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Abstract
Explainability plays an increasingly important role in machine learning. Because reinforcement learning (RL) involves
interactions between states and actions over time, it’s more challenging to explain an RL policy than supervised learning.
Furthermore, humans view the world through a causal lens and thus prefer causal explanations over associational ones.
Therefore, in this paper, we develop a causal explanation mechanism that quantifies the causal importance of states on actions
and such importance over time. We also demonstrate the advantages of our mechanism over state-of-the-art associational
methods in terms ofRLpolicy explanation through a series of simulation studies, including crop irrigation, Blackjack, collision
avoidance, and lunar lander.

Keywords Explainability · Reinforcement learning · Causal · Temporal importance

1 Introduction

Reinforcement learning (RL) is increasingly being consid-
ered in domains with significant social and safety implica-
tions such as healthcare, transportation, and finance. This
growing societal-scale impact has raised a set of concerns
including trust, bias, and explainability. For example, can
we explain how an RL agent arrives at a certain decision?
When a policy performs well, can we explain why? These
concerns mainly arise from two factors. First, many popular
RL algorithms, particularly deepRL, utilize neural networks,
which are essentially black boxes with their inner workings
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being opaque not only to lay persons but also to data sci-
entists. Second, RL is a trial-and-error learning algorithm
in which an agent tries to find a policy that minimizes a
long-term reward by repeatedly interacting with its environ-
ment. Temporal information such as relationships between
states at different time instances plays a key role in RL and
subsequently adds another layer of complexity compared to
supervised learning.

The field of explainable RL (XRL), a sub-field of explain-
able AI (XAI), aims to partially address these concerns by
providing explanations as towhy anRL agent arrives at a par-
ticular conclusion or action. While still in its infancy, XRL
has made good progress over the past few years, particularly
by taking advantage of existing XAI methods [9, 24, 36].
For instance, inspired by the saliency map method [30] in
supervised learningwhich explains image classifiers by high-
lighting “important” pixels in terms of classifying images,
some XRL methods attempt to explain the decisions made
by an RL agent by generating maps that highlight “impor-
tant” state features [8, 12, 20]. However, there exist at least
two major limitations in state-of-the-art XRLmethods. First,
the majority of them take an associational perspective. For
instance, the aforementioned studies quantify the “impor-
tance” of a feature by calculating the correlation between
the state feature and an action. Since it is well known that
“correlation doesn’t imply causation” [22], it is possible that
features with a high correlation may not necessarily be the
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real “cause” of the action, resulting in a misleading expla-
nation that can lead to user skepticism and possibly even
rejection of the RL system. Second, temporal information
is not generally considered. Temporal effects, such as the
interaction between states and actions over time, which as
mentioned previously is essential in RL, are not taken into
account.

In this paper, we propose a causal XRL mechanism.
Specifically, we explain an RL policy by incorporating a
causal model that we have about the relationship between
states and actions. To best illustrate the key features of our
XRL mechanism, we use a concrete crop irrigation prob-
lem as an example, as shown in Fig. 1 (more details can be
found in theEvaluation section). In this problem, an RL pol-
icy π controls the amount of irrigation water (It ) based on
the following endogenous (observed) state variables: humid-
ity (Ht ), crop weight (Ct ), and radiation (Dt ). Its goal is to
maximize the crop yield during harvest. Crop growth is also
affected by some other features, including the observed pre-
cipitation (Pt ) and other exogenous (unobserved) variables
Ut . To explain why policy π arrives at a particular action It
at the current state, our XRL method quantifies the causal
importance of each state feature, such as Ht , in the context
of this action It via counterfactual reasoning [3, 19], i.e., by
calculating how the action would have changed if the feature
had been different.

Our proposed XRL mechanism addresses the aforemen-
tioned limitations as follows. First, our method can generate
inherently causal explanations. To be more specific, in
essence, importance measures used in associational methods
can only capture direct effects while our causal importance
measures capture total causal effects. For example, for the
state feature Ht , our method can account for two causal
chains: the direct effect chain Ht → It and the indirect effect
chain Ht → Ct → It , while associational methods only
consider the former. Second, our method can quantify the
temporal effect between actions and states, such as the effect
of today’s humidity Ht on tomorrow’s irrigation It+1. In con-
trast, associational methods, such as saliencymap [8], cannot
measure how previous state features can affect the current

action because their models only formulate the relationship
between state and action in one time step and ignore temporal
relations. To the best of our knowledge, our XRL mecha-
nism is the first work that explains RL policies by causally
explaining their actions based on causal state and temporal
importance. It has been studied that humans are more recep-
tive to a contrastive explanation, i.e., humans answer a “Why
X?” question through the answer to the often only implied-
counterfactual “Why not Y instead?” [10, 19]. Because our
causal explanations are based on contrastive samples, users
may find our explanations more intuitive.

2 Related work

Explainable RL (XRL) Based on how an XRL algorithm gen-
erates its explanation, we can categorize existing XRL
methods into state-based, reward-based, and global surro-
gate explanations [9, 24, 36]. State-based methods explain
an action by highlighting state features that are important
in terms of generating the action [8, 25]. Reward-based
methods generally apply reward decomposition and iden-
tify the sub-rewards that contribute the most to decision
making [14]. Global surrogate methods generally approxi-
mate the original RL policy with a simpler and transparent
(also called intrinsically explainable) surrogate model, such
as decision trees, and then generate explanations with the
surrogate model [35]. In the context of state-based methods,
there are generally two ways to quantify feature importance:
(i) gradient-based methods, such as simple gradient [29] and
integrated gradients [32], and (ii) sensitivity-based methods,
such as LIME [26] and SHAP [17]. Our work belongs to the
category of state-based methods. However, instead of using
associations to calculate importance, amethodgenerally used
in existing state-based methods, our method adopts a causal
perspective. The benefits of such a causal approach have been
discussed in the Introduction section.

