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Abstract

In this Festschrift contribution in honor of Prof. Maurizio Persico, we present a systematic derivation and comprehensive 

assessment of several integrators for quantum–classical time-dependent Schrodinger (TD-SE) and Liouville (QCLE) equa-

tions. Our formalism is rooted in the basis set reprojection approach, but it naturally leads to a family of local diabatization 

(LD) integrators, including the one pioneered by Prof. Persico and co-workers. The formalism naturally accounts for trivial 

state crossing effects and helps solve related phenomena that often pose significant numerical problems in nonadiabatic 

molecular dynamics simulations. We adapt the LD-based methods for the QCLE integration. We generalize the symmetric 

splitting integrator proposed by one of us earlier and demonstrate how it can be applied to integrate both TD-SE and QCLE. 

Our analysis and computations suggest that the reprojection approach is critical for capturing correct qualitative dynamics 

in trivial crossing regimes, but the proper integration approach is still needed for high accuracy of calculations in general 

case. Our computations also reveal an interesting coherence discontinuity effect introduced by the LD approximation. We 

provide a detailed discussion of the algorithms and their implementation in the open-source Libra software and present their 

comprehensive assessment using several well-designed model problems.

Keywords Nonadiabatic dynamics · Quantum dynamics · Trajectory surface hopping · Electronic integrators · Trivial 

crossing · Local diabatization

1 Introduction

Nonadiabatic molecular dynamics (NA-MD) is a power-

ful tool to study the evolution of excited states, as relevant 

to photovoltaic [1–7], photocatalytic applications [8–11], 

and in biological systems [12–14]. While exact quantum 

dynamics is possible in certain low-dimensional systems 

[15–18], modeling it in extended systems requires approxi-

mate methods [19, 20]. The quantum–classical trajectory 

surface hopping (TSH) methods have been the most widely 

used and well-developed techniques [21–25]. Because of the 

complexity of the “zoo” of such approximate methods, the 

comprehensive and systematic assessment of various avail-

able options has been a long-standing and actively explored 

topic. In our efforts to this methodology assessment, we have 

developed an open-source code, called Libra [26, 27], that 

implements a large number of known schemes. Although 

such an assessment has been planned as one of our goals 

for this contribution, we found ourselves addressing another 

seemingly straightforward, but quite confusing topic—the 

proper integration of the time-dependent Schrodinger equa-

tion (TD-SE) underlying almost every NA-MD simulation 

technique. We further realized that this topic is an ideal fit 

as a contribution to the Festschrift in honor of Prof. Persico, 

hence we narrowed our initial scope to discussing integra-

tors for TD-SE, as well as for quantum–classical Liouville’s 

equation (QCLE).

Although the TD-SE or QCLE integration can be seen 

as a rather straightforward topic and has been described 

in various accounts [28], the formalism is somewhat more 

complicated in the presence of the so-called trivial cross-

ings [29]. The latter occurs when two diabatic states cross 

but are not coupled or are weakly coupled (Fig. 1a). In 

this model problem, the adiabatic states coincide with 

the diabatic ones in the asymptotic regions. Since the 

adiabatic states are conventionally indexed according to 

their energies, one may encounter a situation when the 
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energy-ordered adiabatic states switch their identities 

(the mapping to the diabatic states). This state reorder-

ing occurs when the nuclear reaction coordinate passes 

the crossing point of the diabatic energy surfaces. For 

instance, consider the blue point in Fig. 1a. At the initial 

time t  , it starts in the adiabatic state 0 (solid red line), 

which also coincides with the diabatic state 0 (the dashed 

red line). If the coupling of the diabatic surfaces is zero, 

the system should evolve on the diabatic surface 0 all the 

time, without switching to the diabatic state 1 (the dashed 

green line). However, during this motion, at time t + Δt , 

the diabatic state 0 corresponds to a higher-energy adi-

abatic state 1 (the solid green line). Thus, the evolution 

should lead to the oscillation of the population between 

the two adiabatic states, since the unchanged diabatic state 

maps onto different adiabatic states on the left and on the 

right sides of the crossing point. Vice versa, the same 

adiabatic state maps onto different diabatic states on the 

two sides of the crossing point. Hence, the adiabatic state 

changes its identity (the projection onto diabatic states). 

Hence, conducting even regular adiabatic dynamics would 

require accounting for the state identity change. In other 

words, there should be a mechanism for active state change 

even in case of “adiabatic” dynamics that is the one where 

only one adiabatic state (although of different identity and 

energy ordering) is used. Simply forcing the dynamics to 

stay on the same-energy ordering state (e.g., the lowest-

energy state) would lead to qualitatively incorrect results, 

as apparent from analyzing the schematic in Fig. 1.

To date, several algorithms have been designed for state 

tracking and handling the trivial crossing situation. These 

developments include the min-cost algorithm of Fernandez-

Alberti and Tretiak [29] as well as a similar approach of 

Ryabinkin and Izmaylov [30], the internal-consistency check 

by Wang and Prezhdo [31], our stochastic state tracking 

algorithm [32], and the local diabatization (LD) approach 

of Granucci, Persico, and co-workers [33, 34]. Alterna-

tively, Meek and Levine proposed the norm-conserving 

interpolation (NPI) procedure to correctly integrate TD-SE 

in the conical intersection regions [35]. The complexity of 

the TD-SE integration problem is further hardened by the 

phase inconsistency problem in adiabatic representation that 

arises due to the fact that at every time step, the adiabatic 

basis functions are defined up to an arbitrary complex phase, 

which can randomly vary from geometry to geometry. The 

phase correction problem has been addressed in the works of 

Fig. 1  The state identity change along a reaction coordinate. The ele-

ments in the vectors of state vectors ��⟩ are ordered according to their 

adiabatic energies (as obtained from the adiabatic state calculations), 

but their diabatic character (as indicated by the color and the index 

of the most close diabatic state) may change. For instance, at time t  , 

the lowest-energy adiabatic state �
0
(t) corresponds the “red” diabatic 

state �0⟩ . Past the intersection point, at time t + Δt , the same lowest-

energy adiabatic basis state �
0
(t + Δt) is most close to the green dia-

batic state �1⟩ . As a result, ⟨�
0
�

d

dR
��

1
⟩ corresponds to the couplings 

between differently ordered (permuted) adiabatic states at times t  and 

t + Δt , leading to an unphysical abrupt change of NAC sign (the red 

curve in panel b). The NAC computed with the identity-ordered basis 

states should follow the dashed green curve
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Subotnik [36], Gonzalez [37], as well as in an earlier work 

by one of us [38].

In previous accounts, we have detailed the phase con-

sistency and state tracking corrections [39]. However, the 

resulting scheme is still rather cumbersome and requires 

a lot of bookkeeping, which results in a less readable and 

less transferable code. In the present work, we approach the 

problem of the phase consistency correction and state iden-

tity tracking from the conceptually satisfying viewpoint of a 

basis re-expansion. This re-expansion approach is also moti-

vated by the recently presented integrator for the quantum 

trajectory with adaptive Gaussians (QTAG) methodology 

[40] as well as by the TD-SE integration in a quasi-diabatic 

basis [41]. Although we rely on the well-known ideas, we 

use them to develop a unified and self-consistent formal-

ism for state tracking and phase correction. As an applica-

tion of our formalisms, we demonstrate how one can derive 

a series of new integrators for the TD-SE, one of which 

turns out to be the LD approach of Granucci, Persico and 

co-workers [33, 34]. We further extend our formalism to the 

integration of the QCLE. We present integrators for TD-SE 

and QCLE that are based on either matrix exponents or on 

geometric Trotter-splitting-based approach, reported earlier 

by one of us [42]. In this account, we generalize the latter 

approach to the case of Hamiltonian/Liouvillian operators 

with nonzero real components of the off-diagonal elements. 

