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1 Introduction

Early Prediction of Human
Intention for Human-Robhot
Collaboration Using
Transformer Network

Human intention prediction plays a critical role in human—robot collaboration, as it helps
robots improve efficiency and safety by accurately anticipating human intentions and pro-
actively assisting with tasks. While current applications often focus on predicting intent
once human action is completed, recognizing human intent in advance has received less
attention. This study aims to equip robots with the capability to forecast human intent
before completing an action, i.e., early intent prediction. To achieve this objective, we
first extract features from human motion trajectories by analyzing changes in human
Jjoint distances. These features are then utilized in a Hidden Markov Model (HMM) to deter-
mine the state transition times from uncertain intent to certain intent. Second, we propose
two models including a Transformer and a Bi-LSTM for classifying motion intentions. Then,
we design a human—robot collaboration experiment in which the operator reaches multiple
targets while the robot moves continuously following a predetermined path. The data col-
lected through the experiment were divided into two groups: full-length data and partial
data before state transitions detected by the HMM. Finally, the effectiveness of the sug-
gested framework for predicting intentions is assessed using two different datasets, partic-
ularly in a scenario when motion trajectories are similar but underlying intentions vary. The
results indicate that using partial data prior to the motion completion yields better accuracy
compared to using full-length data. Specifically, the transformer model exhibits a 2%
improvement in accuracy, while the Bi-LSTM model demonstrates a 6% increase in accu-
racy. [DOI: 10.1115/1.4064258]

Keywords: human intent recognition, early prediction, transformer, hidden Markov model,

human—robot  collaboration, manufacturing, artificial intelligence, manufacturing
automation

complementary actions. Equipping robots with such capabilities

In recent years, human—robot collaboration (HRC) has gained
increasing popularity for common co-assembly tasks in manufactur-
ing settings. One widely used application involves humans retriev-
ing components and placing them, followed by robots picking up
the placed components and assembling them into a final product
[1]. Moreover, in the quest for efficient mechanical assembly,
robots play an essential role in the manufacturing planning
process [2]. However, although humans and robots work together,
they often are treated as independent agents. This is because
humans can exhibit more flexibility in their actions, while robots
are typically programmed for fixed automation modes. In addition,
humans possess the ability to perceive the actions of others and infer
their intentions which makes them capable of initiating relevant
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proves to be challenging. Therefore, there is a need for a higher
level of understanding of human intent and enabling robots to
rapidly adapt accordingly.

Unlike other physical features, such as location coordinates or
distance traveled, human intent is implicitly contextual and not
directly observable. However, it is encoded and expressed
through human actions [3]. Specifically, the movement and orienta-
tion of workers have a significant impact on the recognition of intent
in a warehouse [4]. Observing and interpreting abundant informa-
tion embedded in human actions can be beneficial for understanding
human intent. Recent research has proposed new approaches to
cooperation between humans and robots by using the recognition
of human intent in robotic control and process planning [5]. For
instance, the prediction of the sequence of assembly activities
relies on modeling human motion to recognize intent [6]. Another
application in the assembly process involves measuring quality
assurance and detecting human failure through the recognition of
intent [7].
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Inspired by the necessity of intent recognition and the legibility of
actions, our research is driven by the goal of achieving explicit
human intent recognition. Leveraging advancements in deep learn-
ing, state-of-the-art algorithms show great promise in providing
intelligent solutions [8]. To name a few methods, convolutional
recurrent neural networks have been effectively used to learn the
temporal and spatial relationships embedded in human body
actions [9]. Also, recursive Bayesian filtering methods have been
used to explore the correlation between intent and non-verbal beha-
vior [10].

However, despite existing case studies that assess human inten-
tion recognition, the importance of early prediction has been over-
looked. To overcome this gap, we aim to design an intention
recognition framework by using motion data, as shown in Fig. 1.
To predict human intentions, human motion data are fed into a
deep learning model. Moreover, to achieve early prediction, a
Hidden Markov Model (HMM) is used to find state transitions.
The data before the state transitions are used to accomplish early
prediction.

We propose a framework for motion-based human intention rec-
ognition. In terms of model selection, we employ two types of archi-
tectures: Transformer and Bidirectional Long short-term memory
(Bi-LSTM). The Transformer architecture is selected due to its
capability to capture important information by calculating attention
values and assigning weights to sequences. Bi-LSTM architecture is
chosen as it is capable of learning long-range dependencies in the
inputs in both forward and backward directions.