Causal explanation Causality has already been utilized in
XAI, mainly in supervised learning settings. Most existing

Fig. 1 Causal graph of the crop
irrigation problem. Endogenous
and exogenous states are
denoted by dashed and solid
rectangles, respectively, while
actions are denoted by circles.
More details about causal
graphs can be found in the
Preliminaries section
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studies quantify feature importance by either using Granger
causality [27] and average or individual causal effect met-
ric [4] or by applying random valued interventions [5]. Two
recent studies [18] and [21] are both focused on causal expla-
nations in an RL setting. Compared with [18], the main
difference is that we provide a different type of explanation.
Our method involves finding an importance vector that quan-
tifies the impact of each state feature, while [18] provides a
causal chain starting from the action. We also demonstrate
the ability of our approach to provide temporal importance
explanations that can capture the impact of a state feature
or action on the future state or action. This aspect has been
discussed in the crop irrigation experiment in Section 6.1.
Additionally, we construct structural causal models(SCM)
differently. While the action is modeled as an edge in the
SCM in the paper [18], our method formulates the action
as a vertex in the SCM model, allowing us to quantify the
state feature impact on action. As for [21], our approach is
unique in that it can calculate the temporal importance of
a state, which is not achievable by their method. Further-
more, we have provided a value-based importance definition
ofQ-value that differs from theirmethod. Another significant
difference between our approach and [21] is the underly-
ing assumption. Our method takes into account intra-state
relations, which are ignored in Olson’s work. Neglecting
intra-state causality is more likely to result in an invalid
state after the intervention, leading to inaccurate estimates
of importance. Therefore, our approach considers the causal
relationships between state features to provide a more accu-
rate and comprehensive explanation of the problem.

3 Preliminaries

We introduce the notations used throughout the paper. We
use capital letters such as X to denote a random variable and
small letters such as x for its value. Bold letters such as X
denote a vector of random variables and superscripts such as
X(i) denote its i-th element. Calligraphic letters such as X
denote sets. For a given natural number n, [n] denotes the set
{1, 2, · · · , n}.
Causal graph and skeleton Causal graphs are probabilistic
graphical models that define data-generating processes [22].
Each vertex of the graph represents a variable. Given a set
of variables V = {Vi , i ∈ [n]}, a directed edge from a
variable Vj to Vi denotes that Vi responds to changes in
Vj when all other variables are held constant. Variables
connected to Vi through directed edges are defined as the
parents of Vi , or “direct causes of Vi ,” and the set of all
such variables is denoted by Pai . The skeleton of a causal
graph is defined as the topology of the graph. The skele-
ton can be obtained using background knowledge or learned

using causal discovery algorithms, such as the classical
constraint-based PC algorithm [31] and those based on lin-
ear non-Gaussian models [28]. In this work, we assume the
skeleton is given.

SCM In a causal graph, we can define the value of each
variable Vi as a function of its parents and exogenous vari-
ables. Formally, we have the following definition of SCM: let
V = {Vi , i ∈ [n]} be a set of endogenous(observed) variables
and U = {Ui , i ∈ [n]} be a set of exogenous(unobserved)
variables. A SCM [22] is defined as a set of structural equa-
tions in the form of

Vi = fi (Pai ,Ui ),Pai ⊂ V,Ui ⊂ U , i ∈ [n], (1)

where function fi represents a causal mechanism that deter-
mines the value of Vi using its parents and the exogenous
variables.

Intervention and do-operation SCM can be used for causal
interventions, denoted by the do(·) operator. do(Vi = v)

means setting the value of Vi to a constant v regardless of
its structural equation in the SCM, i.e., ignoring the edges
into the vertex Vi . Note that the do-operation differs from
the conditioning operation in statistics. Conditioning on a
variable implies information about its parent variables due to
correlation.

Counterfactual reasoning Counterfactual reasoning allows
us to answer “what if” questions. For example, assume that
the state is Xt = x and the action is At = a. We are inter-
ested in knowing what would have happened if the state had
been at a different value x ′. This implies a counterfactual
question [22]. The counterfactual outcome of At can be rep-
resented as At,Xt=x ′ |Xt = x, At = a. Given an SCM, we
can perform counterfactual reasoning based on intervention
through the following two steps:

1. Recover the value of exogenous variable U as u through
the structural function f and the values Xt = x , At = a;

2. Calculate the counterfactual outcome as At |do(Xt =
x ′),U = u. More specifically, in SCM, we set up the
value of Xt to x ′. Then we substitute all exogenous vari-
able values to the right side of the functions and get the
counterfactual outcome At .

MDP and RL An infinite-horizon Markov Decision Process
(MDP) is a tuple (S,A, P, R) ,whereS ∈ R

m andA ∈ R are
finite sets of states and actions, P(s, a, s′) is the probability
of transitioning from state s to state s′ after taking action a,
and R(s, a) is the reward for taking a in s. An RL policy
π returns an action to take at state s, and its associated Q-
function, Qπ (s, a), provides the expected infinite-horizon
γ -discounted cumulative reward for taking action a at state
s and following π thereafter.
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4 Problem formulation

Our focus is on policy explainability, and we assume that the
policy π and its associated Q-function, Qπ (s, a), are given.
Note that the policy may or may not be optimal. We require
a dataset containing trajectories of the agent interacting with
the MDP using the policy π . A single trajectory consists of
a sequence of (s, a, r , s′) tuples. Additionally, We assume
that the skeleton of the causal graph, such as the one shown
in Fig. 1 for the crop irrigation problem, is known. We do
not assume that the SCM, more specifically its structural
functions, is given. We assume the additive noise for the
SCMbut not its linearity (discussed in Eq. (2) in Section 5.1).
The goal is to answer the question “why does the policy π

select the current action a at the current state s?” We provide
causal explanations for this question from two perspectives:
state importance and temporal importance.

Importance vector for state The first aspect of our expla-
nation is to use the important state feature to provide an
explanation. Specifically, we seek to construct an impor-
tance vector for the state, where each dimension measures
the impact of the corresponding state feature on the action.
For instance, in the crop irrigation problem, we can answer
the question “why does the RL agent irrigate more water
today?” by stating that “the impact of humidity, crop weight,
and radiation on the current irrigation decision is quantified
as [0.8, 0.1, 0.1] respectively. Formally, we have the follow-
ing definition of the importance vector for state explanation.
Given state st and policy π , the importance of each feature
of st for the current action at is quantified as wt . The expla-
nation is that the features in state st have causal importance
wt on policy π to select action at at state st .

