IISE Transactions

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uiie21

©

Taylor & Francis

Taylor & Francis Grou

P

Transformer-enabled generative adversarial
imputation network with selective generation
(SGT-GAIN) for missing region imputation

Yuxuan Li, Zhangyue Shi & Chenang Liu

To cite this article: Yuxuan Li, Zhangyue Shi & Chenang Liu (02 May 2023): Transformer-
enabled generative adversarial imputation network with selective generation (SGT-GAIN) for
missing region imputation, IISE Transactions, DOI: 10.1080/24725854.2023.2193257

To link to this article: https://doi.org/10.1080/24725854.2023.2193257

A
h View supplementary material &'

@ Published online: 02 May 2023.

N
CI/ Submit your article to this journal &

||I| Article views: 270

A
& View related articles &'

@ View Crossmark data (&'

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=uiie21


https://www.tandfonline.com/action/journalInformation?journalCode=uiie21
https://www.tandfonline.com/loi/uiie21
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24725854.2023.2193257
https://doi.org/10.1080/24725854.2023.2193257
https://www.tandfonline.com/doi/suppl/10.1080/24725854.2023.2193257
https://www.tandfonline.com/doi/suppl/10.1080/24725854.2023.2193257
https://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/24725854.2023.2193257
https://www.tandfonline.com/doi/mlt/10.1080/24725854.2023.2193257
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2023.2193257&domain=pdf&date_stamp=02 May 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2023.2193257&domain=pdf&date_stamp=02 May 2023

IISE TRANSACTIONS
https://doi.org/10.1080/24725854.2023.2193257

Taylor & Francis
Taylor &Francis Group

‘ W) Check for updates‘

Transformer-enabled generative adversarial imputation network with selective
generation (SGT-GAIN) for missing region imputation

Yuxuan Li, Zhangyue Shi, and Chenang Liu

The School of Industrial Engineering & Management, Oklahoma State University, Stillwater, OK, USA

ABSTRACT

Although data have been extensively leveraged for process monitoring and control in advanced
manufacturing, it still suffers from the connection issues among sensors, machines, and computers,
which may lead to significant data loss, i.e., missing region in the collected data, in the application
of data-driven monitoring. To address the missing region issues, one popular way is to perform
missing data imputation. With the advances of machine learning, many approaches have been
developed for the missing data imputation, such as the popular Generative Adversarial Imputation
Network (GAIN), which is based on the Generative Adversarial Network (GAN). However, the inher-
ent shortcomings of generative adversarial architecture may still lead to unstable training. More
importantly, the collected online sensor data in manufacturing are in sequential order whereas
GAIN considered the input data independently. Hence, to address these two limitations, this work
proposes a novel approach termed transformer-enabled GAIN with selective generation (SGT-
GAIN). The contributions of the proposed SGT-GAIN consist of three aspects: (i) the architecture
for transformer-enabled generation is developed to capture the sequential information among the
data; (ii) a selective multi-generation framework is proposed to further reduce the imputation bias;
and (iii) an ensemble learning framework is applied to enhance the imputation robustness. Both
the numerical simulation study and a real-world case study in additive manufacturing demon-
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strated the effectiveness of the proposed SGT-GAIN.

1. Introduction

With the recent advancements in sensor technologies, more
and more manufacturing systems have become data-enabled,
which makes great contributions to the improvement of moni-
toring and control. For instance, in additive manufacturing, het-
erogeneous sensors can be mounted and the collected sensor
signals can be leveraged to identify the real-time process condi-
tions (Rao et al, 2015 Lu and Wong, 2018; Liu et al, 2020;
Liu et al, 2021). Specifically, when unexpected process errors or
anomalies occur, the monitoring models can detect the patterns
from the collected data and then provide alarms. Although
modern information technologies have significantly improved
the efficiency and trustworthiness of data transmission, it is still
possible that the connection between sensors and machines is
not good enough, such as the common poor connection or
even miss connection, leading to data loss for analysis, i.e., the
missing region issue. Under such circumstances, to accurately
impute the missing regions would be greatly beneficial for data
analysis. As described in Figure 1, the missing region may lead
to significant bias to monitor the processes, since it is not pos-
sible to send the complete data to the trained monitoring
model. Hence, it is critically needed to address the missing
region issue in the collected data, and thereby, facilitate the
monitoring performance in manufacturing systems. As the
missing region issue can be treated as a specific type of

incomplete data issue, one of the most popular directions to
address the data incompleteness issue is to perform the appro-
priate data imputation techniques (Lakshminarayan et al., 1996;
Vangipuram et al., 2020).

In recent decades, many advanced imputation approaches
have been developed for missing data imputation. Specifically,
the imputation approaches can be classified into two groups:
the conventional approaches and machine learning-based
approaches (Mirzaei et al., 2022). For the conventional
approaches, the statistics-based imputation (Musil et al,
2002), matrix completion (Mazumder et al, 2010), and the
expectation maximization algorithm (Garcia-Laencina et al,
2010) are widely applied. However, although they are easy to
calculate, the sequential information in the data may not be
considered, which does not fit with the sequentially collected
sensor signals. In addition, for some of the machine learning-
based methods, such as the k nearest neighbors (k-NN)
(Zhang, 2012), MissForest (Stekhoven and Bithlmann, 2012),
they may also have the similar limitations. Hence, the neural
network-based imputation approaches, such as Denoising
AutoEncoder (DAE) (Vincent et al, 2008), and Generative
Adversarial Nets (GAN) (Goodfellow et al, 2020)-based
imputation methods, become popular. With the neural net-
work structures, the collected data can be transformed as
window-based samples, so that the sequential information in
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Figure 1. A demonstration of the missing region in the collected manufactur-
ing data.

the window could be efficiently utilized (Li et al, 2021).
However, for the DAE, a complete dataset is required to train
the model, but it may be very challenging to obtain a com-
plete dataset in practice. Therefore, most of the existing
imputation approaches are not suitable for this study. Under
such circumstances, GAN-based approaches stand out, since
it is able to learn the distribution of the data instead of only
performing the imputation. Kim et al. (2020) has provided a
detailed survey about GAN-based imputation approaches,
which includes the Generative Adversarial Imputation Nets
(GAIN) (Yoon et al., 2018), Stackelberg GAN (Zhang and
Woodruff, 2018), and Collaborative GAN (Lee et al., 2019).
Particularly, GAIN (Yoon et al, 2018; Dogan et al., 2023) is
widely applied, due to its superior performance.