We demonstrate the applicability of such generalization to 

integrating both the TD-SE and QCLE. Finally, we conduct 

a comprehensive comparison of all the integration schemes 

with several model Hamiltonians designed to induce several 

dynamical regimes in electron-nuclear dynamics.

2  Theory and methods

2.1  Brief overview of NA‑MD theory

The main goal of many quantum dynamics methods is to 

solve the time-dependent Schrodinger equation (TD-SE):

where Ĥ is the system’s Hamiltonian, ℏ is the reduced 

Planck’s constant ( ℏ = 1 , in atomic units), and �Ψ⟩ the 

wavefunction of the system. One can further specify a rep-

resentation of the wavefunction, to include electronic or 

nuclear degrees of freedom, to use the position or momen-

tum representation, or to represent it in the basis of adi-

abatic or diabatic states [43]. In this account, we focus on 

(1)iℏ
��Ψ⟩

�t
= Ĥ�Ψ⟩,

quantum–classical approaches, such as TSH or Ehrenfest 

methods, so the dependence of wavefunctions on nuclear 

degrees of freedom is given via swarms of such trajectories, 

and the wavefunction �Ψ⟩ is the electronic wavefunction in 

the position representation. Furthermore, we consider that 

this wavefunction can be represented in the basis of adiabatic 

(“adi”, ��
adi
⟩ ) or diabatic (“dia”, ��

dia
⟩ ) states:

Here, we adopt the vector or state vectors notation, dis-

cussed in more detail in Ref. 43. Within this notation, the 

bolded fonts represent vectors, including the vectors of state 

vectors, that is: ��⟩ =
�
��0⟩, ��1⟩,… , ��

N−1⟩
�
 . The capital 

Latin letters denote matrices, that is: C =

(

c0, c1,… , c
N−1

)T

 

is a column-vector of the basis state amplitudes, C
adi

 or C
dia

 . 

The matrix representation of operators can be conveniently 

written as:

The basis states of the two representations are related by the 

basis transformation matrix, U:

We also introduce the following objects: the overlap in 

the diabatic basis, S = ⟨�
dia
��

dia
⟩ , the time-overlap matrix, 

P(t, t + Δt) = ⟨� adi(t)�� adi(t + Δt)⟩ , the time-derivative cou-

pling, D
rep

= ⟨�
rep
�
�

�t
�

rep
⟩, electronic Hamiltonian matrices, 

H
rep

= ⟨�
rep
�Ĥ��

rep
⟩ and the vibronic Hamiltonian matrices, 

H
rep

vib
= Hrep − iℏDrep . Finally, it is worth noting that by virtue 

of orthonormality of the adiabatic basis, ⟨�
adi
��

adi
⟩ = I , one 

gets, U+
SU = I , from which U−1

= U
+

S.

Alternative to the TD-SE, one can solve the quantum Liou-

ville equation (QLE):

for the density matrix operator, �̂  . For closed systems, the 

density matrix operator can be represented as:

We focus on quantum–classical methods, in which 

the wavefunction or the density matrix elements depend 

functionally on the electronic degrees of freedom (DOF), 

r , but parametrically on the nuclear DOFs, R , that is: 

�Ψ⟩ = �Ψ(�, t;�(t))⟩ , or �̂ = �̂(t, r;R(t)) . The evolution of the 

nuclear DOFs is done classically or semi-classically, as will 

be discussed below.

(2)�Ψ⟩ = ��
adi
⟩C

adi
= ��

dia
⟩C

dia
.

(3)A
rep

= ⟨�
rep
�Â��

rep
⟩, rep = adi, dia,… .

(4)��
adi
⟩ = ��

dia
⟩U.

(5)iℏ
��̂

�t
=

[

Ĥ, �̂
]

.

(6)�̂ = �Ψ⟩⟨Ψ�.
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2.2  General considerations for electronic DOFs 
integration

Projecting the TD-SE, Eq. (1), onto the basis of diabatic 

or adiabatic states, one can obtain equations for evolving 

amplitudes:

where

As is discussed in Section S1 of the Supporting Informa-

tion, Eqs. (7a) and (7b) are equivalent to each other. That 

is in the absence of any other differences (e.g., in handling 

nuclear dynamics or any stochastic events), the electronic 

evolution computed in any of the two representations should 

be identical. However, although the equations are identical, 

their solutions (once converted back to one of the two repre-

sentations) are not, due to numerical approximations as well 

as due to potential state reordering/phase inconsistency of 

the basis states computed in different representations (sec-

tion S2 of the Supporting Information). Indeed, the integra-

tion of Eq. (7) can be conducted in a formal way:

Note that the first approximation in each equation corre-

sponds to a mid-point rule and would require additional evalu-

ation of the Hamiltonian and diabatic overlap matrix elements 

at the mid-point, which adds the computational expenses. The 

last approximation in each of Eq. (9) is derived assuming a 

linear interpolation of the integrand in the exponential opera-

tor (Sect. 3 of the Supporting Information). Note that such an 

assumption is not valid in regions of strong nonadiabatic cou-

pling (NAC), where the coupling elements exhibit a Lorentz-

ian dependence. Analyzing Eq. (9), one can see that Eq. (9b) is 

not sensitive to state reordering/phase changes problem since 

it involves only diabatic properties, which as always well-

behaved by the definition. On the contrary, Eq. (9a) utilizes 

the adiabatic vibronic Hamiltonians, which may be affected 

by the above problems as demonstrated in Fig. 1, and hence 

(7a)

iℏ
�C

adi

�t
= E

adi
C
adi

− iℏD
adi

C
adi

=
[

E
adi

− iℏD
adi

]

C
adi

= H
adi

vib
C
adi

,

(7b)

iℏS
�C

dia

�t
= H

dia
C
dia

− iℏD
dia

C
dia

=
[

H
dia

− iℏD
dia

]

C
dia

= H
dia

vib
C
dia

,

(8)

Eadi = ⟨� adi

�
�
�
Ĥ�� adi⟩ = U

+⟨�dia

�
�
�
Ĥ��dia⟩U = U

+
HdiaU.

(9a)

Cadi(t + Δt) ≈ exp
(

−
i

ℏ
ΔtH

adi
vib

(

t +
Δt

2

))

Cadi(t) ≈ exp
(

−
i

2ℏ
Δt

[

H
adi
vib
(t) + H

adi
vib
(t + Δt)

]

)

Cadi(t),

(9b)

Cdia(t + Δt) ≈ exp
(

−
i

ℏ
Δt

[

S
−1

(

t +
Δt

2

)

H
dia
vib

(

t +
Δt

2

)])

Cdia(t)

≈ exp
(

−
i

2ℏ
Δt

[

S
−1(t)Hdia

vib
(t) + S

−1(t + Δt)Hdia
vib
(t + Δt)

]

)

Cdia(t).

corrections of the wavefunctions and derived properties are 

needed. Indeed, the character of adiabatic basis states may 

change past the point of diabatic surfaces intersection such that 

effective order of the basis function is changed (Fig. 1a), as 

elaborated in the Introduction. As a consequence, the deriva-

tive couplings may exhibit an abrupt change of sign, which 

corresponds to an effective permutation of the adiabatic states 

(Fig. 1b).