Temporal importance of action/state The second aspect of
our explanation considers the temporal aspect of RL. Here,
we measure how the actions and states in the past impact
the current action. We can generalize the importance vec-
tor above to past states and actions. Formally, given state
st , policy π and the history trajectory of the agent Ht :=
{(sτ , aτ ), τ ≤ t}, we define the effect of a past action aτ on

the current action at as w
aτ
t . Similarly, for a past state sτ ,

we define the temporal importance vector wτ
t , in which each

dimension measures the impact of the corresponding state
feature at time step τ on current action at . Then we use w

aτ
t

and wτ
t to quantify the impact of past states and action.

5 Explanation

5.1 Importance vector for state

Ourmechanism implements the following two steps to obtain
the importance vector wt .

1. Train SCM structural functions between the states and
actions using the data of historical trajectories of the RL
agent;

2. Compute the important vector by intervening in the SCM.

First,wenotice that there are three types of causal relations
between the states and actions: intra-state, policy-defined,
and transition-defined relations. As shown in Fig. 2, the green
directed edges represent the intra-state relations, which are
defined by the underlying causal mechanism. The orange
edges describe the policy and represent how the state vari-
ables affect the action. The third type of relation shown as
blue edges is the causal relationship between the states across
different times. They represent the dynamics of the environ-
ment and depend on the transition probability P(st , at , st+1)

in the MDP.
We assume that the intra-state and transition-defined

causal relations are captured by the causal graph skeleton.
For the policy-defined relations, we assume a general case
where all state features are the causal parents of the action. In
the causal graph, each edge defines a causal relation, and the
vertex defines a variable V with a causal structural function
f . Then we only need to learn the causal structural functions
between the vertices. To achieve this, we can learn each ver-
tex’s function separately. For a vertex Vi and its parents Pai ,

Fig. 2 Example causal graph
between the state and action.
S(i)
t is the i-th dimension of the

interested state S at time t . Each
vertex also has a corresponding
exogenous variable, which has
no parent and its only child is the
associated endogenous variable.
Per causality conventions, the
exogenous variables are omitted
in the graph
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based on Eq. (1), we make an additive noise assumption to
simplify the problem and formulate the function mapping
between Vi and Pai as

Vi = fi (Pai ) +Ui , (2)

where Ui is an exogenous variable. We note that the addi-
tive noise assumption is widely used in the causal discovery
literature [11, 23]. We then use supervised learning to learn
the function mapping among the vertices. Specifically, fa for
action at is defined as

At = fa(S
(1)
t , · · · ,S(m)

t ,Ua),

wherem is the dimensionof the state, andUa is the exogenous
variable for the actions.

For the state variables, we denote all exogenous variables
as a vector US := [U1, · · · ,Um] and learn the structural
functions. Intuitively, the exogenous variables Ua and US

represent not only random noise but also hidden features or
the stochasticity of the policy for the intra-state and policy-
defined causal relations. For transition-defined relations, the
exogenous variables can be regarded as the stochasticity in
the environment.

5.2 Action-based importance

Given a state st and an action at , the importance vector wt

is calculated by applying intervention on the learned SCM.
Based on the additive noise assumption, we recover the val-
ues of the exogenous variables Us and Ua according to the
value of at , st and the learned causal structural functions.
Then we define wt using the intervention operation (coun-
terfactual reasoning). Specifically, we define the importance
vector wt = [w(1)

t , · · · ,w(m)
t ] as

w(i)
t =

∣
∣
∣

(

A
t,S(i)

t =s(i)t +δ

∣
∣
∣ St = st , At = at

)

− at
∣
∣
∣

δ
, (3)

where |·| is a vector norm (e.g., absolute-value norm) and δ is
a small perturbation value chosen according to the problem
setting. The term A

t,S(i)
t =s(i)t +δ

|St = st , At = at represents

the counterfactual outcome of At if we set S(i)
t = s(i)t +

δ. In our case, the value of the exogenous variables can be
recovered using the additive noise assumption, so the value
of A

t,S(i)
t =s(i)t +δ

|St = st , At = at can be determined. We

interpret the result as that the features with a largerw(i)
t have

a more significant causal impact on the agent’s action at .
Note that in the simulation, we average the importance from
both positive and negative δ and return the average as the
final score. The perturbation amount δ is a hyperparameter
and should be selected according to each problem setting.

5.3 Q-value-based importance

While action-based importance can capture the causal impact
of states on the change of the action, it may not capture
the more subtle causal importance when the selected action
does not change, especially when the action space is discrete.
Specifically, A

t,S(i)
t =s(i)t +δ

|St = st , At = at may not change

after a perturbation of δ, which will result in a w(i)
t = 0.

However, this is different fromwhen there are no causal paths
from feature S(i)

t to the action At , also resulting in aw
(i)
t = 0.

Therefore, we also define Q-value-based importance as fol-
lows:

Qw(i)
t = |Qperturb

π − Qπ (st , at )|
δ

, (4)

where Qperturb
π = Qπ (S

t,S(i)
t =s(i)t +δ

, A
t,S(i)

t =s(i)t +δ
|St = st , At

= at ). In detail, we use counterfactual reasoning to com-
pute the counterfactual outcome of At and St after setting
S(i)
t = s(i)t + δ and then substituting them into Qπ to eval-

uate the corresponding Q-value. Similar to the action-based
importance, we account for both positive and negative impor-
tance in practice. See the Blackjack Section 6.3 in evaluation
for a comparison between Eq. (3) and Eq. (4) on an example
with a discrete action space.

In most RL algorithms, Q-value critically impacts which
actions to choose. Therefore, we consider Q-valued-based
importance as explanations on the action through the Q-
value. However, we note that the Q-value-based importance
method sometimes cannot reflect which features the policy
really depends on. Some features may contribute largely to
the Q-value of all state-action pairs ({Q(st , at ), at ∈ A},
but not to the decision making process - the action with the
largest Q-value (argmaxat∈A Q(st , at )). In such cases, these
features may have an equal impact on the Q-value regardless
of the action. For example, in the crop irrigation problem,
crop pests have an impact on the crop yield (Q-value) but
don’t impact the amount of irrigation water (the action).
Some related simulations are shown in Appendix C. In sum-
mary, we suggest using the action-based importance method
by default and the Q-value-based method as a supplement.

