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Abstract

In this Festschrift contribution in honor of Prof. Maurizio Persico, we present a systematic derivation and comprehensive
assessment of several integrators for quantum—classical time-dependent Schrodinger (TD-SE) and Liouville (QCLE) equa-
tions. Our formalism is rooted in the basis set reprojection approach, but it naturally leads to a family of local diabatization
(LD) integrators, including the one pioneered by Prof. Persico and co-workers. The formalism naturally accounts for trivial
state crossing effects and helps solve related phenomena that often pose significant numerical problems in nonadiabatic
molecular dynamics simulations. We adapt the LD-based methods for the QCLE integration. We generalize the symmetric
splitting integrator proposed by one of us earlier and demonstrate how it can be applied to integrate both TD-SE and QCLE.
Our analysis and computations suggest that the reprojection approach is critical for capturing correct qualitative dynamics
in trivial crossing regimes, but the proper integration approach is still needed for high accuracy of calculations in general
case. Our computations also reveal an interesting coherence discontinuity effect introduced by the LD approximation. We
provide a detailed discussion of the algorithms and their implementation in the open-source Libra software and present their

comprehensive assessment using several well-designed model problems.

Keywords Nonadiabatic dynamics - Quantum dynamics - Trajectory surface hopping - Electronic integrators - Trivial

crossing - Local diabatization

1 Introduction

Nonadiabatic molecular dynamics (NA-MD) is a power-
ful tool to study the evolution of excited states, as relevant
to photovoltaic [1-7], photocatalytic applications [8—11],
and in biological systems [12—14]. While exact quantum
dynamics is possible in certain low-dimensional systems
[15-18], modeling it in extended systems requires approxi-
mate methods [19, 20]. The quantum—classical trajectory
surface hopping (TSH) methods have been the most widely
used and well-developed techniques [21-25]. Because of the
complexity of the “zoo” of such approximate methods, the
comprehensive and systematic assessment of various avail-
able options has been a long-standing and actively explored
topic. In our efforts to this methodology assessment, we have
developed an open-source code, called Libra [26, 27], that
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implements a large number of known schemes. Although
such an assessment has been planned as one of our goals
for this contribution, we found ourselves addressing another
seemingly straightforward, but quite confusing topic—the
proper integration of the time-dependent Schrodinger equa-
tion (TD-SE) underlying almost every NA-MD simulation
technique. We further realized that this topic is an ideal fit
as a contribution to the Festschrift in honor of Prof. Persico,
hence we narrowed our initial scope to discussing integra-
tors for TD-SE, as well as for quantum—classical Liouville’s
equation (QCLE).

Although the TD-SE or QCLE integration can be seen
as a rather straightforward topic and has been described
in various accounts [28], the formalism is somewhat more
complicated in the presence of the so-called trivial cross-
ings [29]. The latter occurs when two diabatic states cross
but are not coupled or are weakly coupled (Fig. 1a). In
this model problem, the adiabatic states coincide with
the diabatic ones in the asymptotic regions. Since the
adiabatic states are conventionally indexed according to
their energies, one may encounter a situation when the

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



68 Page2of 17 Theoretical Chemistry Accounts (2023) 142:68
0.030 2.0 .
—— HOO ‘\ S— NAC01
0.025 1.5 ‘ — = NACy,
0.020 1.0
> :
o 0.015 5 05
- @©
2 0.010 g 00 :
o < |
c 0.005 =Z-0.5 ‘
L
0.000/ -1.0
-0.005 /\W -15
0010, 1 2 3 s s 2% o1 2 5
Coordinate, p.u. Coordinate, a.u.
t t+ At

lp@®) = (|0),[1)
[$(t +At)) = (]1),10))

Fig. 1 The state identity change along a reaction coordinate. The ele-
ments in the vectors of state vectors |y) are ordered according to their
adiabatic energies (as obtained from the adiabatic state calculations),
but their diabatic character (as indicated by the color and the index
of the most close diabatic state) may change. For instance, at time ¢,
the lowest-energy adiabatic state y(¢) corresponds the “red” diabatic
state |0). Past the intersection point, at time 7 + A¢, the same lowest-

energy-ordered adiabatic states switch their identities
(the mapping to the diabatic states). This state reorder-
ing occurs when the nuclear reaction coordinate passes
the crossing point of the diabatic energy surfaces. For
instance, consider the blue point in Fig. 1a. At the initial
time ¢, it starts in the adiabatic state O (solid red line),
which also coincides with the diabatic state O (the dashed
red line). If the coupling of the diabatic surfaces is zero,
the system should evolve on the diabatic surface 0 all the
time, without switching to the diabatic state 1 (the dashed
green line). However, during this motion, at time ¢ + At,
the diabatic state 0 corresponds to a higher-energy adi-
abatic state 1 (the solid green line). Thus, the evolution
should lead to the oscillation of the population between
the two adiabatic states, since the unchanged diabatic state
maps onto different adiabatic states on the left and on the
right sides of the crossing point. Vice versa, the same
adiabatic state maps onto different diabatic states on the
two sides of the crossing point. Hence, the adiabatic state
changes its identity (the projection onto diabatic states).
Hence, conducting even regular adiabatic dynamics would
require accounting for the state identity change. In other
words, there should be a mechanism for active state change
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energy adiabatic basis state y; (¢ + Af) is most close to the green dia-
batic state |1). As a result, (Wo|ﬁ|l//1> corresponds to the couplings
between differently ordered (permuted) adiabatic states at times ¢ and

t + At, leading to an unphysical abrupt change of NAC sign (the red
curve in panel b). The NAC computed with the identity-ordered basis
states should follow the dashed green curve

even in case of “adiabatic” dynamics that is the one where
only one adiabatic state (although of different identity and
energy ordering) is used. Simply forcing the dynamics to
stay on the same-energy ordering state (e.g., the lowest-
energy state) would lead to qualitatively incorrect results,
as apparent from analyzing the schematic in Fig. 1.

To date, several algorithms have been designed for state
tracking and handling the trivial crossing situation. These
developments include the min-cost algorithm of Fernandez-
Alberti and Tretiak [29] as well as a similar approach of
Ryabinkin and Izmaylov [30], the internal-consistency check
by Wang and Prezhdo [31], our stochastic state tracking
algorithm [32], and the local diabatization (LD) approach
of Granucci, Persico, and co-workers [33, 34]. Alterna-
tively, Meek and Levine proposed the norm-conserving
interpolation (NPI) procedure to correctly integrate TD-SE
in the conical intersection regions [35]. The complexity of
the TD-SE integration problem is further hardened by the
phase inconsistency problem in adiabatic representation that
arises due to the fact that at every time step, the adiabatic
basis functions are defined up to an arbitrary complex phase,
which can randomly vary from geometry to geometry. The
phase correction problem has been addressed in the works of
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Subotnik [36], Gonzalez [37], as well as in an earlier work
by one of us [38].