2.3  Integrators for the TD‑SE

We are primarily interested in integrating the TD-SE, 

Eq. (1), in the adiabatic representation since it is in this case 

when pathological situations of state identity switch (trivial 

crossings) and state phase inconsistencies may reveal them-

selves. Formally integrating Eq. (1), yields:

or

Computing the integral in Eq. (10b) requires preserving 

the order and phases of the basis functions at every instant of 

the [t, t + Δt] integral. However, the basis functions �� adi(t)⟩ 

and �� adi(t + Δt)⟩ may change their relative order (e.g., in 

trivial crossing situations) or acquire a spurious phase dif-

ference. To conduct a correct integration, we switch to the 

dynamically consistent basis, ��̃ adi(t)⟩ , constructed to have 

no such problems, that is:

Note that although the integration is conducted in the 

��̃
adi
⟩ basis, the observables of interest (e.g., density matrix 

and state populations or energies, etc.) are computed in the 

original “globally adiabatic” basis, ��
adi
⟩.

Apparently, the wavefunction should be invariant with 

respect to the choice of the basis, so Eq. (2) can be extended 

to:

Let’s assume the cumulative (encumbered for the whole 

duration, t  , since the very beginning of simulation) trans-

formation between ordered and “raw” bases is given by a 

projector matrix T(t):

(10a)

|Ψ(t + Δt)⟩ = |� adi(t + Δt)⟩Cadi(t + Δt)

=

[

∫
Δt

0

d�exp
(
−

i�

ℏ
Ĥ(t + �)

)]
|Ψ(t)⟩,

(10b)

Cadi(t + Δt) = ⟨� adi(t + Δt)|
[

∫
Δt

0

d�exp
(
−

i�

ℏ
Ĥ(t + �)

)]
|� adi(t)⟩Cadi(t).

(11)⟨�̃ adi(t)��̃ adi(t + Δt)⟩ ≈ I.

(12)�Ψ⟩ = ��̃ adi(t)⟩C̃adi(t) = �� adi(t)⟩Cadi(t).
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Hence,

Note that the definition of the projector matrix T  in 

Eq. (13) is inverse of the one used in the definition of the 

local diabatic matrix in the works of Persico, T = T
−1

Persico
.

[33]

As demonstrated in section S4 of the Supporting Informa-

tion, the best choice of the matrices T(t) and T(t + Δt) at the 

ends of each integration intervals [t, t + Δt] is:

With the help of the projector matrix T  defined in 

Eq. (15), one can formulate various approximations to evalu-

ate Eq. (10b) and hence construct various integrators. For 

instance, using the result Eq. (S10), one obtains 
[

∫ Δt

0
d�exp

(

−
i�

ℏ
Ĥ(�)

)]

≈
[

exp
(

−
iΔt

2ℏ

[

Ĥ(t) + Ĥ(t + Δt)
])]

 . 

The latter operator can be approximated using either a crude 

splitting, Eq.  (16a) or a symmetric Trotter splitting, 

Eq. (16b):

(13a)��̃ adi(t)⟩ = �� adi(t)⟩T(t),

(13b)�� adi(t)⟩ = ��̃ adi(t)⟩T
−1(t).

(14a)Cadi(t) = T(t)C̃adi(t),

(14b)C̃adi(t) = T
−1(t)Cadi(t).

(15a)T(t) = I,

(15b)

T(t + Δt) = P
−1(t, t + Δt)

(

[

P
−1(t, t + Δt)

]+
P
−1(t, t + Δt)

)−1∕2

.

Equation (16a) can be interpreted as: the evolution of the 

amplitudes is guided by the Ĥ(t) on the interval 
[

t, t +
Δt

2

]

 and 

by the Ĥ(t + Δt) on the interval 
[

t +
Δt

2
, t + Δt

]

 as illustrated 

in Fig. 2a. With these approximations, Eq. (16), the ampli-

tudes are propagated according to Eq. (17), respectively (see 

Sect.  5 of the Supporting Information for the detailed 

derivation):

with

The graphical representation of the constructed propagators 

is shown in Fig. 2 with a trivial crossing model. In this model, 

the diabatic coupling is zero, so the system that is initialized 

(16a)

[

exp
(

−
iΔt

2ℏ

[

Ĥ(t) + Ĥ(t + Δt)
])]

≈
[

exp
(

−
iΔt

2ℏ
Ĥ(t + Δt)

)][

exp
(

−
iΔt

2ℏ
Ĥ(t)

)]

.

(16b)

[

exp
(

−
iΔt

2ℏ

[

Ĥ(t) + Ĥ(t + Δt)
])]

≈
[

exp
(

−
iΔt

4ℏ
Ĥ(t)

)]

[

exp
(

−
iΔt

2ℏ
Ĥ(t + Δt)

)][

exp
(

−
iΔt

4ℏ
Ĥ(t)

)]

.

(17a)Cadi(t + Δt) = A(t + Δt)T(t + Δt)A(t)Cadi(t),

(17b)

Cadi(t + Δt) = T(t + Δt)B(t)T+(t + Δt)A(t + Δt)T(t + Δt)B(t)Cadi(t),

(18a)

A(t) = ⟨� adi(t)�
�
exp

�
−

iΔt

2ℏ
�H(t)

��
�� adi(t)⟩ = exp

�
−

iΔt

2ℏ
H(t)

�
,

(18b)

B(t) = ⟨� adi(t)|
[
exp

(
−

iΔt

4ℏ
Ĥ(t)

)]
|

� adi(t)⟩ = exp
(
−

iΔt

4ℏ
H(t)

)
= A

1∕2
.

Fig. 2  Graphical representation of the integrators in Eq. (17): (a) the 

integrator Eq.  (17a); (b) the integrator Eq.  (17b). Arrows represent 

the exponential operators acting on the corresponding adiabatic sur-

faces: red—the adiabatic surface 0, green—the adiabatic surface 1; 

the time in parenthesis indicates at which time steps the surfaces 0 or 

1 are considered. The operator A propagates for Δt∕2 time duration, 

while the operator B propagates only for Δt∕4 time duration

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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on the left parabola should stay evolving on that parabola. In 

this example, one starts on the lower adiabatic state at q ≈ 0 , 

which also corresponds to the initialization on the diabatic 

surface 0 (left parabola, dashed red curve, which is hidden 

behind the solid lines). The integrator Eq. (17a) evolves the 

quantum amplitudes on the lower adiabatic state on the time-

interval of 
[

t, t +
Δt

2

]

 , following the operator A(t) (the red 

arrow). This evolution coincides with the evolution on the 

lower diabatic surface. The trivial crossing is identified accord-

ing to Eq.  (15b), leading to T(t + Δt) ≈

(

0 1

1 0

)

 , which 

switches the populations of the ground and excited adiabatic 

states. In other words, the amplitude of the adiabatic state 0 

will be placed to the position of the state 1 by the operator 

T(t + Δt) (the blue arrow), and vice versa for the amplitude of 

the adiabatic state 1. Finally, the new amplitude of state 1 will 

be propagated using properties of the adiabatic surface 1, 

which corresponds to operator A(t + Δt) (the green arrow). 

This motion is also consistent with the expected motion on the 

left parabola (diabatic surface 0). Thus, the algorithm shall 

correctly describe the populations switching in the adiabatic 

representation, while keeping the diabatic populations 

unchanged. The graphical illustration of the integrator in 

Eq. (17b) is shown in Fig. 2b and can be interpreted in similar 

terms.