5.4 Temporal importance and cascading SCM

Temporal importance allows us to quantify the impact of past
states and actions on the current action. In RL, estimating of
temporal effect is important because policies are generally
non-myopic, and actions should affect all future states and
actions. Tomeasure the importance beyond the previous step,
we define an extended causal model that includes state fea-
tures and actions in the previous time step, as shown in Fig. 1.
In this model, the vertices in the graph are {Sτ , Aτ }Tτ=1. For
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simplicity, we assume the system is stationary, so the causal
relations are stationary and do not change over time. There-
fore, the structural functions are the same as those defined
in Fig. 2, i.e., the mechanism of an edge (S(i)

τ ,S( j)
τ+1) will be

the same as the edge (S(i)
t ,S( j)

t+1). The extended causal model
can be regarded as a cascade of multiple copies of the same
module, where each module is similar to that in Fig. 2. We
can estimate the effect of perturbing any features or actions
at any step through intervention, and the effect will propa-
gate through the modules to the final time step. We illustrate
the temporal importance in the Blackjack experiment in Sec-
tion 6.3.

5.5 Comparison with associational methods

In Eq. (3), we define importance by applying intervention.
If we change the do action to the conditioning operation,
we have the following definition, which is the same as the
association-based saliency map method:

salw
(i)
t =

|At |St =[s(1)t , · · ·, s(i)t +δ, · · ·, s(m)
t ] − at

∣
∣
∣

δ
(5)

Associational models cannot perform individual-level
counterfactual reasoning and hence cannot infer the coun-
terfactual outcome after changing the value of one feature
of the current state. As pointed out by [22], counterfactual
reasoning can infer the specific property of the considered
individual that is related to the exogenous variables, and then
derives what would have happened if the agent had been in
an alternative state. In our method, we use counterfactual
reasoning to recover the environment at the current state and
estimate how the action responds to the change in one of the
state features. So our causal importance can capture more
insights compared to the associational methods.

In Fig. 3, we use a one-step MDP toy example to demon-
strate the difference. Omitting the time step subscript in
the notation, we assume the policy is defined on the state
space S = [S(1),S(2),S(3)]. An observed variable Vp is a
causal parent of S(3) but is not defined in the state space.

Fig. 3 Example of a one-step MDP

We define the ground truth of the state and policy as
Eq. (3), where c1, c2, c3, c12, cp are constant parameters and
Ua,U1,U2,U3,Up are exogenous variables. We use a linear
SCM to show the difference between the two methods. We
do not assume the SCM to have linear dependencies.

We assume that both the associational method saliency
map and our causal method can learn the ground truth func-
tions. Given a state s, the importance vectors using the two
methods are compared in Table 1. We notice that, for s(1),
our method can capture the effect of s(1) through two causal
chainsS(1) → A andS(1) →S(2) → A, while the saliencymap
method captures only S(1) → A. Our causal method consid-
ers the fact that a change in S(1) will result in a change of S(2)

and thus additionally influence the action A. The non-direct
paths are also meaningful in explanation and should be con-
sidered in measuring the importance of S(1). However, they
are ignored in the saliency map method. The causal impor-
tance vector for s(1) also considers the effect of u2, which is
recovered through counterfactual reasoning. This makes the
causal-based importance specific to the current state. Addi-
tionally, our method can calculate the effect of Vp on the
action A, which can not be achieved by the associational
method saliency map.

We also note that for features s(2) and s(3), the two meth-
ods obtain the same result. In cases where a state feature is
(1) not a causal parent of other features, (2) the policy is
deterministic, and (3) there are no exogenous variables, our
method is equivalent to the saliency-style approach. How-
ever, these conditions may not be common in RL. In general,
there are causal relations among state features, such as the
chess positions in the game of chess, the state features [posi-
tion, velocity, acceleration] in a self-driving problem, and the
state features [radiation, temperature, humidity] in a green-
house control problem.

6 Evaluation

We test our causal explanation framework in three toy envi-
ronments: crop irrigation (Section 6.1), collision avoidance
(Section 6.2), and Blackjack (Section 6.3). We also conduct
experiments on Lunar Lander, which is a more sophisticated

Table 1 Importance vector on the environment in Fig. 3 using our
method and the saliency map method

Our method Saliency map

s(1) c1 + c2c12(c12(2s(1) + δ) + 2u2) c1

s(2) c2(2s(2) + δ) c2(2s(2) + δ)

s(3) c3 c3

vp cpc3 N/A
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RL environment (Appendix A.4). For each experiment, the
system dynamics, policy, training details, and perturbation
values used can be found in Appendix A.

6.1 Crop irrigation problem

We show the results of our explanation algorithm for the
crop irrigation problem. We assume a simplified environ-
ment dynamic based on agriculture models [37]. The growth
of the plant at each step is determined by the state features
humidity (Ht ), crop weight (Ct ), and radiation (Dt ). The
policy controls the amount of water to irrigate each day. Intu-
itively, it irrigates more when the crop weight is high, and
less when the crop weight is low. Details about the environ-
ment dynamics and policy are described in Appendix A.1.
We use Fig. 1 as the causal skeleton and apply a neural
network to learn the structural equations. Figure 4 shows
the importance vector of the state for a given environment
[Pt = 0.07, Ht = 0.12,Ct = 0.44, Dt = 0.70] and its cor-
responding action It = 0.67. First, we notice that ourmethod
can estimate the importance of the feature precipitation(Pt ),
which is not defined in the state space of the policy. Second,
in estimating the causal importance of Ht , our method can
estimate the effect of Ht → Ct → It , which results in higher
importance compared to the saliency map method. Since an
intervention on Ht can induce a change in Ct , causing the
action to change more drastically. This effect cannot be mea-
suredwithout a causal model. The same applies to the feature
Dt . The full trajectory and the importance vector at each time
step can be found in Fig. 10 in Appendix A.1.

The causality-based action influence model [18] can find
a causal chain It → Ct →CropYield and provide the
explanation as “the agent takes current action to increase Ct

at this step, which aims to increase the eventual crop yield.”
This explanation only provides the information that Ct is an
important factor in the decision-making for the current action

Fig. 4 The importance vector for the crop irrigation problem

but can’t quantify it.Moreover, this explanation can’t provide
information for other state features, such as Ht and Dt which
are also measured in our importance vector.

6.2 Collision avoidance problem

Weuse a collision avoidance problem to further illustrate that
our causal method can find a more meaningful importance
vector than saliency map, i.e., which state feature is more
impactful to decision-making.

