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Abstract: The advancement of sensing technology enables efficient data collection from manufacturing systems for
monitoring and control. Furthermore, with the rapid development of the Internet of Things (IoT) and information
technologies, more and more manufacturing systems become cyber-enabled, facilitating real-time data sharing and
information exchange, which significantly improves the flexibility and efficiency of manufacturing systems. However,
the cyber-enabled environment may pose the collected sensor data under high risks of cyber-physical attacks during
the data and information sharing. Specifically, cyber-physical attacks could target the manufacturing process and/or
the data transmission process to maliciously tamper the sensor data, resulting in false alarms or failures in anomaly
detection in monitoring. In addition, the cyber-physical attacks may also enable illegal data access without
authorization and cause the leakage of key product/process information. Therefore, it becomes critical to develop an
effective approach to protect data from these attacks so that the cyber-physical security of the manufacturing systems
could be assured in the cyber-enabled environment. To achieve this goal, this paper proposes an integrative blockchain-
enabled data protection method by leveraging camouflaged asymmetry encryption. A real-world case study that
protects cyber-physical security of collected sensor data in additive manufacturing is presented to demonstrate the
effectiveness of the proposed method. The results demonstrate that malicious tampering could be detected in a

relatively short time (less than 0.05ms) and the risk of unauthorized data access is significantly reduced as well.
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1 Introduction

Advanced sensing and information technologies have been increasingly incorporated in the daily operations of
manufacturing systems, making them more and more cyber-enabled. For example, a large variety of sensors can be
utilized for in-process data acquisition. These collected data contain fruitful information, enabling real-time decision-
making regarding quality assurance and process improvement such as in-situ process monitoring and real-time control.
As another perspective of cyber-enabled manufacturing, cloud-based data storage becomes more and more popular.
However, as the manufacturing environment becomes increasingly cyber-enabled, the risk of cyber-physical attacks

also increases significantly, which may result in great loss to the enterprises [1, 2].

Recently, there are several studies about cyber-physical vulnerability assessment in manufacturing. For example,
the part design files (such as the STL files in additive manufacturing) could be breached in a cyber-enabled
environment [3, 4]. Similarly, the collected sensor data may also be altered by cyber-physical attacks. As shown in
FIGURE 1, two common types of cyber-physical attacks may occur in a cyber-enabled manufacturing system. First,
the malicious tampering could maliciously modify the sensor data. As a result, it may lead to either false alarms or
missed detections of anomalies, which could result in enormous time loss and costs to enterprises. Also, malicious
modification on sensor data may heavily deteriorate the performance of data analytics methods. Another type of cyber-
physical attacks, i.e., unauthorized access, refers to that adversary may illegally access the data. This unauthorized

data access may lead to key information leakage and even illegal counterfeiting.

Ir Cyber-enabled Manufacturing System |—I

Cyber-physical
attack

llegally , Unauthorized
accessed 1 use of data
1

1
i Maliciously Fal I

Monitoring tampered ! :rsrsizs;’:‘n

& Control detection

FIGURE 1: Potential cyber-physical attacks for data in manufacturing systems.

To improve the cyber-physical security in cyber-enabled manufacturing, recent studies have developed effective
data-driven methods such as neural networks for cyber-physical attack detection using sensor data [5, 6]. However,

methodologies to prevent the sensor data from unintended modification and unauthorized access in cyber-physical

¥Z0z Arenuer zz uo Jasn ewoyepO JO Ansianun Aq Jpd-0L0L-€2-8810[/809€50./658€901 L/SL L L'0L/10p/spd-sonue/Bulissuibusbunndwos;Bio-swse:uonoajoojenbipawse//:dpy wody papeojumoq



manufacturing are still very limited. In fact, if the sensor data were attacked, the important samples could be replaced
or the data distribution could be altered, and thus the performance of those abovementioned data-driven detection
methods will be significantly compromised. Therefore, the objective of this study is to develop an effective approach
to protect the cyber-physical security of sensor data. There are three major challenges to achieve this goal: (1) the
format of sensor data is relatively simple and fixed, which can be easily modified by cyber-attacks in a relatively short
time; (2) small changes are difficult to be detected while they could lead to serious product quality issues; and (3) the
code-book needs to be updated frequently when using the-state-of-the-art symmetric encryption methods, leading to

comparably high maintenance costs.

To address these challenges, this study develops a novel blockchain-enabled approach for sensor data protection
in advanced manufacturing systems, which integrates the powerful blockchain and a camouflaged asymmetry
encryption framework. The proposed method is able to improve resistance against two cyber-physical attacks (i.e.,
malicious tampering and unauthorized access) and hence reduces the potential risk of these attacks. Blockchain is a
newly developed popular technology that has been applied in a wide range of areas such as cryptocurrencies, supply
chain, and smart contracts [7]. It has high resistance against data modification due to its unique structure design. The
data stored in the blockchain cannot be altered unless all subsequent blocks are modified. Based on the vanilla
blockchain, an engineering-driven blockchain is proposed in this study to accommodate the manufacturing settings.
Meanwhile, the proposed camouflaged asymmetry encryption can effectively encrypt the sensor data to prevent
unauthorized access and convert the ciphertext to a format similar to the original data, which further reduces the

potential attack risks.

Specifically, this work is based on the hypothesis that the encryption-only approach may not be able to provide
sufficient security guarantee to cyber-physical manufacturing systems [8, 9]. Therefore, we propose a new data
obfuscation/camouflage approach to potentially confuse/mislead the attackers (and thus reduce the likelihood of attack
attempts) or possibly slow down the unauthorized access procedure. Another key contribution of this work is the novel
integration of blockchain, asymmetric encryption, and data obfuscation, which holistically considers the prevention
of malicious tampering and unauthorized access, as well as the attacker’s intention. Besides, the proposed
methodology also takes the specific domain knowledge of cyber-physical manufacturing systems into consideration.
Thus, this work provides a new direction to leverage the blockchain for protecting the security of important process

data in cyber manufacturing systems.
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The rest of this paper is structured as follows. A brief review of the related research from literature is provided in
Sec. 2. The proposed research methodology is elaborated in Sec. 3. Subsequently, Sec. 4 further demonstrates the
effectiveness of the proposed method based on a real-world case study. Finally, conclusions and future work are

discussed in Sec. 5.