However, GAIN also has some critical shortcomings to
accomplish missing region imputation. Particularly, although
the real-time sensor data can be sent to GAIN, how to learn
the underlying complex sequential information still remains
challenging. In addition, in the imputation process of GAIN,
the generated values for a non-missing area may be signifi-
cantly different from actual values, which may lead to
imputation bias. In addition, due to the inherent properties
of GAN architecture, the training process of GAIN may also
be unstable. Therefore, to bridge the above-mentioned gaps,
a new imputation approach termed transformer-enabled
GAIN with selective generation (SGT-GAIN) is proposed,
and its main contributions consist of: (i) a transformer-
enabled architecture is incorporated to capture the sequen-
tial information in the window-based samples; (ii) a selective
multi-generation framework is proposed to select high-
quality imputations and reduce the imputation bias; and (iii)
an ensemble learning framework is applied to further
enhance the robustness of the imputation model.

The rest of this article is structured as follows. The missing
region issue is defined and the GAIN is introduced in Section 2.
Then the proposed research methodology is discussed in
Section 3. Afterwards, the simulation study and a real-world
Additive Manufacturing (AM) case study are conducted in Secion
4. Finally, Section 5 summarizes the conclusions of this study.

2. Problem statement and research background
2.1 Missing region issue

Assume that the sensors involve d channels and s samples
are collected. Then the multivariate time series can be repre-

sented as a data matrix X; following R™“. As described in

X¢ 1 %11, X124 X14)|
: thl X21, X22,:4 X224 ! XW1
Xt 7: Xt3: X311y X332, X341} sz xw
| X, X41, X4z, Xad =

Figure 2. A demonstration of window-based sampling for online sensor data.

Figure 2, through time window-based sampling with win-
dow size n (n =3 in Figure 2), X; is transformed to data
tensor Ly following RP*"*? where p is the number of sam-
ples after window-based sampling.

Define the mask matrix My in R as a binary
matrix to demonstrate the missing region. Assume that the
size of one missing region is 7 X d in each window and the
first missing sample in the ith window is f;-th sample. Then
the elements in My, are shown as (1). In this way, by using
© for element-wise multiplication, My © Ly could repre-
sent the existing values in &y whereas (1 — My ) © Ly
could represent the missing regions in &y. The problem is
to impute the (1 —My)® Ly, and the time-dependent
information within each window-based sample could be
considered for the imputation:

0 If i<i<f;
My = fisisfitr i=1,..
1 Otherwise

2.2 GAIN

As discussed in Sectionl, this proposed method is driven by
the GAIN, since GAIN has demonstrated its superior per-
formance in missing data imputation (Yoon et al., 2018).
Following the popular GAN architecture (Goodfellow et al.,
2020), GAIN also involves two key components, the generator
G and the discriminator D. G generates the fake data whereas
D makes decisions to consider whether the input data are gen-
erated data or actual data. In short, G and D compete with
each other. However, instead of sending the noise and actual
data for training in GAN, three different matrices are used in
GAIN, i.e., data matrix X, mask matrix M, and hint matrix
H. As described in Section 2.1, X records the actual values of
one window. M describes the location of missing regions. As
for H, it passes some hint information to the discriminator D,
which is controlled by the hint parameter h.

The output of G is denoted as X with noise Z. It is also
a matrix following R™™, similar to X based on inputting
noise Z. In each iteration, as shown in (2), X, is combined
with the actual values. That is, the missing regions in X are
imputed by the generated values in X from the same loca-
tion and then sent to D. In this way, X is obtained, and
then sent to D with H to make the decisions

M)6oX )

Specifically, D wants to maximize the probability of correctly
predicting M whereas G wants to minimize such probability.

X=MOX+(1-
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Figure 3. An overview of the proposed SGT-GAIN.

Besides, the prediction of M, ie, M, is log(D(X, H))
Under such circumstances, in order to achieve that the dis-
tribution of generated data is similar to that of the distribu-
tion of actual data, the minimax game between G and D is
demonstrated as the value function in (3). Based on (3), G
and D could compete with each other until achieving a
good balance:

mGin max V(D,G) =Eg qu {MTlog (D (X, H) )}

+(1-M" [1og(1 - D(X, H))} 3)

Notably, M ® X may be different from M ® X, since X
only depends on the noise Z. Thus, it is important to
increase the similarity between M ®X and MO X.
Following this direction, the Mean Square Error (MSE)
between X and X, ie., Ly (X, X), can be calculated and
optimized. Hence, the losses for G, Lg and D, Lp are dem-
onstrated in (4) where « is a hyper-parameter:

Lp = (1—-M)"log(1 — D(X,H)) — MTlog (D(X,H))

Lo = —(1 — M)"log(D(X, H)) + aLy (X, X) (4)

Due to the inherent properties of the GAN structure,
model collapse (Goodfellow et al, 2020) may still occur,
leading to an unstable and divergent training process of
GAIN. As a result, the GAIN-based estimation of X, i.e., X,
may be significantly biased. More importantly, the existing
GAIN framework cannot capture the sequential effects in
the window-based samples. Hence, to address these two lim-
itations in GAIN, a novel transformer-enabled GAIN with
selective generation (SGT-GAIN) is proposed in Section 3.

3. Research methodology

This section will introduce the proposed SGT-GAIN to
address the limitations of GAIN discussed in Section 2.2. An
overview of the proposed SGT-GAIN is shown in Figure 3,
which consists of three steps. First of all, to capture the
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underlying sequential relationships for missing region
imputation, the transformer-based neural network is inte-
grated in the generator of GAIN as transformer-enabled
GAIN (T-GAIN) (see Section 3.1). Afterwards, to reduce the
imputation bias caused by generative adversarial architec-
ture, a novel selective generation mechanism for T-GAIN
(SGT-GAIN) is proposed and added into the transformer-
enabled generator by incorporating selective filter layer and
multi-generation collaboration (see Section 3.2). Then, a
bagging-based ensemble learning framework is also applied
for SGT-GAIN to further increase the robustness and reduce
the imputation variation of the proposed method (see
Section 3.3).

3.1 Transformer-enabled GAIN (T-GAIN)

As an emerging Al model, the transformer has been widely
applied in various natural language processing tasks; it has
also shown its great potential in computer vision areas, due
to its strong capability to handle the long-term dependencies
in high dimensional data (Gillioz et al, 2020; Tay et al,
2022). Besides, recently Jiang et al. (2021) and Zhang et al.
(2022) also demonstrated that a transformer can make sig-
nificant contributions to enhancing the capability of the gen-
erator in GAN. However, the investigation on the
integration of a transformer and GAN are still limited, and
this gap has not been completely addressed. In a trans-
former, one of the most critical components is the multi-
head attention mechanism, which considers the pairwise
relations among the elements in the input data. Hence, the
complex sequential relationships can be learned by the
multi-head attention mechanism. Thus, it also motivates this
study enabling GAIN to equip the strength of transformer.

An overview of the designed transformer-enabled GAIN
is shown in Figure 4(a), in which the transformer is incor-
porated in the generator. Specifically, in each iteration, the
transformer-enabled generator, i.e., G;, will generate a com-
plete matrix X based on noise Z. Afterwards, the generated
X will be combined with X and M as X in terms of a
similar procedure to that described in (2). Then X and H
will be sent to the discriminator D, which aims to discrim-
inate the area of actual values and imputed values. The out-
put of D, ie., D(X, H), will be applied to guide the update
of both G; and D.