In previous accounts, we have detailed the phase con-
sistency and state tracking corrections [39]. However, the
resulting scheme is still rather cumbersome and requires
a lot of bookkeeping, which results in a less readable and
less transferable code. In the present work, we approach the
problem of the phase consistency correction and state iden-
tity tracking from the conceptually satisfying viewpoint of a
basis re-expansion. This re-expansion approach is also moti-
vated by the recently presented integrator for the quantum
trajectory with adaptive Gaussians (QTAG) methodology
[40] as well as by the TD-SE integration in a quasi-diabatic
basis [41]. Although we rely on the well-known ideas, we
use them to develop a unified and self-consistent formal-
ism for state tracking and phase correction. As an applica-
tion of our formalisms, we demonstrate how one can derive
a series of new integrators for the TD-SE, one of which
turns out to be the LD approach of Granucci, Persico and
co-workers [33, 34]. We further extend our formalism to the
integration of the QCLE. We present integrators for TD-SE
and QCLE that are based on either matrix exponents or on
geometric Trotter-splitting-based approach, reported earlier
by one of us [42]. In this account, we generalize the latter
approach to the case of Hamiltonian/Liouvillian operators
with nonzero real components of the off-diagonal elements.
We demonstrate the applicability of such generalization to
integrating both the TD-SE and QCLE. Finally, we conduct
a comprehensive comparison of all the integration schemes
with several model Hamiltonians designed to induce several
dynamical regimes in electron-nuclear dynamics.

2 Theory and methods
2.1 Brief overview of NA-MD theory

The main goal of many quantum dynamics methods is to
solve the time-dependent Schrodinger equation (TD-SE):

m%’) _ A, 0

where H is the system’s Hamiltonian, % is the reduced
Planck’s constant (7 = 1, in atomic units), and |¥) the
wavefunction of the system. One can further specify a rep-
resentation of the wavefunction, to include electronic or
nuclear degrees of freedom, to use the position or momen-
tum representation, or to represent it in the basis of adi-
abatic or diabatic states [43]. In this account, we focus on

quantum-—classical approaches, such as TSH or Ehrenfest
methods, so the dependence of wavefunctions on nuclear
degrees of freedom is given via swarms of such trajectories,
and the wavefunction |¥) is the electronic wavefunction in
the position representation. Furthermore, we consider that
this wavefunction can be represented in the basis of adiabatic
(“adi”, |y,q;)) or diabatic (“dia”, |y, )) states:

I¥) = [Wadi) Cadi = [Waia) Catia- 2

Here, we adopt the vector or state vectors notation, dis-
cussed in more detail in Ref. 43. Within this notation, the
bolded fonts represent vectors, including the vectors of state
vectors, that is: [w) = (Iyo). [y, ..., lwy_)). The capital
Latin letters denote matrices, that is: C = (cg, ¢y, ... ,cN_l)T
is a column-vector of the basis state amplitudes, C,4; or Cy;,-
The matrix representation of operators can be conveniently
written as:

Arep = (Wrep |A\|Wrep>’ rep = adi, dia, .... (3)

The basis states of the two representations are related by the
basis transformation matrix, U:

|Wadi> = |‘|’dia>U' (4)

We also introduce the following objects: the overlap in
the diabatic basis, S = (W 4;,|W 4in)> the time-overlap matrix,
P(t,t 4 At) = (W 41 (1) [y ,4i(t + At)), the time-derivative cou-
pling, Do, = (W p | %wrep), electronic Hamiltonian matrices,

Hiep = (Wrep |H| ¥.¢p) and the vibronic Hamiltonian matrices,

H ¥ = H,, — ihD,,. Finally, it is worth noting that by virtue
of orthonormality of the adiabatic basis, (¥4 |W,qi) = I, one
gets, UtSU = I, from whichU~! = U*S.

Alternative to the TD-SE, one can solve the quantum Liou-

ville equation (QLE):

0p ~
inl = [H, A]. 5
ih— p (%)

for the density matrix operator, p. For closed systems, the
density matrix operator can be represented as:

p=1¥)XYI ©)

We focus on quantum-—classical methods, in which
the wavefunction or the density matrix elements depend
functionally on the electronic degrees of freedom (DOF),
r, but parametrically on the nuclear DOFs, R, that is:
|¥) = |¥(r, t;R(1))), or p = p(z, r;R(?)). The evolution of the
nuclear DOFs is done classically or semi-classically, as will
be discussed below.
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2.2 General considerations for electronic DOFs
integration

Projecting the TD-SE, Eq. (1), onto the basis of diabatic
or adiabatic states, one can obtain equations for evolving
amplitudes:

aCadi
ot

ih = E5iCagi — 1Dy Coi = [Eadi - ihDadi] Casi = Hsﬂji Caais

(7a)

vib

(7b)

. 0Cy4 ) . .
ihS Tm = H;,Cgiy — iMDy;, Ciy = [Hdia - lhDdia] Cia = Hdmcdia’

where

Hly ,)U = U*Hg,U.
®)
As is discussed in Section S1 of the Supporting Informa-
tion, Egs. (7a) and (7b) are equivalent to each other. That
is in the absence of any other differences (e.g., in handling
nuclear dynamics or any stochastic events), the electronic
evolution computed in any of the two representations should
be identical. However, although the equations are identical,
their solutions (once converted back to one of the two repre-
sentations) are not, due to numerical approximations as well
as due to potential state reordering/phase inconsistency of
the basis states computed in different representations (sec-
tion S2 of the Supporting Information). Indeed, the integra-
tion of Eq. (7) can be conducted in a formal way:

Eygi = Waa|HIW.a) = U (W g,

cutr+ a0~ -+ )

Coi(D) ™ exp(—ﬁAt[Hﬁi‘E(t) + H(¢ + Ap) )Cadi(t),

(9a)
Calt + A1) ~ exp(—%At[S’l (r+ % Y (e + % )])Caat®
~ exp(— ﬁm [S7 OHS (1) + 57+ ADHE (1 + An)] )Cdiu(t). 9b)

Note that the first approximation in each equation corre-
sponds to a mid-point rule and would require additional evalu-
ation of the Hamiltonian and diabatic overlap matrix elements
at the mid-point, which adds the computational expenses. The
last approximation in each of Eq. (9) is derived assuming a
linear interpolation of the integrand in the exponential opera-
tor (Sect. 3 of the Supporting Information). Note that such an
assumption is not valid in regions of strong nonadiabatic cou-
pling (NAC), where the coupling elements exhibit a Lorentz-
ian dependence. Analyzing Eq. (9), one can see that Eq. (9b) is
not sensitive to state reordering/phase changes problem since
it involves only diabatic properties, which as always well-
behaved by the definition. On the contrary, Eq. (9a) utilizes
the adiabatic vibronic Hamiltonians, which may be affected
by the above problems as demonstrated in Fig. 1, and hence

@ Springer

corrections of the wavefunctions and derived properties are
needed. Indeed, the character of adiabatic basis states may
change past the point of diabatic surfaces intersection such that
effective order of the basis function is changed (Fig. 1a), as
elaborated in the Introduction. As a consequence, the deriva-
tive couplings may exhibit an abrupt change of sign, which
corresponds to an effective permutation of the adiabatic states
(Fig. 1b).

