W) Check for updates

ASME

SETTING THE STANDARD

ASME Journal of Manufacturing Science and Engineering
Online journal at:
https://asmedigitalcollection.asme.org/manufacturingscience

Meng-Lun Lee

Mechanical and Aerospace Engineering,
University at Buffalo,

Buffalo, NY 14260

e-mail: mengluni@buffalo.edu

Xiao Liang

Civil, Structural and Environmental Engineering,
University at Buffalo,

Buffalo, NY 14260

e-mail: liangx@buffalo.edu

Boyi Hu

Industrial and Systems Engineering,
University of Florida,

Gainesville, FL 32611

e-mail: boyihu@ise.ufl.edu

Gulcan Onel

Food and Resource Economics,
University of Florida,
Gainesville, FL 32611

e-mail: gulcan.onel@ufl.edu

Sara Behdad
Environmental Engineering Sciences,
University of Florida,

Gainesville, FL 32611

e-mail: sarabehdad@ufl.edu

A Review of Prospects and
Opportunities in Disassembly
With Human—-Robot Collaboration

Product disassembly plays a crucial role in the recycling, remanufacturing, and reuse of
end-of-use (EoU) products. However, the current manual disassembly process is inefficient
due to the complexity and variation of EoU products. While fully automating disassembly is
not economically viable given the intricate nature of the task, there is potential in using
human—robot collaboration (HRC) to enhance disassembly operations. HRC combines
the flexibility and problem-solving abilities of humans with the precise repetition and han-
dling of unsafe tasks by robots. Nevertheless, numerous challenges persist in technology,
human workers, and remanufacturing work, which require comprehensive multidisciplinary
research to address critical gaps. These challenges have motivated the authors to provide a
detailed discussion on the opportunities and obstacles associated with introducing HRC to
disassembly. In this regard, the authors have conducted a review of the recent progress in
HRC disassembly and present the insights gained from this analysis from three distinct per-
spectives: technology, workers, and work. [DOI: 10.1115/1.4063992]
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1 Introduction and Motivations

Environmental regulations, growing consumer demand for eco-
friendly products, resource scarcity, and the potential profitability
of salvaging operations have sparked a heightened interest in
end-of-use (EoU) product recovery. This has prompted manufactur-
ers to incorporate remanufacturing into their business models.
Notably, even beyond environmental considerations, corporations
have recognized the economic value of what they once considered
as trash. Industrial examples have demonstrated that remanufac-
tured parts can be priced up to 50% lower than new parts, showcas-
ing the potential cost savings [1]. Implementing strategies such
as optimizing the recycling process, embracing remanufacturing,
improving disassembly techniques, and expanding repair and main-
tenance services all have positive impacts on businesses [2]. For
manufacturers, remanufacturing their own products allows them
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to explore innovative business models, such as product-service
systems and subscription-based models, while gaining greater
control over the market by creating their own product ecosystems.
From a socioeconomic perspective, semi-manual remanufacturing
processes contribute to increased employment rates by generating
new tasks and driving the need for expanded repair and remanufac-
turing efforts. The remanufacturing industry has shifted its focus
from cost minimization to value creation for the broader social
and economic systems. This paradigm shift necessitates interdisci-
plinary research and coordination across multiple fields, including
economics, policy, occupational health, and engineering, among
others.

Despite the inspiring vision and successful examples of remanu-
facturing efforts, there exist significant barriers to designing an
effective remanufacturing system. Challenges such as the labor-
intensive nature of disassembly [16], high labor costs [17], small
lot sizes, uncertainty regarding the quality of incoming cores [18],
core unavailability, and the lack of automation [19] hinder efficient
and profitable remanufacturing. Remanufacturers often face diffi-
culties in maintaining control over the supply chain, as they
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Fig. 1 Human-robot collaborative disassembly

passively accept used products with uncertain quality, quantity, and
conditions, which further complicates the remanufacturing and dis-
assembly processes [20]. While manufacturers have made great
strides in reducing manufacturing cycle times through the extensive
use of robotic technologies in assembly processes, the reverse
logistic aspect of the process still poses challenges. Disassembly
remains predominantly labor intensive, requiring direct contact
with potentially hazardous elements that can affect human health
[9,21-24]. Current manufacturing design guidelines, focused
on optimizing assembly efficiency, often overlook disassembly
considerations, resulting in suboptimal practices. The automation
of disassembly remains an underdeveloped field.

Human-robot collaboration (HRC), employing collaborative
robots, presents a promising solution for the labor-intensive disas-
sembly process (Fig. 1). By leveraging the unique strengths and
capacities of both humans and robots, the goal is to compensate
for each other’s weaknesses. Integrated efforts are required to
improve the efficiency, safety, and sustainability of the disassem-
bly line within the remanufacturing work domain. Collaborative
tasks such as disassembly, repair, and replacement can be
carried out by robot manipulators and human workers, fostering
a collaborative environment in remanufacturing factories
(workplace).

Although there has been an increasing adoption of HRC in disas-
sembly, many challenges in this domain have not been thoroughly
identified, discussed, or studied. In the subsequent sections, we will
conduct a comprehensive review of existing studies on HRC disas-
sembly. Specifically, in Secs. 2 and 3, we will discuss several
crucial perspectives that contribute to our understanding of HRC
in disassembly. To shed light on the challenges and future directions
of implementing HRC in remanufacturing, we will structure our dis-
cussions around four key perspectives: (1) human-robot task allo-
cation and distribution, (2) robotic motion planning, (3) human
factors such as fatigue, and (4) economics. These perspectives
will provide valuable insights into the existing challenges and
offer guidance for future research in the application of HRC to
remanufacturing. By examining these four perspectives, we aim
to identify the gaps that currently exist among technology,
workers, and the work environment. Addressing these gaps is
crucial to fully harnessing the potential of HRC in remanufacturing
and ensuring its successful integration into industry practices. The
overview and the structure of this article is provided in Fig. 2.

2 Existing Studies on Human—Robot Collaborative
Disassembly

To gain insights into recent advancements in HRC disassembly,
we conducted a meticulous review of relevant papers, with a
particular emphasis on those published between 2010 and 2022.
To facilitate our search, we utilized specific keywords such as
“human-robot” in conjunction with “collaboration” or “collabora-
tive” along with “disassembly,” and explored renowned scientific
databases, including IEEExplore and ScienceDirect. Subsequently,
we manually screened the papers based on the following criteria:

e The involvement of at least one human operator and one robot
working together in the disassembly process.

e The papers presenting experiments or case studies involving
the disassembly of real-world objects; hence, papers solely
focused on simulations (e.g., virtual reality) were excluded.

Following a thorough examination of these papers, including two
review papers [25,26], it became apparent that studies directly
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Fig. 2 Paper overview: This article consists of seven sections in total, which can be organized into three major
parts. Sections 1 and 2 (Part 1) introduce the motivation for human-robot collaborative disassembly and review
existing studies in this domain; Sections 3 to 6 (Part 2) focus on challenges from three perspectives, i.e., technol-
ogy, workers, and work. In particular, Section 3 discusses the challenges that HRC brings to task allocation among
humans and robots and to sequence planning of disassembly. Sections 4.1 and 4.2 discuss the challenges in plan-
ning robotic motion while balancing efficiency of robots and safety of humans. Section 5 discusses the challenges
in human factors and human-robotics system integration. Section 6 discusses the economic considerations and
implications for the human workforce. Section 7 (Part 3) summarizes the challenges of integrating all three perspec-
tives (workers, work, and technology) for real remanufacturing systems.
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Table 1

Collaboration modes

Human

Collaboration mode involvement Advantages and challenges Applications References
Sequential Minimal + Easy to implement Used for repetitive, well-defined disassembly tasks [3-5]
disassembly + Controlled process with less

risk

— Less adaptability to changing

situations
Parallel disassembly Significant + Simultaneous part removal Used for resource-intensive disassembly, especially for [6-11]

— Coordination challenges in complex products

mixed teams
Collaborative Active + High flexibility in task Suitable for tasks that demand flexibility and human [12-15]
disassembly collaboration allocation expertise

+ Leverages human-robot

teaming

— Requires advanced safety

measures

— Coordination challenges in

mixed teams

related to HRC disassembly are limited in number. This section pro-
vides an extensive literature review, highlighting the significant
contributions of these papers. The majority of the examined
papers consider HRC in determining collaboration modes, defining
disassembly objectives, as well as addressing safety and other rele-
vant factors.