Apart from the multi-head attention mechanism, as
shown in Figure 4(b), the add & norm module as well as
the feed-forward layers are also widely incorporated in a
transformer to eliminate the gradient problem and describe
nonlinear relationships among the data (Geva et al., 2020).
By integrating the above-mentioned components, the trans-
former incorporated in the generator consists of two main
modules: one encoder and one decoder, which have similar
structures. With this architecture, the transformer-enabled
generator G, is demonstrated in Figure 4(b).

Specifically, denote one input window-based sample as
X,xd» which has #n vectors with d variables. According to
Figure 4(b), X« is first sent into the multi-head attention
mechanism in the encoder. Specifically, the multi-head
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Figure 4. A demonstration of the transformer-enabled GAIN (a) and the transformer-enabled generator (b).
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Figure 5. Architecture of the single head (a) and multi-head attention mechanism (b).

attention mechanism consists of several single heads.
Suppose that there are h, single heads in the multi-head
attention mechanism. Each single head has a similar struc-
ture as shown in Figure 5(a). Three weight matrices, i.e.,
WS, WK and W/, are randomly initialized for the calcula-
tion in head i. Each single-head attention, e.g., a head i,
could distribute the information (e.g., the area to which the
model should pay more attention) in a single direction over
the transformer. To improve the ability of a transformer to
learn the information from multiple directions, h, single
heads are integrated together as the multi-head attention
mechanism in the transformer as shown in Figure 5(b).
Specifically, for head i, W2, WK and W/ are used to cal-
culate the mapping elements of queries, keys and values, i.e.,
Q, K and V, respectively. Afterwards, Q, K and V are
applied to obtain the output of self-attention mechanism for
head i. The equation of the multi-attention mechanism is
demonstrated in (5). Finally, the outputs from different
heads, i.e., {A], Ay, Aj,..,Ay}, are concatenated together
to obtain the final output, i.e., MultiHead(Q,K, V), by mul-
tiplying another weight matrix WO (Tay et al., 2022):

Q =XW? ; K; = XW[; Vi =XW/

QK
A; = softmax LV,

MultiHead(Q, K, V) = Concat(Ay, A,, ..., A, )W? (5)

To simplify the model training process and eliminate the
gradient problem, the add & norm module is applied as (6).
First, the MultiHead(Q, K, V) is normalized among different
samples by LayerNorm(-). Afterwards, the LayerNorm(Multi
Head(Q,K,V)) is added by the input data matrix to obtain
the output, i.e., Xa:

X, = LayerNorm(MultiHead(Q,K,V)) + X (6)

Then to effectively describe the nonlinear relationships, the
feed-forward layer is applied. The input of the feed-forward
layer, i.e., X4, is passed into a two-layered feed-forward net-
work with ReLU activations, which is expressed as (7), where
F, and F, are functions like Wx + b. In this way, the output
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Figure 6. A demonstration of the selective multi-generation framework.

of this encoder, i.e., X4, can be passed either to next encoder
or the decoders:

X4 = F>(ReLU(F,(X,))) (7)

Notably, in each encoder, the attention mechanism is self-
attention, which means WIQ, W{< and Wf< are randomly ini-
tialized in each encoder. However, in the decoder, it will
incorporate its own input and the output of encoders for
the prediction (Tay et al, 2022). Hence, as described in
Figure 4(b), the decoder has both a self-attention mechan-
ism and an encoder-decoder attention mechanism. For the
encoder-decoder attention mechanism, K and V are
obtained from the last encoder instead of randomly initial-
ization. After the decoders, a dense layer with softmax acti-
vation is added to transform the output vectors of the
decoder to the vector with desired format. In this way, the
pair-wise relationships between each element in the input
window-based samples can be learnt. The sequential infor-
mation among the window-based samples can also be cap-
tured for the imputation in the T-GAIN.

The incorporation of transformer in T-GAIN does not
change the main adversarial learning architecture. Thus, the
convergence property of T-GAIN is still similar to GAN
(Goodfellow et al., 2020). Specifically, when the distribution
of actual data is similar enough to the generated data, i.e.,
Pgata = Py, the training converges. In addition, although the
convergence criteria are still based on the time-independent
distribution comparison, the time-dependence pattern can
also be well considered, since we adopted the time window-
based sampling for the raw time series (each sample is a
time-dependent sequence), as discussed in Section 2.1. From
this perspective, the time-dependence is mainly considered
within each sample instead of between different samples.
Consequently, the transformer-based architecture is incorpo-
rated to learn the time-dependent pattern in each sample
when training the GAN model.

3.2 Enabling selective generation framework for T-GAIN
(SGT-GAIN)

In Section 3.1, the transformer is incorporated to learn the
global sequential relationships. However, imputation bias
may still occur since the values in both the missing and

non-missing area are still generated from a single trans-
former-enabled generator. Hence, to reduce the imputation
bias, a novel selective multi-generation framework is pro-
posed. In this way, the T-GAIN with selective generation
(SGT-GAIN) is shown in Figure 6. Using this architecture,
multiple random matrices are sent to different G; for select-
ive multi-generation. Afterwards, the imputed matrices are
sent to the selective filter layer for selection. In the following
sections, the selective filter layer is demonstrated in Section
3.2.1 and the multi-generation framework is discussed in
Section 3.2.2.

3.2.1. Selective filter layer

In order to make M ® X closer to M ® X, inspired by our
prior work, the augmented time-regularized GAN (ATR-
GAN) (Li et al, 2021), the selective filter layer, F, is pro-
posed in this work as Definition 1 to reduce the imputation
bias.

Definition 1. (Selective filter layer): Selective filter layer
F is proposed to select the generated window-based sample
X based on the similarity with X. One-to-one Euclidean dis-
tance is calculated among each sample in X and X. With
the help of a threshold 6, if the distance of the sample is
less than 6, the generated sample will be selected and passed
on. Hence, an indicator function I is applied to show which
sample to pass on by outputting a 0-1 binary matrix with
the same dimension as X. The format of the selective filter
layer can be mathematically expressed as

X' =FX, X)=X- It X) (8)

X,X)<6}MC
It is important to note that, J is a tuning parameter that can
be determined by experimental trials. Specifically, J can be
applied to control the sample size for X". That is, & can be
set according to the percentile of calculated distance (Li
et al., 2021). Hence, there is no neural network parameters
in F, which means F does not need to be updated during
the training process of the model.