2.3 Integrators for the TD-SE

We are primarily interested in integrating the TD-SE,
Eq. (1), in the adiabatic representation since it is in this case
when pathological situations of state identity switch (trivial
crossings) and state phase inconsistencies may reveal them-
selves. Formally integrating Eq. (1), yields:

['P(t + A1) = |y ,qi(t + AD)C,y(t + AL)

At -
= [/ dTCXp(—%I/‘}(I + T))] [P(0),
0 (10a)

or
Cogi(t + A1) = (it + A1)

At .
[/0 drexp(—%H(r + T))] [W 26 (D) Coi (0
(10b)

Computing the integral in Eq. (10b) requires preserving
the order and phases of the basis functions at every instant of
the [,z + Ar]integral. However, the basis functions |y ,4;(¢))
and |y, (f + Af)) may change their relative order (e.g., in
trivial crossing situations) or acquire a spurious phase dif-
ference. To conduct a correct integration, we switch to the
dynamically consistent basis, |, (7)), constructed to have
no such problems, that is:

(Wi O it + AD) = 1. an

Note that although the integration is conducted in the
| ,4; ) basis, the observables of interest (e.g., density matrix
and state populations or energies, etc.) are computed in the
original “globally adiabatic” basis, |y ,4;)-

Apparently, the wavefunction should be invariant with
respect to the choice of the basis, so Eq. (2) can be extended
to:

I¥) = |# i (D) Cogi (D) = W1 (1) Cogi (1) (12)

Let’s assume the cumulative (encumbered for the whole
duration, ¢, since the very beginning of simulation) trans-
formation between ordered and “raw” bases is given by a
projector matrix 7'(¢):
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Wi (D) = [ (O)T(), (13a)

W (D)) = [W,a(D)T ™ (). (13b)
Hence,

Cogi() = T(HOC,oi (1), (14)

Coai® = T ()Coii 0. (14b)

Note that the definition of the projector matrix 7 in
Eq. (13) is inverse of the one used in the definition of the
local diabatic matrix in the works of Persico, T = T;e rsico"
[33]

As demonstrated in section S4 of the Supporting Informa-
tion, the best choice of the matrices T(f) and T'(t + Ar) at the
ends of each integration intervals [z, f + Af]is:

T =1, (15a)

+ -1/2
T(r+ Af) = P~ (s, 1 + At)( [Pl e+ Ap)) Pt + At)) )
(15b)
With the help of the projector matrix 7 defined in
Eq. (15), one can formulate various approximations to evalu-
ate Eq. (10b) and hence construct various integrators. For
instance, using the result Eq. (S10), one obtains
[fo dT(:xp(——H(r))] ~ [exp( A [H(t) +Ht+ At)] )]
The latter operator can be approxnnated using either a crude
splitting, Eq. (16a) or a symmetric Trotter splitting,
Eq. (16b):

0.015

A(t + AY)

0.010
T(t +At)

0.005

Energy, a.u.

0.000

—0.005

Coordinate, a.u.

(a)

Fig.2 Graphical representation of the integrators in Eq. (17): (a) the
integrator Eq. (17a); (b) the integrator Eq. (17b). Arrows represent
the exponential operators acting on the corresponding adiabatic sur-
faces: red—the adiabatic surface 0, green—the adiabatic surface 1;

3 4 0 i 2 3 4

[exp(—izA—ht [f](r) +HG+ At)] )]
[AVEN

~ [exp(—%ﬁl(l+ Az))] [exp(--H(z))] 162

e | S50

exp(—m—tH(t + At))] [exp(—ﬁH(t)ﬂ
(16b)
Equation (16a) can be interpreted as: the evolution of the
amplitudes is guided by the H (#) on the interval [t, t+ %] and
by the H (t + At) on the interval [t + %, t+ At] as illustrated

in Fig. 2a. With these approximations, Eq. (16), the ampli-
tudes are propagated according to Eq. (17), respectively (see
Sect. 5 of the Supporting Information for the detailed
derivation):

Ci(t+ AD) = At + ATt + ADA(1)C (1), (17a)

Cait + At) = T(t + ADB@)T(t + ADA(t + ADT(t + At)B(£)C (1),
(17b)

with

A = Wl [exp( =20 [l 0) = exp(-SHHO),
(18)

BO) = Wl [ewo (=210 |

iAt 1/2
() = —-—H =A"".
The graphical representation of the constructed propagators

is shown in Fig. 2 with a trivial crossing model. In this model,
the diabatic coupling is zero, so the system that is initialized

T*(t + At)
A(t + At)

Energy, a.u.

i I— o 1 2 3 4
Coordinate, a.u.

(b)

the time in parenthesis indicates at which time steps the surfaces 0 or
1 are considered. The operator A propagates for Az/2 time duration,
while the operator B propagates only for At/4 time duration
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on the left parabola should stay evolving on that parabola. In
this example, one starts on the lower adiabatic state at g = 0,
which also corresponds to the initialization on the diabatic
surface O (left parabola, dashed red curve, which is hidden
behind the solid lines). The integrator Eq. (17a) evolves the
quantum amplitudes on the lower adiabatic state on the time-
[[:, 1+ %]

interval of following the operator A(r) (the red

arrow). This evolution coincides with the evolution on the

lower diabatic surface. The trivial crossing is identified accord-
01

10
switches the populations of the ground and excited adiabatic
states. In other words, the amplitude of the adiabatic state 0
will be placed to the position of the state 1 by the operator
T(t + Ar) (the blue arrow), and vice versa for the amplitude of
the adiabatic state 1. Finally, the new amplitude of state 1 will
be propagated using properties of the adiabatic surface 1,
which corresponds to operator A(¢ + At) (the green arrow).
This motion is also consistent with the expected motion on the
left parabola (diabatic surface 0). Thus, the algorithm shall
correctly describe the populations switching in the adiabatic
representation, while keeping the diabatic populations
unchanged. The graphical illustration of the integrator in
Eq. (17b) is shown in Fig. 2b and can be interpreted in similar
terms.