2.1 Collaboration Modes. HRC makes the disassembly col-
laboration modes more complex than those without robots.
Briefly, collaboration modes can be classified into three types:
sequential [3-5], parallel [6-11], and collaborative [12—15], as sum-
marized in Table 1.

Sequential disassembly is a process in which parts are removed
from EoU products one after the other, either by human operators
or by robots. This mode is simple to implement but may not be
the most efficient mode, as it can lead to bottlenecks in the disas-
sembly process. On the contrary, parallel disassembly is a more
efficient mode in which multiple components are removed simulta-
neously by human operators and robots. This mode can be more
complex to implement, but it can significantly reduce disassembly
time. Collaborative disassembly is a mode in which a human oper-
ator and a robot work together to perform a task. This mode can be
the most efficient, but it requires careful planning and coordination
between humans and robots. The choice of collaboration mode
depends on the specific application. For example, for an EoU
product with a large number of components, the parallel or the col-
laborative mode may be preferred because of their potential to
reduce disassembly time. However, for a product with complex
components, the sequential mode may be preferred because it
allows for more precise control.

Sequential Disassembly. Sequential disassembly is a mode of
disassembly in which only one worker (the human operator or the
robot) is assigned to a disassembly task at each step. This mode
is simple to implement and ensures safe human operation, as the
robot remains idling while the human operator performs a disassem-
bly task, or the human operator maintains a safe distance and
inspects the robot disassembling a component. Sequential disassem-
bly has been studied in a number of studies. In Ref. [4], a disassem-
bly sequence planner was developed to sequentially assign
disassembly tasks between one human operator and one robot.
The planner was designed to avoid collisions between the human
operator and the robot, and it was evaluated on a small EoU
product. In Ref. [3], a linear disassembly line with multiple work-
stations was studied. Each workstation consisted of a human oper-
ator and a robot, and the workers performed disassembly tasks one
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after the other. Additionally, in Refs. [5,27], a receding-horizon
sequence planner was proposed to distribute disassembly tasks to
a human operator or a robot while factoring in real-time human
motion. The planner traversed feasible task sequences and obtained
the optimal one for the next three disassembly steps. This approach
was shown to be effective in reducing the computational cost of
planning disassembly sequences for EoU products with a large
number of disassembly tasks. Overall, sequential disassembly is a
simple and safe mode of disassembly that can be effective in
some applications. However, it may not be the most efficient
mode of disassembly, as it can lead to bottlenecks in the disassem-
bly process.

Parallel Disassembly. Parallel disassembly is a mode of disas-
sembly in which different tasks are assigned to human operators
and robots simultaneously. This mode can significantly improve
disassembly efficiency, as it allows workers to work on different
tasks at the same time. There has been considerable research
(Table 1) on parallel disassembly in the context of human-robot
collaboration. For example, in Ref. [6], an HRC disassembly work-
station with one human operator and multiple collaborative robots
(cobots) was presented. The human operator and the robots could
perform different disassembly tasks at the same time using force
and position control. In Ref. [8], an HRC disassembly sequence
planning (DSP) for a diaphragm coupling was studied. In this
work, distinctive disassembly tasks were assigned to a robot and
a human operator simultaneously, but the working time for each
task was assumed to be the same, regardless of the capability of
the disassembly worker or the complexity of the disassembly
task. In Ref. [7], a human-robot selective disassembly was pro-
posed. In this approach, disassembly operations were carried out
in parallel with tasks assigned to the human operator or the robot
according to the complexity of each task. In Refs. [9,10], HRC dis-
assembly was considered as a parallel disassembly, so the optimal
solutions to the HRC disassembly sequence were found by dis-
tributing tasks to a human operator and a robot simultaneously
without violating precedence relationships of disassembly tasks.
In Ref. [11], components of EoU products were extracted through
a series of operations, and the precedence relationships for the oper-
ations were assumed to be optional, which enabled human operators
and robots to work on component extraction in parallel.

Collaborative Disassembly. Collaborative disassembly is a
mode of disassembly in which a human operator and a robot
work together to perform the same task. This mode can be more effi-
cient than parallel disassembly, as it allows the human operator and
the robot to complement each other’s strengths. For example, the
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Table 2 Disassembly objectives and collaboration modes

Disassembly objective Sequential mode Parallel mode Collaborative mode References
Disassembly time Longer Potentially shorter Optimizable for efficiency [9,11,14]
Energy consumption Lower Higher Potential for optimization [3,28,29]
Number of workstations Fewer More Variable, optimizable [15,28]
Complexity Low High Adaptive and varied [4,5,7,9,10]
Safety Lower risk Increased risk Safety protocols needed [9,30,31]
Adaptability Limited Moderate High flexibility

human operator may be better at tasks that require dexterity and
judgment, while the robot may be better at tasks that require
strength and precision. By working together, the human operator
and the robot can complete the task more quickly and efficiently.
There has been some research on collaborative disassembly in the
context of human—robot collaboration. In Refs. [12,15], human—
robot collaborative disassembly task classification models were
proposed. In these models, four types of worker groups were con-
sidered in distributing disassembly tasks: (i) only a human operator,
(ii) only a robot, (iii) a human operator or a robot, and (iv) human—
robot cooperation. In Ref. [13], the human operator and the robot
worked together to separate parts in press-fitted components as
HRC disassembly tasks. However, the study did not consider task
sequence planning. Furthermore, a novel DSP was conducted in
Ref. [14]. This study proposed a DSP to obtain optimal disassembly
sequence and distribute tasks among the robot, the human operator,
and the collaborative human-robot team. The DSP considered dis-
assembly time, transition between disassembly tasks, tool-changing
time, and the limitation of the number of robots and human opera-
tors. The paper also studied the effect of assigning the human-robot
team to the disassembly line and assumed that some disassembly
tasks could be performed more efficiently by the human-robot
team.

Parallel disassembly has been the focus of research in recent
years. This mode allows human and robot workers to be assigned
to different tasks simultaneously, which can significantly improve
disassembly efficiency. However, sequential disassembly may be
required in some cases depending on the safety protocols of the dis-
assembly process. Collaborative disassembly is the most important
mode in HRC applications, but it is seldom discussed at the
sequence planning level. To the best of our knowledge, the study
by Lee et al. [14] is the only recent research that developed a disas-
sembly sequence planner with a real-world case study that assigns
one disassembly task to both the human operator and the robot,
which is referred to as the collaborative disassembly in this article.

2.2 Human-Robot Collaboration Disassembly Objectives.
Once the disassembly modes are determined, there are usually
multiple objectives to be considered in planning a disassembly
sequence. These objectives or considerations include but are
not limited to disassembly time [9,11,14], energy consumption
[3,28,29], number of workstations [15,28], task complexity
[4,7,9,10], and others [9,30,31]. Table 2 provides a brief
summary on disassembly objectives and their correlation with dis-
assembly modes.

Disassembly Time. The disassembly time is a significant objec-
tive in disassembly sequence planning, as minimizing the disassem-
bly time also minimizes the labor cost. It is a common objective
among a significant number of studies. For example, in Ref. [9],
the goal of the proposed HRC disassembly sequence was to mini-
mize the total disassembly time, including the tool-changing time,
the direction adjusting time, the moving time, and the waiting
time. Similarly, in Ref. [11], one of the disassembly objectives
was to minimize the total disassembly time so that all operations
in an HRC machine shop, consisting of multiple human operators,
robots, and workstations, were performed in a timely manner. In

020902-4 / Vol. 146, FEBRUARY 2024

Ref. [14], a proposed HRC disassembly sequence planning consid-
ered not only the total disassembly time of the human operator, the
robot, and the collaborative human—robot team but also the tool-
changing time and the transition between different disassembly
modules. In Ref. [34], the disassembly completion time was the
major objective for dismantling power batteries.

Energy Consumption. Energy consumption is an important
objective in disassembly sequence planning, as minimizing
energy consumption can maximize disassembly profit. This is
because energy consumption is a major cost factor in disassembly,
and it can also have a negative impact on the environment. Several
studies have considered energy consumption as an objective in
disassembly sequence planning. For example, in Ref. [3], a
human-robot collaborative disassembly line balancing problem
(HRC-DLBP) was studied with the optimization objectives of min-
imizing energy usage and maximizing total profit. Similarly, in
Ref. [28], an HRC-DLBP was explored to decrease the disassembly
cost and increase the disassembly efficiency considering disassem-
bly failure and energy consumption. In Ref. [29], an HRC-DLBP
with multiple workstations was investigated to find the solutions
for issues in optimization, including hazardous conditions, energy
consumption, etc.