2.4  Derivations of the Trotter‑splitting‑based 
rotations propagator for solving the TD‑SE 
and alike equations

The operators A and B in Eq. (18) are defined as the matrix 

exponentials and can be computed using eigenvalues and 

eigenvectors of the corresponding Hamiltonian matrices (the 

approach used in the present work) or direct summation of the 

Taylor series with matrix operands. However, the action of 

such exponential matrices is to essentially solve a first-order 

ordinary differential equations of the TD-SE type. As was 

demonstrated earlier, such an integration can be done with-

out resorting to the matrix eigenvalue problem, by using the 

Trotter-like splitting of the corresponding evolution operator 

[28]. The resulting propagator can be represented in terms of 

complex phase accumulation (due to diagonal elements of 

Hamiltonian matrix) and rotations in complex 2D planes (due 

to imaginary off-diagonal terms proportional to nonadiabatic 

couplings). In certain situations, the off-diagonal elements of 

the effective Hamiltonian matrices can also contain real com-

ponents, e.g., diabatic couplings or when representing Liouvil-

lian operator in tetradic notation (see below). Here we extend 

the previous algorithm [28] to such situation.

We aim to integrate the TD-SE-like equation:

Here, X is an effective Hamiltonian, which could be the 

vibronic Hamiltonian that includes nonadiabatic couplings. 

We also assume that this effective Hamiltonian is Hermitian, 

X = X
+ . The amplitudes C are understood more generally than 

wavefunction amplitudes. With the matrix elements written as:

The Hermiticity condition is equivalent to: 

Re
[

Xij

]

= Re
[

Xji

]

 and Im
[

Xij

]

= −Im
[

Xji

]

 , the properties to 

be used below. The formal solution of Eq. (19) on the inter-

val [t, t + Δt] is:

Here, iL is the effective Liouville’s operator given by:

Keeping in mind Eq. (20) and the Hermiticity conditions 

above, iL can be written as:

The terms in the last sum can be simplified as:

So, the overall operator can be written as:

(19)iℏ
�C

�t
= XC.

(20)Xij = Re
[

Xij

]

+ iIm
[

Xij

]

,

(21)C(t + Δt) = exp(iLΔt)C(t).

(22)iL ≡ Ċ
�

�C
=

∑

i

Ċ
i

�

�C
i

.

(23)

iL = −
i

ℏ

∑

i

∑

j

XijCj

�

�Ci

= −
i

ℏ

∑

i,j

XijCj

�

�Ci

= −
i

ℏ

∑

i

XiiCi

�

�Ci

−
i

ℏ

∑

i,j∶i>j

[

XijCj

�

�Ci

]

−
i

ℏ

∑

i,j∶i<j

[

XijCj

�

�Ci

]

= −
i

ℏ

∑

i

XiiCi

�

�Ci

−
i

ℏ

∑

i,j∶i>j

[

XijCj

�

�Ci

]

−
i

ℏ

∑

i,j∶i>j

[

XjiCi

�

�Cj

]

= −
i

ℏ

∑

i

XiiCi

�

�Ci

−
i

ℏ

∑

i,j∶i>j

[

XijCj

�

�Ci

+ XjiCi

�

�Cj

]

.

(24)

XijCj

�

�Ci

− XjiCi

�

�Cj

=
[

Re
(

Xij

)

+ iIm
(

Xij

)]

Cj

�

�Ci

−
[

Re
(

Xji

)

+ iIm
(

Xji

)]

Ci

�

�Cj

= Re
(

Xij

)

[

Cj

�

�Ci

+ Ci

�

�Cj

]

+ iIm
(

Xij

)

[

Cj

�

�Ci

− Ci

�

�Cj

]

.
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The action of the first operator, iL(1) , is trivial:

The action of the other two operators can be derived as:

and

Here,

(25)

iL = −
i

ℏ

∑

i

XiiCi

�

�Ci

−
i

ℏ

∑

i,j:i>j

[

Re
(

Xij

)

[

Cj

�

�Ci

+ Ci

�

�Cj

]

+iIm
(

Xij

)

[

Cj

�

�Ci

− Ci

�

�Cj

]]

=
∑

i

iL
(1)

i
+

∑

i,j:i>j

iL
(2)

ij
+

∑

i,j:i>j

iL
(3)

ij
.

(26a)iL
(1)

i
= −

i

ℏ
X

ii
C

i

�

�C
i

,

(26b)iL
(2)

ij
=

Im
(

Xij

)

ℏ

[

Cj

�

�Ci

− Ci

�

�Cj

]

,

(26c)iL
(3)

ij
= −

iRe
(

Xij

)

ℏ

[

Cj

�

�Ci

+ Ci

�

�Cj

]

.

(27a)exp
(

iL
(1)

i
Δt

)

C
i
= exp

(

−
iΔt

ℏ
X

ii

)

C
i
.

(27b)

exp
(

iL
(2)

ij
Δt

)

(

Ci

Cj

)

=

(

Ci

Cj

)

+ A

(

Cj

−Ci

)

+
A2

2!

(

−Ci

−Cj

)

+
A3

3!

(

−Cj

Ci

)

+
A4

4!

(

Ci

Cj

)

⋯

=

(

1 −
A2

2!
+

A4

4!
… A −

A3

3!
+…

−A +
A3

3!
+… 1 −

A2

2!
+

A4

4!
…

)

(

Ci

Cj

)

=

(

cos(A) sin(A)

−sin(A) cos(A)

)(

Ci

Cj

)

,

(27c)

exp
(

iL
(3)

ij
Δt

)

(

Ci

Cj

)

=

(

Ci

Cj

)

− iB

(

Cj

Ci

)

+
(−iB)2

2 

(

Ci

Cj

)

+
(−iB)3

3 

(

Cj

Ci

)

+
(−iB)4

4 

(

Ci

Cj

)

+ ⋯

=

(

1 −
B2

2 
+

B4

4 
+ ⋯ −iB +

(−iB)3

3 
+ …

−iB +
(−iB)3

3 
+ ⋯ 1 −

B2

2 
+

B4

4 
+ …

)

(

Ci

Cj

)

=

(

cos(B) −i sin(B)

−i sin(B) cos(B)

)(

Ci

Cj

)

.

(28a)A =

Im
(

Xij

)

Δt

ℏ
,

All the operators are unitary and norm-conserving, so the 

resulting integration schemes shall be stable and robust, even 

with large integration time steps.

Finally, we can write down the final factorization:

Here, the notation O{i, j ∶ i > j} indicates the ordering that 

is opposite to that taken in the previous double sums such that 

the overall splitting is symmetric. As an example, for a 3-state 

system, the factorization would be:

2.5  Integrators for the QCLE

Alternative to the TD-SE, electronic DOFs can be described 

in terms of the density matrix. In this case, we need integrators 

for the QCLE:

(28b)B =

Re
(

Xij

)

Δt

ℏ
.