Besides intent recognition, we suggest the concept of earlier pre-
diction, which involves predicting intent before the movement is
complete. We extract features from joint distances by leveraging
human motion trajectories. Recognizing that HMM models
possess the capability of continuous action division and unsuper-
vised learning, we incorporate joint distance data into an HMM to
identify the point in time when intention transition occurs, i.e.,
uncertainty to certainty. Data from the onset of motion to the time
of state transition can be used for early prediction of human
intentions.

We design two experimental cases: one where the intentions of
reaching two adjacent targets are grouped into one class, and
another where the intentions of reaching two adjacent targets are
grouped into separate classes. The latter case poses increased diffi-
culty in intention recognition as the motion trajectories are similar,
but the intentions are completely different.

In this study, human intent is defined as the judgment of the oper-
ator’s goal based on the observed trajectory of reaching movements.
The operator’s arm motion, captured by the Vicon system, serves as
the input to the model, which subsequently predicts the intent based
on the motion. We provide a detailed comparison of the perfor-
mance of the Transformer and Bi-LSTM models in both cases
and offer recommendations for model selection based on task spe-
cificity. In addition, we use the HMM to compute state transitions
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Fig. 1 Intention recognition and early prediction framework
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for each reaching trajectory and evaluate the performance of early
predictions compared to predictions using full-length data.

The remainder of the paper is structured as follows: Sec. 2 com-
pares related studies on intent recognition. Section 3 describes the
proposed Transformer and Bi-LSTM architectures, and Sec. 4 pre-
sents the experimental design, the dataset, and practical results.
Finally, Sec. 5 concludes the paper and outlines potential future
work.

2 Related Work

In this section, we summarize related work and introduce the
importance of intentional learning, and its perceptual, predictive,
and state transition methods.

2.1 Importance of Intention Learning. Intention prediction
from object trajectory has been an active area of research in differ-
ent domains such as vehicle driving [11], pedestrian intention pre-
diction [12], aerial targets [13], and human-robot collaborations
[14]. As the concept of autonomous vehicles and robotics is emerg-
ing, the need for accurate prediction of intention and specifically
early intention prediction becomes essential.

Intention learning is essential for human-robot teaming. In team
environments, coordination among team members relies on the
ability to predict each other’s intentions. While humans possess
this knowledge, it remains a challenge to enable robots to accurately
predict and adjust their actions accordingly. For example, in manu-
facturing environments, if collaborative robots are programmed in a
fixed offline manner, it is labor-intensive to recode the correspond-
ing unexpected collaborations that are likely to occur with a change
in human intent [14,15]. On the other hand, considering situational
needs, people have been shown to unconsciously adjust their beha-
vior, such as movement speed and execution paths [16,17]. This
situation has a high probability of happening in a manufacturing
workplace where an operator has multiple trajectories of motion
to pick up and place many tools or parts during assembly. Both
the speed of movement and the path of movement are not stable,
so predicting human intent is informative, and understanding it
becomes crucial. In our study, intent learning mainly refers to
understanding the intent behind human actions, especially in
human-robot collaboration in manufacturing where operators’
action patterns naturally follow task-specific intent.

2.2 Perception Methods. There are various approaches to
allow robots to perceive human intentions in specific task scenar-
ios. For example, by collecting electroencephalography (EEG)
signals on a person’s scalp, it is possible to understand the
person’s intentions, as the EEG signal fluctuates in different pat-
terns when a person wants to move different parts of the body
[9]. Similarly, surface electromyography signals can be used to
estimate associated biomechanics motion by measuring the veloc-
ity or acceleration of muscles [18]. However, there are some lim-
itations to collecting bioelectrical signals, as the collected signals
contain too much noise, and the sensor equipment affects the flex-
ibility of experimenters.