ing to Eq. (15b), leading to T(r + Af) = < , which

2.4 Derivations of the Trotter-splitting-based
rotations propagator for solving the TD-SE
and alike equations

The operators A and B in Eq. (18) are defined as the matrix
exponentials and can be computed using eigenvalues and
eigenvectors of the corresponding Hamiltonian matrices (the
approach used in the present work) or direct summation of the
Taylor series with matrix operands. However, the action of
such exponential matrices is to essentially solve a first-order
ordinary differential equations of the TD-SE type. As was
demonstrated earlier, such an integration can be done with-
out resorting to the matrix eigenvalue problem, by using the
Trotter-like splitting of the corresponding evolution operator
[28]. The resulting propagator can be represented in terms of
complex phase accumulation (due to diagonal elements of
Hamiltonian matrix) and rotations in complex 2D planes (due
to imaginary off-diagonal terms proportional to nonadiabatic
couplings). In certain situations, the off-diagonal elements of
the effective Hamiltonian matrices can also contain real com-
ponents, e.g., diabatic couplings or when representing Liouvil-
lian operator in tetradic notation (see below). Here we extend
the previous algorithm [28] to such situation.
We aim to integrate the TD-SE-like equation:

@ Springer

oC
zhg = XC. (19)
Here, X is an effective Hamiltonian, which could be the
vibronic Hamiltonian that includes nonadiabatic couplings.
We also assume that this effective Hamiltonian is Hermitian,
X = X*. The amplitudes C are understood more generally than
wavefunction amplitudes. With the matrix elements written as:

X; = Re[X;]| +ilm[X,]. 20)

The Hermiticity condition is equivalent to:
Re[ J] =Re ﬁ] and Im [Xu] = —Im Xﬂ], the properties to
be used below. The formal solution of Eq. (19) on the inter-
val [t,t + At]is:

C(t + Ar) = exp(iLAHC(2). 21

Here, iL is the effective Liouville’s operator given by:

iL = C— Z Cl ac (22)

Keeping in mind Eq. (20) and the Hermiticity conditions
above, iL can be written as:

iLz—% ZZX”CJ'&%[ =

i X.C i
fl. ”lt)C T h

ijii>j L

X fac] Z [X'f fac]
l ,
="Z i ’ac_E,w/ Vfac]“%z[ﬂ ’ac]

0 0
=__2 ii zac -z 2 leCj6_Cl lecla_cj]

Z 'ffac

t,/ i>j
(23)
The terms in the last sum can be simplified as:
0 0 . 0
X"fcfa_c,. —Xﬁqa—cj = [Re(X;) + lIm(Xij)]Cja—Ci
. 0
— [Re(X;;) + ’Im(in)]Cia—q
_ 9 2
= Re(X;) [Cfaci + C"acj]
. 0 0
+ilm(X;) [Cf'a_q - C"a_cj]'
(24)

So, the overall operator can be written as:
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o J
’L=_EZ iCise __2 [Re i [fac C"a_cj]

ij:i>j

+ilm(X;) [CJ aac C"aic.”

=Sl T 3

iji>j ij:i>j
(25)
0 i 0
lL = —EXiiCia_qy (263.)
Im(X;) [ 9 9
i = lc—-c,—|.
iL - |Gac ~Ciac (26b)
iRe(X;;
iL? (x;) 9 c,— (26¢)
y n iac, dC
The action of the first operator, iLV, is trivial:
exp(iLg”At)c - exp<—’%tx )c (27a)

The action of the other two operators can be derived as:

2 G
exp(le.. At( >
, >C,,
j +A_2 C
-C; 21\ -G
R e +A_4 A
3! Ci 41\ G
<1 oA=L >(ci>
AT A4
—A+—+... 1—§+Z Cj

cos(A) sin(A)
—sin(A) cos(A) ’

(27b)

G C;
exp(zLij At)(C»)

J

cos(B)

_ —zsm(B) G
~ \ —isin(B) cos(B) G )

¢\ ..[(C\  (=iB?*[C
(6)-o(2)-5(d)-

-3
<1 Pl B+ S
(zB) B |, B
iB + + - 1_E+I+"'

Re(X;)At

)

n

B = (28b)
All the operators are unitary and norm-conserving, so the
resulting integration schemes shall be stable and robust, even
with large integration time steps.
Finally, we can write down the final factorization:

exp(iLAr) = eXp<{ DL+ Y ir® + Y i }At)

i ij:i>j iji>j

{Hexr)(m‘“”)}{H“P(’Lff” )
Lj:i>j
{Tevtory

ijii>j

H exp sz) At exp
Ofij:i>, Y 2 {i 1>
Jii>j) Jii>j}

(et}
(29)

Here, the notation O{i,j : i > j}indicates the ordering that
is opposite to that taken in the previous double sums such that
the overall splitting is symmetric. As an example, for a 3-state
system, the factorization would be:

3 At
(i 7)}

exp(zL(l) > )exp( L(l) > )exp<iL(21)%t>
3 @) At 3y At
eXP(tLO] 3 ) <L027>exp<zL127>
At At @ At
eXP( Lf)zl) > )exp( L(()zz)7>exp<zL(122)?>
L(Z) At L(Z) At ,L(Z) At (30)
exXplt 12 ) explt 027 expl 01?
3) A1 () A1 (3 At
exp(zL12 > )exp(sz?)exp(le 7)
) At At (1) At
exp(zL ?>6Xp<lL1 7>eXp<1Lo 7)
B (G, B (Y
3t \G 4\ G
&
G
27¢)

Here,

Im(X;;) At

A= —— ¥ (28a)

2.5 Integrators for the QCLE
Alternative to the TD-SE, electronic DOFs can be described

in terms of the density matrix. In this case, we need integrators
for the QCLE:

@ Springer
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0 _ _ifp A i [5a_ AR i on
o = T[] = =5 |- pf| = 517 GD
Here, we consider closed quantum systems, for which the
density matrix operator, p = |¥){'¥|can be represented in the
basis of adiabatic or diabatic states p = |/,,) Cep CjeP( Viepl
In the dynamically consistent basis, the QCLE can be writ-
ten explicitly in a tetradic notation [44] as:

o5,

=2 az;,zg,abﬁab, (32)

where

zij,ab = Flia5bj - I_Nijaai' (33)
Here,

H = (§|HIg) = Ty |Hlp)T, (34)

is the Hamiltonian in the dynamically consistent basis.
Equations similar to Eqgs. (32) and (33) are derived in
Sect. 6 of the Supporting Information. Initially, the Liouvil-
lian operator is constructed using the vibronic Hamiltonian,
H,;,. However, since the integration is done in the locally
diabatic (aka dynamically consistent) basis, the NACs can
be neglected, so the FIvib - H.
To integrate Eq. (32), we recast it in a matrix form:

0 -
veact(ff) = —iLvec(p),

(35a)

Here, I is N? x N? Liovillian super-matrix, and vec() is
a vectorization operation of the matrix, convertinga N X N
matrix into a N2 X 1 vector. So:

At .
vee (3t + Ap) = / drexp<—%2(z+r))]vec(’ﬁ(r)).
0

(35b)

Since the QCLE and the TD-SE are equivalent for
closed systems, the following transformations hold:

Padi = Caai Gy = TaadiaLi TH =TpT", (36a)
~ -l 71
Pati =T 0aai(T) " = T*pogiT (36b)

The basis transformation matrices 7 can be computed
analogously to the above prescriptions for the TD-SE
formalism. In this case, we still need the time-overlap
matrices, which are the wavefunction-derived properties.
Considering that 7(f) = I for each integration time-inter-
val, [t,1 + Af], Eq. (35b) can be rewritten in terms of the
original density matrix:

@ Springer

p(t + Af) =T(t + Afyvec™!

At .
d “TTa+ ] t T}
{[ /0 rexp( = L1+ 1)) | vec(p(e)

TH(t + A1).
(37
The action of the operator [ fOAt drexp(—%i(t + r))] can

be computed following any recipes already discussed in
Sect. 2.3 with the exponential operators computed either
directly or via rotation-based algorithms discussed in
Sect. 2.4. Specifically, we consider:

[’/OAtdreXP<_%Z(T)>] N [exp(—%z<t+ %))], (38)

with Z<t+ %) derived according to Eq. (33) from the

~ 7 T +
H( r+ %r) ~ H(t)+I-;(z+At) _ HO+T (t+At);1(z+At)T(z+At)'

2.6 Summary of electronic DOF integration
algorithms

The above formal approaches can be summarized in several
explicit computational schemes that we assess in this work
(Table 1). All the integrators are implemented in the open-
source Libra package, starting from version v5.4.0. [45]

The integrators 1 and 2 are already defined by Egs. (17a)
and (17b), respectively. We also consider the original LD
approach, scheme 3, given by Eq. (39):

C,ai(t + A =T(t + An)exp

(—% [H(®) + T*(t + ADH(t + ADT(t + A1) )

C,ai(®).
(39)

In it, apart from the final basis reprojection operation
given by the matrix 7'(¢ + At), the exponential operator is
evaluated using the mid-point average of the Hamiltoni-
ans at the limiting points of the integration interval, that
is using H(¢) and H(¢ + Ar). However, the Hamiltonian at
the end-point # + At is similarity-transformed by the matrix
T(t + Af) to account for possible basis states reordering and
any spurious phase inconsistencies. For all integrators 1-3,
the electronic Hamiltonian rather than vibronic Hamiltonian
are used in the exponential operators to reflect the vanishing
nature of the nonadiabatic terms as introduced by the LD
approximation.

We also consider several heuristic, potentially naive
schemes, although corrected to account for the basis re-
expansion. These integrators, 4-6, are given by Eqs.
(40)—(42), respectively. In these methods, we opt to use
vibronic Hamiltonians instead of the electronic ones even
though the LD is assumed to be in effect. This is a scheme
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Table 1 Integration schemes for

. Integrator #
electronic DOF

Integrator description

AL AW =

o 3

10
11
12
13
14

LD with crude splitting using matrix exponential, Eq. (17a)

LD with symmetric splitting using matrix exponential, Eq. (17b)

LD of Granucci and Persico using matrix exponential, Eq. (39)
1-point integration with H,;, and matrix exponential, Eq. (40)

Naive mid-point integration with H,; and matrix exponential, Eq. (41)

Mid-point integration with H,;, and similarity transformation of the
second point and matrix exponential, Eq. (42)

Same as 1, but with rotation-based decomposition of propagator
Same as 2, but with rotation-based decomposition of propagator
Same as 3, but with rotation-based decomposition of propagator
Same as 4, but with rotation-based decomposition of propagator
Same as 5, but with rotation-based decomposition of propagator
Same as 6, but with rotation-based decomposition of propagator
Adiabatic Liouville integrator using matrix exponential, Egs. (37), (38)

Same as 14, but with rotation-based decomposition of propagator

that one could potentially think of if not paying attention
to the neglect of the NAC terms by the LD approximation.
On the other hand, this approximation neglects NACs only
approximately, so including them may be not as naive as we
state. The scheme 4, Eq. (40), evaluates the propagator using
the vibronic Hamiltonian at the beginning point, that’s where
it needs no corrections since, by definition, we start with the
correctly ordered states:

_iAr

- (40)

Co(t+ A1) = T(t + At)exp( Hvib(t))Cadi(t).
The scheme 5, Eq. (41) utilizes that mid-point rule to

approximate H; (t+ %) in a somewhat naive

way:Hvib<t + %) % HHyup(6) + Hypt + An]. This mid-
point approximation should be valid most of the time, except
for the points where state reordering occurs, near avoided or
trivial crossing points. At the same time, the NACs are likely
to be small in the points where the mid-point approximation
is valid and large at the points of avoided or trivial crossing.
Thus, we anticipate that this scheme 5 may be less accurate
than even the 1-point scheme 4.

Coit+ A =T(t + Az)exp(—%t [Hoip(0) + Hy (2 + A1) )Cadi(l)'
41

Further, we consider scheme 6, Eq. (42), which is identi-
cal to scheme 5 with the only exception that the H.;, is cor-
rected for potential state crossings/phase effects at the end of
the integration interval by the corresponding similarity trans-
formation: H,;,(t + Af) —» TH(t + ADH (1 + ADT(t + Ad).
This scheme is similar to the original LD approach of
Granucci, Persico, and Toniolo, Eq. (39), with the only

exception that the vibronic Hamiltonian is used instead of
the electronic one:

Cai(t + A =T(t + An)exp
(-2

2h

Coai(®.