Due to the selection in the selective filter layer, X  may
have the sample size deduction compared with X. Hence,
denote that the actual data matrix corresponding to X is
X*, and the mask matrix corresponding to X is M.
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Afterwards, X* and X~ will be combined with X as X fol-

lowing (9), and then X" is sent to the discriminator:

X' =MoX+1-M)oX 9)

3.2.2 Multi-generator collaboration via a selective gener-
ation framework

As described in Section 3.2.1, the data matrix sent to the
discriminator is X rather than X, and the sample size
deduction from X to X may occur . Then it is possible
that some samples in X may never be sent to the discrimin-
ator to make decisions. To address this issue brought from
the selective filter layer, the multi-generator collaboration is
applied.

Suppose k transformer-enabled generators, {G,,G,,, ...,
Gy}, are applied to generate artificial samples. Similar to J
in Section 3.2.1, k is also a tuning parameter, which can be
determined by experimental trials. As shown in Figure 6,
based on the k transformer-enabled generators, k window-
based imputed samples, {X;,X,,..., X}, are generated.
After passing the imputed samples to the selective filter
layer, {X;,X,, ..., X}} are updated as {X,X,,...,X;}. Then
{X|.X,,....X;} are combined with the corresponding actual
data matrices {X,X},...,X;} as (X, X,, ...
ing to (10):

, X,t} accord-

X, =M 0X/ +(1-M) 0X; i=12,..k (10)

Afterwards, {XT, X;, s XZ} are all sent to D to get the
losses. The overall structure of losses is similar to the losses
described in Section 2.2. As shown in (11), for the ith trans-
former-enabled generator, it has its own loss, ie, Lg,,
according to the output of D by inputting Xf The loss of
the discriminator, i.e., Lp, is calculated by utilizing the out-

put of each transformer-enabled generator, i.e., (X, X,, ...,
Xi}. Then L, and Lp could update the entire model
accordingly:

Lo, = —(1 - M) log(D(X,H,)) + Ly (X', X) i
— 1,2,k

b= 301 (00 gl - D%, 11)) - ;g (0(x, 1))

(11)
When the losses converge, the multi-generator is
extracted for data imputation. Then as shown in (12), the

overall imputed matrix from SGT-GAIN, i.e., X, is obtained
by calculating the mean from all the imputed matrices, i.e.,

{Xl,Xz, ...,Xk} :

X; (12)

=

k
=3
i=1

The overall algorithm for the proposed SGT-GAIN is
shown in Algorithm 1. The actual data are first sent to the

SGT-GAIN for training. Then the entire data matrix is sent
to the transformer-enabled generators to impute the values.
The mean of imputed data matrices from transformer-
enabled generators are calculated and then output.

Algorithm 1: SGT-GAIN

Input: Actual data matrix for imputation X , Parameter m, k,
sand 0
For j=1to k do

Step 1: Randomly choose s window-based samples X;
from actual samples X

Step 2: Generate B artificial samples X; from trans-
former-enabled generator G

Step 3: Send X; to the selection layer L to obtain X;

Step 4: Obtain X; based on X; and X;
Step 5: Send X;, X,,
output D(X}), D(X;), ..., D(X})

Step 6: Optimize the model parameters based on the output

of discriminator
Until LG,I s LG,2 3 eees LGtk

Step 7: Send X to {G,, Gy, ..., G, } to be imputed as X
Output X

- XZ into discriminator D to get

and Lp converge:

3.3. Incorporation of ensemble learning framework in
SGT-GAIN

Based on the proposed selective generation framework in
the transformer-enabled GAIN, the proposed SGT-GAIN
can capture the sequential information in the data and
impute the data accurately. To further improve the robust-
ness of SGT-GAIN, an ensemble learning framework, which
is motivated by bagging (Bithlmann, 2012), is established
and incorporated.

As shown in Figure 7, m SGT-GAINs are demonstrated.
Similar to 6 and k, m is also a tuning parameter which
could be determined through experimental trials. To learn
the actual data distribution more comprehensively, each
SGT-GAIN could have a different concentration. That is, m
data matrices, {X;,Xy,...,X;;}, are obtained from the data
tensor & through bootstrapping, and then sent to the m
SGT-GAINs separately. In addition, to emphasize the differ-
ent concentration of different SGT-GAIN, each SGT-GAIN
may apply different hint rates h.

After the SGT-GAINs are well-trained, the entire data
tensor X is sent into each SGT-GAIN to obtain the imputed

tensors, i.e., {ﬁiﬁl,ﬁtz,...fm}. Notably, the continuous and
discrete elements are considered separately for imputation.
For the continuous elements, the mean from all the imputed
data tensors is calculated while the median is calculated for
the discrete elements. Then the final imputed data tensors,
ie, &', can be obtained. In this way, though some SGT-
GAINs may provide inappropriate imputed values, such as
outliers, due to the different concentrations, the effects on
' will be significantly eliminated.

Notably, if the distribution of the training set for the pro-
posed method is different from the distribution of the data
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Figure 7. The overview for incorporation of ensemble learning framework in SGT-GAIN.

for imputation, the imputation performance may become
worse. However, in practice, the SGT-GAIN model can also
be updated to improve the imputation performance when
new data arrive.

4. Case studies

In this section, two studies were conducted to validate the
effectiveness of the proposed SGT-GAIN. The numerical simu-
lation study is presented in Section 4.1, followed by a real-
world case study based on an AM platform, which is discussed
in Section 4.2. Specifically, to demonstrate the effectiveness of
the proposed method, four benchmark approaches are applied
for comparison. They are GAIN (Yoon et al,, 2018), T-GAIN
(no selective generation and ensemble learning), ensemble
GAIN (E-GAIN, no transformer-enabled generator and select-
ive generation), ensemble selective multi-generation GAIN
(ESM-GAIN (Li et al, 2022), no transformer-enabled gener-
ator) and SGT-GAIN (o ensemble) (SGT-GAIN without
ensemble learning framework). In addition, to fully show the
capability of the proposed method under different level of miss-
ing regions, all the experiments are conducted under different
missing region size. The missing region size is personalized
according to different studies to fit the actual data.

4.1 Simulation study

To generate data with clear sequential effects, the Gaussian
process is applied to simulate 1000 actual samples with 300
sequential points based on the Radial Basis Function (RBF)
kernel, i.e, n =300, d = 1. The detailed process to simu-
late the data is shown in (13). The parameter 0 in the RBF
kernel is set as 0.001. Besides, to make the simulation data
more closely match the data from real-world cases, some
random Gaussian noises Zgp are also added:

X, Z1
X:XGP+ZGP,XGP: ,ZGp: s

X1000 Z1000

x; ~ GP(0,k), z; ~ N(0, 22),

1 2
K (Xil,» Xil, ) = €Xp =30 I, — x5 ), 0 = 0.001

i=1,2,..,1000, ,, =1,2,...,300 (13)

In this way, the 1000 x 300 x 1 data matrix Xy is gener-
ated. Recalling the notation introduced in Section 2.1, the
missing region size is r x d and the first missing point of the
ith window-based sample is the f;-th point. In this study, f; is
randomly determined in the ith sample. Afterwards, r succes-
sive points in the samples are removed to simulate the missing
regions. To demonstrate the effectiveness of the proposed
method comprehensively, experiments are conducted under r
from {100, 120, 140, 160, 180} out of 300.