Workstations. Minimizing the number of workstations is an
important objective in disassembly sequence planning, as it can
improve work efficiency. This is because fewer workstations
means that workers and robots can be more easily assigned to
tasks, and it also means that there is less space required for the dis-
assembly line. One of the disassembly objectives in Ref. [28] for a
simplified hammer drill disassembly was to minimize the number of
workstations. Each workstation could perform one disassembly task
assigned to either the human operator or the robot. In Ref. [15], a set
of HRC models was developed for DLBP with the goal of achieving
several optimization objectives, including minimizing the number
of disassembly workstations, balancing the workload, and trying
to maintain the idle time consistency of each workstation.

Disassembly Complexity. Disassembly complexity is an impor-
tant factor to consider in disassembly sequence planning, as it can
affect the time, cost, and safety of the disassembly process. In
Ref. [7], a quantitative scoring algorithm was proposed to distribute
disassembly tasks to the robot and the human operator according to
the complexity levels as the disassemblability parameters for each
disassembly task. In Ref. [9], the complexity and uncertainty
level of the disassembly tasks were considered in selecting the
workers between the human operator and the robot in DSP, as the
human operator could flexibly handle complex disassembly tasks
and the robots can perform tasks repeatedly with high precision.
In Ref. [10], the concept of disassembly attributes was introduced
to solve the HRC-DSP problem. The attributes included moving
complexity, workload, hazardous level, etc. In Refs. [4,5], the geo-
metric complexity and the labor efforts of the to-be-disassembled
components were considered as the disassembly cost in finding
the HRC optimal disassembly sequence.

Other Considerations. Other disassembly objectives aimed to
address specific problems within the disassembly process by utilizing
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HRC, without involving HRC disassembly sequence planning. In one
example, the study by Ref. [9] incorporated a human fatigue factor in
the HRC-DSP to prevent work deficiency resulting from continuous
manual labor. Another study by Ref. [30] presented an automated
unfastening technique for threaded hexagon-headed screws, eliminat-
ing the need for human assistance by accurately locating the screws’
position and centerline. Ding et al. [31] focused on transferring valu-
able information from human operators to a robotic knowledge graph
system to enhance disassembly efficiency in HRC disassembly tasks.
Several studies have integrated multiple factors simultaneously. For
instance, Liao et al. [35] developed a framework that considered dis-
assembly time, complexity, and operator safety, using a multi-
attribute utility function to determine the optimal disassembly
sequence and allocate work between humans and robots. Guo et al.
[36] considered disassembly time, cost, and part condition/failure
status to determine the optimal sequence for human-robot collabora-
tion. Belhadj et al. [37] generated disassembly plans by minimizing
changes in dismantling directions and tools. It is important to note
that, in addition to the aforementioned objectives, operator safety
and well-being are of significant importance, and a dedicated
section will thoroughly discuss these aspects.

Our analysis of the collected papers reveals that task complexity
is the most frequently discussed objective in the disassembly of
EoU products. The existing research on HRC-DSP often considers
multiple factors when optimizing the disassembly process. Conse-
quently, the specific disassembly objectives and the available data
obtained from the disassembly process influence the parameteriza-
tion of the disassembly cost, ultimately leading to the generation of
an optimal HRC disassembly sequence.

2.3 Consideration of Human. Human operators play a criti-
cal role as partners to robots in the context of HRC in disassembly
processes. Ensuring human safety is a primary focus in existing
studies, with multiple methods employed to guarantee the well-
being of human operators. These methods can generally be catego-
rized into two levels: decision level (task planning) and robotic
planning, as summarized in Table 3. At the task planning level, con-
siderations are given to the hazardous conditions of components and
the working distance between human operators and robots. At the
robotic planning level, motion planning algorithms are integrated
to prevent collisions with human operators.

Motion Planning. In the existing literature, the safety strategy pre-
dominantly revolves around maintaining a safe distance between
human operators and robots. If the distance falls below the specified
safety requirements, the robot will slow down or come to a complete
stop to ensure a safe workspace. However, this cautious approach can
affect the efficiency of collaborative disassembly. For instance,
Huang et al. [6] implemented force and position control, along with
active compliance control, in multiple collaborative robots equipped
with torque sensors. They used a laser scanner in the proposed disas-
sembly cell to achieve safe human-robot interaction and enable
complex disassembly operations. Liu et al. [8] proposed a safety
assessment system utilizing a human skeleton point cloud model to
calculate the minimum safe distance. Xu et al. [12] considered the

Table 3 Disassembly safety strategy

Safety

strategy Methods References
Motion Prevent collision via planning robot  [6,8,9,12,13,15,32,33]
planning motion in real time

Task Develop safety measures by

planning considering factors such as
hazardous components and
working distances and assign tasks
accordingly

[4,5,14]

Journal of Manufacturing Science and Engineering

distance between human operators and robots for different disassem-
bly tasks to ensure human safety, with the robot’s speed adjusted
based on this distance. Huang et al. [13] implemented active compli-
ance control in the robot to safely carry out complex disassembly
operations alongside the human operator. Li et al. [9] introduced a
human fatigue model for HRC disassembly workspaces, considering
the accumulation rate of human fatigue to prevent workplace hazards.
Liu et al. [15] presented a human-robot collaborative safety strategy
combined with a line balancing optimization solution, wherein the
robot adjusted its speed based on its distance to the human operator
during each disassembly task. At the motion planning level, Corrales
et al. [32] deployed two types of safety strategies to track the distance
between the human operator and the robot, avoiding collisions
through complete stops and move-away actions. Gerbers et al. [33]
presented a collaborative workstation for automated unscrewing,
aiming to prevent human workers from being exposed to toxic mate-
rials during the disassembly of EoU electric vehicle batteries.

Task Planning. Considering potential hazardous materials or
unsafe work environments, certain disassembly tasks should be
allocated to the robot rather than the human operator to ensure
safety. Therefore, safe conditions need to be taken into account
when distributing tasks in HRC disassembly. For example, Lee
et al. [14] achieved safe HRC disassembly sequence planning by
considering the safe conditions of components and the distances
between disassembly tasks. In both Lee et al.’s works [4,5], the
safe condition of the components to be disassembled was consid-
ered during the sequence planning stage. This approach ensured
that unsafe tasks were not assigned to the human operator, thus
maintaining human safety.

3 Bringing Human-Robot Collaboration to
Disassembly: Task Allocation and Sequence
Planning (Technology)

When introducing robots, one of the key challenges is determin-
ing the optimal disassembly sequence and effectively distributing
and planning the disassembly tasks among humans and robots. Tra-
ditional DSP is often formulated as an NP-hard (nondeterministic
polynomial-time hardness) optimization problem [14,49,50], but
it does not explicitly consider the involvement of robots and
HRC. Several comprehensive review papers have been published
on DSP from 2010 to 2018. The first one [51] reviewed over 500
papers from 1977 to 2010 with more than 80 articles relevant to
DSP. The second [52] collected about 200 papers up to the year
2015 with nearly 40 articles associated with DSP. Noting that
both the two review papers [51,52] examined the state of the art
of designing a product considering its life cycle, including the
recovery from its EoU stage. The third [53] surveyed 137 papers
up to the year 2021 and classified DSP into four perspectives
without HRC: modeling, mathematical programming, artificial
intelligence techniques, and uncertainty analysis in the disassembly
process. The fourth one [54] investigated about 150 papers from
1998 to 2018 examining DSP in the aspects of disassembly
modes, disassembly modeling, and planning methods. It is worth
noting that HRC was not explicitly considered in those review
papers mentioned earlier.

In the following paragraphs, we will discuss several key princi-
ples of DSP and the challenges of bringing HRC into those princi-
ples: (i) disassembly modes (complete disassembly versus selective
disassembly), (ii) disassembly modeling for generating feasible dis-
assembly sequences, and (iii) optimization methods for obtaining
optimal disassembly sequences.

Disassembly Modes. Determining the disassembly mode is the
first step in DSP. The existing disassembly modes can be classified
as total disassembly and selective disassembly [44]. Literally, total
disassembly [38—43] involves dismantling an EoU product into
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individual components, which is expensive and impractical. In con-
trast, selective disassembly only removes valuable components
from the EoU products [44—48]. The aforementioned disassembly
modes and references are listed in Table 4.