Figure 5a shows the state definition for this problem. A
car with zero initial velocity travels from the start point to an
endpoint over a distance of Xgoal. The system is controlled
in a discrete-time-slot manner and we assume acceleration
of the car is constant within each time step. The state St
includes the distance from the start Xt , the distance to the end
Dt , and the velocity Vt of the car, i.e., St := [Vt , Xt , Dt ],
where Vt ≤ vmax and vmax is the maximum speed of the
car. The action At is the car’s acceleration, which is bounded
|At | ≤ emax.Weassume the acceleration of the car is constant
within each time step. More detailed settings are described
in the simulation section in the supplementary materials. The
objective is to find a policy π to minimize the traveling time
under the condition that the final velocity is zero at the end-
point (collision avoidance).

An RL agent learns the following optimal control policy
for this avoidance problem, which is also known as the bang-
bang control (optimal under certain technical conditions) [2]:

At =
{

emax if Dt ≤ v2max/(2emax)

−emax otherwise
(7)

Intuitively, this policy accelerates as much as possible until
reaching the critical point defined above. Then it will decel-
erate until reaching the goal.

We use Fig. 5b as the SCM skeleton and use linear regres-
sion to learn the structural equations as the entire dynamics
are linear. The detail about the system dynamics is described
in the appendix.

Figure 6a shows a trajectory under the policy bang-bang
control and Fig. 6b shows its corresponding causal impor-
tance results. The importance of Vt , At−1, Dt−1, Vt−1 are
zero throughout the time history, and those of Xt , Dt , Xt−1

have peak importance of [0.502, 0.502, 0.502] , respectively,
between time step 303-322, during which the car changes the
direction of acceleration to avoid hitting the obstacle. The
importance curves of Xt , Dt , and Xt−1 have the same shape,
but that of Xt−1 is off by one time step, corresponding to
their time step subscript. If we were to use the associational
saliency method [8] Xt would have a constant zero impor-
tance since the action is solely determined by the feature Dt .
In comparison, our method can find non-zero importance
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Fig. 5 The collision avoidance
problem and its corresponding
SCM skeleton

through the edge Xt → Dt . It is reasonable that Xt causally
affects At , because, in the physical world, the path length
Xt is the cause of the measurement of the distance to the
end Dt . Although in Eq. (7) the action At is only decided
by Dt , the source cause of the change in Dt is Xt . We can
only obtain such information through a causal model, not an
associational one.

6.3 Blackjack

We test our explanation mechanism on a simplified game of
Blackjack. The state is defined as [hand, ace, dealer],
where hand represents the sum of current cards in hand,
ace represents if the player has a usable ace (an ace that
can either be a 1 or an 11), and dealer, is the value of the
dealer’s shown card. There are two possible actions: to draw
a new card or to stick and end the game. We use an on-
policyMonte-Carlo control [33] agent to test ourmechanism.
Since the problem dynamic is non-linear, we use a neural
network to learn each structural equation. Figure 7 shows
the skeleton of the SCM. More details about the rules of the
game are explained in Appendix A.2. Note that in Blackjack,
the exogenous variableUi of some features can be interpreted
as the stochasticity or the “luck” during the input trajectory.

e.g., Uhand,t corresponds to the value of the card drawn at
step t if the previous action is draw.

Using Q-values as metric The solid bars in Fig. 8 on the next
page show the result of Q-value-based importance based
on Eq. (4). We interpret the result as follows: (1) The
importance of all features are highest at step 1. This is
because state 1 is closest to the decision boundary of the
policy, and thus applying a perturbation at this step is eas-
ier to change the Q-value distribution; (2) The importance
of dealer and dealer_prev are the same through-
out the trajectory. This is due to the fact that dealer
and dealer_prev are always the same. Thus, applying
a perturbation on dealer_prev will have the same effect
as applying a perturbation on dealer assuming changing
dealer_prevwon’t incur a change in the previous action;
(3) A similar phenomenon can be observed between hand
and hand_prev. Increasing the hand at step t − 1 by one
will have the same outcome as drawing a cardwith one higher
value at t . The occasional difference comes from the change
in hand_prev causing a_prev to change; (4) The impor-
tance of ace is highest at steps 2 and 5. In both of these two
states, changing if the player has an ace or not while keep-
ing other features the same will change the best action and
a larger difference in the Q-values, which causes the impor-
tance to be higher.

Fig. 6 Trajectory and
importance on the collision
avoidance problem
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Fig. 7 The skeleton of the Blackjack SCM

Using action as metric The hatched bars in Fig. 8 show the
result of action-based importance based on Eq. (3). The
importance is more “bursty”, and features, such as hand,
have an importance of zero in the majority of the steps since
a perturbation of size one could not trigger a change in the
action. However, intuitively, hand is crucial to the agent’s

decision-making. Therefore, in this case, we note that the Q-
value-based method produces a more reasonable explanation
in this example.

Multi-step temporal importance We cascade the causal
graph of blackjack in Fig. 7 to estimate the impact of the
past states and actions on the current action, and the full
SCM is shown in Fig. 12 in Appendix A.2. Figure 9 shows
the results of Q-value-based importance. The importance of
A4 on itself is omitted since it will always be one regardless
of any other part of the graph. We interpret the results as
follows: (1) The importance of handτ and dealerτ is flat
over time. As discussed above, perturbing these two features
at any given step will mostly change the last state in the same
way, resulting in constant importance; (2) The importance
of the action aτ increases as τ gets closer to the last step
t = 4. An action taken far in the past should generally have
a smaller impact on the current action, which corresponds to
the increasing importance for aτ in our explanation.

6.4 Additional evaluation

We also evaluate our scheme in a more complex RL envi-
ronment, Lunar Lander, in Appendix A.4. Lunar Lander

Fig. 8 A trajectory of a blackjack game and the result from running
our mechanism using either the Q-values or the action as the metric.
In each sub-graph, the top figure shows the state, and the usable ace is
highlighted in red if present. The bottom figure shows the importance
of each feature. The solid bars are the Q-value-based importance and

the hatched bars are the action-based importance. Note that at step 1,
the importance for the previous hand, previous dealer, previous ace, and
previous action are not applicable since there is no previous state for
the first state
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Fig. 9 The Q-value-based temporal importance on A4 for all state fea-
tures and actions at past time steps in the Blackjack experiment

is a simulation testing environment developed by OpenAI
Gym [1]. The simulation shows that our scheme can explain
some specific phases(state) of the spaceship in the landing
process.