(29)

exp(iLΔt) = exp

({

∑

i

iL
(1)

i
+

∑

i,j:i>j

iL
(2)

ij
+

∑

i,j:i>j

iL
(3)

ij

}

Δt

)

≈

{

∏

i

exp
(

iL
(1)

i

Δt

2

)

}{

∏

i,j:i>j

exp
(

iL
(3)

ij

Δt

2

)

}

{

∏

i,j:i>j

exp
(

iL
(2)

ij

Δt

2

)

}

{

∏

O{i,j:i>j}

exp
(

iL
(2)

ij

Δt

2

)

}{

∏

O{i,j:i>j}

exp
(

iL
(3)

ij

Δt

2

)

}

{

∏

O{i}

exp
(

iL
(1)

i

Δt

2

)

}

(30)

exp
(

iL
(1)

0

Δt

2

)

exp
(

iL
(1)

1

Δt

2

)

exp
(

iL
(1)

2

Δt

2

)

exp
(

iL
(3)

01

Δt

2

)

exp
(

iL
(3)

02

Δt

2

)

exp
(

iL
(3)

12

Δt

2

)

exp
(

iL
(2)

01

Δt

2

)

exp
(

iL
(2)

02

Δt

2

)

exp
(

iL
(2)

12

Δt

2

)

exp
(

iL
(2)

12

Δt

2

)

exp
(

iL
(2)

02

Δt

2

)

exp
(

iL
(2)

01

Δt

2

)

exp
(

iL
(3)

12

Δt

2

)

exp
(

iL
(3)

02

Δt

2

)

exp
(

iL
(3)

01

Δt

2

)

exp
(

iL
(1)

2

Δt

2

)

exp
(

iL
(1)

1

Δt

2

)

exp
(

iL
(1)

0

Δt

2

)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



 Theoretical Chemistry Accounts (2023) 142:68

1 3

68 Page 8 of 17

Here, we consider closed quantum systems, for which the 

density matrix operator, �̂ = �Ψ⟩⟨Ψ� can be represented in the 

basis of adiabatic or diabatic states �̂ = �� rep⟩CrepC
+

rep
⟨� rep�.

In the dynamically consistent basis, the QCLE can be writ-

ten explicitly in a tetradic notation [44] as:

where

Here,

is the Hamiltonian in the dynamically consistent basis. 

Equations similar to Eqs. (32) and (33) are derived in 

Sect. 6 of the Supporting Information. Initially, the Liouvil-

lian operator is constructed using the vibronic Hamiltonian, 

H
vib

 . However, since the integration is done in the locally 

diabatic (aka dynamically consistent) basis, the NACs can 

be neglected, so the H̃
vib

→ H̃.

To integrate Eq. (32), we recast it in a matrix form:

Here, L̃ is N2
× N

2 Liovillian super-matrix, and vec() is 

a vectorization operation of the matrix, converting a N × N 

matrix into a N2
× 1 vector. So:

Since the QCLE and the TD-SE are equivalent for 

closed systems, the following transformations hold:

The basis transformation matrices T  can be computed 

analogously to the above prescriptions for the TD-SE 

formalism. In this case, we still need the time-overlap 

matrices, which are the wavefunction-derived properties. 

Considering that T(t) = I for each integration time-inter-

val, [t, t + Δt] , Eq. (35b) can be rewritten in terms of the 

original density matrix:

(31)
��̂

�t
= −

i

ℏ

[

Ĥ, �̂
]

= −

i

ℏ

[

Ĥ�̂ − �̂Ĥ

]

= −

i

ℏ
L̂�̂.

(32)
��̃ij

�t
= −

i

ℏ

∑

a,b

L̃ij,ab�̃ab,

(33)L̃ij,ab = H̃ia�bj − H̃bj�ai.

(34)H̃ = ⟨�̃�Ĥ��̃⟩ = T
+⟨��Ĥ��⟩T ,

(35a)
�vec(�̃)

�t
= −iL̃vec(�̃),

(35b)

vec
(

�̃(t + Δt)
)

=

[

∫
Δt

0

d�exp
(

−
i�

ℏ
L̃(t + �)

)

]

vec(�̃(t)).

(36a)�adi = CadiC
+

adi
= TC̃adiC̃

+

adi
T
+
= T �̃adiT

+
,

(36b)�̃adi = T
−1�adi

(

T
+
)−1

= T
+�adiT .

The action of the operator 
[

∫ Δt

0
d�exp

(

−
i�

ℏ
L̃(t + �)

)]

 can 

be computed following any recipes already discussed in 

Sect. 2.3 with the exponential operators computed either 

directly or via rotation-based algorithms discussed in 

Sect. 2.4. Specifically, we consider:

with L̃

(

t +
Δt

2

)

 derived according to Eq.  (33) from the 

H̃

(

t +
Δt

2

)

≈
H̃(t)+H̃(t+Δt)

2
=

H(t)+T
+(t+Δt)H(t+Δt)T(t+Δt)

2
.

2.6  Summary of electronic DOF integration 
algorithms

The above formal approaches can be summarized in several 

explicit computational schemes that we assess in this work 

(Table 1). All the integrators are implemented in the open-

source Libra package, starting from version v5.4.0. [45]

The integrators 1 and 2 are already defined by Eqs. (17a) 

and (17b), respectively. We also consider the original LD 

approach, scheme 3, given by Eq. (39):

In it, apart from the final basis reprojection operation 

given by the matrix T(t + Δt) , the exponential operator is 

evaluated using the mid-point average of the Hamiltoni-

ans at the limiting points of the integration interval, that 

is using H(t) and H(t + Δt) . However, the Hamiltonian at 

the end-point t + Δt is similarity-transformed by the matrix 

T(t + Δt) to account for possible basis states reordering and 

any spurious phase inconsistencies. For all integrators 1–3, 

the electronic Hamiltonian rather than vibronic Hamiltonian 

are used in the exponential operators to reflect the vanishing 

nature of the nonadiabatic terms as introduced by the LD 

approximation.

We also consider several heuristic, potentially naïve 

schemes, although corrected to account for the basis re-

expansion. These integrators, 4–6, are given by Eqs. 

(40)–(42), respectively. In these methods, we opt to use 

vibronic Hamiltonians instead of the electronic ones even 

though the LD is assumed to be in effect. This is a scheme 

(37)

�(t + Δt) = T(t + Δt)vec
−1

{[

∫
Δt

0

d�exp
(

−
i�

ℏ
L̃(t + �)

)

]

vec(�(t))T

}

T
+(t + Δt).

(38)

[

∫
Δt

0

d�exp
(

−
i�

ℏ
L̃(�)

)

]

≈
[

exp
(

−
iΔt

ℏ
L̃

(

t +
Δt

2

))]

,

(39)

Cadi(t + Δt) = T(t + Δt)exp
(

−
iΔt

2ℏ

[

H(t) + T
+(t + Δt)H(t + Δt)T(t + Δt)

]

)

Cadi(t).
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that one could potentially think of if not paying attention 

to the neglect of the NAC terms by the LD approximation. 

On the other hand, this approximation neglects NACs only 

approximately, so including them may be not as naïve as we 

state. The scheme 4, Eq. (40), evaluates the propagator using 

the vibronic Hamiltonian at the beginning point, that’s where 

it needs no corrections since, by definition, we start with the 

correctly ordered states:

The scheme 5, Eq. (41) utilizes that mid-point rule to 

approximate H
vib
(t +

Δt

2
) in  a  somewhat  naïve 

way:Hvib

(

t +
Δt

2

)

≈
1

2

[

Hvib(t) + Hvib(t + Δt)
]

 . This mid-

point approximation should be valid most of the time, except 

for the points where state reordering occurs, near avoided or 

trivial crossing points. At the same time, the NACs are likely 

to be small in the points where the mid-point approximation 

is valid and large at the points of avoided or trivial crossing. 

Thus, we anticipate that this scheme 5 may be less accurate 

than even the 1-point scheme 4.