2 Literature Review

The study is motivated by the concerns of cyber-physical security for sensor data in advanced manufacturing
systems. Thus, this section first briefly reviews the existing studies related to cyber-physical security protection in
manufacturing and discusses their limitations (Sec. 2.1). Then, the existing applications of blockchain in

manufacturing systems are reviewed in Sec. 2.2. Meanwhile, the research gaps are also identified.

2.1 In-situ and post-manufacturing cyber-physical security protection in manufacturing

Malicious design/process modification (such as the design geometry, machine parameters, or in-situ data
modification) may lead to a manufacturing system halt (e.g. false alarm) or quality deterioration (e.g. missed detection
of anomalies). Additionally, unauthorized design/data access may result in key information leakage [10]. The risk of
these attacks needs to be eliminated at any stage in manufacturing, including the design phase, manufacturing phase,
and post-manufacturing phase [4, 11]. This study focuses on the cyber-physical security of the sensor data, which
contains both manufacturing and post-manufacturing phases. For the cyber-physical security protection of both phases,
sensor data play a significant role in cyber-physical attack detection [12]. Heterogenous sensor signals such as
acceleration, temperature, and acoustic emission are common choices for process monitoring [13-16]. In addition,
advanced imaging technologies have been developed, providing rich process information. Optical camera, infrared
imaging, video, and 3D scan could generate high-dimensional data for process quality control, and now are widely

applied in manufacturing systems [17-21].

Correspondingly, data-driven analytics based on the sensor data become popular to detect cyber-physical attacks
and improve system resilience [20, 22, 23], which consists of both machine learning methods and statistical methods.
In terms of machine learning applications, both supervised and unsupervised monitoring become increasingly adopted.
For example, Shi et al. developed an autoencoder-based approach to extract features from high dimensional sensor
signals for online process monitoring [15]. Li et al. incorporated several machine learning algorithms to detect

geometry defects at post-manufacturing stage [24]. Another direction is to improve the statistical quality control tools
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(e.g., control chart), making it applicable for cyber-physical attack detection. For example, Elhabashy ef a/. introduced
randomness into control chart to make it more sensitive to cyber-physical attacks [25, 26]. However, currently there
are limited studies investigating how to protect the cyber-physical security from the data perspective. Current methods
are based on the premise that all data are well protected while it is possible that the data have already been maliciously
modified. If the sensor data were already attacked, these methods will not work well or even provide misleading
results. Therefore, there is an urgent need in developing an effective approach to detect malicious tampering on steam

data during manufacturing.

Some physical-based cyber-physical security detection methods have been proposed in recent years. For the
detection of malicious tampering, recent studies have applied sensing techniques such as chemical taggants [27],
impedance analysis [28], and physical hash [5] for product authentication, which could cause extra time and material
cost. For unauthorized access, there are also several recent studies investigating how to manage and share data [29].
For example, Yen et al. [30] proposed a SaaS-centered framework for manufacturing system health management,
which facilitates reuse and sharing of sensor data. However, these approaches do not have sufficient capability to
ensure the data security. Even though the sensor data can be encrypted and protected by passwords (i.e., symmetric
encryption), the data security still cannot be well ensured when the network security is breached. In addition, the code-
book needs to be updated frequently for most of common symmetric encryption approaches, causing high maintenance
cost [31]. To address these research gaps in the cyber-physical security assurance of advanced manufacturing systems,
as a newly developed technology, blockchain-based approaches have demonstrated their great potential. The existing

applications of blockchain in manufacturing systems are briefly reviewed in Sec. 2.2.

2.2 Applications of blockchain in manufacturing

In recent years, blockchain has been successfully applied to manufacturing systems for different objectives, such
as supply chain management, and quality control [32, 33]. For supply chain management, due to its distributed ledge
property, blockchain has been adopted in the manufacturing supply chain management, especially in the additive
manufacturing which brings high flexibility and is highly distributed [33]. In addition, blockchain has also been
applied to decentralized manufacturing systems for data sharing and information processing in the recent studies. For
example, Christidis et al. [34] applied blockchain to address scalability and security challenges in Internet of

Manufacturing Things. Ghuli ez al. [35] proposed a decentralized system for peer-to-peer identification of ownership
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of IoT devices in cloud, which is able to transfer ownership among users without involvement of third parties. Bahga
et al. [36] proposed a decentralized, peer-to-peer platform for industrial IoT based on the blockchain technology. This
method incorporates the digital information components in loT-based manufacturing to blockchain and enables the
participants in a decentralized, trustless, peer-to-peer network to interact with each other without extra cost of a trusted
third party. Furthermore, blockchain were further applied in data sharing and transactions recording at the enterprise
level. For instance, Yu et al. [37] constructed a blockchain-based structure to enhance the information transparency
and decentralization in cloud manufacturing, in which the smart contracts were applied to deal with manufacturing
services in cloud platform. Shafagh et al. [38] designed a blockchain-based system for IoT, which brings distributed

access control and data management.