Using visual data to collect workers’ movements in the complex
manufacturing environment offers insight into the operations they
perform. For example, spatial-temporal information from disassem-
bling hard disks is captured using video recordings and processed
with an unsupervised learning framework to recognize human activ-
ities [19]. Likewise, the actions performed by the operator when
assembling a car engine are identified through the development of
a neural network architecture [20]. Furthermore, the analysis of
optical flow images serves as a supplementary source of temporal
information to enhance the ability to predict movements in static
images [21]. Nonetheless, processing visual data that contain
motion information to extract intention is computationally intensive
and requires a lot of manual labeling.
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As an alternative motion detection technology, inertial sensors
are capable of quantitatively characterizing human motion with
less labeling effort. Mounting inertial sensors on various body
frames makes it possible to collect complementary information
such as angular velocity and magnetic fields [22]. The application
of tracking systems like radio-frequency identification (RFID)
tags is considered a powerful means of recording task-level
human motion in manufacturing operations [23]. Additionally,
researchers have used the Vicon system due to its portability
freedom from experimental constraints and its ability to perform
3D trajectory capture [24,25]. Therefore, in this study, we take
advantage of the motion-tracking sensor system, the Vicon
system, to infer intent directly from the motion trajectory data.

2.3 Intention Prediction Methods. The prediction of opera-
tor’s intent is a key factor for achieving safety in the HRC system
as it serves as a prerequisite for adjusting the robot’s behavior
accordingly. A wide range of machine learning and deep learning
models have been developed for intentional learning. To name
several examples, support vector machines, and random forest algo-
rithms have been used for daily motion intent classification [26].
Implementing a nonlinear support vector machine model enables
the projection of inertial tracking signals to 12 physical activities
[27]. The Random Forest algorithm has been employed in which
muscle signals have been used as inputs and three motor parameters
are extracted to classify motions [28]. Also, Bayesian estimation has
been utilized to estimate human stiffness parameters from force data
to infer the intent behind human-robot collaborative actions [29].

Besides machine learning, deep learning models such as recur-
rent neural networks (RNNs), Gated Recurrent Units (GRU), and
LSTM have been widely used in intent estimation. To name
several examples, Nicolis et al. fed reaching trajectories into the
RNNs to estimate the user’s intent [30]. Mavsar et al. proposed
an RNN consisting of an LSTM layer for inferring intentions
from hand positions [31]. Maceira et al. inferred task intent by pro-
cessing force signals using a fully connected RNN [32]. However,
despite their specialization in modeling time-series data, RNNs
often struggle to capture temporal dependencies. Another stream
of literature used GRU networks, which can capture long-term
dependencies by mitigating the vanishing gradient problem com-
monly observed in RNNs [33]. The ability of GRU to capture tem-
poral dependencies has been validated in time-series classification
tasks [33,34]. For instance, Liu et al. found that the addition of
GRU enhances pedestrian intention prediction results compared to
the same structure without GRU [35]. Moreover, LSTM-based
structures have been used to learn linear and nonlinear features of
motion sequences and overcome the weakness of time dependence
[36,37]. To name several studies, Xin et al. proposed a lane intent
recognizer based on an LSTM network to facilitate vehicle trajec-
tory prediction [38]. In a similar application, Shi and Zhang com-
bined a hierarchical over-sampling bagging method with LSTM
to overcome the challenge of imbalanced datasets [39]. By design-
ing a stacked LSTM network, Saleh et al. solved the time-dependent
problem and achieved predictions 4 s in advance [40]. While LSTM
networks have demonstrated performance in capturing temporal
dependencies, they exhibit certain limitations. Specifically, LSTM
networks suffer from a shallow structure that limits their ability to
handle long-range sequential data. In addition, in the case of
closely located items where motion sequences for reaching neigh-
boring targets are highly similar, LSTM networks show difficulties
as they emphasize only the dependence of inputs in the forward
network stream in explicitly separating intentions.

To address these issues, we propose two corresponding models: a
Transformer and a Bi-LSTM. Our motivation for applying a
Transformer for intention classification in manufacturing stemmed
from its successful application in predicting pedestrian intentions
and trajectories [41]. Furthermore, Patterson and Falkman com-
pared the results of Transformers with LSTM and showed that
Transformer achieved higher accuracy in gaze-based intent recogni-
tion [42]. The attention mechanism within the Transformer provides
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Fig. 2 lllustration of early prediction

an advantage in discerning unique information from similar data-
sets [43]. Besides Transformers, Bi-LSTM models have shown
promising outcomes for intention prediction in HRC as shown by
Gao et al. [44]. The use of Bi-LSTM architecture helps learn data
context in both the forward and reverse network streams and facil-
itates the representation of long-range data dependencies [45]. In
this study, we extend the Transformer and Bi-LSTM models for
intent recognition in an HRC environment. Specifically, we evalu-
ate the performance of these models in predicting pickup action
intentions based on arm motion trajectories. In addition, we demon-
strate the dynamic prediction capability of the models by gradually
increasing the length of the motion trajectory.