The imputation performance can be evaluated according
to the quality of the imputed regions. Thus, the Mean
Absolute Errors (MAEs) between the imputed region and
the actual values of the missing region can be used as the
evaluation metric to quantitative described the similarity
between the ground truth and imputation. It is natural that
the lower MAEs indicate better imputation performance.

4.1.1 Parameter selection
In the proposed method, there are three key hyper-parame-
ters, i.e., d,k,m. Thus, it is important to discuss their influ-
ence on the model performance as well as the selection. In
this work, J is set as the percentile of the calculated distance
instead of a specified threshold. Since a batch of the samples
is sent to the selective filter layer, the number of samples
passing the selective filter layer is fixed and can be controlled
by 6. Hence, instead of the sample size, 6 may influence the
selection of k to fully cover all the samples. Hence, the dis-
cussion of these three hyper-parameters can be categorized
by two groups: m and the group of ¢ and k. In the experi-
ment, the performance evaluation is based on the MAE and
the missing region size is set as 120 for parameter tuning.
Different values of m, including m = 1,5,10,20, are con-
sidered for selection. Specifically, under each value of m, four
different pairs of ¢ and k are also selected, {6 = 100%, k=
1}, {6=80%, k=2}, {6=60%, k=5}, {0=40%, k=
10}, to fully investigate the importance of m. The MAEs of the
proposed method under different pairs of {0,k} and m are
shown in Table 1. Under each pair of {J,k}, it can be
observed that the proposed method always has the smallest
MAE when m=5. In addition, the MAE when m=1 is
always higher than the others under each pair of {0,k}, which
also shows that the ensemble learning framework can help to
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Table 1. The MAEs under different m and pairs of {3, k}.

Table 3. The data and parameter setups.

m Setup Value
{5,k} 1 5 10 20 Sample size 1000 x 300 x 1
" Number of transformer-enabled 2
{0=100% k= 1} 2.17 2.06 2.12 215 generators k
{0 = 80%, k =2} 2.06 1.93 2.00 199 Number of SGT-GAIN m s
{0 = 60%, k =5} 213 201 207 207 Threshold & 80th percentile of the
{5 = 40%, k =10} 2.23 2.10 2.17 2.16 calculated distance
Table 2. The MAEs under different pairs of {J, k}. layer applies sigmoid as the activation function. The total
0 training time for the proposed model is about 15 mins.
k 40% 60% 80% 100%
1 346 239 196 206 o L ) .
2 246 201 1.93 194 4.1.2. Missing region size-based discussion
5 227 2.01 2.05 212 To fully validate the performance of the proposed SGT-
10 2.10 2.00 2.39 2.07

improve the performance of the proposed method. Also, when
m is 10 or 20 (i.e., relatively large), the MAEs of the proposed
method are similar under all of the four {0,k} pairs. Hence,
the improvement of the proposed method through tuning ¢
and k may be insignificant when m is relatively large.
Therefore, m is chosen to have a value of five in this work.

For the parameters ¢ and k, each pair of {0,k} from J =
40%, 60%,80%,100% and k=1,2,5,10 are selected.
Specifically, 6 = 100% means the selective filter layer does
not work. The MAEs of the proposed method are shown in
Table 2. Under each specific k, the MAEs when 6 = 100%
are always not the smallest, which shows that the selective
filter layer can be helpful to impute the proposed method
more accurately. In addition, when § = 40% and k =1, the
MAE of the proposed method is 3.46, which is much higher
than the other MAEs. This is due to the relatively small §
and the only generator, which is too hard to train the model
accurately. In addition, the optimal values of ¢ and k should
be negatively correlated: when ¢ =40% or 60%, k= 10
may get the smallest MAEs. On the other hand, k = 2 may
get the smallest MAEs when ¢ = 80% or 100%. Especially
when 6 = 80% and k = 20, it is clearly shown that the pro-
posed method has the smallest MAE. Hence, the pair of § =
80% and k = 2 is selected in this study.

In practice, as k and m increase, the model complexity
may also significant increase, leading to a higher training
time. For instance, the training time may increase by
1.5seconds for each k and each m. However, it will not
influence the application of the SGT-GAIN model. A well-
trained SGT-GAIN model can always impute about 20 win-
dow-based samples within a second. Hence, the imputation
frequency could be mostly higher than the sampling fre-
quency in real-world applications.

The detailed setups of parameters in this study are shown
in Table 3. Notably, each multi-head attention mechanism
of the transformer-enabled generator in each SGT-GAIN
involves two heads. The detailed structure of the employed
transformer follows the description in Section 3.1. As for
the discriminator in each GAIN-based model, they consist
of a three-layer MultiLayer Perceptron (MLP). The first two
layers utilizes ReLu as activation functions while the last

GAIN, multiple benchmark comparisons as well as ablation
experiments are performed. Yoon ef al. (2018) have demon-
strated the effectiveness of GAIN with some conventional
and machine learning imputation approaches such as matrix
completion (Mazumder et al., 2010), KNN (Zhang, 2012),
and MissForest (Stekhoven and Buhlmann, 2012). Hence,
this work will focus on the comparison between the pro-
posed method and the GAIN-based approaches. Thus,
GAIN (Yoon et al.,, 2018), T-GAIN (no selective generation
and ensemble learning), ensemble GAIN (E-GAIN, no trans-
former-enabled generator and selective generation), ensem-
ble selective multi-generation GAIN (ESM-GAIN, no
transformer-enabled generator (Li et al, 2022)), and SGT-
GAIN (o ensemble) (the proposed method without ensemble
learning framework) are applied as benchmark approaches.
To ensure the fairness of comparison, the above-mentioned
benchmarks will have the same parameter setup as SGT-
GAIN. Particularly, the generators in GAIN, E-GAIN and
ESM-GAIN are also a three-layer MLP similar to the dis-
criminators. In addition, to make the results more represen-
tational, each experiment involves five replicates and then
the average MAEs (with standard deviation) are used for
comparison.

The MAEs between the proposed method and benchmark
approaches under different missing region size are shown in
Figure 8(a) and Figure 8(b). Specifically, to better show the
MAE differences between the proposed method and bench-
mark approaches, the comparisons are divided into two
groups. As shown in Figure 8(a), the group 1 is comparing
transformer-enabled GAIN models, i.e., SGT-GAIN, T-GAIN
and SGT-GAIN (o ensemble), to demonstrate the effective-
ness of transformer architecture and ensemble learning frame-
work. As for the group 2, it compares the SGT-GAIN with
other benchmark approaches, i.e., GAIN, E-GAIN and ESM-
GAIN, to demonstrate the effectiveness of the incorporation
of selective generation framework and ensemble learning
framework.