Although blockchain has been increasingly applied to manufacturing, most existing studies are focused on the
macro-scale enterprise level activities in decentralized manufacturing systems, such as anti-counterfeiting and
information sharing. In manufacturing, in addition to data collected during manufacturing process, the fabricated part
itself could become an important data source for organizations [33]. Certification and quality assurances need to be
implemented for the whole manufacturing processes. The digital representation of a product and its corresponding
data can be seen as a digital twin [39]. Blockchain’s ability to manage the ownership of data has the potential to protect
cyber-physical security of digital twin data of fabricated products such as G-code and sensor data. For example,
Kennedy et al. [40] incorporated a QR code with a 3D printed part, in which the designed features are included, and
further forms a digital twin of the physical part in blockchain to improve the product security. In the prior work of the
authors, blockchain was successfully applied to G-code protection in additive manufacturing [10]. Compared with the
sensor data protection, the number of G-code is fixed after slicing while the sensor data are collected dynamically.
Besides, ciphertext may cause more malicious decryption attempts from the adversaries, which increases the potential
risk as well. Consequently, our prior work is not sufficient to protect the online stream data [10], which motivates this

study to further extend it and make it more suitable for sensor data protection.

3 Proposed Research Methodology

To prevent the in-situ sensor data from malicious tampering and unauthorized access in advanced manufacturing
systems, the overall framework of the proposed blockchain-enabled methodology is composed of the following three

aspects:
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1) A data storage approach using blockchain: In Sec. 3.1, a blockchain-enabled approach is proposed to store
sensor data, which is able to detect malicious tampering on data fast.

2) A camouflaged asymmetry encryption framework: In Sec. 3.2, a camouflaged asymmetry encryption
framework is developed to further reduce the risk of unauthorized data access.

3) Integration of the proposed method for sensor data protection in manufacturing: In Sec. 3.3, integration of

the proposed method to protect sensor data from both malicious tampering and unauthorized access is elaborated.

3.1 Blockchain-enabled sensor data storage

To prevent the malicious sensor data modification, a blockchain-enabled sensor data storage approach is first
proposed in this section. Blockchain provides a safe and trustworthy platform for peer-to-peer communication, which
could be used to store a variety of important trackable information, such as healthcare data and transaction records
[41]. One notable feature of blockchain is the incorporation of hash cryptography, which contributes a lot to assuring
cyber-security. In hash cryptography, the hash function is a one-way function that maps data to a fixed-size hash value
[42], and it is impossible to reversely derive the original contents from the generated hash value. Specifically, there
are two critical properties of hash function to ensure data security. First, this is a one-to-one mapping, i.e., if two inputs
x; and x, are different, their generated hash values must be different. Second, the hash function is a non-invertible
function. Given a hash value, the original input text cannot be derived. In practice, the commonly used hash functions

include secure hash algorithms such as SHA-2, which takes text as input and output a hexadecimal string [43].

Block header and block body are two major components of blockchain. The important file/data are stored in block
body and the unique identification information of each block is stored in block header. As shown in FIGURE 2, block

header contains the following items to ensure the uniqueness and security of block:
1) Hash of the previous block: a hash value representing the previous block.

2) Hash of the current block: a hash value representing the current block, which can be calculated from hash of

previous block, current block index, timestamp and the data stored in the current block.

3) Timestamp: current timestamp in second format.

With a unique cryptographic hash identification, each block is chained with its neighboring block via the hash of

the previous block. The data in the blockchain are strictly ordered since the latter block cannot be connected to the
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chain without hash value of previous block. Besides, due to the uniqueness of hash function, any modifications on the
stored data will lead to a completely different hash value, which could be detected quickly and accurately (as
demonstrated in Sec. 4). Therefore, leveraging blockchain for data storage could prevent malicious tampering on

sensor data because of its capability to detect even a very slight unintended modification.
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FIGURE 2: A demonstration of the blockchain structure.
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Similar to blockchain, the sensor data are collected in a sequential ordered as well. As demonstrated in FIGURE
3, the sensor data collected in each time window can be treated as the data stored in one block which connects the
previous block (i.e., the previous time window) through the hash value. When storing sensor data in block, a
corresponding unique hash value of the current block could be generated. Any unintended modifications on the
collected data will result in a significant change of hash value in the corresponding block due to the uniqueness
property of hash. If adversary attempts to tamper the sensor data to further manipulate the manufacturing process or
deteriorate product quality, it could be detected accurately through mismatch of hash value. Besides, storing sensor
data in blockchain also enables users to locate the exact modification on sensor data in a timely manner (see

demonstrations in Sec. 4).
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FIGURE 3: Sensor data storage based on the proposed blockchain architecture.
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It is worth mentioning that there are several differences between the blockchain-enabled structure proposed in
this paper and the conventional blockchain. On the one hand, the goal of this study is to protect sensor data collected
in a designated manufacturing system. Therefore, the collected data should be stored by the manufacturer so that
distributed ledger is not incorporated in this work. On the other hand, in a conventional blockchain, mining is a
powerful feature which keeps adding new blocks to the end of chain after proof of work [7]. However, sensor data are
collected through designated sensors. Consequently, the new block could only be added through them. Hence, the

proof of work is also removed from mining mechanism in this work.

In summary, the proposed blockchain-enabled sensor data storage approach is capable of detecting and locating
malicious tampering in a timely manner, which significantly enhances the resistance against malicious tampering. In
Sec. 3.2, the camouflaged asymmetry encryption framework is incorporated in the blockchain to further enhance the

robustness against unauthorized access.