2.4 Intention State Transition. In addition to the task of
intent recognition, it has become important to predict the intent in
advance and test whether it is necessary to use full-length sequences
or partial motion sequences and is adequate to achieve accurate pre-
dictions. As depicted in Fig. 2, early prediction aids robots in recog-
nizing human intent before the human reaches the target object
without necessitating the use of full motion data.

Considering state transition is a critical information factor for
early prediction of intent. State space models are a class of
models that contain observable and hidden states to describe state
transitions. Available methods include Kalman filters and Markov
models. A Kalman filter is a mathematical tool used for estimating
the state of a moving object, particularly when the object follows a
linear system of motion [46]. However, arm movements change
dynamically over time, and observations are not necessarily
ordered in time. For nonlinear motion, a Markov chain was
applied to discover the transitions that perform goal changes [47].
The use of Markov chains requires that the state be directly observ-
able, but it is not practical in an HRC setting as a robotic agent can
only observe motion, not directly infer states.

To handle the division of hidden states, HMM-based algorithms
are considered unsupervised model-driven methods for learning
the correlation of the states of time-series data [48]. HMMs are
widely used in the domain of estimating driving behavior. They
take the input motion features and then determine the behavior
with the highest probability [49,50]. In the field of human-robot
interaction, Peddi et al. used an HMM model to calculate the prob-
ability of a human crossing a robot’s path [51]. Zhang et al.
applied HMM to realize the state division of disassembly activities
[19]. In a study to realize robots’ understanding of human inten-
tions, Kelley et al. not only included hidden states in the HMM
but also incorporated visible states that encode changes in position
or angular motion [52]. In addition to the basic HMM model,
extensions of the HMM are also well known, one example
being the autoregressive HMM (ARHMM) [53]. Unlike HMMs
where the current observation depends only on the current
hidden state, ARHMM assumes that the current observation
depends on the current hidden state as well as on previous obser-
vations. Using an autoregressive process, ARHMM can model
interdependencies in a sequence [54]. While both HMM and
ARHMM are tools for modeling sequences with hidden states,
the choice between them should be based on the characteristics
of the dataset. Therefore, in this study, we first perform feature
extraction on the motion data and then use both HMM and
ARHMM to model observations and evaluate their performance
in state transition division.
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3 Methodology

The proposed method consists of utilizing Transformer and
Bi-LSTM models to learn the relationship between human inten-
tions and motion trajectories. Furthermore, HMM is used to identify
the transition from uncertain intent to certain intent and is employed
to determine the appropriate length of sequence data that are fed as
input to the models.

3.1 Transformer Model. The Transformer was initially intro-
duced for its innovative utilization of the attention mechanism [55].
The attention mechanism allows modeling sequential dependencies
regardless of their position in the input or output. Referring to this
capability for trajectory modeling, the attention mechanism can
simultaneously observe all inputs and assign weights to these obser-
vations, rather than processing the data sequentially. By employing
an attention mechanism, the architecture learns features in long
time-series and computes correlations.

The Transformer architecture consists of two modules: the
encoder and the decoder. Each module includes three blocks: a
feedforward fully connected block, a multi-head attention block,
and two residual connections following each of the aforemen-
tioned blocks [56]. In contrast to tasks like language translation
that necessitate a decoder module to generate output sequences,
human intent recognition can be achieved by employing only the
encoder module and replacing the decoder with a probabilistic
classifier [57].

The proposed Transformer encoder model is displayed in Fig. 3.
First, the sequence of trajectories of the arm movements collec-
tively forms a matrix y € R™, where I is the length of the
sequence and d is the feature dimension. The matrix is then nor-
malized before being input into the attention mechanism. Within
the attention mechanism, an element of the input matrix is repre-
sented as a query (Q) vector, while the remaining elements are
referred to as key (K) vectors. The output of assigning weights
to the sequence elements is termed value (V') vectors. The scale
dot-product attention computes the attention value of each input
element as follows:

Attention(Q, K, V) ft (QKT>V (1)
ention(Q, K, V) = softmax{ —
N
where +/d; is the scale factor.
Second, the multi-head attention block is formed by combining
multiple dot-product attention at various scales, represented as
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Fig. 3 The transformer model’s structure
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follows:

head; = Attention(QWZ, KWX, vw)) )

MultiHead(Q, K, V) = Concat;(head;)W° 3)

where W; and W© are the learnable weight matrices, and concat
denotes concatenating the results. The multi-head attention will par-
allelly compute and join the complex information of more represen-
tations at different positions of input data. Since no recurrence or
convolution calculation is required, each input element is provided
to the feedforward network along with the associated positional
information. Finally, all embedded elements are passed through a
normalization layer to speed up the learning, and then, a classifier
with a SoftMax activation function is used to determine the intent
class.