As shown in Figure 8(a), the MAEs of the proposed
method are lower than the MAEs of T-GAIN when the
missing region size is 100, 120 and 160. When the missing
region size is 140 and 180, the MAEs of SGT-GAIN still do
not exceed the MAEs of T-GAIN. Hence, the MAEs com-
parison between the proposed method and T-GAIN can
show the effectiveness of the incorporation of selective
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Table 4. The MAEs and standard deviations under different missing region
size.

Missing region size

Approaches 100 120 140 160 180
GAIN 2.40 (0.02) 2.39 (0.03) 2.39 (0.04) 2.41 (0.04) 2.49 (0.11)
T-GAIN 1.96 (0.01) 1.96 (0.03) 1.94 (0.04) 2.09 (0.14) 2.02 (0.06)
E-GAIN 2.39 (0.02) 2.39 (0.04) 2.42 (0.05) 2.42 (0.03) 2.49 (0.04)
ESM-GAIN 2.06 (0.02) 2.19 (0.04) 2.33 (0.18) 2.42 (0.03) 2.48(0.06)
SGT-GAIN 2.07 (0.02) 2.04 (0.04) 2.09 (0.05) 2.12 (0.13) 2.12 (0.05)
(o ensemble)
SGT-GAIN 1.93 (0.02) 1.93 (0.02) 1.94 (0.03) 1.97 (0.04) 2.02 (0.04)

generation framework and ensemble learning framework.
Besides, the MAEs of SGT-GAIN are always smaller than
the MAEs of SGT-GAIN (o ensemble), which also demon-
strates the effectiveness of the ensemble learning framework.
In addition, as the missing region size increases, the MAEs
of the proposed SGT-GAIN also increase smoothly whereas
the MAEs of the other two benchmark approaches increase
non-smoothly, indicating potential low robustness and
higher variation. Besides, the MAEs of SGT-GAIN (o
ensemble) are also smoother than the MAEs of T-GAIN.
Hence, it also proves the effectiveness of the incorporation
of the selective generation framework and ensemble learn-
ing framework to improve model robustness, especially the
ensemble learning framework. Notably, such increasing pat-
terns of MAEs are reasonable, since higher missing region
size means less information in the data to be learnt for
imputation.

Comparing the proposed method with ESM-GAIN, as
shown in Figure 8(b), the proposed SGT-GAIN still has the
smaller MAEs. Hence, such MAE differences demonstrate
that the transformer-enabled generator is very effective to
handle the complex sequential effects. Specifically, as the
missing region size increases, the MAEs differences between
SGT-GAIN and ESM-GAIN increases rapidly. It also suc-
cessfully proves that the transformer-enabled generator
could work much more stable than the MLP generator
better when the missing region is large.

Besides, as the missing region size is 100, 120 and 140,
the MAEs of ESM-GAIN are smaller than E-GAIN, which
could clearly demonstrate the effectiveness of the proposed
selective generation framework. As the missing region size
becomes larger, i.e., 160 and 180, the MAEs of ESM-GAIN
and E-GAIN are very similar. Therefore, it shows that the

performance of the selective generation framework is limited
when the missing region size is relatively large, i.e., any
region that consists of more than half of the points in the
window being missing. Furthermore, as the missing region
size increases, the MAEs for the approaches in group 2 also
increase, which also fits the recognition that the missing
region imputation task becomes more difficult.

The MAEs of the SGT-GAN are also lower than the
MAEs of GAIN and E-GAIN. However, the MAEs of GAIN
and E-GAIN are very similar, so that it is hard to demon-
strate the effectiveness of the ensemble learning framework.
The main reason is that effective ensemble learning depends
on the overall performance of the learners, but both GAIN
and E-GAIN do not learn the sequential effects very well. In
addition, since the main goal of the ensemble learning
framework is to reduce the imputation variations, the means
and standard deviations of MAEs under different missing
region size are provided in Table 4 for a better comparison.
Compared with GAIN, the standard deviations of E-GAIN
are mostly smaller especially when the missing region size is
180. Hence, it could validate that the ensemble learning
framework is able to improve the model robustness. Besides,
the standard deviations of the proposed method are mostly
the lowest, which also shows the high robustness of the pro-
posed method. As the missing region size increases, the
standard deviations of all the approaches gradually increase,
which also proves that the imputation task for GAIN-based
models gradually become more difficult. Overall, the simula-
tion study demonstrates the superior performance of the
proposed SGT-GAIN.

In addition, to further demonstrate the imputation accur-
acy, more evaluation metrics are leveraged, including the
relative MAEs as well as the correlation coefficients between
the imputed data and actual data. The relative MAEs are the
MAEs in percentage to quantify the imputation bias. To
quantify the correlation between the imputed data and
actual data, the Pearson correlation coefficient (Cohen et al.,
2009) is applied. The results of relative MAEs and the cor-
relation coefficients comparison are shown in Table 5. It
demonstrates that the proposed method has the smallest
relative MAEs and the highest correlation coefficients under
different missing region sizes. Therefore, both relative MAEs
and correlations also demonstrate the outperformance of the
proposed method, which is consistent with the comparison
results using MAE.
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Table 5. Relative MAEs and correlation (in brackets) under different missing region size.

Missing region size

Approaches 100 120 140 160 180

GAIN 12.00% (0.55) 11.95% (0.54) 11.95% (0.56) 12.05% (0.56) 12.45% (0.534)
T-GAIN 9.80% (0.67) 9.80% (0.66) 9.70% (0.69) 10.45% (0.64) 10.10% (0.658)
E-GAIN 11.95% (0.55) 11.95% (0.54) 12.10% (0.55) 12.10% (0.56) 12.45% (0.536)
ESM-GAIN 10.30% (0.64) 10.95% (0.59) 11.65% (0.58) 12.10% (0.56) 12.40% (0.536)
SGT-GAIN (o ensemble) 10.35% (0.64) 10.20% (0.64) 10.45% (0.64) 10.60% (0.64) 10.60% (0.627)
SGT-GAIN 9.65% (0.68) 9.65% (0.67) 9.70% (0.69) 9.85% (0.68) 10.10% (0.658)

Table 6. MAEs under different d and different missing region size.