3.2 Camouflaged asymmetry encryption framework in blockchain

Malicious tampering could be detected and located by storing sensor data in blockchain. In conventional
blockchain applications, the data stored in blockchain are open and accessible for every user. However, in
manufacturing, sensor data contains a large amount of valuable information and some of them may be confidential.
Making the data open access may leak key information and result in irreversible loss. Hence, these important data
should not be open to the public except for the data owners and users. Directly storing sensor data in blockchain
without encryption may result in another type of cyber-physical attack, i.e., unauthorized data access. Consequently,
necessary encryption technology should be incorporated so that the information could only be accessed by the
designated users. The process of encryption involves manipulating the plaintext using a set of rules or mathematical
functions that transform it into ciphertext. Ciphertext is intended to protect sensitive information from unauthorized
access or disclosure by making it unreadable to anyone who does not possess the appropriate key or decryption
algorithm. It is a critical aspect of modern information security systems, including secure communication channels,
digital signatures, and data storage. Meanwhile, ciphertext stored in block contains letters and symbols, indicating that
these data are encrypted. This may further cause more malicious attempts on decryption and increase the risk of
information leakage. Thus, encrypting important data and reducing the attempts of adversary on ciphertext decryption

are two important goals in this study, which are achieved by developing the pluggable options of camouflaged
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encryption. Specifically, the encryption technique is applied to keep the data confidential, and the camouflage
technique (i.e., the invertible transformation on the ciphertext) is added to reduce the risk that adversary decrypts

ciphertext, which are presented in Sec. 3.2.1 and Sec. 3.2.2, respectively.

3.2.1 RSA asymmetry encryption framework

The cryptography approaches are composed of symmetry and asymmetry methods. In general, asymmetry
encryption approaches do not need time synchronization among users and do not require secure channel between
sender and recipient. Conversely, symmetric encryption approaches require a secure channel. As the symmetric
methods utilize the same key for both encryption and decryption. If the key gets attacked, attacker could easily obtain
all important information in the entire system. In addition, asymmetric encryption enables the recipient to verify and
authenticate the message's source, making it easier to avoid encrypted messages from unknown senders. Compared to
the symmetric methods, asymmetric methods have two keys to implement encryption and decryption tasks,
respectively. They do not need time synchronization among users and are less vulnerable to cyber-physical attacks
[44]. Hence, the asymmetric approach is adopted in this study, which consists of two different keys, i.e., encryption
key and decryption key. The paired use of encryption and decryption keys makes it effective to reduce the risk of
information leakage. The working principle of asymmetry encryption is simple: A encryption key is used to encrypt

the sensor data to the ciphertext and a decryption key is used to decrypt the ciphertext to the original data.

In practice, Rivest-Shamir-Adleman (RSA) is a widely used asymmetry encryption approach due to its great
efficiency. The Digital Signature Standard (FIPS 186-5) [45] defines the acceptable level of how the RSA key
generation procedure can ensure the system solidness, with the specific key generation procedure, including
padding. Thus, this study follows this standard for demonstration purposes. Notably, it is also possible that RSA is not

good enough due to inappropriate application domain, hardware platform, or other factors.

Mathematically, the process could be formulated as,

y=f® (1)

where x denotes the original text and y denotes the ciphertext. f(-) denotes the encryption key. Then the

decryption could be formulated as,

10
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x=g(y) @)

where g(-) denotes the decryption key. Notably, g(-) could derive f(-) and this derivation from g(-) to f(*)
cannot be inverted. In other words, given g(+), f(-) can be derived while g(-) cannot be derived from f(-). Before
storing into a block, the collected sensor data are encrypted to ciphertext using the encryption key first, which makes

them only accessible to the designated agents.
More specifically, in the RSA cryptosystem, f(-) could be presented as:
f() =m® (mod n) (©)
and for g(-):
g() = m*)* (mod n) “4)

where m is the original text, e is the encryption key value, n is modulus size, and d is decryption key value.

More details about RSA are presented in the literature [46].

In this study, for the RSA keys generation, we have used the PyCryptodome package in Python. The algorithm
closely follows FIPS 186-5 in its sections B.3.1 and B.3.3 [45]. The modulus is the product of two non-strong probable
primes and its size chosen as 1,024 bits. Each prime passes a suitable number of Miller-Rabin tests with random bases
as well as a single Lucas test. In this study, according to the abovementioned literature, the security level corresponds

80 “bits of security”, as we used modulus size equals 1024.

It is also worth noting that the adoption of the RSA asymmetry method in this study is mainly for demonstration
purposes. In practice, other common asymmetry encryption methods could also be applied to replace RSA, such as
the Elliptic-curve cryptography (ECC) [47]. Specifically, in Mahto et al.’s work [48], a performance comparison
between RSA and ECC was conducted. This comparison indicates that the least total encryption-decryption time for
RSA only exists in low security systems but requires additional enhancing like using Chinese Remainder Theorem or
Multi-prime RSA. When the security level (more than 112 “bits of security”) is increased, then the ECC will
outperform RSA. Besides, Saho et al. [49] identified that ECC could be more suitable for embedded systems as ECC
generally requires less computational resources. With the incorporation of asymmetry encryption, subsequently, the

camouflage technique can be applied to further reduce potential attempts of adversary to decrypt on ciphertext.

11
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3.2.2  Proposed camouflage technique

After asymmetry encryption, ciphertext y are composed of numbers, letters, and symbols (see a demonstration
in Sec. 4.2), indicating that the data are encrypted. This could lead to the situation that the adversary tries decrypting
the ciphertext and increases the potential risk of information leakage. As the quantum technology develops, some
encryption methods (such as RSA) can be breached [50]. If a hacker obtains the private key, this hacker can decrypt

the ciphertext easily.

To address this issue, a natural idea is to consider the data obfuscation. In practice, the common data obfuscation
techniques include special storage and encoding, aggregation and different ordering of data [51]. Most of the data

obfuscation approaches can be grouped into three categories [52]:

1) Data randomization works by perturbing the data, making it difficult to reconstruct the original values and

preserves sensitive data.

2) Data anonymization applies generalization and suppression to a dataset, where generalization replaces a

value with a less specific one, while suppression does not release a value at all.

3) Data swapping swaps the values within a single field in a record set. This makes it difficult to match

individual records, but it does not affect the overall statistics of the data set [53].