7 Discussions

Our causal importance explanation mechanism is a post-hoc
explanation method that uses data collected by an already
learned policy. We focus on providing local explanations
based on a particular state and action. Counterfactual rea-
soning is required to recover the exogenous variables and
estimate the effect on the given state and action. In this case,
the intervention operation is not enough to achieve this goal,
as it can only evaluate the average results (population) over
the exogenous variables, which is not a local explanation for
the given state.

Intra-state relations One crucial characteristic of our method
is that we consider intra-state relations when computing the
importance, which is essential in accurately quantifying the
impact of a state feature on the action. Although the MDP
defines that a state feature at a certain time step cannot affect
another state feature at the same step, it is essential to consider
causal relationships within state features when measuring
their impact if we use causal intervention or associational
perturbation. Since these types ofmethods requiremodifying
the value of a specific state feature, it should subsequently
affect the value of other state features based on real-world
causality. For instance, in the collision avoidance problem
(Section 6.2), the distance to the end (Dt ) will change in
response to the distance from the start (Xt ), and in the crop

irrigation problem (Section 6.1), the crop weight (Ct ) will
vary based on the humidity level (Ht ). Ignoring the intra-state
causality can lead to an invalid state after the intervention,
resulting in inaccurate importance estimates for the given
state feature. Hence, we formulate the intra-state relations
in the SCM to provide more accurate and comprehensive
explanations of the problem.

Additive noise assumption With the additive noise assump-
tion in Eq. (2), the exogenous variable (noise) can be fully
recovered and used for counterfactual reasoning. We note
that the full recovery noise assumption can be relaxed for
our mechanism. In the case where the exogenous variables
have multiple values (not deterministic), we can generalize
our definition of importance vector in Eq. (3) by replacing
the first term with the expectation over different values of
exogenous variables using probabilistic counterfactual rea-
soning [7]. Furthermore, the additive noise assumption is not
mandatory. We can use bidirectional conditional GAN [13]
to model the structure function and use its noise to conduct
counterfactual reasoning and obtain the importance vector.

Known SCM skeleton assumption Our approach is based on
the assumption that the SCMskeleton is known,which can be
obtained either through background knowledge of the prob-
lem or learned using causal discovery algorithms. Causal
discovery aims to identify causal relations by analyzing the
statistical properties of purely observational data. There are
several causal discovery algorithms available, including the
classical constraint-based PC algorithm [31], algorithms
based on linear non-Gaussian models [28], and algorithms
that use the additive noise assumption [11, 23]. These
algorithms can be used to learn the SCM skeleton from
observational data, which can then be used in our method
to quantify the impact of state features and actions on the
outcome. There are also existing toolboxes such as [15] and
[39] that can be easily applied directly to data to identify the
SCM structure.

Perturbation In addition to the method we employed in the
simulation,which averages the importance derived fromboth
positive and negative δ, maximizing them is also a viable
option. To compute the causal importance vector defined in
Eq. (3),we need to choose a perturbation value δ. As shown in
Table 1, the importance may depend on δ. Therefore, it is not
meaningful to compare importance vectors calculated with
different δ. This is a common issue of perturbation-based
algorithms, including the saliency map method. In our case,
δ should be as small as possible but still be computationally
feasible.More detailed sensitivity analysis and normalization
on the perturbation value δ can be found in Appendix B.
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Limitations Our study has limitations when the state space
has high dimensions, for example, in visual RL, where state
features are represented as images. Image data is inherently
high-dimensional, with multiple features that can interact in
complex ways. The SCMs we used may struggle to fully
capture the complexity of these interactions, especially when
a large number of variables are involved. To address this
issue, we suggest utilizing the algorithm of causal discovery
in images [16] and representation learning [38]. Further work
is needed to explore this direction.

Another question that might be raised is what will hap-
pen if the trained SCM is not perfect. An imperfect SCM
will cause the counterfactual reasoning result to be biased,
and thus affecting the final importance. One potential solu-
tion is quantifying the uncertainty of the explanation. If the
explainer can output its confidence on top of the importance
score, users can identify potential out-of-distribution sam-
ples where our explanation framework might fail. To achieve
this, we need to separate aleatoric uncertainty (which comes
from the inherent variability in the environment) and epis-
temic uncertainty (which represents the imperfection of the
model) [6]. Our use of SCM may help us to differentiate
the two, and this is one of the directions we are currently
exploring.

8 Conclusion

In this paper, we have developed a causal explanationmecha-
nism that quantifies the causal importance of states on actions
and their temporal importance. Our quantitative and quali-
tative comparisons show that our explanation can capture
important factors that affect actions and their temporal impor-
tance. This is the first step towards causally explaining RL
policies. In future work, it will be necessary to explore differ-
ent mechanisms to quantify causal importance, relax existing

assumptions, build benchmarks, develop human evaluations,
and use the explanation to improve evaluation and RL policy
training.
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Appendix A: Additional experiments
and details

In this section, we provide additional details regarding the
crop irrigation problem, the collision avoidance problem,
and the Blackjack experiments. Furthermore, we describe
our results on an additional testing environment, Lunar Lan-
der.

All experiments were conducted on a machine with 8
NVIDIARTXA5000 GPU, an dual AMDEPYC 7662 CPU,
and 256 GB RAM.

A.1 Crop irrigation

This section contains details of the crop irrigation experiment.

Fig. 10 Importance vector for state in crop irrigation problem
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Fig. 11 The policy we use for
the blackjack game. The blue
line shows the decision
boundary

System dynamics

Precipitation = U (0, 1)

SolarRadiation = U (0, 1)

Humidity = 0.3 · Humidityprev + 0.7 · Precipitation
CropWeight = CropWeightprev

+0.07 · (1 − (0.4 · Humidity

+0.6 · Irrigation − Radiation2)2
)

+0.03 ·U (0, 1)

The change in CropWeight at each step is determined by
humidity, irrigation and radiation, and maximum growth is
achieved when 0.4·Humidity+0.6·Irrigation = Radiation2.
An additional exogenous variable is also included in the
change of CropWeight. This can be regarded as some unob-
served confounders that affect the growth that are not included
in the system dynamics, such as CO2Concentration or
the temperature.