Due to significant uncertainty in remanufacturing systems, it is
important that HRC systems are equipped with proper detection
technologies to evaluate the potential value of recovering compo-
nents before targeting to dismantle them. This is particularly impor-
tant for selective disassembly. Recent studies have paid attention to
this issue by developing disassembly metrics. For example,
Ref. [55] proposed an approach that involves constructing an ontol-
ogy to describe component information and assembly relations,
formulating destructive rules for guided disassembly, and generat-
ing feasible planning schemes. While the focus of the study was
not on HRC, the proposed approach provides a foundation for auto-
mating the disassembly process toward maximizing the value reten-
tion of EoU devices. In Ref. [56], a method was proposed for
quantitatively evaluating the disassemblability of products. This
method considered factors such as the quality of returns, product
design characteristics, and process technology requirements. Such
approaches should be extended to the HRC field to incorporate
the limitations of both humans and robots when determining
disassembleability.

Modeling of Feasible Disassembly Sequences. To plan a disas-
sembly sequence effectively, it is crucial to consider various attri-
butes of the components in the EoU product, such as the
precedence relationships among the to-be-disassembled compo-
nents, the geometric complexity in removing the parts, the presence
of hazardous conditions of the disassembly, and the tools required
for the disassembly operations. These factors could significantly
impact the process of finding the desired disassembly sequence.
There are multiple modeling methods in the existing literature: (1)
graph-based modeling is the one that uses undirected or directed
graphs [57-60] or AND/OR graphs [61-66] to represent the disas-
sembly orders between different subassemblies or individual com-
ponents; (2) Petri-net represents the structural relationship of the
components, as studied in Refs. [42,59,67-69]; (3) matrix-based
methods use the matrix form, known as the precedence matrix,
the connection matrix, or the constraint matrix, to describe the pre-
cedence relationships among to-be-disassembled components
[70,71]. In addition, there are also researchers proposing different
modeling methods to solve the DSP problems, including selective
DSP [72-75], branch-and-bound based algorithm [76], disassembly
information modeling [77], and fuzzy-rough set [78]. The afore-
mentioned disassembly modeling methods and references are
listed in Table 5.

While an extensive stream of literature exists on identitying fea-
sible disassembly sequences, most of them assume manual disas-
sembly. However, in the context of HRC, it becomes essential to
develop approaches that can generate feasible sequences while con-
sidering the capabilities and limitations of both humans and robots.
Along this line, studies toward automating the identification of fea-
sible sequences would be beneficial as they can be augmented
by HRC requirements. For example, Ref. [80] proposed a process
to extract geometrically feasible disassembly sequences from
computer-aided design (CAD) assembly files. The feasibility of dis-
assembly was assessed using a precedence matrix that indicated the
order in which components can be safely removed. Upadhyay et al.

Table 5 Disassembly modeling methods

Modeling method References
Graph-based modeling [57-66,79]
Petri-net modeling [42,59,67-69]
Matrix-based modeling [70,71]

Other modeling methods [72-78]

[81] utilized 3D data from CAD assembly models to generate viable
disassembly sequences by using graph-based learning to process the
graph representation of the CAD models.

Finding the Optimal Sequence and Task Allocation. The DSP
problem has been tackled by many optimization algorithms. An
optimization objective in DSP is to conduct a disassembly sequence
in an efficient way, which can be classified into nature-inspired
algorithms, linear programming methods, and other optimization
methods. Nature-inspired algorithms can be subclassified into the
following groups: genetic algorithms [82-84], artificial bee
colony [85-90], ant colony [91,92], particle swarm optimization
[47,93,94], and scatter search [65,68,95,96]. Linear programming
methods [14,77,79,97], particularly MILP [29,66,84,90,98], are
widely used to solve constrained optimization problem. Other opti-
mization methods are also adopted for obtaining the optimal disas-
sembly sequence, such as stochastic mixed-integer nonlinear
programming (MILP) [99], Tabu search [41,100], rule-based
methods [45], Q-learning [101], multi-agent reinforcement learning
[102], and teaching-learning-based optimization [103]. The optimi-
zation methods and corresponding references are listed in Table 6.

In our analysis of papers published between 2010 and 2022, we
observed that artificial bee colony, ant colony, and linear program-
ming emerged as the most widely used methods for disassembly
optimization. The primary focus of these studies was to either min-
imize calculation time or enhance the quality of optimization out-
comes. However, it is important to note that the applicability of
these findings in real-world scenarios may be limited due to uncer-
tainties inherent in the disassembly process. Consequently, there
arises a pressing need to develop a disassembly sequence planner
capable of dynamically re-planning the disassembly order and
re-assigning workers in real time, taking into account the actual
status of disassembly tasks.

When discussing task allocation and sequence planning for HRC,
one notable challenge in industries is the assignment of multiple
human operators and robots to a sequence of assembly/disassembly
tasks. This challenge arises due to the limited flexibility of robots
and the programming efforts required for dynamic task assignment
[104]. Numerous publications have focused on addressing this opti-
mization problem [105]. For instance, Wilcox and Shah [106]
developed an adaptive preference algorithm to achieve optimal
task assignments in human—robot teams. Chen et al. [107] proposed
a genetic algorithm for an HRC assembly workstation that aimed to
minimize assembly costs, including time. Wu et al. [108] and
Rahman et al. [109] presented trust-based dynamic task allocation
strategies to optimize assembly sequences.

A common approach for task allocation between human opera-
tors and robots is to determine an optimal assembly sequence

Table 6 Disassembly optimization methods

Table 4 Disassembly modes Optimization method References
Disassembly mode Main applications References  Genetic algorithms [82-84]
Artificial bee colony [85-90]
Complete End-of-life product recycling, [38-43] Ant colony [91,92]
disassembly material separation, proper disposal of Particle swarm [47,93,94]
hazardous waste, etc Scatter search [65,68,95,96]
Selective or target Component replacement, repair, [44-48] Linear programming [14,29,66,77,79,84,90,97,98]

disassembly product upgrade, customization, etc

Other modeling methods [41,45,99,100,103]
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that takes into account the capabilities of each individual
[104,107,110-112]. Rosenfeld et al. [113] implemented a robotic
warehouse system with a human operator and multiple robots
using the advice optimization problem (AOP), which aims to max-
imize workers’ performance. Subsequent work has focused on com-
putationally driven approaches to automatically find the optimal
assembly sequence [114]. Similarly, real-time task planning in
HRC assembly can significantly contribute to achieving one or mul-
tiple objectives while considering constraints such as available
workers (human operators/robots) and time consumption [115].
However, limited research has been conducted at the task planning
level to enhance HRC efficiency with task scheduling.

Dynamic sequence planning has been integrated into various
algorithms to adapt and optimize real-time resource allocation.
For instance, Lee et al. [5] incorporated real-time human motion
into the disassembly cost and formulated the HRC-DSP problem
as a receding horizon optimization problem. Riedelbauch and
Henrich [116] proposed an action selection algorithm that enables
robots to dynamically choose pick-and-place operations that con-
tribute to a shared goal with human operators. Moreover, the
states of HRC, such as the fatigue level of humans and the posi-
tions/moving directions of robots and human operators, can be
taken into account in assembly/disassembly sequence planning
[4,9,117]. These factors contribute to a more comprehensive and
efficient planning process in HRC.

The field of HRC manufacturing/remanufacturing has generated
a substantial amount of literature, particularly concerning assembly
lines and warehouse applications. Optimization methods are com-
monly employed to address the task allocation problem in HRC.
These methods include trust-based optimal task allocation, AOP
formulation, and optimized scheduling using integer linear pro-
gramming. Some approaches parameterize the capabilities of
human operators and robots to achieve optimal task distribution.
The optimization efforts primarily revolve around two key aspects
that form the basis of disassembly process planning: (1) disassem-
bly sequence planning and (2) task allocation. These areas receive
significant attention in the literature as they play crucial roles in
optimizing HRC operations.