According to the literature, most of the existing obfuscation techniques did not consider the need in making the
format of encrypted data consistent with the original data, for example, the collected from an accelerometer sensor in
this study. Thus, a special aspect of data obfuscation, namely, a camouflage strategy, is proposed in this study. It is
true that the obfuscated/camouflaged data may not be able to mislead the malware attacks. Nevertheless, when an
attack is performed by a human, the proposed camouflage/obfuscation approach can reduce the likelihood of attack
attempts, as the camouflaged data will look very similar to the original data (as presented in Sec. 4.2), and therefore

enhance the security.

The proposed procedure monotonically transfers these ciphertext to numeric format first (see FIGURE 4).
Hereafter, the mathematical transformation (e.g., mean shift, and scaling) could be applied to scale the data, making
camouflaged data have similar scale compared to the original data. With help of this additional camouflaging technique

which masks the ciphertext to original data format, the risk that hacker tries to decrypt the ciphertext could decrease.

12
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In addition to that, even if hacker obtains the private key, attacker will retrieve signals in an incorrect space, which

cannot be effectively utilized. The transformation is invertible, which could be mathematically formulated as,
y = h(y) “4)

where h(+) is the monotonically reversible transformation function, which could consist of but not limited to binary-

ASCII transformation, string-number transformation, digit split, and scaling.

Encrypted Ciphertext Camouflaged data

-0.5-

b"\xa2_\x9d\xa3\xc8\x8f\xb6(\xcbh\xdd\xfe\xad[\xba\x19\x97A!
\xbbi\x83f\xb7\xda& *\xed\xc4D7sG\xfbN\xad\xd8\x1d\xe3\xes8  Camoufla ge -

k,.\xb2<\xe0\xc5\x07{\xafYIEt\xb2=\xd5\x10\x07\xda\xc9\x98\xf —) |
e\xf7=\x95\x18\x14\xf6\xa1\xb3\x8d\x17\xc9\xa6\x07\xa89.\xf0 o
=\xec3\xb8\xd7A\xdbcV\xbc\t*?\xc4\xe50\x9bR\xb6P\xbcE\xb1\ — 05

i

S

x81\xa4\xf3C\x0b\xed\xb4\xf1I\xc6\xch\x84&\xd7& 2,\x8f\xaf1\ Uncoveri ng
xac\xb1\x0e'

70
Time

FIGURE 4: A demonstration of the camouflaged encryption.
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. xac\xb1\x0e' 1 String to number

| e e e e e e e e ——————— L -
1688800, @5 4255259927057827038241590759335908
0580062976501983080480906608888441612767593190928524766110
9498879772939636452§80622622127773832427011542631539239901

30010805249348110§3759296903169826882892831852407986688632

$771878801913327429087443896974820962491524596570920356766

42239301001807234479476289759083597412234878608430

1
I
1
1
1
1
55022097796908208339351415759485869126667700015
1
1
1
5091510 |
: 1
I

1
1
1
:
1
Camouflaged data | 3245157189
1
1
1
1
1
K

. / /\A
. w /\J ,\ MU N\\,’ \ Scaling . J 217 ----Digitsplit '

FIGURE 5: The detailed procedures of the proposed camouflage framework.

The detailed camouflage process is displayed in FIGURE 5. After RSA encryption, the ciphertext is in binary
format. Binary-ASCII transformation could transfer the binary ciphertext from binary format to ASCII strings, which
is helpful for the follow-up camouflage processing. The string-number transformation is capable of mapping string to

number monotonically. Hereafter, numerical format ciphertext split into digits with equal length. Finally, scaling is
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performed on these equal-length digits to make them have similar format and value with original data. Scaling is one
necessary step of camouflaging since the camouflaged data may not be in the same scale as the original sensor data
after digit split. Attacker with engineering domain knowledge immediately knows that the data have been encrypted.
Therefore, we need to further scale them to a similar scaling level and make hackers believe the data have not been
encrypted, which could further reduce the attempt from attackers to decrypt the ciphertext. In addition to these steps,

any reasonable invertible transformation could be added as well.

After camouflage, ¥ has similar format with the original data x. The camouflaged data ¥ could be uncovered
to ciphertext y using the inverse function h~1(-). With help of camouflage, adversary does not know that the stored
data are encrypted, and the risk of information leakage is further decreased. As displayed in FIGURE 6, Before storing
sensor data into block, camouflaged asymmetry encryption method is applied to effectively prevent sensor data from

unauthorized access.

Window1l Window2 Windown

Encryption @ @ @

Ciphertext Ciphertext Ciphertext

Camouflage @ @ @

|
1 T Block1 ] 1 Block2 Blockn :
: Camouflaged| [Camouflaged Camouflaged ||
Storage | Ciphertext 1 = Ciphertext 2 [=>* ® Ciphertext n |1
|
|
| |
|

& Hash & Hash & Hash

Blockchain Stream Data

FIGURE 6: Overview of the blockchain-based camouflaged asymmetry encryption storage for sensor data.

In summary, the steps of sensor data encryption, camouflage and sharing are displayed in FIGURE 7, which
contains three parts: (1) decryption and encryption key generation; (2) sensor data encryption and camouflage; and
(3) uncovering and decryption. Before encryption, data user generates two keys: encryption key and decryption key.
According to RSA, decryption key g(-) is generated first. Afterwards, encryption key f(-) is derived from g(+)

and the derivation is irreversible. The ciphertext encrypted by f(-) can only be decrypted by g(+), ensuring the data
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could only be accessed by the user. After acquiring encryption key by the manufacturer sensor data x are encrypted
to ciphertext y and camouflaged to form ¥ which has similar form with x. In practice, the data owner offers
designated users blockchain-stored data and uncovering method h~!(:). Notably, the decryption key g(-) and
uncovering method h™1(+) work separately to uncover ¥ and decrypt y. The camouflaged encrypted sensor data
are only accessible for authorized users who own decryption key g(*) and know the camouflage method h™1("),

which decreases the risk of critical information leakage.

| Data user :
1 1
1 1
! [stream Decrypt g() Cipher [ __Uncovering _|camouflaged !
! data x text y h™1 () text !
1
1 1
| Generate Encrypti
. yption key 1
! decryptionﬁ _Mﬁ |
:_ key !
___________________________________________ 4
Data sharing
e 1
| Data owner !
1 1
1 1
1 1
1 1
| |Stream Cipher | Camouflage [camouflaged)| |
! |data x text y h(-) text y '
1 1

FIGURE 7: Steps of sensor data encryption, camouflage, and sharing.