Further, we consider scheme 6, Eq. (42), which is identi-

cal to scheme 5 with the only exception that the H
vib

 is cor-

rected for potential state crossings/phase effects at the end of 

the integration interval by the corresponding similarity trans-

formation: Hvib(t + Δt) → T
+(t + Δt)Hvib(t + Δt)T(t + Δt) . 

This scheme is similar to the original LD approach of 

Granucci, Persico, and Toniolo, Eq.  (39), with the only 

(40)Cadi(t + Δt) = T(t + Δt)exp
(

−
iΔt

ℏ
Hvib(t)

)

Cadi(t).

(41)

Cadi(t + Δt) = T(t + Δt)exp
(

−
iΔt

2ℏ

[

Hvib(t) + Hvib(t + Δt)
]

)

Cadi(t).

exception that the vibronic Hamiltonian is used instead of 

the electronic one:

2.7  Integrating nuclear DOF; overall integration 
schemes

All electronic integration algorithms are combined with 

the nuclear DOF integrator based on the Trotter symmetric 

splitting, yielding essentially the velocity form of the Ver-

let algorithm [46], Eqs. (43a), (43b), (43e). The integration 

of electronic variables is done directly after the call of the 

“update_Hamiltonian_variables” function, Eq. (43c), that 

recomputes wavefunctions, diabatic/adiabatic Hamiltonians 

and other derived properties such as forces in response to 

the update of nuclear coordinates, Eq. (43b). At this point, 

all the properties at time steps t  and t + Δt are known and 

can be used in the electronic DOF integration by the “prop-

agate_electronic” function, Eq. (43d). This function com-

putes the re-projection matrices, P(t, t + Δt) and uses them 

in the electronic DOF integration algorithms discussed in 

Sects. 2.3–2.6. 

(42)

Cadi(t + Δt) = T(t + Δt)exp
(

−
iΔt

2ℏ

[

Hvib(t) + T
+(t + Δt)Hvib(t + Δt)T(t + Δt)

]

)

Cadi(t).

(43a)p

(

t +
Δt

2

)

= p(t) + F(t)
Δt

2
,

(43b)q(t + Δt) = q(t) + M−1p(t)Δt,

Table 1  Integration schemes for 

electronic DOF
Integrator # Integrator description

1 LD with crude splitting using matrix exponential, Eq. (17a)

2 LD with symmetric splitting using matrix exponential, Eq. (17b)

3 LD of Granucci and Persico using matrix exponential, Eq. (39)

4 1-point integration with H
vib

 and matrix exponential, Eq. (40)

5 Naïve mid-point integration with H
vib

 and matrix exponential, Eq. (41)

6 Mid-point integration with H
vib

 and similarity transformation of the 

second point and matrix exponential, Eq. (42)

7 Same as 1, but with rotation-based decomposition of propagator

8 Same as 2, but with rotation-based decomposition of propagator

9 Same as 3, but with rotation-based decomposition of propagator

10 Same as 4, but with rotation-based decomposition of propagator

11 Same as 5, but with rotation-based decomposition of propagator

12 Same as 6, but with rotation-based decomposition of propagator

13 Adiabatic Liouville integrator using matrix exponential, Eqs. (37), (38)

14 Same as 14, but with rotation-based decomposition of propagator
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3  Computational details

The developed integrators are assessed using model Hamil-

tonians of the Holstein type. In diabatic representation, the 

Hamiltonian matrix elements are given by:

We consider four models with the parameters (Table 2) 

chosen to mimic certain dynamical situation (Fig. 3). Spe-

cifically, Model 1 features a pure case of trivial crossing, 

zero diabatic coupling. Model 2 corresponds to an interme-

diate value of the diabatic coupling, leading to a strongly 

nonadiabatic model. Model 3 has a large value of diabatic 

coupling and hence corresponds to a mainly adiabatic case. 

Lastly, Model 4 parameters are chosen similar to those of 

Model 2, but such that two regions of nonadiabatic coupling 

are accessible to the dynamics yielded by the initial con-

ditions we select. This model introduces stronger possibil-

ity of quantum wavepacket interferences and enhances any 

complications of the dynamics due to decoherence effects. 

Both Models 2 and 4 would be the great testbeds for bench-

marking decoherence correction algorithms for nonadiabatic 

dynamics. The numerical values of the parameters in all four 

models are chosen to be on the order of magnitude of typi-

cal molecular potentials so that the dynamics would occur 

on typical molecular time scales of femto- to picoseconds.

In all calculations, we use only one electron-nuclear tra-

jectory since we aim to assess the deterministic integration 

algorithms, so no averaging over stochastic parameters or 

processes is needed. In all simulations, the initial nuclear 

coordinate and momentum is chosen as q(0) = −4.0 , 

p(0) = 0.0 so that the simulations starts far from the region 

(43c)
F(t + Δt), H(t + Δt),�(t + Δt)

= call “update_Hamiltonian_variables(q(t + Δt))”,

(43d)call “propagate_electronic”,

(43e)p(t + Δt) = p

(

t +
Δt

2

)

+ F(t + Δt)
Δt

2
,

(44)H
dia

=

(

E
0
+

1

2
k

0

(

q − q
0

)2
V

01

V
01

E
1
+

1

2
k

1

(

q − q
1

)2

)

.

of nonadiabatic coupling. In this region, the diabatic and adi-

abatic representation are nearly identical, which facilitates 

the comparison of the results of integration in different rep-

resentations. Nuclear mass is chosen to be m = 2000.0 a.u. 

No randomization of the initial nuclear position or momen-

tum is conducted as would be done in typical quantum–clas-

sical simulation (with multiple trajectories). This is done to 

ensure the possibility of the point-by-point comparison of 

the dynamics produced by different computational schemes. 

We note that our selection of q(0) and p(0) gives the system 

enough total energy to overcome the barriers and to visit 

regions of strong nonadiabatic coupling. Thus, our simula-

tions are not biased to only show the regions of weak nonadi-

abatic coupling (where the dynamics would be largely adi-

abatic and the trivial crossing situation won’t be realized). 

At the same time, we don’t give the system too much total 

energy so that we aren’t limited by the numerical limitations 

on the parameters Δt too early on.

We initialize the electronic coefficients on the lowest adi-

abatic state, such that C
adi(0) =

(

1.0 + 0.0i

0.0 + 0.0i

)

 . No random 

phase is given to the electronic amplitudes so that simula-

tions with all methods and integration time steps could be 

compared to each other directly. The dynamics is evolved for 

25,000.0 a.u. of time with the integration time steps, Δt , of 

0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 

40.0, 50.0, 100.0, and 200.0 a.u. We build different recipes 

based on the integration schemes introduced above (Table 1).

The error of each integration scheme (which includes 

both the methodology selection and the choice of Δt ) is cal-

culated as a time-integral of the absolute deviation of the 

density matrix elements, �ij(t) , from the reference values at 

the same time-points, �ij(t):

Here, �ij(t) = �ij(nΔt) = �ij(n,Δt) indicates the elements 

of the density matrix computed using one of the integra-

tion schemes and �ij(t) is the reference density matrix with 

Δt = 0.001 a.u. The reference calculations are based on 

integrating the TD-SE in diabatic representation (where 

(45)

e =
1

T

∑

ij
∫

T

0

dt
|
|
|
�ij(t) − �ij(t)

|
|
|

2

≈
1

N + 1

N∑

n=0

∑

i,j

|||
�ij(n ⋅ Δt) − �ij(n.Δt)

|||

2

.