Sequence Planning. The optimal task sequence is a critical chal-
lenge in DSP as it directly impacts the overall effectiveness of the
disassembling process. Various challenges arise, such as allocating
disassembly tasks in the correct order and selecting components
efficiently from a large number of subassemblies within a limited
time frame. Additionally, as the number of components to be disas-
sembled increases, the number of potential solutions grows expo-
nentially. The complexity of the entire disassembly process is
further compounded by the need to select the appropriate worker
from options including robots, human operators, or human-robot
teams. Moreover, due to computational constraints, only a near-
optimal solution can often be obtained, rather than an exact
optimal solution. Furthermore, the presence of uncertainty in
remanufacturing systems adds an additional layer of complexity
to HRC planning. The planning process needs to account for uncer-
tainties in the volume and condition of devices, as well as the inher-
ent uncertainty associated with operations. Future HRC systems are
expected to incorporate uncertainty considerations into their plan-
ning operations. For example, Ye et al. [118] introduced the
concept of fuzzification in DSP, enabling disassembly sequence
planning to adapt to failures and dynamically re-plan in real time.
They proposed a dual-loop self-evolving framework that handles
uncertain interference conditions, allowing for more robust and
adaptive HRC planning.

Task Allocation. Task assignment in collaborative systems plays
a vital role in maximizing resource utilization and enhancing collab-
oration efficiency. Optimal and intelligent task assignments are
crucial for achieving these goals. In collaborative disassembly
workstations, task reassignment may occur based on factors such
as the suitability of a disassembly tool for human operators or
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robots, their availability, and cost considerations. With the introduc-
tion of HRC, a disassembly task can be assigned to a robot, a human
operator, or both simultaneously. As remanufacturing systems con-
tinue to grow in complexity, more advanced task planning algo-
rithms will be required. For example, Wurster et al. [119]
developed a reinforcement learning approach for order dispatching
control tasks involving humans and robots. Moreover, future HRC
systems are expected to involve multiple robots and humans
working together. Galina and Galin [120] demonstrated how a
mixed team of robots can collaborate to complete tasks and pro-
posed an algorithm for task assignment based on factors such as
availability and efficiency. Their algorithm represents the process
as a graph, with events and operations as vertices connected by
weighted edges representing time. These advancements in task
planning algorithms facilitate more effective coordination and utili-
zation of resources in complex HRC systems.

4 Bringing Human-Robot Collaboration to
Disassembly: Robotic Motion Planning and Control
(Technology)

Although robotic technologies have made significant advance-
ments in the field of manufacturing over the past few decades,
their applications in disassembly and remanufacturing remain
quite limited. In traditional manufacturing settings, robots are typi-
cally confined within cages for safety reasons and are prepro-
grammed to perform repetitive tasks in controlled environments.
For instance, prominent industrial robot company FANUC has sup-
plied a large number of robots for applications such as welding, dis-
pensing, sealing, material removal, and painting. More recently,
with the growing interest in flexible automation, several collabora-
tive robots (cobots) have been developed and brought to market.
However, existing cobots often rely on rudimentary protection
mechanisms, leading to a considerable loss in efficiency.

Disassembly processes, particularly in the context of remanufac-
turing, require robots to operate outside the confines of cages and
work extensively alongside human operators, presenting significant
new challenges for robotics. In fact, robotics technology on the
remanufacturing side is still in its nascent stages of development.
In this section, we aim to address two key aspects: (1) reviewing
studies that focus on collision-free robotic motion planning to estab-
lish a safe shared workspace for human—robot collaboration and (2)
discussing the associated challenges specific to disassembly. We
approach safe motion planning in human-robot collaboration by
considering two critical steps: human motion prediction and
robotic motion planning.

4.1 Human Motion Prediction. Due to the significant level of
uncertainty involved in the disassembly process of end-of-use prod-
ucts, human operators often find themselves needing to adjust pre-
planned task sequences or undertake unplanned tasks based on the
actual condition of the products being recycled. Such adjustments
and additional tasks are typically not foreseen by the robot
system in advance. In order to ensure the safety of human
workers and enable collaboration between humans and robots
during disassembly tasks, cobots must possess the ability to com-
prehend human behavior and adapt their motion plans in real
time. In this context, human motion forecasting plays a crucial
role as an indispensable component of a safe and efficient HRC
system. Numerous studies have been conducted in the field of com-
puter vision to address human motion prediction [121-129]. These
studies have approached the topic from various research perspec-
tives, such as accurate and deterministic motion prediction [121-
123], prediction of multiple agents with interactions [124-126],
and stochastic motion prediction [127-129]. Despite the existence
of such research works, the effective implementation and applica-
tion of human behavior prediction in HRC are still being explored.
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Probabilistic models have long been employed in the prediction
of human motion, dating back to the early stage of research in
this field. For instance, Ref. [130] proposed a method based on
the hidden Markov models (HMMs) to predict potential areas
within the workspace that may be occupied by the human arm
over a specific prediction horizon. This predicted region can subse-
quently be used as a safety constraint in robot motion planning.
Similarly, Mainprice and Berenson [131] computed workspace
occupancy in real time using Gaussian mixture models (GMMs)
to encode a library of human motion. They constructed a probabi-
listic representation of workspace occupancy through Gaussian
mixture regression (GMR) during the offline stage. In the online
stage, observed trajectories were matched with the GMMs, and
GMR was employed to extract the best-fitting motion. Luo et al.
[132] introduced a two-layer framework of GMMs, employing
the features of palm position and arm joint center position, respec-
tively. This two-layer structure demonstrated improved recognition
performance while effectively modeling the entire arm trajectory.
Additionally, they utilized an unsupervised online learning
algorithm to update the models with newly observed trajectories,
enabling adaptation to new agents and motion styles. These
probabilistic methods are well suited for capturing the stochastic
nature of human motion but may face challenges when dealing
with complex motion patterns.

In addition to the probabilistic model, inverse optimal control
(I0C) represents another promising approach for human motion
prediction in HRC. IOC-based methods assume that human
motion is optimal with respect to an unknown cost function,
which is typically defined as a linear combination of user-defined
features related to motion trajectories for simplicity. Mainprice
et al. [133] utilized IOC to learn the underlying cost function
from human-demonstrated trajectories in the scenario of human—
human collaboration. They then predicted the motion of an active
human through iterative motion re-planning based on the learned
cost function. In a similar vein, Mainprice et al. [134] introduced
the concept of a goal set to relax the constraint of knowing
the goal configuration in advance. Their work encompassed
both human-human collaboration scenarios and human—robot
workspace-sharing experiments. IOC was employed to capture
human behavior in an HRC scenario in Ref. [135]. In contrast to
Refs. [133,134], the cost function learning stage considered the col-
lision cost as a feature instead of solely penalizing the distance
between humans and robots during iterative re-planning. Moreover,
additional constraints on the weighting vector were incorporated to
prevent the algorithm from overly emphasizing specific features.

Deep learning techniques have recently made their way into HRC
to capture the complex motion patterns exhibited by humans. Cheng
et al. [136] proposed semi-adaptable feedforward neural networks,
which adapt the parameters of the last layer to accommodate uncer-
tainties arising from time-varying human behavior and individual
differences among human agents. This approach was further com-
bined with a model-based method in Ref. [137] to predict human
hand trajectories and final targets. Wang et al. [138] utilized a con-
volutional neural network (CNN)-recurrent neural network
(RNN)-based model to predict human hand movements. CNNs
were employed to extract visual features from image inputs, while
RNNSs predicted hand movements at the pixel level. Zhang et al.
[139] argued that standard RNNs might be ineffective for human
motion prediction due to interactions among different body parts.
They introduced component and coordination functional units
into the RNN structure to analyze the evolutionary motion pattern
of specific body parts and the coordination among different body
parts. Additionally, Monte-Carlo dropout was investigated to
improve the reliability of prediction results. To enhance prediction
performance, Liu and Liu [140] and Liu et al. [141] incorporated
kinematic and dynamic information of human motion into neural
networks. Liu and Liu [140] employed RNNs to predict human
wrist motion, extending the prediction to full-arm motion using
inverse kinematics. A modified Kalman filter was utilized to
adapt the model in real time to different users or tasks. Liu et al.
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[141] considered the effect of muscle force on motion by incorpo-
rating a dynamic model informed by Lagrangian mechanics. The
future muscle force was predicted using a neural network, and an
unscented Kalman filter was used to handle the nonlinear arm
dynamic model and generate future motion. Eltouny et al. [142]
used deep ensembles to predict human motion with uncertainty
awareness. Liao et al. [143] used a combination of convolutional
long short-term memory and You Only Look Once (YOLO) to par-
ticularly predict human operations in disassembly tasks. Generative
models have also been explored for human motion prediction in
HRC. Biitepage et al. [144] trained a conditional variational auto-
encoder using RGB depth images, enabling the generation of mul-
tiple future predictions based on the observed context. Tian et al.
[145] proposed a practical and effective transformer-based diffusion
model for 3D human motion prediction.