With the application of the camouflaged encryption framework, it is challenging to know the appropriate
uncovering method and very time-consuming to decrypt the ciphertext of even a single block. Therefore, it becomes
difficult to obtain the original data in a short time since the number of blocks may be large. Incorporating the
camouflaged asymmetry encryption method in blockchain storage structure, the proposed approach is capable of

resisting the malicious tampering and unauthorized access, which is discussed in Sec. 3.3.

3.3 Integration of the proposed blockchain-enabled data protection approach

In practice, manufacturers store their collected data locally or on the cloud. The manufacturers could frequently
verify the data integrity in order to detect malicious tampering in a timely manner. The paradigm of the proposed

blockchain-enabled framework with camouflaged encryption is illustrated in FIGURE 8, which consists of four steps.

o Step 1: Key generation. The data owner generates a decryption key and derives encryption key from the

decryption key.
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o Step 2: Sensor data collection. The sensor data are collected and organized in a window-based format.

e Step 3: Data encryption, camouflage, and storage. The collected data are encrypted using the encryption key
and then camouflaged. Afterwards, the camouflaged data are stored into blocks. Newly collected data could be
continuously added to the end of the chain. The hash of block is recorded and stored in a cyber-disabled
environment for verification purpose. The cyber-disabled environment means the environment without Internet

access so that attacker cannot modify data in this environment.

e Step 4: Verification on stored data. The manufacturer performs frequent inspection on the stored data by
recalculating the hash of each block to see whether there is a mismatch on the hash values which indicates

occurrence of malicious tampering at the corresponding block.

Using the proposed blockchain-enabled framework, malicious tampering could be effectively prevented. In
general, malicious tampering could be categorized into two types, namely, deletion/addition of blocks in the
blockchain and slight/severe data modification. According to each type of tampering, there are several verification
ways based on the mismatch of hash values. Notably, the verification procedure could be automatically implemented

in a relatively short time (See details in Sec. 4), which ensures the sensor data integrity.

For the malicious deletion/addition, there are two approaches to detect it. The first approach is dimension
comparison, which directly detects the deletion/addition by comparing current dimension (i.e. the number of blocks)
with the expected dimension. In this study, the expected dimension could be determined by the window size, sampling
frequency, and manufacturing time. When the dimension of blockchains does not match, it implies occurrence of
malicious block deletion/addition. Although dimension comparison is simple and fast, it has several limitations: (1) it
cannot locate which block has been maliciously deleted/added, and (2) if the same number of blocks are deleted and
added simultaneously, it cannot detect the malicious tampering since the dimension keeps the same. To address these
limitations, the second method is developed, namely, chain inspection, which compares the hash value along the chain.
FIGURE 9 (a) is a demonstration of malicious deletion detection by chain inspection. The hash value does not match
comparing the block i’s hash value with the previous hash value of block i + 2 when malicious deletion occurs.

Hence, the deleted block (i.e., block i+ 1) could be detected accurately.
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FIGURE 8: Paradigm to integrate the proposed blockchain-based camouflaged encryption framework in

manufacturing systems.

Delete Block i + 1
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(a) Block i Block i +1 ~ : (c)
A Y
Camouflaged Data Cathquage/d,tfata Camouflaged Data — Blocki —
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eoe Previous hash Previ&@ hash Previous hash .on Data
’ N X ..
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This block’s hash This block’s hash his block’s hash N——

(change)
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FIGURE 9: (a) Malicious deletion detection by chain inspection; (b) slight malicious modification detection by

chain inspection, and (c) severe malicious modification detection by benchmark comparison.

In terms of the slight/severe data modification, slight modification refers to the modification on one or several
blocks and severe modification refers to the modification starting from certain block till the last block. The slight
modification could be detected by chain inspection as well, which is illustrated in FIGURE 9 (b). When the

camouflaged data are stored in blocks, the unique hash value for each block is generated. After data modification, an
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entirely different hash value will be generated during verification. For slight modification which only modifies several
specific blocks, the hash value mismatch between the modified and unmodified block denotes the occurrence of the
malicious tampering. For example, the data in block i + 1 are modified by the adversary and the hash value of block
i +1 changes after recalculating hash value. The previous hash value in block i + 2 remains unmodified so that by
comparing the hash value of block i + 1 and the previous hash in block i+ 2, the mismatch could be detected
accurately. For severe modification, the chain detection does not work since hash values in all the following blocks
have been tampered. Thus, benchmark comparison is effective to deal with this problem. Specifically, the original
hash value is stored in a cyber-disabled environment and set as benchmark after storing the sensor data into blocks.
When doing the hash value comparison, the original hash benchmark is loaded. By comparing the original hash value

with current hash value (see FIGURE 9 (c)), the tampered block could be detected in a timely manner.

In addition, with the help of camouflaged asymmetry encryption, it will be very challenging for the adversary to:
(1) identify if the data have been encrypted or not; and (2) decrypt the ciphertext in a manageable time [54]. Therefore,
the proposed method also significantly reduces the risk of unauthorized access. Notably, the data will be protected
using the proposed method once the data are collected. Then the common quality control tools such as control charts
or data-driven monitoring methods could be further incorporated without concern on the data correctness. In the post-
manufacturing phase, the frequent verification also eliminates the risk of unintended modifications. When an outside
user needs to access the data, they could send a request to the manufacturer and provide the encryption key f(+).
Subsequently, the manufacturer could securely share the uncovering method h~(-) with the user so that the user

could download the data from the cloud, uncover and decrypt them to the original ones.