3.2 Bi-LSTM Model. Before the emergence of Transformers,
LSTM architectures were commonly used to learn dependencies in
sequential data. The results of the previous study demonstrate that
an LSTM network is capable of learning temporal features and
accurately recognizing human activities [58]. Nevertheless, a unidi-
rectional LSTM only learns data structures in a fixed direction, i.e.,
after starting from the motion, but this is not sufficient to distinguish
between highly similar data.

In contrast to the unidirectional LSTM, our approach consists of a
Bi-LSTM architecture for the processing of motion steps. This
architecture operates in both the forward and backward contexts
to provide a more comprehensive analysis of the data. This bidirec-
tional approach further enhances performance in capturing the cor-
relation between motion and human intent.

As illustrated in Fig. 4(a), the LSTM cells are stacked bidirec-
tionally, meaning there are two directions for processing the input
motion sequences, each with its time-steps and features. The
forward layer processes the sequence in the standard order (past
to future), whereas the backward layer processes it in the reverse
order (future to past). After processing the input through the
Bi-LSTM network, the output is then passed through a SoftMax
activation layer, which computes the probability distribution over
each intent class for the input sequence. In detail, Fig. 4(b)

@y
f

Classifier

f

LSTM LSTM LSTM eeo — [STM

LSTM [ LSTM ,1/’ LSTM oool[ LSTM

X1 X2 X3 Xi

(b)

Ce-1 5 % I Ce
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ft‘ i g o 2
[ T
o o tanh o h;
t t t )

Fig. 4 (a) The BI-LSTM model’s structure and (b) The LSTM cell
workflow
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Fig.5 The process of identifying state transition using the hidden Markov model: Calculating Euclidean distances of joints and
putting it into the HMM. The HMM results plot is the same as Fig. 12.

illustrates how each LSTM cell performs operations. Equations
(4)—(8) are mathematically interpreted as follows:

Ji=owpx; +waphi_y + by) 4)

i = o(WixXx; + wiphi—1 + by) 5)

0 = 6(WoxXs + Wonhi—1 + b,) (6)

¢t =¢C—1 O f; + iy © tanh (Werxy + wephe—y + be) 7
h; = 0; © tanh(c,) (8)

where f;, i,, and o, are namely the forget gate, input gate, and output
gate. x, and h, are input elements and hidden states. ® represents
element-wise vector multiplication.

3.3 Select a Hidden Markov Model for State Transition. In
addition to deep learning-based intention learning methods, we
have applied an HMM to perform state transitions. Our objective
is to show the effectiveness of HMM in partitioning states
without the need for explicit supervision. We extend the utility of
HMM to motion trajectory analysis, where they are employed to
separate trajectories into two discernible states that emphasize the
identification of intention states. The application of HMM for the
early prediction of intention remains relatively unexplored within
the existing literature. Moreover, we carefully finetune the parame-
ters of both basic HMM and ARHMM models to make them
well-suited for this problem domain.

For a given input sequence, an HMM-based algorithm can model
the data as different states by measuring the likelihood of observa-
tions and hidden states. In practice, an HMM-based algorithm can
separate motion trajectories into states where the intention is uncer-
tain and those where the intention is certain. Uncertainty of inten-
tion means that the experimenter has no clear intention at the
beginning of the action, or the motion changes to a small extent.
And toward the end of the motion, intentions will gradually
become clear. Thus, the implied state of intention regarding the
behavior shifts from uncertainty to clarity. To achieve it, we first
calculate the FEuclidean distance variation of the joint with
motion, i.e., the joint position at each time point minus the joint
position at the beginning. As shown in Fig. 5, the motion starts at
a slow speed but gradually moves away from the original position.
Second, these Euclidean distances about human joints are the obser-
vation variables of an HMM model. Further, we set the number of
hidden states in an HMM to two. An HMM will classify the
sequences into two continuous states based on the distance. We
fit HMM parameters using an expectation—maximization (EM)
algorithm to ensure that it accurately captures state transitions
[59]. The basic HMM and ARHMM have the same inputs and

Journal of Computing and Information Science in Engineering

learning process, and we will show the results of their division in
Sec. 4.4. Last, we ultimately care about the time of the state transi-
tion since we extract the length of the data from the beginning of the
motion to the state transition as input to the intention classification
model for early prediction.