In addition to data-driven methods, certain researchers have
directed their attention toward model-based approaches for human
motion prediction. One such example is the integration of a
minimum-jerk model-based algorithm for human motion prediction
in Ref. [146], specifically designed to facilitate local obstacle avoid-
ance in close HRC scenarios. Another approach, presented in
Ref. [147], suggested a two-stage prediction method that combines
the classical minimum-jerk model with dynamic movement primi-
tives to forecast human motion while taking into account obstacles
present in the environment.

Besides 3D human pose prediction, another active research area
in HRC for assembly or disassembly tasks is the prediction of
human actions or intentions. Similar to 3D pose prediction, there
is a wide range of methodologies employed for human action pre-
diction. For instance, in Ref. [148], probabilistic dynamic move-
ment primitive was utilized to predict both human intention and
hand motion. A Gaussian process-based method was proposed in
Ref. [149] to infer human intentions in reaching tasks. In the case
of assembly tasks, Ref. [150] applied HMMs to model human
motions as a sequence. In Ref. [151], a Bayesian approach utilizing
probabilistic flow tubes was employed to classify time series data
and identify the current motion class being executed by a human.
Several studies, such as Refs. [152-154], investigated the use of
CNN-RNN networks and deep CNN to identify human intent
from visual inputs. Additionally, Ref. [155] proposed an action pre-
diction method based on motion cues and gaze, using shared-weight
long short-term memory networks and feature dimensionality
reduction. Although these research works employ various
methods, their common objective is to discern human actions or
intentions based on historical observations.

Despite extensive research conducted in this field, incorporating
human motion prediction into disassembly tasks still presents for-
midable challenges. First, human motion itself is inherently
complex. The highly nonlinear and time-varying nature of human
movement makes it difficult to achieve accurate predictions.
Second, human motion involves inherent uncertainty. Future
motions of human workers can be influenced by various factors,
such as unexpected product conditions, sudden changes in the envi-
ronment, and interactions with other moving agents in shared work-
spaces. Reliable prediction results require sophisticated techniques
that are currently lacking.

Considering the complexity and uncertainty nature of human
motions, the emerging deep learning techniques may bring some
new opportunities in human motion prediction. However, the
absence of widely accepted real-world datasets in disassembly
scenarios poses a significant challenge. Currently available bench-
marks of human motion datasets, such as Human3.6M [156],
HumanEva-I [157], and CMU Mocap.> provide various data
formats, including sequential pose data, image data, and video
data, and give researchers the flexibility to design their algorithm.
Even though these datasets are widely used in human motion predic-
tion, they are difficult to be directly applied to human modeling

thlp://mocap.cs.cmu.edu/
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in the HRC problem. First, these datasets mainly focus on daily sce-
narios, such as walking, sitting, eating, and discussing, and are not
specifically designed for HRC. Furthermore, the existing datasets
only provide a limited amount of human motions with interactions
with other people. These interactions are crucial in HRC, as one
agent’s motion will affect the other’s motion. For example,
the human and the robot will avoid collision with each other while
performing different tasks in the shared space. They will approach
each other and coordinate their movements when they are jointly per-
forming a task, such as lifting a heavy component or passing tools.
Therefore, the dataset for HRC should consider both the human oper-
ator and the robot at the same time to capture such interactions. More-
over, to analyze and predict human motion more reliably in
disassembly, it should involve the information of the end-of-used
products, which would affect the human intentions as well as the
human-robot collaboration mode in real time. Considering the gap
between benchmark datasets and the research question in collabora-
tive electronic disassembly, we need to expand our current human
motion dataset to one specifically designed for HRC disassembly.
Itis worth noting that, acquiring such high-quality HRC disassembly
data for training and validation purposes is both expensive and time
consuming. Addressing these challenges and developing effective
solutions remains an ongoing task in the field.

4.2 Motion Planning Balancing Between Efficiency and
Safety. The core challenge in robotic motion planning is to find
a sequence of collision-free movements for a robot to reach a spe-
cific goal. Prior research has explored several methods to address
this problem, categorized into different approaches such as grid-
based, artificial potential fields, sampling-based, optimization-
based, and learning-based methods. In this subsection, we will
first examine the existing studies in this field and subsequently
discuss the specific challenges associated with robotic motion plan-
ning within the context of collaborative disassembling processes.

Grid-based methods, introduced by Hart et al. [158], involve dis-
cretizing the planning space into a grid and employing heuristic
functions to estimate the cost of traversing different cells. These
methods show promise in finding optimal solutions if they exist.
However, a significant drawback arises when the dimension of
the planning space increases, as this leads to a substantial rise in
computational costs [159]. Consequently, for collaborative disas-
sembling processes involving robots with a high degree-of-
freedom, grid-based methods may not be applicable. In addition
to the inherent challenge of high-dimensional planning spaces,
the presence of human motion in HRC further complicates the plan-
ning process [160]. Human motion introduces additional complex-
ity to the environment, continuously altering the available free
planning space in real time. This dynamic nature necessitates plan-
ning algorithms that can swiftly adapt and respond to evolving
human motion.

Sampling-based methods, such as rapidly exploring random trees
(RRTs) [161] and probabilistic roadmaps (PRM) [162], are effec-
tive in handling high-dimensional planning problems in narrow
passages and offer probabilistic completeness. These methods ran-
domly generate samples in the configuration space and connect fea-
sible configurations to create a complete trajectory for the robot. In
the context of collaborative tasks, Rajendran et al. [163] proposed a
human-aware RRT-connect planner to generate manipulator
motions that prioritize human safety. Additionally, Wei and Ren
[164] introduced target directional node extension to enhance the
sampling speed of the RRT algorithm, enabling the robot to dyna-
mically respond to human motion. Furthermore, asymptotically
optimal sampling-based methods like RRT* and PRM* have
been developed to not only generate feasible robot motions but
also optimize them. The optimality of the motions produced by
these methods improves as the planning time increases. To
enhance planning efficiency, recent approaches such as batch
informed trees [165] and fast marching trees [166] have been pro-
posed. These methods enable quick identification of collision-free
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motions for high-degree-of-freedom manipulators while maintain-
ing optimality.

In collaborative disassembling processes, robot motions need to
fulfill collision-free requirements while also adhering to specific
task constraints. These constraints may involve maintaining a par-
ticular orientation to facilitate fastening component disassembly
[167] or following a desired path while carrying a disassembled
component [168]. However, sampling-based methods often strug-
gle to provide real-time responsiveness in such scenarios [169].
To address these task constraints in disassembling processes, the
motion planning problems for robots can be formulated and
solved as optimization-based problems, inherently generating task-
constrained robot motions. Examples of such methods include
CHOMP [170], TrajOpt [171], and STOMP [172]. For instance,
the work in Ref. [173] solved an iterative convex optimization
problem to generate contact-rich robot motions in a welding
process. Another approach, presented in Ref. [174], introduced a
model predictive control framework that allowed the robot to
slow down the task and maximize the distance from the operators
when faced with close proximity.

In recent years, researchers have increasingly turned to neural
networks to plan robot motions. These neural planners leverage
the power of machine learning and expert demonstrations to
swiftly generate collision-free robot motions. For instance, in
Ref. [175], a neural RRT* algorithm was proposed that predicts
the probability distribution of optimal paths for given tasks. The
work in Ref. [176] employed a graph neural network to identify crit-
ical sampling points in the configuration space, significantly speed-
ing up the planning process. Furthermore, Yu and Gao [177]
utilized a well-trained network to reduce -collision-checking
during path exploration and smoothing, enhancing overall planning
efficiency. These approaches harness neural networks to improve
specific modules of classical planners. Moreover, neural networks
can also be used as complete planner pipelines. For instance,
Ref. [178] employed recurrent neural networks to generate
end-to-end robot motions iteratively. In another study, Qureshi
etal. [179] presented a learning-based neural planner that considers
the planning environment and generates a collision-free path con-
necting given start and goal configurations for the robot.