The proposed method is an engineering-driven framework which takes several engineering domain knowledge
into consideration. First, streaming data are collected in a chronological order and usually are analyzed in a window-
based format to effectively utilize the temporal information in practice. In terms of blockchain, each block could store
its own data, which highly matches the way of data collection in engineering. In addition, the scaling in camouflage
is another perspective to incorporate engineering knowledge. Camouflaged data need to be scaled to appropriate level
according to different types of sensors, which is highly correlated with specific engineering applications. To further
demonstrate the effectiveness of the proposed method, a real-world case demonstration in additive manufacturing is

provided in Sec. 4.
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4 Case Study

This section provides a real-world application of the proposed method based on an additive manufacturing
process, i.e., fused filament fabrication (FFF), by protecting the cyber-physical security of the in-sifu sensor data. The
experimental setup and data collection are introduced in Sec. 4.1, the sensor-data encryption and decryption is

introduced in Sec. 4.2, and Sec. 4.3 presents the analysis on cyber-physical attack resistance.

TABLE 1: The process parameter of designed part.

Parameters Value
Printing speed 40 mm/s
Layer thickness 0.3 mm
Nozzle temperature 215 °C

Bed temperature 60 °C

4.1 Experiment setup and data collection

In this study, a desktop FFF 3D printer was used for data collection. To collect sensor data during manufacturing,
a vibration sensor (i.e., MEMS accelerometer) was installed on the printing bed, which could collect real-time
vibrations in three-axis with a sampling frequency of 3 Hz. FIGURE 10 displays the FFF printer and sensor installation
[6]. ARDUINO MEGA 2560 REV3 microcontroller was used for data collection from the sensor. In this study, a cube
with dimension 2cmX 2cmX 2cm was fabricated with the machine using the process parameters shown in TABLE 1.
After experimental platform setup, the stream data could be collected. In this study, the window size is set as 10 sample

points. Each window is encrypted and camouflaged individually.

Accelerometer »
Table Vib.

FIGURE 10: The experimental platform setup.
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4.2  Sensor data encryption and camouflage

During the printing process, the online sensor data are collected and organized in a window-based format, and
then they are encrypted to ciphertext first. g(+) is the private key generated by python module RSA from the
PyCryptodome library. Afterwards, g(+) could derive public key f(-). As demonstrated in FIGURE 11, it can be
observed that the ciphertext looks completely different from the original data. Hereafter, the proposed data camouflage
approach is applied. In terms of camouflaging function h(+), it consists of several invertible steps: binary to ASCII;
string to number; digit split; and scaling. The ciphertext is converted to ASCII string first and then converted from the
string to numeric format. Subsequently, the converted numbers are split into different parts and scaled to a similar
level with the original data. The camouflaged data may have different sampling frequency (see FIGURE 12) from
original data since there are many digits after string converted to number. As shown in TABLE 2, the total time for
encryption and camouflage of each window is about 0.43ms, which is significantly lower than the sampling interval
0.33s (i.e., 3Hz sampling frequency). Furthermore, the time to uncover and decrypt for each window data is 3ms,
which is also short enough compared with the sensor sampling period. Thus, the computational efficiency is good
enough for the application under in-situ situation. This study is performed on Intel Core 15-7400 CPU (3.6GHz) under
in Python version 3.7.6. For higher frequency needs on the encryption and camouflaging, it could be achieved either

using more advanced hardware settings or using smaller window size.

TABLE 2: Computation cost for each operation

Encryption &  Uncovering &

Window . Sampling
Size Cam‘ouﬂage Dec1:ypt10n Period
time time
10 0.43 ms 3 ms 0.33s

Afterwards, the camouflaged stream data are stored in a blockchain. As discussed in Sec. 3.1, each block stores
one window of stream data and generates a unique hash value, which is illustrated in FIGURE 11 as well. For
demonstration purposes, a tiny blockchain class is built up in Python containing index, data, previous hash, and current

hash value.
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Original data

Encrypted Ciphertext
b'\xa2_\x9d\xa3\xc8\x8f\xb6(\xcbh\xdd\xfe\xad[\xba\x19\x97A!
\xbbi\x83f\xb7\xda&*\xe4\xc4D7sG\xfbN\xad\xd8\x1d\xe3\xe5B
k,.\xb2<\xe0\xc5\x07{\xafYIEt\xb2=\xd5\x10\x07\xda\xc9\x98\xf !
e\xf7=\x95\x18\x14\xf6\xa1\xb3\x8d\x17\xc9\xa6\x07\xa89.\xfO :
=\xec3\xb8\xd7A\xdbcV\xbc\t* ?\xc4\xe50\x9bR\xb6P\xbcE\xb1\
x81\xad\xf3C\x0b\xed\xb4\xf1I\xc6\xcb\x84&\xd7&'2,\x8f\xaf1\ |
xac\xb1\x0e' :

Blockchain Storage

Binary to ASCII

Previous block’s hash

c3bfe86853fd78fa7198

This block’s hash

564883b2a9f0272a0a5

Camouflage

b'ZEIXSM+Wy+b5Vqzwlbnh4khEdyDi3VOmuk8IHAVSXdbpXG1YYZeX7C3Y
NckTh120CW+e9R1Goj3L//fysgo3J6khr/x7+DIrYhaQrYBsQiVV9djoxXjf2u
PMQbTKRWSi/O+OlywfjOsV5adc9cFm3KyDxLwMq7tfmkhiRx7m4Lw=\n"

String to number

1688800, @ 4255259927057827038241590759335908
0192 50906608888441612767593190928524766110
§22622127773832427011542631539239901
3245157189255022057796908208339351415759485869126667700015
39010805249342110837592969Q3169826882892831852407986688632
6771878801913327429087443896Q74820962491524596570920356766
50915109422393010018072344794 76289759083597412234878608430
5989354842

Digit split
16888003 05123546 445717534 ..
|—“ Scaling
V

Camouflaged data

1
1
1
1
1
1
1
: f6425b78768cc631378¢13 4a21abd8c49ba68d1591ed
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1
1
1
1
1
1
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FIGURE 11: Results demonstration for the camouflaged asymmetry encryption and storage of window-based

stream data.