4 Experimental Studies

To show the application of the proposed methods, we design an
experiment within a collaborative human-robot environment in
manufacturing. In this experiment, eight screws have been posi-
tioned in four distinct locations in pairs as shown in Fig. 6. We
aim to access the accuracy of two models in predicting the opera-
tor’s intentions for four locations (four intent labels) as well as
their accuracy in predicting the operator’s intentions for individual
screws (eight intent labels). We also validate the concept of early
prediction of human intentions, which implies the ability to recog-
nize intentions before the completion of the corresponding move-
ment. Early intention prediction helps robots understand human
intent faster to provide timely and proactive assistance.

Fig. 6 The experiment with (a) four-label intentions and
(b) eight-label intentions

MAY 2024, Vol. 24 / 051004-5
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4.1 Experimental Design and Dataset. The human-robot
collaboration setup includes a robotic manipulator that shares a
common workspace with an operator and executes a predetermined
path. The human operator stands facing the robot and moves to four
different locations to pick up targets and place them in a collection
box. Simultaneously, the manipulator moves back and forth
between these four target locations and the collection box.

Each location contains two adjacent screws. As a result, the
reaching motions for two screws at the same location are similar,
but the human operator’s intent is different. Therefore, we have
two objectives. One is to predict the target location that the
human operator is reaching for among four distinct areas displayed
in Fig. 6(a), while the other objective is to predict which screw the
human wants to retrieve among the eight screws displayed in
Fig. 6(b).

To collect the data, a Vicon motion capture system is used to
track the movement of the human operator’s right arm. Two
markers are attached to each side of the wrist, elbow, and shoulder
of the participant. The data are recorded as a sequence of Cartesian
coordinates for each marker, at a frequency of 50 Hz, resulting in a
trajectory time interval of 0.02 s. The center of each rotation joint
can be easily estimated by taking the mean of the two markers’
positions.

To show the similarity of trajectories for neighboring targets, two
sets of trajectories from the beginning to the end, starting from left
to right, have been visualized in Fig. 7, as examples. We can
observe that the motion trajectories are separate at the beginning
and progressively become similar over time, especially at the end
of the motion, when the trajectories almost overlap. This increases
the complexity of predicting intentions on very similar trajectories.

4.2 Results of Intent Classification With Four Labels. We
have 232 motion data in total with each eight labels having an
equal amount of data. The length of each single motion data is
approximately 2-3s. The proposed models were built using
Keras and TensorFlow.

Adam optimizer with a fixed learning rate of 0.001 was applied.
To ensure the reproducibility of results, we fixed the values of
random seeds to a total of five seeds. The training epoch was set
to 500 epochs. The experiment was carried out using a single
Nvidia 3080 GPU, with 70% of the data for training and 30% for
testing.

To compare the classification performance of different models,
boxplots are used to show outliers as well as the distribution of
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the results. In addition, heatmaps are used to visualize the classifi-
cation output for different intentions. We trained and predicted
models by consequently increasing the data length from 20% to
100% and using 20% as an interval.

As seen in Fig. 8, a slight decline in classification accuracy was
observed for the Bi-LSTM model when the data length was
increased 100%, while the accuracy of the Transformer model con-
tinued to improve with increasing time-steps. The Bi-LSTM’s
decline in performance could be primarily attributed to overfitting,
which occurs when a model begins to memorize the training data
rather than generalize it. The Bi-LSTM model can capture long-
term dependencies and nuances in the data. However, when all
the time-steps are fed into the model, especially as the input dimen-
sions increase, the model starts to overfit due to fewer categories.

The Transformer architecture, due to its self-attention mecha-
nism, alternatively has the ability to assign varying degrees of
importance as the number of time-steps increases within a sequence.
Consequently, the Transformer can dynamically adjust the attention
weights and perform optimally when processing data of full tempo-
ral length. As a result, the Transformer outperforms Bi-LSTM when
using 100% length trajectory data to make predictions.