Integrating human motion prediction into robotic motion plan-
ning enables the robot to anticipate and respond to human
actions, resulting in improved safety and efficiency in HRC scenar-
ios. Several studies have demonstrated the benefits of incorporating
human motion prediction into robot planning. For instance, in
Ref. [180], the robot motion planning is adapted to the predicted
human motion, effectively avoiding potential collisions and elimi-
nating unnecessary waiting time in collaborative tasks. Similarly,
in Ref. [181], both task plan recognition and human trajectory pre-
diction are utilized for robot planning, resulting in a significant
reduction in task execution time. In Ref. [182], the predicted
human motion is used to establish collision boundaries, allowing
safe manipulator motions to be computed within these boundaries.
This approach ensures the robot avoids collisions while performing
its desired tasks. In Ref. [168], the predicted human motion, along
with associated uncertainty from the prediction model, is converted
into dangerous zones for safe manipulator planning. This enables
the robot to proactively avoid human workers while simultaneously
fulfilling its tasks. In brief, extensive robotic motion planners that
incorporate human motion prediction have been developed in
recent years, with a primary focus on ensuring human safety in
HRC applications. These approaches demonstrate the importance
of considering human motion in robot planning to enhance safety
and efficiency.

Despite significant progress in developing robotic planning
approaches for collaborative disassembling processes, there is no
one-size-fits-all solution. Planning in such scenarios requires a del-
icate balance between efficiency and safety. However, several chal-
lenges persist in this domain. First, disassembly tasks encompass a
wide range of complexity levels. Planning efficient robot motions to
accomplish disassembling tasks involves navigating high-
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dimensional spaces while considering task-specific constraints,
dynamic constraints, and additional objective requirements. This
complexity adds to the difficulty of finding optimal solutions.
Second, the involvement of human workers further complicates
the planning process. Safety concerns necessitate real-time respon-
siveness from the robot. It must plan collision-free motions in a con-
tinuously changing planning space and execute these motions in
real time. Moreover, human workers’ movements can be unpredict-
able, introducing uncertainty that the planning algorithm must
effectively handle to ensure human safety. In summary, the plan-
ning of collaborative disassembling processes remains a significant
challenge that requires ongoing efforts and attention. Balancing effi-
ciency and safety, handling the complexity of disassembly tasks,
and addressing the uncertainties introduced by human movement
are vital aspects that need to be continually addressed and improved
upon.

5 Bringing Human-Robot Collaboration
to Disassembly: Human Factors and
Human—-Robotics System Integration (Workers)

Workplace risks associated with HRC in disassembly can be sub-
stantial. Even survey data on robot-related injuries may not fully
reflect such risks, partially due to the fact that HRC applications
in this field have only emerged in recent years. The implementation
of collaborative human-robot systems in shared spaces would
expose workers to even higher risks of injury or death if associated
safety research is not emphasized [183]. Therefore, ensuring human
safety is a prerequisite for any robotics application. A few standards
have taken operational safety during HRC into consideration. For
example, ISO 10218 is the robots and robotic devices safety
package. However, it emphasizes more on the manufacturing
requirements for robots and does not address personnel safety
[184]. ISO 15066 standard supplements the above standard on
limited collaborative industrial robot operations. In brief, substan-
tial knowledge gaps in occupational safety regulations and collabo-
rative robot application need to be bridged before humans and
robots can routinely, safely, and comfortably share the same envi-
ronments [185,186]. In addition, merely avoiding physical contact
is insufficient in ensuring safety, as harm could occur to a person
from other venues (e.g., the excessive mental workload could
have substantial negative impacts). Even though the importance
of safety and its applications have been well acknowledged,
research studies leveraging system-level objective methods are
still rare. Furthermore, multiple variables may significantly influ-
ence the environment and safety, such as stress, situation awareness
and risk perception during operations, implementation of varying
levels of automation, and operator acceptance of emerging safety
interventions. All of these variables need to be considered in
safety measurement processes.

There are many human factors, such as human safety, discom-
fortability, fatigue, human ergonomics, and mental stress, that
need to be considered. For example, as the human operator
works closely with the robot, the human worker’s discomfort
may increase [187], and there could be high risks of collision
between human operators and robots. In the domain of human-—
robot interaction [160,188] and remanufacturing [189], human
safety has been considered in the design and operation of a collab-
orative work cell, including the prevention of accidents due to
unexpected robot motions [190] and health problems from hazard-
ous work environments [33]. Comparing the human operator’s
capability to a robotic system, the performance of manual assem-
blies is affected by safety considerations and ergonomic factors
[191]. For instance, lifting heavy items could lead to back injuries,
and the product quality could fluctuate due to human fatigue
[9,192]. Studies on human factors including ergonomics have
shown the impact of stress on work performance and human—
machine interactions [193]. The objective of ergonomics interven-
tion is often to avoid musculoskeletal disorders [194,195], which
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could be the result of handling forceful, long-term, monotonous,
and repetitive tasks [9,196]. Most existing techniques for human
ergonomics are based on offline processing of human motions
and the work environments, and thus a fast reconfigurable HRC
workstation was developed to incorporate human factors in real
time to ensure productivity [197]. Meanwhile, studies have been
carried out to parameterize the ergonomics using risk assessment
methodology. In Ref. [198], an ergonomic assessment method
was presented to optimize robot actions in collaborative tasks.
Faber et al. [199] offered a proposal to obtain the optimal HRC
assembly sequence with the model of ergonomic risk assessment.
The occupational repetitive action (OCRA) method [200] known
as a checklist approach was also used to present the risk assessment
model. For example, in Ref. [194], ergonomic risks were consid-
ered as constraints using OCRA to minimize the number of work-
stations. In Ref. [201], OCRA was used to evaluate the ergonomic
risk levels with an integer linear programming model to design
HRC assembly lines. Moreover, the assembly system design
[104,194,202] was often used to assess the level of ergonomic
risk. For instance, Tram and Raweewan [203] proposed a time-
cost optimization model to evaluate the ergonomics difficulty
index via a score sheet in the assembly system design. A different
approach using the “mental model” was introduced in Refs. [204—
206] taking into account human preferences, knowledge of the
tasks, and the capabilities of the human operator and the robot to
complete tasks safely and efficiently. In short, to reduce assem-
bly/disassembly costs, human factors including ergonomics
should be taken into account to improve productivity and ensure
the safety and mental health of human operators.

The paucity of research in human factor analyses in disassembly
environments, notwithstanding its critical significance, underscores
the need for focused exploration in this area. It is worth mentioning
that other sections of our paper, such as those dealing with human
motion prediction or robot path planning, do contain references to
papers that touch upon elements of human factors. These were
not included in this section because their primary focus did not
revolve around HF/E topics. The limited number of application-
based experimental studies currently available provide a rudimen-
tary understanding of the implications of HRC for designing safe
and efficient human-centric systems [181,207]. A key constituent
of these analyses is the biomechanical ergonomic studies that
explore physical safety considerations. These studies are crucial
in identifying risk factors contributing to the potential onset of long-
term work-related musculoskeletal disorders [208]. In an investiga-
tion aimed at understanding the impact of robot collaboration on
hardware component extraction from desktops in an e-waste disas-
sembly scenario, a noticeable decrease in musculoskeletal effort
was observed among human participants when working with the
robot [181]. In this particular collaborative task, there was a demon-
strable reduction in the propensity toward lower back pain and
shoulder disorders, which highlights the crucial role of biomechani-
cal ergonomics in HRC. Alongside physical safety, human factor
analyses also account for psychological factors such as cognitive
workload, which can have a profound influence on task perfor-
mance and muscle activity [209]. An apt evaluation of cognitive
states is thus an essential component of the comprehensive safety
protocol in human—machine interactions, particularly in disassem-
bly tasks. In a study evaluating the efficiency of workers using an
augmented reality system (Google Glass) for task guidance
during phone disassembly, it was found that while error avoidance
was enhanced, the mental workload concurrently escalated, thereby
reducing the overall performance of the augmented reality system
[208]. While the application environment e-waste disassembly we
discuss here is unique, HF/E analysis can often draw upon a rich
body of knowledge derived from analogous studies conducted in
more generalized occupational settings. For instance, the assembly
processes explored in our work are quite common in traditional
manufacturing settings, and they can often be seen as the reverse
of disassembly processes in many instances. Similarly, many rele-
vant HRC standards and policies can be adapted to the disassembly

Transactions of the ASME

nuewW/¥8/990//206020/2/9 | /ipd-ajonue/aousiosBulinoenuew/b1o swse: uoijos|ooelbipswse//:dpy wolj papeojumod

) C 9L

%20z Arenuer zz uo Jasn Aysieaiun N 8 v sexa Aq jpd 206020



environment. These standards and regulations typically apply
broadly across industries and are not confined to specific sectors.
However, we acknowledge that as the remanufacturing sector con-
tinues to expand and more HRC approaches are deployed within
this domain, future safety standards and robotics regulations may
incorporate specific provisions for this area. Particularly, there are
certain aspects of environmental factors such as high uncertainty,
less structural of the working environment, that make the disassem-
bly unique, and they need special attention (e.g., new safety stan-
dard for this business sector). This could represent a significant
research avenue, not only for the HF/E community but also for
other disciplines such as safety engineering, robotics, and control,
among others.