(a) Original data (b) Camouflaged encryption
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FIGURE 12: A demonstration of original data (a) and camouflaged data (b) of one window.

4.3 Analysis of cyber-physical attack resistance
By incorporating asymmetry encryption, without decryption key, it will take a very long time to decrypt
ciphertext. In addition, the proposed camouflage technique also potentially reduces the risk of decryption attempt. The

resistance against unauthorized data access is significantly improved.
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Storing the online sensor stream data in a blockchain makes it more effective to detect the malicious tampering.
To detect malicious deletion/addition on blocks, as discussed in Sec. 3.3, dimension comparison and chain inspection
could be applied. Dimension comparison is quick and simple, but its capability is limited. To ensure accurate detection,
it is necessary to apply chain inspection as well. FIGURE 13 provides a specific demonstration of chain inspection,
and this case assumes that block 7 is maliciously deleted. By comparing the current hash in block 6 with the hash of
previous block in block 8, the mismatch could be detected quickly. For each window, chain inspection only takes

0.02ms, which is also applicable for the in-situ situation.

| Llock 7 Hash of previous blo/clg, — |
~ -
| ~~ uTFent h/ h
: =< ”“i‘ 3 ' Mismatch
- ~
- ~ N
| - 4a21abd8c49ba68dT591-e431a\9adaac9 |
l P a0b6aa83f4170564883b2a9f0272a0as, |

Block 8
Hash of previous block
Current hash

be93fe782d7a1194f8065dbe69e5chbll
bd68586b1a70d8bd9179137b685169¢

FIGURE 13: Malicious deletion detection by chain inspection.

In addition, slight data modification could be detected by the chain detection as well. In the case study, we
maliciously modified the first digit in block 7 from 1 to 2. After recalculating hash value of block 7, the hash value
became totally different as shown in FIGURE 14. Afterwards, we tried to use chain detection to detect the
modification. The current hash in block 7 and previous hash in block 8 didn’t match. Therefore, we can locate the
exact modification happening in either block 7. And the computational time is 0.062 ms for each block, which is very
fast. With help of chain detection, the mismatch could be located accurately and in a timely manner. However, for the
severe malicious modification, the chain detection does not work since all the following blocks are tampered.
Therefore, the benchmark comparison is implemented which compares the current hash value with the benchmark
hash value (see FIGURE 9 (c)). The benchmark blockchain has been developed once the data are stored into the

blockchain, which is stored in an environment where no Internet access. By comparing the hash value of current
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blockchain with that in benchmark blockchain, the exact modified block could be located. For example, in this case,
the hash value in block 7 of current blockchain does not match with that in benchmark blockchain. Since benchmark
comparison needs to compare the current hash value with those in benchmark block, the time cost is higher than chain

detection, which takes 0.068 ms for each block but still fast enough.

Original Block Modified Block

Corresponding  4a21abd8c49ba68d1591e431adadaacda Mismatch ;- 70pdact3cadsbabo12962dc0fsdc orresponding
-

—-
block’s hash 0b6aa83f4170564883b2a9f0272a0a5 3cadabd14b7c437b33b802496c85ae block’s hash

16887701676784013540560600358899969846191505776507936619297294590399202590987

26589619462745914810477734793819916337447126975030065104027094450480377532126

Original 03865929388415024183810647943451910538463935781724453661841885225227247263512

Ciphertext 88242728189997248430265572382481773644160449051954425020694209572202061655763

61983792146352787143512222643420757379101853214620754406075452798594121327655
2849946842234606883778151741803

26887701676784013540560600358899969846191505776507936619297294590399202590987 :
26589619462745914810477734793819916337447126975030065104027094450480377532126 |

Modified 03865929388415024183810647943451910538463935781724453661841885225227247263512 :
Ciohertext 88242728189997248430265572382481773644160449051954425020694209572202061655763 |
p 61983792146352787143512222643420757379101853214620754406075452798594121327655 |
2849946842234606883778151741803 1

FIGURE 14: Hash value comparison between before and after slight modification.

5 Conclusions and Future Work

This paper develops a blockchain-enabled methodology to protect the security of sensor data in cyber-enabled
advanced manufacturing. Both malicious tampering and unauthorized access of the sensor data could be effectively
prevented. Based on the proposed blockchain-enabled data storage, malicious tampering could be detected in
accurately and timely via the comparison between hash values. Meanwhile, by incorporating the proposed
camouflaged asymmetry encryption method, the risk of unauthorized access could be significantly reduced as well.
Furthermore, a preliminary case study in additive manufacturing is conducted to demonstrate the procedure of the
sensor data collection, encryption, camouflage, and malicious tampering detection, which also shows that the proposed

approach is very promising.

The future work mainly lies in the following three directions. First, exploring other camouflage techniques to

mask the ciphertext, which could further reduce the size of camouflaged data and make the storage more effective.
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Second, how to protect security of keys and apply other types of asymmetry encryption approaches will be
investigated. For example, one of the most common approaches, i.e., encrypting data itself by the symmetrical method
and then ciphering the symmetrical encryption key using asymmetrical ways, can potentially be incorporated to the
proposed method for further improvement of security protection. Third, more real-world applications will be further

explored to examine the effectiveness of the proposed framework.
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