Policy

Irrigation = (Radiation2 − 0.4 ·Humidity) · (1.6 ·CropWeight+ 0.2)/0.6

The policy we used is a suboptimal policy that multiplies an
additional coefficient 1.6 ·CropWeight+ 0.2 on the optimal

policy. This will cause the irrigation value to be less than
optimal when CropWeight is less than 0.5, and more than
optimal and vice versa.

Training We use a neural network to learn the causal func-
tions in the SCM. The network has three fully-connected
layers, each with a hidden size of four. We use Adam with
a learning rate of 3 × 10−5 as the optimizer. The training
dataset consists of 1000 trajectories (10000 samples) and the
network is trained for 50 epochs.

Perturbation The perturbation value δ used in the interven-
tion is 0.1 w.r.t. the range of each value.

A.2 Blackjack

This section contains details and additional figures for the
blackjack simulation.

System dynamics This simulation is done in the blackjack
environment in OpenAI Gym [1]. The goal is to draw cards
such that the sum is close to 21 but never exceeds it. Jack,
queen and king have a value of 10, and an ace can be either
a 1 or an 11, and an ace is called “usable” when it can be
used at an 11 without exceeding 21. We assume the deck is
infinite, or equivalently each card is drawnwith replacement.

In each game, the dealer starts with a shown card and a
face-down card, while the player starts with two shown cards.

Fig. 12 The skeleton of the
cascading SCM for a 5-step
blackjack game
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The game ends if the player’s hand exceeds 21, at which the
player loses, or if the player chooses to stick, the dealer will
reveal the face-down card and draw cards until his sum is 17
or higher. The player wins if the player’s sum is closer to 21
or the dealer goes bust.

Policy We trained the agent using on-policy Monte-Carlo
control. Figure 11 shows the policy and the decision bound-
ary.

SCM structure We assume the blackjack game has a causal
structure as shown in Fig. 7. Additionally, Fig. 12 shows the
5-step cascading SCM we used to test the temporal impor-
tance.

Training We use a neural network to learn the causal func-
tions in the SCM. The network has three fully-connected
layers and each layer has a hidden size of four. We use Adam
with a learning rate of 3×10−5 as the optimizer. The training
dataset consists of 50000 trajectories (∼76000 samples) and
the network is trained for 50 epochs.

Perturbation Since blackjack has a discrete state space, for
numerical features “hand” and “dealer”, we use a perturba-
tion value δ = 1. For the boolean feature “ace”, we flip its
value as the perturbation.

A.3 Collision avoidance problem

We use the collision avoidance problem to further illustrate
that our causal method can find a more meaningful impor-
tance vector than saliency map, i.e., which state feature is
more impactful to decision-making.

System dynamics The state St includes the distance from
the start Xt , the distance to the end Dt , and the velocity Vt
of the car, i.e., St := [Vt , Xt , Dt ], where Vt ≤ vmax and
vmax is the maximum speed of the car. The action At is the
car’s acceleration, which is bounded |At | ≤ emax. The state
transition is defined as follows:

Vt+1 := Vt + At�t

Xt+1 := Xt + Vt�t + 1

2
At�t2

Dt+1 := Xgoal − Xt+1

The objective of the RL problem is to find a policy π to
minimize the traveling time under the condition that the final
velocity is zero at the endpoint (collision avoidance).

Policy An RL agent learns the following optimal control
policy also known as the bang-bang control (optimal under
certain technical conditions) defined as Eq. (7)

SCM structure We use Fig. 5b as the SCM skeleton and use
linear regression to learn the structural equations as the entire
dynamics are linear.

Perturbation The perturbation value δ used in the interven-
tion is 0.1 after normalization.

A.4 Lunar lander

System dynamics Lunar lander problem is a simulation test-
ing environment developed by OpenAI Gym [1]. The goal
is to control a rocket to land on the pad at the center of
the surface while conserving fuel. The state space is an 8-
dimensional vector containing the horizontal and vertical
coordinates, the horizontal and vertical speed, the angle, the
angular speed, and if the left/right leg has contacted or not.

The four possible actions are to fire one of its three engines:
the main, the left, or the right engine, or to do nothing.

The landing pad location is always at (0, 0). The rocket
always starts upright at the same height and position but has
a random initial acceleration. The shape of the ground is also
randomly generated, but the area around the landing pad is
guaranteed to be flat.

Policy We train our RL policy using DQN [34].

SCM structure We use the Fig. 13 as the skeleton of SCM.
The structural functions are learned with linear regression
using 100 trajectories (∼25000 samples).

Evaluation Figure 14 shows a trajectory of the agent interact-
ing with the lunar lander environment and the corresponding
causal importance using our mechanism. We notice that our
mechanismdiscovers three importance peaks, andwe explain
this as the agent’s decision-making during the landing pro-
cess consisting of three phases: a “free fall phase”, in which
the agent mainly falls straight and slightly adjusts its angle
to negate the initial momentum; an “adjusting phase”, in
which the agent mostly fires the main engine to reduce the
Y-velocity; and a “touchdown phase”, during which the lan-
der is touching the ground and the agent is performing final
adjustments to stabilize its angle and speed. Figures 15a, 15b
and 15c showour causal importance vector during each of the
three phases. We notice that during the “free fall phase”, fea-
tures such as angle, angular velocity and x-velocity are more
important since the agent needs to rotate to negate the initial
x-velocity.However, as the rocket approaches thegrounddur-
ing the “adjusting phase”, we find an increase in importance
for y-velocity since a high vertical velocity is more danger-
ous to control when the rocket is closer to the ground. In the
last “touchdown phase”, a large x-position and x-velocity
importance can be observed as a change in those features is
highly likely to cause the lander to fail to land inside the des-
ignated landing zone. Since the lander is already touching the
ground, it will take much more effort for the agent to adjust
compared to when the lander is still high in the air.
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Fig. 13 The causal structure of
lunar lander that includes
previous state and actions. There
should also be edges from each
feature to the action at its time
step, e.g. edges from
x_pos_prev to a_prev, or
from x_pos to a. These edges
are not shown in this graph for
simplicity

Fig. 14 A lunar lander trajectory instance we used to evaluate our algorithm and the corresponding causal importance vector. The “freefall phase”
is roughly between steps 0-70, “adjusting phase” is between steps 70-170, and “touchdown phase” is from about step 170 to the end

The results are similar to those of saliency-based algo-
rithms [8], and Fig. 16 shows the difference in importance
vector between our algorithm and saliency-based algorithm.
Note that differences only occur for the positions and the
angle. This is because other features don’t have any addi-
tional causal paths to the action besides the direct connection.
Therefore, the intervention operation is equivalent to the con-
ditioning operation for these features. The features position
and angle have an additional causal path through the legs,
which causes the difference. Notably, our method captures

higher importance for angle, which we interpret as that the
landing angle is crucial and is actively managed by the agent.