In addition, when using full-length trajectories, we used a heat
map and compared the classification results, as illustrated in
Fig. 9. The Transformer is 100% accurate, while Bi-LSTM incor-
rectly predicts label 2 as label 1 due to the close location of the
two objects. Depending on the results of our experiments, we rec-
ommend prioritizing the use of the Transformer model if neighbor-
ing targets are labeled as a group. Hence, Transformers yield better
results when classifying intentions with significant action differ-
ences (e.g., four distinct labels).

4.3 Results of Intent Classification With Eight Labels. As
previously mentioned, it is crucial to analyze the intentions when
the targets are near each other. Especially in manufacturing sites,
many tools or parts needed during operation are often placed
together. Apart from that, training models with a dataset of eight
labels increases the computational time and complexity. This
drives us to evaluate the robustness of the models by dealing with
intention recognition with similar trajectories.

The performance of the Bi-LSTM model exhibits dynamic var-
iations in accuracy when processing data of different temporal
lengths of data, as depicted in Fig. 10. When the temporal
length approaches 80%, a slight decline in accuracy is observed,
accompanied by a broader distribution in results. Referring to

Human right arm of motion 2
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Fig. 7 Visualization of the trajectory of two approaching targets
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Fig. 8 Four-label classification results of different models on
test data

Fig. 7, motions 1 and 2 exhibit distinct trajectories in the earlier
parts of their sequences. The Bi-LSTM model competently lever-
ages this distinction when processing shorter temporal lengths.
However, as the sequence progresses and these initial discrimina-
tive features account for a smaller proportion of the entire
sequence, the model might struggle to maintain the same level
of classification accuracy.

Unlike recurrent models, the Transformer processes all time-
steps in parallel, without including sequential bias. This means
that for sequences with longer temporal lengths, the Transformer
can continue to extract meaningful information without being over-
whelmed. As seen in Fig. 10, the Transformer model achieves the
best performance when full-length data are used. On the other
hand, the Transformer’s self-attention mechanism demands more
data for optimal learning due to its complexity. This could
explain the Transformer’s lower performance compared to
Bi-LSTM, especially since eight-label categorization results in
fewer motion sequences per category.

To conclude, Bi-LSTM architecture proves to be a superior
choice for intention prediction when dealing with similar trajecto-
ries, such as with eight labels. Essentially, the dynamic performance
of these two models emphasizes the significance of selecting the
appropriate temporal length for motion data and suggests the poten-
tial for implementing early prediction.

The intentions of two targets nearby are easily misclassified in
both models, e.g., intentions labeled 7 are confused with label 3,
as shown in Fig. 11. Nonetheless, Bi-LSTM is more robust in inten-
tion prediction for closely located object;, e.g., label 2 is correctly

recognized by Bi-LSTM but is partially misidentified as label 6
by Transformer.

4.4 Trajectory State Transition Results From Hidden
Markov Model. After conducting predictions using data of differ-
ent lengths, we found that training with longer data lengths, i.e.,
complete data lengths, to achieve higher accuracy is not always
effective. Therefore, the use of an HMM is necessary to help us
find the best length series to achieve better accuracy as well as
earlier predictions.

We aim to evaluate the performance of the basic HMM and
ARHMM and select the most appropriate one for the early predic-
tion framework. Since dividing eight labels is a more complex case
study, our focus is on the eight-label case. Figure 12 shows the
average state transitions of the basic HMM for each label, and
Fig. 13 shows the results of the ARHMM transitions. In both
plots, each status bar represents three consequent time-steps
except for label 4 and label 8 where each bar represents two time-
steps. Each bar is displayed in yellow to indicate an uncertain
intent, and in green to indicate a certain intent.

In our comparative analysis of the segmentation results, the
HMM consistently segmented the observations and produced
clear and coherent segmentation results. In contrast, the ARHMM
produced segmentation results that showed irregular patterns
which make them less intuitive and more challenging to interpret.
The main reason for the superior performance of the HMM in our
dataset is that the data do not exhibit a strong time dependence in
the observations outside the hidden state. Introducing an autoregres-
sive component to the ARHMM may add unnecessary complexity
and lead to overfitting or misinterpretation. Subsequently, we tend
to use HMM in early prediction due to the consistency and interpret-
ability of its segmentation results.