Missing region size r

Dimension d Methods 100 120 140 160 180
1 GAIN 24 2.39 2.39 241 249
T-GAIN 1.96 1.96 1.94  2.09 2.02

E-GAIN 2.39 2.39 242 242 249

ESM-GAIN 2.06 2.19 233 242 248

SGT-GAIN (o ensemble) 2.08 204 209 212 212

SGT-GAIN 1.93 1.93 194 197 2,02

3 GAIN 2.16 217 2.19 2.23 2.69
T-GAIN 2.03 2.04 2.10 1.93 2.00

E-GAIN 217 2.21 2.29 2.17 2.26

ESM-GAIN 2.20 2.18 2.25 224 2.67

SGT-GAIN (o ensemble) 2.05 205 222 214 237

SGT-GAIN 1.87 201 209 193 2.00

5 GAIN 2.06 2.03 2.22 2.1 3.17
T-GAIN 195 196 197 202 205

E-GAIN 2.04 2.07 2.08 2.17 2.20

ESM-GAIN 2.05 2.00 2.08 221 2.16

SGT-GAIN (o0 ensemble) 199 216 209 208 2.13

SGT-GAIN 207 190 203 192 191

10 GAIN 1.92 1.98 1.94 205 2.26
T-GAIN 2.01 213 2.01 2.08 2.24

E-GAIN 1.89 1.95 1.86 2.02 235

ESM-GAIN 192 195 199 220 2.09

SGT-GAIN (o ensemble) 2.08 217  2.11 218 223

SGT-GAIN 2.01 216 191 197 2.07

4.1.3 Autocorrelation-based discussion

In the previous experiments, the experiments were con-
ducted for d =1, which means the autocorrelation in the
actual data is limited. Therefore, to further demonstrate the
effectiveness of the proposed method under different levels
of autocorrelation, experiments under two aspects are con-
ducted: (i) experiments under different d, i.e., experiments
under different data dimensions; (ii) experiments under dif-
ferent 0, i.e., experiments where the distributions of training
set and testing set are different.

In the first group of experiments, four values of d,
including d =1,3,5,10, are applied to demonstrate the
effectiveness of the proposed method where the other setups
remain the same. The recorded MAEs are shown in Table 6.
Under each r and each d, the smallest MAEs are high-
lighted. According to the results, the proposed method has
the smallest MAEs under each r when d=1 and d = 3.
However, as d =5 or d =10, the proposed method can
achieve the smallest MAEs when r is relatively large, i.e.,
r =160 or 180. When the dimension is high, the larger
missing region size means less available information for
imputation. Hence, the proposed method is more competi-
tive when the imputation task is more complicated. Overall,
the proposed method has the potential to be applied when
data dimensionality is high.

Table 7. The MAEs and standard deviations (in brackets) under different 6 of
SGT-GAIN.

Missing region size

0 100 120 140 160 180

0.001 1.93 (0.02) 1.93 (0.02) 1.94 (0.03) 1.97 (0.04) 2.02 (0.04)
0.002 2.03 (0.08) 2.34 (0.04) 2.33 (0.25) 2.11 (0.00) 2.21 (0.00)
0.003 222 (0.22) 2.24 (0.11) 2.44 (0.01) 245 (0.10) 2.34 (0.15)
0.005 2.13 (0.03) 2.12 (0.13) 2.27 (0.13) 2.25 (0.04) 2.41(0.26)

To demonstrate the capability of the proposed method
under different operation conditions, i.e., when the distribu-
tions of the training set and the testing set are slightly differ-
ent, more experiments are conducted with d=1. The
proposed method is initially trained by the actual data simu-
lated for 0 = 0.001, and then it is tested by the actual data
simulated under 0 = 0.002, 0.003 or 0.005. The MAEs of
the proposed method and its standard deviations (in brack-
ets) under different missing region sizes are shown in
Table 7. When 0 increases, the MAEs of the proposed
method will also increase, since higher 0 means the higher
bias from the training set to the testing set, leading to higher
difficulty to impute the missing data. However, as shown in
Table 7, the standard deviations may vary a lot without any
discernable pattern, which means the difference of the distri-
butions may increase the variation of imputation. Overall, the
MAEs of the proposed method may increase at most 25%,
which is much less than the relative increment of 0 (500%).
Therefore, the proposed method still has the application
potential when the operation conditions slightly change.

4.2 Real-world case study in AM

In this section, a real-world AM case study for online anom-
aly detection is conducted. Due to design mechanism of
AM, the product is printed layer-by-layer (Sturm et al,
2017). However, it is possible that the printed product may
have defects or unintended anomalies (Liu et al., 2020),
which may lead to labor and financial costs. The change of
geometric structure due to unintended changes could be
reflected in the online sensor signals (Shi et al., 2023), i.e,
the collected time series sensor data. Hence, online anomaly
detection could be performed via online sensor data.
However, as discussed in Section 1, due to the potential data
loss issue during the data transmission, it is important to
address the missing region issue, so that the detection could
be more effective. In this study, the data collection and the
experimental setup for missing region imputation are intro-
duced in Section 4.2.1, followed by the results and discus-
sions in Section 4.2.2.
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4.2.1 Data collection and experimental setup

In this case, as shown in Figure 9, the data was collected from
one accelerometer attached on the extruder of a regular fused
filament fabrication (FFF) machine. The installed accelerom-
eter has three channels, and the sampling frequency was
approximately 1Hz. The Raspberry Pi 4b microcontroller was
used for data acquisition from the accelerometer. During each
printing, there is a total of 1927 sensor signals collected by
time. Without loss of generality, a solid cube was printed
using polylactic acid (PLA) filament as shown in Figure 9.
The dimension of the cube is 2 x 2x2 cm’.

To simulate the anomaly, compared with the normal part
(Figure 10(a)), a small square void was intentionally inserted
into the cube within the red solid line as shown in Figure
10(b). In this way, when the layers are printed without the
square void, the vibration signals are collected under normal
state. When the layers are printed in the layer with the square
void, the vibration signals are collected under an abnormal
state (Shi et al., 2022). Approximately, the first 40% of observa-
tions are collected when the layers are printed without the
void, while the remaining 60% are collected when the layers
are printed in the layer with the void. Hence, in this case, the
first 5-30% of the collected data is extracted as normal sam-
ples, whereas the latter 60-90% of the collected data is
extracted as abnormal samples. In addition, the window size,
ie, n, is set as 50. In order to increase the number of win-
dow-based samples, the overlap size between adjacent windows
is 40. Then the number of samples is demonstrated in Table 8.

If the proposed SGT-GAIN method can provide effective
imputation, the trained anomaly detector, i.e., a classification
model, should classify the imputed samples accurately. Thus,
the performance of the proposed method could be justified
by comparing the anomaly detection results after imputing

IISE TRANSACTIONS 1

Table 8. The information on the collected data and the setup of computa-
tional experiments.

Setup Size

578 normal observations,
578 abnormal observations
924 observations
232 observations
{10, 15, 20, 25, 30, 35, 40}

Sample size

Anomaly detection training set
Anomaly detection testing set
Missing region size

missing regions with benchmark approaches, i.e., the com-
parison of classification accuracy. According to the experi-
mental setup, 80% window-based samples are randomly
selected as the training set for anomaly detection while the
other 20% window-based samples are considered as the test-
ing set. In addition, in each window-based sample of the test-
ing set, some regions are randomly removed as missing
regions as described in Section 2.1. Since the dimensions of
window-based samples are 50 x 3, the missing region size,
ie., r, is selected from {10, 15, 20, 25, 30, 35, 40} out of
50, as shown in Table 3. The other experimental setups of the
proposed method in this case are the same as Section 4.1, and
the same benchmark approaches are applied for comparison.
Notably, without the loss of representativeness, the com-
monly used gradient boosting classifier (Friedman, 2002) is
selected as the anomaly detector based on our preliminary
detector comparisons. In addition, the F-score (Sasaki, 2007),
which is commonly used in the evaluation of classification
performance, is considered as the metric to measure the per-
formance of the proposed method. The baseline F-score of
the anomaly detection in this work, i.e., the F-score when the
testing set does not need to perform the imputation, is 0.751.