We are also able to compute the importance of the fea-
tures in the previous steps, and Fig. 14c and the shaded bars
in Fig. 15 represent such importance vectors. The previous-
step importances are rather similar to those of the current-step
features since the size of the time step is comparatively small.
However, our algorithm captures that during the “adjusting
phase”, the previous-step importance for the angle is in gen-
eral higher than the current-step importance, as changing the
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Fig. 15 The importance vector on lunar lander calculated using our method and a comparison with the saliency map method. The solid bars in the
first three figures representing the importance of the current-step features and the shaded bars are for the previous-step features

Fig. 16 Difference between our method and the saliency map method
for current-step features

previous angle may have a cascading effect on the trajectory
and is especially important to the agent when it is actively
adjusting the angle.

Appendix B: Sensitivity analysis

This section performs a sensitivity analysis on how the per-
turbation amount affects the result of our explanation.

For action-based importance, too small of a perturbation
may not yield a meaningful result. This is due to the fact that,
depending on the environment and the policy, a too small
perturbation may fail to trigger a noticeable change in the
action, resulting in a zero importance. This differs from the
zero importance case where the policy disregards the feature
whenmaking decisions. In our experiments, we use 0.01with

Fig. 17 The importance vector of S(1) from both our method and the
saliency map method with respect to the perturbation amount

respect to the range of the features for continuous features
and the smallest unit for discrete features.

In general, using different perturbation amounts δ on the
same state in the same SCM may result in different impor-
tance vectors, and vectors calculated using different δ cannot
be meaningfully compared. However, if we desire the impor-
tance of using different δ to be more on the same level, we
suggest finding the highest importance across all features and
all time steps and normalizing all results by said number. Sec-
tion 2 contains an example comparing the importance score
with and without the aforementioned normalization.

B1. One-stepMDP

As we demonstrated in the example of one-step MDP in
Fig. 3 and Table 1, our importance vector will sometimes
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Fig. 18 Sensitivity analysis on
the collision avoidance problem

be affected by the perturbation amount. For this experiment,
we use Fig. 3 as the skeleton and the following settings. The
constants are

c1 = 1, c2 = −2, c3 = 3, c12 = 2, cp = −1

Weuse unitGaussian distributions as the exogenous variables
and the values are

u1 = 0.50, u2 = −0.14, u3 = 0.65, u p = 1.52, ua = −0.23

The state value and the corresponding action are then

s(1) = 0.50, s(2) = 0.86, s(3) = −0.88, vp = 1.52, a = 3.83

The result of running our method and the saliency map
method on the feature S(1) is shown in Fig. 17. Same as
in Table 1. Our algorithm is linear w.r.t. δ while the saliency
map result is constant. The increased importance comes from
the causal link S(1) → S(2) → A, which also introduces the
linear relationship.

B.2 Collision avoidance

Figure 18 shows the importance vector of Xt in the collision
avoidance problem and different color lines correspond to
different perturbation amounts. Note that similar to the result
shown in Fig. 6b, the importance of Dt is the same as Xt ,
and Xt−1 is the same but off by one time step. Other features
have negligible importance.

Fig. 19 Sensitivity analysis on the lunar lander environment
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Fig. 20 Sensitivity analysis on
the Blackjack environment

There are two effects of using different perturbation
amounts: 1) The number of steps with non-zero importance
is increasing as δ increases since a larger δ will cause states
further away from the decision boundary to cross the bound-
ary after the perturbation; 2) The value of peak importance
is lower. Since we use the action-based importance and the
action is essentially binary, the difference in importance
solely comes from the normalization we applied on δ (the
denominator in Eq. (3). If this is undesirable, oneway to com-
bat this is to normalize the result using the highest importance
across all features and time steps. The normalized result is
shown in Fig. 18b, inwhich the peak valuewill be one regard-
less of δ.

B.3 Lunar lander

Figure 19 shows the sensitivity analysis on lunar lander and
the different color lines correspond to different perturbation
amounts. Binary features including left and right leg are not
included. The general trend of the result is the same while
the value and the exact shape of the curve vary slightly when
different δ is used and our result is robust w.r.t. δ.

B.4 Blackjack

Figure 20 shows the sensitivity analysis for blackjack,
with different color lines representing different perturbation
amounts. The binary feature ace is not included. In black-
jack, since the smallest legal perturbation amount is one and
the range of the value is at most 21, increasing δ has a much
larger effect on the result. However, we can observe that the
general shape of the curves is similar, indicating the robust-
ness of our method.

Fig. 21 The skeleton of SCM of the one step MDP

Appendix C: Action-based importance
versus Q-value-based importance

This section discusses the comparison between the action-
based importance method and the Q-value-based importance
method. It demonstrates that the Q-value-based method
sometimes fails to reflect the features in the state that the
policy relies on.

Consider a one-stepMDPwith the SCM shown in Fig. 21,
where the state S = [S1, S2], Si ∈ [−1, 1], i = 1, 2, and the
action a ∈ [−1, 1]. The reward is defined as R(S, a) =
100× S2 + a × S1. Under this setting, the optimal policy is:

A =
{

−1 S1 < 0

1 otherwise

Intuitively, the policy selects theminimumvalue in the action
space when S1 is negative , and the maximum value other-
wise.

The action-based importance method correctly identifies
S1 asmore important, as the policy only depends on S1. How-
ever, the Q-value-based method produces a different result.
In a one-step MDP, the Q-function is the same as the reward
function.As the coefficient in theQ(reward) function is larger
for S2, the Q-value-based method finds S2 more important,
which is different from the features that the policy relies on.
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