[Hoip(®) + T*(t + ADH i (t + ADT(t + A1) )

42)

2.7 Integrating nuclear DOF; overall integration
schemes

All electronic integration algorithms are combined with
the nuclear DOF integrator based on the Trotter symmetric
splitting, yielding essentially the velocity form of the Ver-
let algorithm [46], Egs. (43a), (43b), (43e). The integration
of electronic variables is done directly after the call of the
“update_Hamiltonian_variables” function, Eq. (43c), that
recomputes wavefunctions, diabatic/adiabatic Hamiltonians
and other derived properties such as forces in response to
the update of nuclear coordinates, Eq. (43b). At this point,
all the properties at time steps ¢ and ¢ + At are known and
can be used in the electronic DOF integration by the “prop-
agate_electronic” function, Eq. (43d). This function com-
putes the re-projection matrices, P(z,t + At) and uses them
in the electronic DOF integration algorithms discussed in
Sects. 2.3-2.6.

A A
p(1+3) =p0+F0OS, (43a)
q(t + Ar) = g(t) + M~ p(1)At, (43b)
@ Springer
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Table 2 Parameters of the

model Hamiltonians used in Model Ej, au E, au qp> a.u q,, a.u ky, a.u ki, a.u Vorr a.u
this work 1 0.0 0.0 0.0 25 0.002 0.005 0.000
2 0.0 0.0 0.0 2.5 0.002 0.005 0.001
3 0.0 0.0 0.0 25 0.002 0.005 0.01
4 0.0 - 001 0.0 0.5 0.002 0.008 0.001

F(t+ Af), H(t + AD), w(t + A

4
= call “update_Hamiltonian_variables(q(t + At))”, (43¢)
call “propagate_electronic”, (43d)
p(t+At)=p<t+ %) +F(t+At)%t, (43e)

3 Computational details

The developed integrators are assessed using model Hamil-
tonians of the Holstein type. In diabatic representation, the
Hamiltonian matrix elements are given by:

Hy, = Eo"‘%ko(q—%)z Voi , ) @
" Vo E, + %kl (q - Q1)

We consider four models with the parameters (Table 2)
chosen to mimic certain dynamical situation (Fig. 3). Spe-
cifically, Model 1 features a pure case of trivial crossing,
zero diabatic coupling. Model 2 corresponds to an interme-
diate value of the diabatic coupling, leading to a strongly
nonadiabatic model. Model 3 has a large value of diabatic
coupling and hence corresponds to a mainly adiabatic case.
Lastly, Model 4 parameters are chosen similar to those of
Model 2, but such that two regions of nonadiabatic coupling
are accessible to the dynamics yielded by the initial con-
ditions we select. This model introduces stronger possibil-
ity of quantum wavepacket interferences and enhances any
complications of the dynamics due to decoherence effects.
Both Models 2 and 4 would be the great testbeds for bench-
marking decoherence correction algorithms for nonadiabatic
dynamics. The numerical values of the parameters in all four
models are chosen to be on the order of magnitude of typi-
cal molecular potentials so that the dynamics would occur
on typical molecular time scales of femto- to picoseconds.

In all calculations, we use only one electron-nuclear tra-
jectory since we aim to assess the deterministic integration
algorithms, so no averaging over stochastic parameters or
processes is needed. In all simulations, the initial nuclear
coordinate and momentum is chosen as g(0) = —4.0,
p(0) = 0.0 so that the simulations starts far from the region
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of nonadiabatic coupling. In this region, the diabatic and adi-
abatic representation are nearly identical, which facilitates
the comparison of the results of integration in different rep-
resentations. Nuclear mass is chosen to be m = 2000.0 a.u.
No randomization of the initial nuclear position or momen-
tum is conducted as would be done in typical quantum—clas-
sical simulation (with multiple trajectories). This is done to
ensure the possibility of the point-by-point comparison of
the dynamics produced by different computational schemes.
We note that our selection of ¢(0) and p(0) gives the system
enough total energy to overcome the barriers and to visit
regions of strong nonadiabatic coupling. Thus, our simula-
tions are not biased to only show the regions of weak nonadi-
abatic coupling (where the dynamics would be largely adi-
abatic and the trivial crossing situation won’t be realized).
At the same time, we don’t give the system too much total
energy so that we aren’t limited by the numerical limitations
on the parameters Af too early on.

We initialize the electronic coefficients on the lowest adi-

abatic state, such that C,;;(0) = < (1)8 I ggi > No random

phase is given to the electronic amplitudes so that simula-
tions with all methods and integration time steps could be
compared to each other directly. The dynamics is evolved for
25,000.0 a.u. of time with the integration time steps, At, of
0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0,
40.0, 50.0, 100.0, and 200.0 a.u. We build different recipes
based on the integration schemes introduced above (Table 1).

The error of each integration scheme (which includes
both the methodology selection and the choice of At) is cal-
culated as a time-integral of the absolute deviation of the
density matrix elements, p;(7), from the reference values at
the same time-points, p;(1):

T
¢ =% ;/O iy 1) —ﬁi,-(t)|2 ~ %ﬂ

N
D |pij(n Af) — z,.j(n.m)‘z.

n=0 ij

(45)

Here, p;(1) = p;(nAt) = p;(n, At) indicates the elements
of the density matrix computed using one of the integra-
tion schemes and Eij(t) is the reference density matrix with
At = 0.001 a.u. The reference calculations are based on
integrating the TD-SE in diabatic representation (where
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no approximations like LD are needed) and converting the
corresponding density matrix to the adiabatic representa-
tion. Since the accuracy of the time-integral Eq. (45) itself
may depend on At, we choose to use the right-hand side of
Eq. (45) as the error measure, leaving the integral in that
equation only as a physical motivation for defining such
an error measure. As another way to remove the numeri-
cal dependence of the error measure, Eq. (45), on the time-
discretization step, Az, we evaluate Eq. (45) at the fixed set
of time-points for all integration schemes. This is done to
prevent a situation when p would be available at some time
point if a smaller Atz is used, and not available when a larger
At is used. Thus, the set of the points, at which the evaluation
of the terms entering Eq. (45) is conducted, is determined
by the largest A¢. Finally, since the error measure defined in
Eq. (45) is based on density matrices, it equally suited for
the TD-SE and the QCLE integration scheme. Defining an
alternative error measure based solely on the wavefunction
amplitudes won’t work for our purposes of comprehensive
assessment of distinct types of integration schemes.

4 Results and discussion

Our main results are summarized in Fig. 4. When comparing
the integration errors as the function of the integration time
step, At (Fig. 4), we observe that all methods fall into one
of the two groups. The first one is the one where electronic
Hamiltonian is used in either the TD-SE (cases 1-3, 7-9) or
the QCLE (cases 13—14) integration. All such schemes show
relatively small errors, nearly identical to each other, for all
the used At values. This means that: (1) all the variants of
the LD integration are accurate and comparable to each other
in accuracy; (2) the rotation-based propagators are as good
as those based on computing matrix exponentials; (3) all of
these currently implemented TD-SE and QCLE integrators
(Cases 1,2,3,7,8,9, 13, and 14) yield comparable accu-
racy and can be used interchangeably. For integrators in this
group, the error varies from 10727 (trivial models and small
A1) to 107 (for any model and the largest values of Af). Such
errors can be considered acceptable, even for large values
of Ar. From the practical standpoint, one is free to use any
of them even though some appear to be more sophisticated.