4.2.2 Results and discussions

Similar to Section 4.1, the benchmark approaches are divided
into two groups for comparisons. The F-score comparisons
between the SGT-GAIN, T-GAIN and SGT-GAIN (o ensem-
ble) are shown in Figure 11(a). The F-scores of the proposed
method are higher than T-GAIN under each missing region
size, which demonstrates the effectiveness of the incorpor-
ation of selective generation framework and ensemble learn-
ing framework. In addition, the F-scores of SGT-GAIN (o
ensemble) are also mostly higher than T-GAIN and lower
than SGT-GAIN. Hence, it also demonstrates the effectiveness
of ensemble learning framework. Particularly, when the miss-
ing region size is larger than 25, the F-scores of all three
approaches are very similar. Hence, it also proves that the
incorporation of selective generation framework and ensem-
ble learning framework is limited when the missing region
size is more than half of the window size.

As shown in Figure 11(b), the SGT-GAIN still has the
highest F-scores under all the missing region size. Therefore,
comparing SGT-GAIN with ESM-GAIN, the F-score
improvement due to the transformer-enabled generator is sig-
nificant. In addition, the F-score differences between SGT-
GAIN and other GAIN-based approaches in group 2 become
larger when increasing the missing size. It also proves that the
transformer-enabled generator is more robust and effective,
which means the proposed method is more effective than the
benchmark approaches.
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Figure 11. F-score comparisons between the proposed method and benchmark approaches: (a) Comparisons between SGT-GAIN, T-GAIN and SGT-GAIN (o-ensem-
ble); (b) comparisons between SGT-GAIN, GAIN, E-GAIN and ESM-GAIN.

Table 9. The F-scores and standard deviations under different missing region size.

Missing region size

Approaches 10 15 20 25 30 35 40

GAIN 0.727 (0.011) 0.705 (0.014) 0.692 (0.014) 0.674 (0.032) 0.628 (0.028) 0.615 (0.033) 0.600 (0.067)
T-GAIN 0.730 (0.009) 0.715 (0.011) 0.700 (0.008) 0.704 (0.005) 0.684 (0.011) 0.680 (0.006) 0.679 (0.012)
E-GAIN 0.720 (0.012) 0.703 (0.011) 0.680 (0.015) 0.661 (0.024) 0.640 (0.031) 0.635 (0.034) 0.578 (0.039)
ESM-GAIN 0.729 (0.014) 0.702 (0.012) 0.687 (0.014) 0.668 (0.029) 0.643 (0.031) 0.642 (0.018) 0.600 (0.035)
SGT-GAIN (o ensemble) 0.733 (0.009) 0.715 (0.011) 0.699 (0.008) 0.704 (0.005) 0.681 (0.011) 0.680 (0.009) 0.679 (0.010)
SGT-GAIN 0.733 (0.008) 0.723 (0.005) 0.701 (0.004) 0.710 (0.007) 0.684 (0.005) 0.680 (0.008) 0.679 (0.010)

Besides, the F-scores of ESM-GAIN are also mostly
higher than both GAIN and E-GAIN, which means the
selective generation framework is also effective for missing
region imputation. Furthermore, as the missing region size
increases, the F-scores for the approaches in both group 1
and group 2 also decrease. Such pattern also proves that
higher missing region size lead to less information for miss-
ing region imputation, resulting in lower F-scores.

Moreover, as shown in Figure 11(b), the F-scores of E-
GAIN are still similar to the F-scores of GAIN, which
means the ensemble learning framework does not signifi-
cantly contribute to improving the imputation accuracy in
this study. Since the ensemble learning framework is
applied to reduce the imputation variation, the variation
comparisons of F-scores should be considered. Then the
means and standard deviations of F-scores are shown in
Table 9.

As described in Table 9, the standard deviations of the
proposed method are mostly the lowest. Particularly, com-
pared with ESM-GAIN, the standard deviations of SGT-
GAIN mostly decrease by more than 50%, which shows the
high robustness of the proposed method. Compared with
GAIN, the standard deviations of E-GAIN are also mostly
smaller, which validates that the ensemble learning frame-
work could improve the model robustness. All the pattern
descriptions in this section are consistent with the descrip-
tions in Section 4.1. Therefore, the real-world case study in
AM also demonstrates the superior performance of the pro-
posed SGT-GAIN for missing region imputation. Moreover,
the proposed method can be directly applied to the in-process
anomaly detection.

Regarding its potential on real-time applications, in this
study, the trained SGT-GAIN model can impute about 20 win-
dow-based samples within a second (i.e., about 20 Hz) in this
case (by Python 3.7.4 on Intel® Core™ Processor i7-9750H
(Hexa-Core, 2.60 GHz)). Therefore, compared to the sampling

frequency (1Hz), the computation efficiency of the proposed
method is sufficient enough for online anomaly detection.

5 Conclusions

In this article, a new data imputation approach termed trans-
former-enabled GAIN with selective generation (SGT-GAIN)
is proposed to address the critical missing region issue. The
main contributions of the proposed SGT-GAIN consist of
three aspects: (i) a transformer-enabled generator is demon-
strated to capture the sequential relationship among the win-
dow-based samples; (ii) the selective generation framework is
proposed to reduce the imputation bias and learn the data
patterns comprehensively; and (iii) the ensemble learning
framework is incorporated with SGT-GAIN to improve the
model robustness and reduce the imputation variation.

The outperformance of SGT-GAIN over the benchmark
approaches is demonstrated in the numerical simulation and a
real-world case study in AM. In the simulation study, the pro-
posed method has the smallest MAEs, which shows that the pro-
posed method could impute the missing regions accurately. In
the real-word AM case study, the proposed method also has the
highest F-scores under different missing region size, which also
shows the high robustness and accuracy of the proposed method
for missing region imputation. In addition, the effectiveness of
the components in the proposed SGT-GAIN is also validated in
both simulation study and a real-world case study in AM. Thus,
the proposed method is very promising for missing region
imputation. Specifically, both the simulation study and the real-
world case study are conducted mostly when the operation con-
ditions for both training set and the testing set are the same.
Hence, in the future, more experiments will be conducted to fur-
ther investigate the capability of this method when the training
set and the testing set follow different distributions. In addition,
it is valuable to consider the convergence criteria based on time-
dependent distribution comparisons in the future work.
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