In addition to presenting the HMM results in the time domain, we
also transfer them to the distance domain. First, the Euclidean dis-
tance between each pair of neighboring time points about the wrist
is calculated. Then, based on the principle of using straight-line dis-
tances as an approximate representation of curved distances, we use
the Euclidean distance as an approximation of the physical distance
between these two neighboring points. Adding up the distances
obtained for each two points along the trajectory is the complete
physical distance of the entire trajectory. Finally, we divide the dis-
tances according to the HMM transformation results, as shown in
Fig. 14. In this figure, the blue part indicates the distance of uncer-
tain intent, and the orange color indicates the distance of wrist
movement when the intent is determined. We should clarify that
in this study we just used the HMM results in the time domain
and did not use the distance domain as inputs to the prediction
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Fig. 9 Heatmap results for four-label case: (a) transformer and (b) Bi-LSTM
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Fig. 10 Eight-label classification results of different models on
test data

models, However, we believe that such a distance interpretation can
be used in practical human—robot collaboration in the design of
working positions or task assignment for both humans and robots.

However, it is worth noting that the state transition results asso-
ciated with the HMM affect the performance of the intent
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classification models. The choice of state transition method
depends on the specific dataset characteristics.

4.5 Intent Early Prediction With Eight Labels. To imple-
ment the concept of early intent prediction, we plan to validate
the two models through experiments with eight labels. First, we
prepare the data whose sequence length is the length from the
start point to the time transition point determined by the HMM.
Second, we train the prepared dataset with both models and
compare the results with the model’s performance on the full-length
sequences dataset.

A summary of the comparison is illustrated in Fig. 15. For both
models, the length of the data elements calculated using the HMM
achieved better prediction accuracy compared to using all data ele-
ments. Looking at the results of individual models and comparing
the values of the highest accuracy, the accuracy of the Transformer
model was improved by 2% and the accuracy of the Bi-LSTM
model was improved by 6%. While the Transformer’s optimal accu-
racy only saw a slight enhancement, its early predictive model
exhibits greater stability and a narrower range of accuracy when
compared to using full-length data. In addition, the overall perfor-
mance of the Bi-LSTM model surpasses that of the Transformer
model because it is better suited for analyzing data sequences
with high similarities, as discussed in Sec. 4.3.
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Fig. 11 Heatmap results for eight-label case: (a) transformer and (b) Bi-LSTM
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5 Conclusion and Future Work

In this study, we propose a framework for intent prediction based
on human movement data. The framework includes the use of Trans-
former and Bi-LSTM models to learn motion data and HMM to
determine the intention shifts. Our experimental study reveals that
the Transformer architecture yields better results in classifying inten-
tions with significant action differences, whereas the Bi-LSTM
architecture demonstrates greater robustness in identifying similar
actions. Furthermore, leveraging the state transition information
from HMM leads to early prediction and higher accuracy compared

Journal of Computing and Information Science in Engineering

to using full-length data. Combining an HMM with classification
models allows for early prediction of intent before completing the
action. We assess the suggested framework within a human-robot
collaboration context, with a focus on identifying intent when
picking up targets in a manufacturing environment.

The proposed work enhances human—robot collaboration in mul-
tiple ways. First, by accurately predicting human intent, robots can
anticipate future actions and provide timely assistance, thereby
reducing time and improving overall efficiency. Second, the recog-
nition of human intent enables robots to identify hazardous situa-
tions, fostering the creation of safe work environments.

The proposed framework holds potential for several extensions.
First, for data with similar motion trajectories, we can utilize deep
feature extraction techniques to achieve a prediction accuracy
exceeding 90%. This becomes especially important when trajecto-
ries are similar, yet the underlying intention differs substantially.
Second, in scenarios involving non-sequential or coordinated
tasks, it is essential to explore how dynamic interactions between
humans and robots affect the recognition of human intent.
Finally, while the current frameworks primarily rely on joint move-
ments to predict human intent, it is worthwhile to investigate how
small-scale movements at the wrist and finger levels can be utilized
for learning and predicting human intent.

To provide further guidance for adapting the framework to
complex applications, we recommend conducting a comprehensive
hyperparameter search. Hyperparameters, particularly in models
utilizing attention mechanisms and LSTM cells, play a pivotal
role in determining the performance of the model in diverse indus-
trial scenarios. After a global optimization, domain-specific fine-
tuning can be conducted, where the model is further refined based
on specific industrial scenarios’ data. In addition, to enrich the gen-
eralizability of the proposed framework, data augmentation tech-
niques can be tailored for motion trajectories, which will
artificially expand the current dataset. Meanwhile, a transfer learn-
ing approach can be leveraged, bridging the gap between proprietary
and public datasets and addressing potential over-specialization.
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