Table 2  Parameters of the 

model Hamiltonians used in 

this work

Model E
0
 , a.u E

1
 , a.u q

0
 , a.u q

1
 , a.u k0, a.u k

1
 , a.u V

01
 , a.u

1 0.0 0.0 0.0 2.5 0.002 0.005 0.000

2 0.0 0.0 0.0 2.5 0.002 0.005 0.001

3 0.0 0.0 0.0 2.5 0.002 0.005 0.01

4 0.0 − 0.01 0.0 0.5 0.002 0.008 0.001
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no approximations like LD are needed) and converting the 

corresponding density matrix to the adiabatic representa-

tion. Since the accuracy of the time-integral Eq. (45) itself 

may depend on Δt , we choose to use the right-hand side of 

Eq. (45) as the error measure, leaving the integral in that 

equation only as a physical motivation for defining such 

an error measure. As another way to remove the numeri-

cal dependence of the error measure, Eq. (45), on the time-

discretization step, Δt , we evaluate Eq. (45) at the fixed set 

of time-points for all integration schemes. This is done to 

prevent a situation when � would be available at some time 

point if a smaller Δt is used, and not available when a larger 

Δt is used. Thus, the set of the points, at which the evaluation 

of the terms entering Eq. (45) is conducted, is determined 

by the largest Δt . Finally, since the error measure defined in 

Eq. (45) is based on density matrices, it equally suited for 

the TD-SE and the QCLE integration scheme. Defining an 

alternative error measure based solely on the wavefunction 

amplitudes won’t work for our purposes of comprehensive 

assessment of distinct types of integration schemes.

4  Results and discussion

Our main results are summarized in Fig. 4. When comparing 

the integration errors as the function of the integration time 

step, Δt (Fig. 4), we observe that all methods fall into one 

of the two groups. The first one is the one where electronic 

Hamiltonian is used in either the TD-SE (cases 1–3, 7–9) or 

the QCLE (cases 13–14) integration. All such schemes show 

relatively small errors, nearly identical to each other, for all 

the used Δt values. This means that: (1) all the variants of 

the LD integration are accurate and comparable to each other 

in accuracy; (2) the rotation-based propagators are as good 

as those based on computing matrix exponentials; (3) all of 

these currently implemented TD-SE and QCLE integrators 

(Cases 1, 2, 3, 7, 8, 9, 13, and 14) yield comparable accu-

racy and can be used interchangeably. For integrators in this 

group, the error varies from 10
−27 (trivial models and small 

Δt ) to 10
−3 (for any model and the largest values of Δt ). Such 

errors can be considered acceptable, even for large values 

of Δt . From the practical standpoint, one is free to use any 

of them even though some appear to be more sophisticated.

The second group of integration schemes includes all 

variants using vibronic Hamiltonian (cases 4–6 and 10–12). 

In these schemes, the TD-SE or QCLE are integrated using 

the traditional vibronic Hamiltonian, H
vib

 (that explicitly 

depends on nonadiabatic coupling), instead of electronic 

Hamiltonians alone (as done in the LD-based methods). The 

error values start from 10
−3 values, in the adiabatic dynamics 

(Model 3) and hold until reasonable integration time steps on 

the order of Δt ≈ 10 a.u. Such accuracy is also achieved even 

when the smallest integration time step of Δt = 0.001 a.u. is 

used and is comparable to the worst errors of the LD-based 

integrators used even with the largest time steps of 100 a.u. 

The only reason why such heuristic integration schemes 

work reasonably in this case is because the NACs are small, 

so the difference between electronic and vibronic Hamilto-

nians is small. Another situation where the heuristic integra-

tors work as good as the proper LD schemes, is the case of 

pure trivial crossing (Model 1). In this case, the NAC is zero 

everywhere except for the exact point of the diabatic surfaces 

crossing, which may be difficult to “hit” exactly in numerical 

calculations. Furthermore, in our implementation, the NAC 

for models like Model 1 (constant diabatic coupling) is set 

to zero when the energy gap is below 10
−25 a.u., to avoid the 

division by zero. Thus, staying on the same-index adiabatic 

state is the expected outcome of the traditional NAC-based 

(or H
vib

-based) integration of the TD-SE for such a model. 

However, the correct behavior for this model is to observe 

Rabi oscillations of the adiabatic populations, while having 

unchanged diabatic population on the starting diabatic state. 

This is where the basis set reprojection, Eqs. (13)–(14), plays 

a critical role. It is this reprojection that enables the correct 

“switch” of the active adiabatic state (and the corresponding 

TD-SE amplitudes’ adjustment), leading to small errors for 

Model 1. In the strongly nonadiabatic Models 2 and 4, the 

error measure of the heuristic integrators starts at values 

as large as 1.0 even for the smallest Δt used. Thus, such 

integrators are not suitable for integrating the TD-SE and 

the QCLE. We should note that in our implementation the 

reprojection approach is used with the H
vib

-based integrators 

as a way to track the evolution of the basis states. However, 

unlike the trivial crossing Model 1, even the basis reprojec-

tion is not sufficient to yield low errors in the dynamics. This 

is because the NAC terms of the H
vib

 matrices used in the 

integrators are inconsistent with the LD assumption.

We further comment on several interesting observations 

regarding the error measure vs. Δt . First, for all integra-

tors we generally observe the expected increase of the error 

with the integration time step. For proper LD integrators, we 

observe two critical regions—first, at Δt around 0.01 a.u., 

where we observe a rather significant “jump” of the error 

from nearly numerically exact integration (errors on the 

order of 10
−27

− 10
−15 ) to an approximate solution (errors 

on the order 10
−7 ). Further increasing Δt up to about 10 a.u. 

leads to a steady increase of the error up to still-acceptable 

level of 10
−3 . Although both nuclear and electronic DOF 

integration are affected by Δt , the nuclear integration is 

likely to be less sensitive to such small integration time 

steps. Thus, the error accumulation in this region can be 

attributed mostly to the electronic integration schemes. This 

is where we observe either a steady increase of the error (for 

the proper LD integration scheme) or a complete insensitiv-

ity of the error to Δt (for the heuristic schemes).
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The second critical region is met at Δt values around 

10–100 a.u. This is where we observe a second “jump” 

in the error’s order of magnitude. This jump is less pro-

nounced for the proper LD algorithms and is very rapid 

for the heuristic schemes. We associate this effect with 

the errors due to nuclear DOF integration, which could 

strongly affect the NAC values and hence lead to faster 

accumulation of error in the heuristic methods that rely on 

the vibronic Hamiltonians. Interestingly, for the nonadi-

abatic Model 2 (and partially for Model 4), we observe a 

drop of error when Δt increases past this second critical 

point around 10 a.u. This effect may be attributed to the 

decreased changes for system to sample regions near the 

state crossing and increased changes of sampling regions 

with smaller NACs instead. As a result, the H
vib

 in such 

simulations is closer to H on average, so the heuristic inte-

gration scheme converges to the proper LD one.