The second group of integration schemes includes all
variants using vibronic Hamiltonian (cases 4—6 and 10-12).
In these schemes, the TD-SE or QCLE are integrated using
the traditional vibronic Hamiltonian, H; (that explicitly
depends on nonadiabatic coupling), instead of electronic
Hamiltonians alone (as done in the LD-based methods). The
error values start from 107> values, in the adiabatic dynamics
(Model 3) and hold until reasonable integration time steps on
the order of At & 10 a.u. Such accuracy is also achieved even
when the smallest integration time step of Az = 0.001 a.u. is

used and is comparable to the worst errors of the LD-based
integrators used even with the largest time steps of 100 a.u.
The only reason why such heuristic integration schemes
work reasonably in this case is because the NACs are small,
so the difference between electronic and vibronic Hamilto-
nians is small. Another situation where the heuristic integra-
tors work as good as the proper LD schemes, is the case of
pure trivial crossing (Model 1). In this case, the NAC is zero
everywhere except for the exact point of the diabatic surfaces
crossing, which may be difficult to “hit” exactly in numerical
calculations. Furthermore, in our implementation, the NAC
for models like Model 1 (constant diabatic coupling) is set
to zero when the energy gap is below 107 a.u., to avoid the
division by zero. Thus, staying on the same-index adiabatic
state is the expected outcome of the traditional NAC-based
(or H,;,-based) integration of the TD-SE for such a model.
However, the correct behavior for this model is to observe
Rabi oscillations of the adiabatic populations, while having
unchanged diabatic population on the starting diabatic state.
This is where the basis set reprojection, Egs. (13)—(14), plays
a critical role. It is this reprojection that enables the correct
“switch” of the active adiabatic state (and the corresponding
TD-SE amplitudes’ adjustment), leading to small errors for
Model 1. In the strongly nonadiabatic Models 2 and 4, the
error measure of the heuristic integrators starts at values
as large as 1.0 even for the smallest Az used. Thus, such
integrators are not suitable for integrating the TD-SE and
the QCLE. We should note that in our implementation the
reprojection approach is used with the H ; -based integrators
as a way to track the evolution of the basis states. However,
unlike the trivial crossing Model 1, even the basis reprojec-
tion is not sufficient to yield low errors in the dynamics. This
is because the NAC terms of the H,;, matrices used in the
integrators are inconsistent with the LD assumption.

We further comment on several interesting observations
regarding the error measure vs. At. First, for all integra-
tors we generally observe the expected increase of the error
with the integration time step. For proper LD integrators, we
observe two critical regions—first, at A¢ around 0.01 a.u.,
where we observe a rather significant “jump” of the error
from nearly numerically exact integration (errors on the
order of 107" — 107'5) to an approximate solution (errors
on the order 1077). Further increasing Az up to about 10 a.u.
leads to a steady increase of the error up to still-acceptable
level of 1073, Although both nuclear and electronic DOF
integration are affected by At, the nuclear integration is
likely to be less sensitive to such small integration time
steps. Thus, the error accumulation in this region can be
attributed mostly to the electronic integration schemes. This
is where we observe either a steady increase of the error (for
the proper LD integration scheme) or a complete insensitiv-
ity of the error to At (for the heuristic schemes).

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



68 Page120f 17

Theoretical Chemistry Accounts (2023) 142:68

Energy, a.u.

Energy, a.u.

Energy, a.u.

Energy, a.u.

@ Springer

0.06
0.05
0.04
0.03
0.02:
0.01
0.00:

=00y -2 0 2

Coordinate, a.u.
0.06
0.05
0.04
0.03
0.02
0.01
0.00

~0ily =2 0 2
Coordinate, a.u.

4 -2 0 2
Coordinate, a.u.

== Hoo
0.05 —

== Hn
0.04

R—
0.03
0.02:
0.01
0.00

-0.01,

-2 0 2
Coordinate, a.u.

NAC, a.u.

-1.0
=1:5
-2.0!

NAC, a.u.

NAC, a.u.

NAC, a.u.

-0.5

2.0
1.5
1.0
0.5
0.0

— NACo1

2.0
15
1.0
0.5

-2

0 2 4
Coordinate, a.u.

—— NACop1

0.0
-0.5
-1.0
-15

_Z'Q

0.3
0.2
0.1
0.0
-0.1

-0.2

-2

-2

-2

0 2 4
Coordinate, a.u.

— NACp1

0 2 4
Coordinate, a.u.

= NACo1
0 2 4
Coordinate, a.u.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.




Theoretical Chemistry Accounts (2023) 142:68

Page 130f 17 68

«Fig. 3 The four 2-level Holstein-type models used in this work. Each
row represents a model, from 1 to 4. The first column shows diabatic
(the dashed lines) and adiabatic (the solid lines) energy surfaces for
the models. The second column shows the “raw” derivative couplings
computed along the nuclear coordinate

The second critical region is met at A values around
10-100 a.u. This is where we observe a second “jump”
in the error’s order of magnitude. This jump is less pro-
nounced for the proper LD algorithms and is very rapid
for the heuristic schemes. We associate this effect with
the errors due to nuclear DOF integration, which could
strongly affect the NAC values and hence lead to faster
accumulation of error in the heuristic methods that rely on
the vibronic Hamiltonians. Interestingly, for the nonadi-
abatic Model 2 (and partially for Model 4), we observe a
drop of error when At increases past this second critical
point around 10 a.u. This effect may be attributed to the
decreased changes for system to sample regions near the
state crossing and increased changes of sampling regions

Model 1
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Fig.4 Computed errors between the density matrix of each integra-
tor and the reference density matrix for (a) Model 1, (b) Model 2, (¢)
Model 3, and (d) Model 4. For all models, but Model 1, the results

with smaller NACs instead. As a result, the H;, in such
simulations is closer to H on average, so the heuristic inte-
gration scheme converges to the proper LD one.

