristic Extraction for RSFQ Circuits. IEEE

Transactions on Applied Superconductivity 24, 1 (2014), 3–12. h�ps:

//doi.org/10.1109/TASC.2013.2284834

[39] L. C. Müller and C. J. Fourie. 2014. Automated State Machine and

Timing Characteristic Extraction for RSFQ Circuits. IEEE Transactions

on Applied Superconductivity 24, 1 (2014), 3–12. h�ps://doi.org/10.

1109/TASC.2013.2284834

[40] Laurence W. Nagel. 1975. SPICE2: A Computer Program to Simulate

Semiconductor Circuits. Ph. D. Dissertation. EECS Department, Uni-

versity of California, Berkeley. h�p://www2.eecs.berkeley.edu/Pubs/

TechRpts/1975/9602.html

[41] Travis E. Oliphant. 2007. Python for Scienti�c Computing. Computing

in Science Engineering 9, 3 (2007), 10–20. h�ps://doi.org/10.1109/MCSE.

2007.58

[42] S. Polonsky, P. Shevchenko, A. Kirichenko, D. Zinoviev, and A.

Rylyakov. 1997. PSCAN’96: new software for simulation and optimiza-

tion of complex RSFQ circuits. IEEE Transactions on Applied Supercon-

ductivity 7, 2 (1997), 2685–2689. h�ps://doi.org/10.1109/77.621792

[43] S V Polonsky, V K Semenov, and P N Shevchenko. 1991. PSCAN:

Personal Superconductor Circuit Analyser. Superconductor Science and

Technology 4, 11 (Nov. 1991), 667–670. h�ps://doi.org/10.1088/0953-

2048/4/11/031

[44] Lieze Schindler. 2021. The Development and Characterisation of a Pa-

rameterised RSFQ Cell Library for Layout Synthesis. Ph. D. Dissertation.

Stellenbosch University.

[45] Klaus Schneider. 2001. A Veri�ed Hardware Synthesis of Esterel Pro-

grams. Springer US, Boston, MA, 205–214. h�ps://doi.org/10.1007/978-

0-387-35409-5_20

[46] Pavel Shevchenko. [n. d.]. PSCAN2. h�p://pscan2sim.org/. Accessed:

2021-10-22.

[47] Igor I Soloviev, Nikolay V Klenov, Sergey V Bakurskiy, Mikhail Yu

Kupriyanov, Alexander L Gudkov, and Anatoli S Sidorenko. 2017. Be-

yond Moore’s technologies: operation principles of a superconductor

alternative. Beilstein journal of nanotechnology 8, 1 (2017), 2689–2710.

[48] I Synopsis. 2009. HSPICE: The gold standard for circuit simulation.

[49] Ramy N. Tadros, Arash Fayyazi, Massoud Pedram, and Peter A.

Beerel. 2020. SystemVerilog Modeling of SFQ and AQFP Circuits.

IEEE Transactions on Applied Superconductivity 30, 2 (2020), 1–13.

h�ps://doi.org/10.1109/TASC.2019.2957196

[50] R. N. Tadros, A. Fayyazi, M. Pedram, and P. A. Beerel. 2020. SystemVer-

ilog Modeling of SFQ and AQFP Circuits. IEEE Transactions on Applied

Superconductivity 30, 2 (2020), 1–13. h�ps://doi.org/10.1109/TASC.

2019.2957196

[51] Georgios Tzimpragos, Advait Madhavan, Dilip Vasudevan, Dmitri

Strukov, and Timothy Sherwood. 2019. Boosted Race Trees for Low

Energy Classi�cation. In Proceedings of the Twenty-Fourth International

Conference on Architectural Support for Programming Languages and

Operating Systems (Providence, RI, USA) (ASPLOS ’19). Association for

Computing Machinery, New York, NY, USA, 215–228. h�ps://doi.org/

10.1145/3297858.3304036

[52] Georgios Tzimpragos, Dilip Vasudevan, Nestan Tsiskaridze, George

Michelogiannakis, Advait Madhavan, Jennifer Volk, John Shalf, and

Timothy Sherwood. 2020. A Computational Temporal Logic for Su-

perconducting Accelerators. In Proceedings of the Twenty-Fifth Inter-

national Conference on Architectural Support for Programming Lan-

guages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20).

Association for Computing Machinery, New York, NY, USA, 435–448.

h�ps://doi.org/10.1145/3373376.3378517

[53] Georgios Tzimpragos, Jennifer Volk, Dilip Vasudevan, Nestan

Tsiskaridze, George Michelogiannakis, Advait Madhavan, John Shalf,

and Timothy Sherwood. 2021. Temporal Computing With Supercon-

ductors. IEEE Micro 41, 3 (2021), 71–79. h�ps://doi.org/10.1109/MM.

2021.3066377

[54] Georgios Tzimpragos, Jennifer Volk, Alex Wynn, James E. Smith, and

Timothy Sherwood. 2021. Superconducting Computing with Alter-

nating Logic Elements. In 2021 ACM/IEEE 48th Annual International

Symposium on Computer Architecture (ISCA). IEEE, Valencia, Spain,

651–664. h�ps://doi.org/10.1109/ISCA52012.2021.00057

[55] 2020. IEEE Standard for Universal Veri�cation Methodology Language

Reference Manual. IEEE Std 1800.2-2020 (Revision of IEEE Std 1800.2-

2017) (2020), 1–458. h�ps://doi.org/10.1109/IEEESTD.2020.9195920

[56] 2006. IEEE Standard for Verilog Hardware Description Language. IEEE

Std 1364-2005 (Revision of IEEE Std 1364-2001) (2006), 1–590. h�ps:

//doi.org/10.1109/IEEESTD.2006.99495

[57] S. R. Whiteley. 1991. Josephson junctions in SPICE3. IEEE Transactions

onMagnetics 27, 2 (1991), 2902–2905. h�ps://doi.org/10.1109/20.133816

[58] Inc. Whiteley Research. [n. d.]. WRspice. h�p://wrcad.com. Accessed:

2021-10-22.

[59] A. D. Wong, K. Su, H. Sun, A. Fayyazi, M. Pedram, and S. Nazarian.

2019. VeriSFQ: A Semi-formal Veri�cation Framework and Benchmark

for Single Flux Quantum Technology. In 20th International Symposium

on Quality Electronic Design (ISQED). IEEE, Santa Clara, CA, USA,

224–230. h�ps://doi.org/10.1109/ISQED.2019.8697701

[60] Q. Xu, C. L. Ayala, N. Takeuchi, Y. Yamanashi, and N. Yoshikawa. 2016.

HDL-Based Modeling Approach for Digital Simulation of Adiabatic

Quantum Flux Parametron Logic. IEEE Transactions on Applied Su-

perconductivity 26, 8 (2016), 1–5. h�ps://doi.org/10.1109/TASC.2016.

2615123

686

	Abstract
	1 Introduction
	2 Defining Computation on Pulses
	2.1 Functional Behavior
	2.2 Timing Behavior

	3 Overview of the PyLSE Machine
	3.1 Formalization of the PyLSE Machine
	3.2 Formalizing a Network of PyLSE Machines

	4 PyLSE Language Design
	4.1 Design Levels
	4.2 Syntactic and Semantic Checks
	4.3 Simulation
	4.4 Correspondence with Timed Automata

	5 Evaluation
	5.1 Circuit Simulation Comparison
	5.2 Simulation and Dynamic Correctness Checks
	5.3 Model Checking in UPPAAL

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