As demonstrated above, the variety of the LD-based inte-

grators are derived starting from the basis set reprojection 

approach described in the theory section. Although the new 

integrators derived do not yield significant practical advan-

tage over the original LD approach of Granucci, Persico and 

Toniolo (which itself is one case of such a family of integra-

tors), the fact that they all work well confirms that the intro-

duced framework is correct and can be used to derive other 

schemes, if needed. Furthermore, we want to highlight the 

importance of the reprojection matrix resets to the identity 

matrix at every nuclear iteration. As discussed in section S4 

of the Supporting Information, in our early formulations, 

we used the cumulative reprojection matrix which was 

propagated along the TD-SE amplitudes. However, such an 

approach led to a very fast accumulation of errors, due to 

neglect of the time-dependence of certain terms. As a result, 

the obtained dynamics was incorrect. For example, the Rabi 

Fig. 3  The four 2-level Holstein-type models used in this work. Each 

row represents a model, from 1 to 4. The first column shows diabatic 

(the dashed lines) and adiabatic (the solid lines) energy surfaces for 

the models. The second column shows the “raw” derivative couplings 

computed along the nuclear coordinate

◂

Fig. 4  Computed errors between the density matrix of each integra-

tor and the reference density matrix for (a) Model 1, (b) Model 2, (c) 

Model 3, and (d) Model 4. For all models, but Model 1, the results 

fall into two groups leading to sets of nearly overlapping lines. The 

first set (accurate ones) includes cases 1, 2, 3, 7, 8, 9, 13 and 14. The 

second set (inaccurate) includes cases 4, 5, 6, 10, 11, and 12
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oscillations in the Model 1 would decay to populations on 

each state being close to 0.5 instead of oscillating between 

the values of 0 and 1. The key step to avoid such errors 

was to re-initialize the reprojection matrices to the identity 

matrices, which is consistent with the key approximation in 

the local diabatization procedure.

To illustrate the error accumulations and to better under-

stand its origin, we analyze the evolution of the density 

matrix elements. Namely, we consider Re(�
00
) , the popula-

tion of adiabatic state 0, and the components of coherence, 

Re
(

�
01

)

 and Im(�
01
) , as computed with different integration 

schemes and different integration time steps (Fig. 5). Fig-

ure 5 highlights these properties computed for Model 4, and 

section S7 of the Supporting Information presents results 

for other models (Figs. S1–S3). For the smallest integra-

tion time step (Fig. 5a), we observe two sets of curves—

one, for the reference method and the LD methods (e.g., 

green and yellow lines), the other—for the heuristic methods 

(gray dashed). The two sets of curves deviate for some time-

intervals and coincide only infrequently. All such deviations 

contribute to the error shown in Fig. 4. Note that since both 

population and coherences are bound, and because the error 

definition, Eq. (45), included time-averaging, the error is 

also bound at the levels on the order of several units.

A careful examination of the propagated density matrix 

elements revealed a surprising feature in evolution of the 

coherence components. Namely, their discontinuities, both 

for real and imaginary parts (Fig. 5, red boxes). We argue 

that such discontinuities are introduced by the reprojec-

tion operators T  . Indeed, consider a simple situation of 

state switching (e.g., as could occur in Model 1), that is 

c
0
(t) → c

1
(t + Δt) and c

1
(t) → c

0
(t + Δt) . If we consider the 

coherence matrix elements, �
01

 , we observe that:

In other words, the imaginary component of the coher-

ence exhibits a discontinuity, a sign flip. In general, the 

amplitudes change may involve mixing, so the discontinu-

ity would be more general than a sign flip and could involve 

the real component of coherences as well, as we observe 

in Fig. 5. In passing, we should clarify that although we 

observe the discontinuities of the off-diagonal elements of 

matrix CadiC
+

adi
 , this effect is compensated by the changes of 

the adiabatic basis functions, so that the full density matrix 

operator �̂ = �� adi⟩CadiC
+

adi
⟨� adi� preserves its continuity. 

Nevertheless, this observation may be important to keep in 

mind when implementing various decoherence corrections 

via the density matrix elements, such as those used in the 

decay of mixing [47–49] and related coherence matrix ele-

ments damping schemes [22].

(46)
�

01
(t + Δt) = c

0
(t + Δt)c∗

1
(t + Δt)

= c
1
(t)c∗

0
(t) =

(

c
0
(t)c

1
(t)
)∗

= �
∗

01
(t).

Fig. 5  Evolution of density matrix elements �
00

 (population) and �
01

(coherence, real, and imaginary parts) in model Hamiltonian given by 

Model 4, as computed by different integration schemes. The compari-

son is illustrated for two integration time steps of (a) Δt = 0.001 ; and 

(b) Δt = 10.0 . Many methods yield numerically equivalent results, so 

only few types of curves are visible, especially in the cases with the 

smallest Δt
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5  Conclusions

In this account, we present a systematic framework for 

building new integrators for the TD-SE and the QCLE that 

extend the idea of the LD scheme pioneered by Granucci, 

Persico and Toniolo. The framework is based on the basis 

set reprojection combined with the re-initialization of such 

matrices. The excellent numerical performance of a family 

of such LD-based integrators confirms the correctness of the 

underlying theoretical methodology for deriving them. The 

original LD scheme of Granucci, Persico and Toniolo can 

be viewed as one of the members of the family of integrators 

that can be derived from the basis set reprojection approach. 

We demonstrate that all the derived LD-based integrators are 

comparable to each other in accuracy, including the original 

LD scheme and can be used interchangeably. We find that 

the approach based on evolving the reprojection matrices 

is unstable and accumulates errors very rapidly due to the 

underlying approximations. The reprojection matrix re-ini-

tialization at every nuclear time step, initially devised within 

the LD approach, is a critical component for an accurate and 

stable integration of TD-SE or QCLE.

We demonstrate that the LD algorithms introduce nomi-

nal discontinuities in the coherence components. We show 

that such discontinuities are introduced by the reprojection 

matrix. Although this matrix does not introduce any discon-

tinuities in populations, it does affect the coherences. This 

effect may be important to keep in mind when implementing 

decoherence corrections schemes based directly on modify-

ing coherence matrix elements [50].

We find that the LD-based schemes notably supersede 

the analogous traditional schemes that directly use vibronic 

Hamiltonians, H
vib

 , and nonadiabatic couplings. The use of the 

reprojection matrices is critical for capturing correct qualita-

tive dynamics when trivial crossings are present. No additional 

state tracking or wavefunction phase corrections are needed. 

However, even with the reprojection matrices in use, the tra-

ditional integration approaches that rely on H
vib

 (and hence 

explicitly on NACs) yield significantly larger error measure of 

dynamics as compared to LD-derived ones. We recommend 

the LD approaches to be used whenever possible. For the 

model Hamiltonians with the energetics comparable to that of 

typical molecular Hamiltonians, the electronic TD-SE/QCLE 

integration time steps could extend up to 100 a.u. (ca. 2.5 fs).

We have derived a Trotter-splitting rotation-based propaga-

tor for the TD-SE and the QCLE that works for effective Her-

mitian Hamiltonians with nonzero off-diagonal elements. We 

demonstrate that the proper LD algorithms yield comparable 

accuracy when used with matrix exponential or rotation-based 

propagation algorithms.

Finally, this work reports an implementation of a large fam-

ily of the above integrators (both based on LD or H
vib

 , based 

on matrix exponentiation or rotations algorithms, for TD-SE 

and QCLE) in the open-source Libra package version v5.4.0. 

We anticipate that this contribution would be a useful theoreti-

cal account on such implementation.

6  Supplementary Information

Detailed scripts and input files used for all types of cal-

culations are available in digital form online at Zenodo 

repository [51]. The Libra code version 5.4.0 is available 

online at another Zenodo repository [45].

Supplementary Information The online version contains supplemen-

tary material available at https:// doi. org/ 10. 1007/ s00214- 023- 03007-7.
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