As demonstrated above, the variety of the LD-based inte-
grators are derived starting from the basis set reprojection
approach described in the theory section. Although the new
integrators derived do not yield significant practical advan-
tage over the original LD approach of Granucci, Persico and
Toniolo (which itself is one case of such a family of integra-
tors), the fact that they all work well confirms that the intro-
duced framework is correct and can be used to derive other
schemes, if needed. Furthermore, we want to highlight the
importance of the reprojection matrix resets to the identity
matrix at every nuclear iteration. As discussed in section S4
of the Supporting Information, in our early formulations,
we used the cumulative reprojection matrix which was
propagated along the TD-SE amplitudes. However, such an
approach led to a very fast accumulation of errors, due to
neglect of the time-dependence of certain terms. As a result,
the obtained dynamics was incorrect. For example, the Rabi

Model 2
1 R B SRR o SEEE X B EE B B b Bt
107+ ;
10—4.
s 40 J -m- Casel -m- Case8
= ¢ -m- Case2 -m- Case9
o -10 §
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(d

fall into two groups leading to sets of nearly overlapping lines. The
first set (accurate ones) includes cases 1, 2, 3, 7, 8, 9, 13 and 14. The
second set (inaccurate) includes cases 4, 5, 6, 10, 11, and 12
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Fig.5 Evolution of density matrix elements p,, (population) and p,
(coherence, real, and imaginary parts) in model Hamiltonian given by
Model 4, as computed by different integration schemes. The compari-
son is illustrated for two integration time steps of (a) At = 0.001; and

oscillations in the Model 1 would decay to populations on
each state being close to 0.5 instead of oscillating between
the values of 0 and 1. The key step to avoid such errors
was to re-initialize the reprojection matrices to the identity
matrices, which is consistent with the key approximation in
the local diabatization procedure.

To illustrate the error accumulations and to better under-
stand its origin, we analyze the evolution of the density
matrix elements. Namely, we consider Re(p,y,), the popula-
tion of adiabatic state 0, and the components of coherence,
Re( por ) and Im(p,, ), as computed with different integration
schemes and different integration time steps (Fig. 5). Fig-
ure 5 highlights these properties computed for Model 4, and
section S7 of the Supporting Information presents results
for other models (Figs. S1-S3). For the smallest integra-
tion time step (Fig. 5a), we observe two sets of curves—
one, for the reference method and the LD methods (e.g.,
green and yellow lines), the other—for the heuristic methods
(gray dashed). The two sets of curves deviate for some time-
intervals and coincide only infrequently. All such deviations
contribute to the error shown in Fig. 4. Note that since both
population and coherences are bound, and because the error
definition, Eq. (45), included time-averaging, the error is
also bound at the levels on the order of several units.

A careful examination of the propagated density matrix
elements revealed a surprising feature in evolution of the
coherence components. Namely, their discontinuities, both
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(b)

(b) At = 10.0. Many methods yield numerically equivalent results, so
only few types of curves are visible, especially in the cases with the
smallest Az

for real and imaginary parts (Fig. 5, red boxes). We argue
that such discontinuities are introduced by the reprojec-
tion operators 7. Indeed, consider a simple situation of
state switching (e.g., as could occur in Model 1), that is
co®) = ¢, (t + At)and ¢, (f) — ¢, (¢ + At). If we consider the
coherence matrix elements, p,;, we observe that:

Po1(t + At) = co(t + An)ci(t + Ar)

: 46
= c1(Dcy() = (coMey (1) = py, (0. o

In other words, the imaginary component of the coher-
ence exhibits a discontinuity, a sign flip. In general, the
amplitudes change may involve mixing, so the discontinu-
ity would be more general than a sign flip and could involve
the real component of coherences as well, as we observe
in Fig. 5. In passing, we should clarify that although we
observe the discontinuities of the off-diagonal elements of
matrix C,4;CF., this effect is compensated by the changes of
the adiabatic basis functions, so that the full density matrix
operator p = |y ,q)C,yiC (W ;| preserves its continuity.
Nevertheless, this observation may be important to keep in
mind when implementing various decoherence corrections
via the density matrix elements, such as those used in the
decay of mixing [47—49] and related coherence matrix ele-
ments damping schemes [22].
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5 Conclusions

In this account, we present a systematic framework for
building new integrators for the TD-SE and the QCLE that
extend the idea of the LD scheme pioneered by Granucci,
Persico and Toniolo. The framework is based on the basis
set reprojection combined with the re-initialization of such
matrices. The excellent numerical performance of a family
of such LD-based integrators confirms the correctness of the
underlying theoretical methodology for deriving them. The
original LD scheme of Granucci, Persico and Toniolo can
be viewed as one of the members of the family of integrators
that can be derived from the basis set reprojection approach.
We demonstrate that all the derived LD-based integrators are
comparable to each other in accuracy, including the original
LD scheme and can be used interchangeably. We find that
the approach based on evolving the reprojection matrices
is unstable and accumulates errors very rapidly due to the
underlying approximations. The reprojection matrix re-ini-
tialization at every nuclear time step, initially devised within
the LD approach, is a critical component for an accurate and
stable integration of TD-SE or QCLE.

We demonstrate that the LD algorithms introduce nomi-
nal discontinuities in the coherence components. We show
that such discontinuities are introduced by the reprojection
matrix. Although this matrix does not introduce any discon-
tinuities in populations, it does affect the coherences. This
effect may be important to keep in mind when implementing
decoherence corrections schemes based directly on modify-
ing coherence matrix elements [50].

We find that the LD-based schemes notably supersede
the analogous traditional schemes that directly use vibronic
Hamiltonians, H;;, and nonadiabatic couplings. The use of the
reprojection matrices is critical for capturing correct qualita-
tive dynamics when trivial crossings are present. No additional
state tracking or wavefunction phase corrections are needed.
However, even with the reprojection matrices in use, the tra-
ditional integration approaches that rely on H,;, (and hence
explicitly on NACs) yield significantly larger error measure of
dynamics as compared to LD-derived ones. We recommend
the LD approaches to be used whenever possible. For the
model Hamiltonians with the energetics comparable to that of
typical molecular Hamiltonians, the electronic TD-SE/QCLE
integration time steps could extend up to 100 a.u. (ca. 2.5 fs).

‘We have derived a Trotter-splitting rotation-based propaga-
tor for the TD-SE and the QCLE that works for effective Her-
mitian Hamiltonians with nonzero off-diagonal elements. We
demonstrate that the proper LD algorithms yield comparable
accuracy when used with matrix exponential or rotation-based
propagation algorithms.

Finally, this work reports an implementation of a large fam-
ily of the above integrators (both based on LD or H,;,, based

V!
on matrix exponentiation or rotations algorithms, for TD-SE

and QCLE) in the open-source Libra package version v5.4.0.
We anticipate that this contribution would be a useful theoreti-
cal account on such implementation.

6 Supplementary Information

Detailed scripts and input files used for all types of cal-
culations are available in digital form online at Zenodo
repository [51]. The Libra code version 5.4.0 is available
online at another Zenodo repository [45].

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00214-023-03007-7.
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