In summary, while the potential benefits of HRC in disassembly
are evident in reduced physical stress and enhanced task accuracy,
further research is needed to identify an optimal balance between
physical ease and cognitive load. This pursuit of balance will
pave the way for designing human-centric systems that promote
both physical and mental well-being during disassembly operations.

6 Bringing Human-Robot Collaboration
to Disassembly: Economic Considerations
and Implications for Human Workforce (Work)

While HRC-enabled disassembly promises efficiency enhance-
ment and cost savings, several economic aspects and labor force
implications demand thoughtful consideration.

Economic Feasibility of Human—Robot Collaboration in
Disassembly. Remanufacturers’ decision to incorporate HRC in
disassembly processes is primarily driven by economic costs and
benefits. This involves weighing the initial investment in robotics,
their maintenance, and associated operational costs against the
potential productivity gains and efficiencies they could bring
[191]. HRC offers an opportunity for faster, more precise disassem-
bly, reducing waste and potentially enabling higher levels of com-
ponent reuse [7,210]. Continuous operation, reducing downtime
typically associated with purely human-operated systems, is
another potential benefit of HRC. Despite these advantages, the
return on investment depends largely on the nature of the disassem-
bly task, disassembly completion time, the cost of human labor, the
level of complexity in the physical motion of the human operator
and the robot, and the market value of reclaimed materials [211].
Some studies have proposed algorithms to maximize profit by alter-
ing several parameters of the HRC disassembly process. For
example, Ref. [28] proposed a method of integrating stochastic
simulation with the artificial bee colony algorithm to ensure profit
maximization by minimizing energy usage, difficulty level of disas-
sembly operations, and the number of workstations. An automated
unfastening method was proposed in Ref. [30] to remove screws
from a turbocharger cost-efficiently. There are other suggestions
in the literature for maximizing profits with disassembly sequencing
planning [212-214]; while these studies do not explicitly consider
HRC, the proposed profit-maximizing plans could be adapted to
the case of disassembly with HRC.

A significant barrier to the wider adaption of HRC-enabled disas-
sembly is that HRC workstation designs and disassembly proce-
dures are typically customized for specific products. In other
words, there are no standardized systems that are applicable to a
wide range of disassembly scenarios. Low-volume and high-
mixture of EoU products could make it difficult to implement
HRC, especially among small- and medium-sized enterprises
(SMEs), as these enterprises typically lack the capital needed to
incur large initial costs of setting up collaborative robots [33,197].
Therefore, another opportunity for further advancement and adap-
tion of HRC among remanufacturers is the development of cost-
effective workstations that allow human operators and robots to
handle different disassembly tasks and variants of EoU products.

Journal of Manufacturing Science and Engineering

Implications for Human Labor Displacement and the Need for
Upskilling. The rise of HRC has sparked concerns over potential
labor displacement. Automation in general may lead to job losses,
particularly for those involved in manual disassembly tasks, exacer-
bating socio-economic disparities [215]. On the other hand, HRC
also presents opportunities for upskilling human workers and facil-
itating job transformation. It can allow workers to move away from
repetitive, dangerous, or labor-intensive tasks, redirecting human
labor toward more strategic, creative, and value-added functions
[216,217]. The evolution of HRC could help shape a future
where humans and robots work together, complementing each
other’s capabilities [218].

In addition, the demand for professionals who are adept at manag-
ing and maintaining these new robotic systems will increase over
time, fostering new career paths. Proper training programs and edu-
cational policies should be in place to ensure that the human work-
force is equipped to adapt to these shifts in the workplace.
Upskilling workers to work alongside robots, maintaining and
repairing robot systems, and managing HRC workflows can
require substantial investment in training and education, which is a
significant challenge facing the wider adoption of collaborative
robots in disassembly.

Balancing Technological Advancement With Socioeconomic
Responsibility. Under the lens of the circular economy, a profitable
product disassembly with HRC could motivate the remanufacturers
to collect more EoU products, reinforcing sustainability objectives.
As we grapple with the urgent need to transition to a more circular
economy, HRC in disassembly can play a crucial role in waste reduc-
tion, resource recovery, and extended product lifecycles. However, it
is important that the economic benefits of this technology do not
undermine social equity [219]. Strategies need to be developed that
simultaneously foster technological progress and socioeconomic
responsibility. This could involve stakeholder collaboration to
enact inclusive labor policies, investment in skill development, and
equitable access to new job opportunities, alongside a commitment
to environmental sustainability. Thus, HRC must be positioned not
just as a tool for operational efficiency, but as a mechanism to drive
responsible and inclusive growth in the circular economy [220].

An estimated total of 44.7 million metric tons of e-waste was gen-
erated globally in 2016, containing raw materials valued at the US
$64.7 billion [221]. In the United States alone, 2.37 million tons of
e-waste (excluding appliances) were generated in 2016, and only
about 25% of this waste (in weight) was recycled domestically
[222]. The answer to successful e-waste recovery lies in economics.
While there are valid concerns about costs and challenges associ-
ated with the implementation of HRC in disassembly, the potential
benefits and opportunities make a compelling case for this transi-
tion. At the core, HRC is about synergy—leveraging the strengths
of both humans and robots to create value that exceeds what each
can achieve independently. Future research questions that can facil-
itate a smooth transition to HRC-assisted smart disassembly include
(a) under what conditions human-robot collaborative systems are
economically feasible for US remanufacturers? (b) what are the esti-
mated effects of broader adaptation of human-robot collaborative
systems for aggregate employment, wages, and value-added in an
economy? and (c) what economic and social policies are needed
to better prepare society for a future that involves working in
human-robot collaborative production systems? Transitioning to
HRC in disassembly should be a thoughtful strategy to create
shared values for businesses, workers, and society at large.

7 Identified Key Challenges and Conclusions

The incorporation of HRC within remanufacturing facilities
offers substantial sustainability benefits and enhances the quality
of human work experiences. However, it also introduces a set of
interconnected challenges that affect technology, workers, and the
overall work processes. While HRC has been explored in the
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context of manufacturing, its specific implications in the realm of
disassembly remain relatively underexplored. Particularly, in the
case of EoU products characterized by traits like low-volume pro-
duction, high diversity, and variable quality, the integration of col-
laborative disassembly presents challenges for both human
operators tasked with disassembly and robots striving for complete
automation. This is particularly relevant for SMEs that may possess
limited resources for adaptation [197]. This section investigates
multifaceted challenges associated with the introduction of HRC
into the disassembly process, drawing from our extensive review
of recent literature. We have considered not only papers directly
related to HRC in disassembly but also research in related
subdomains.

Disassembly cannot be simply considered as the reverse of
assembly: current manufacturing design guidelines, such as the
minimization of part counts and the use of self-fastening compo-
nents, tend to prioritize assembly efficiency at the expense of disas-
sembly. Moreover, disassembly often involves a diverse array of
EoU products, each with uncertain quantities, varying quality,
and differing conditions. Consequently, the implementation of
HRC in disassembly processes must meet three critical criteria:
(1) efficiency, (2) affordability, and (3) adaptability to the wide
range of EoU products characterized by substantial uncertainties.
The necessity for adaptability, from a technological standpoint,
places a premium on precise human motion prediction—a formida-
ble task given its complexity and nonlinearity inherent in disassem-
bly activities. This complexity is further compounded by the
unpredictability introduced by environmental factors and interac-
tions with other agents. Moreover, the absence of widely accepted
real-world datasets specific to disassembly poses a significant
hurdle in training and validating prediction models. Efficiency
and cost-efficiency pose another technological challenge in the
implementation of HRC for disassembly, particularly when
dealing with EoU products with limited resale value. Existing
safety mechanisms, such as halting or slowing down robots when
they come into proximity with human workers, can substantially
impede overall efficiency in HRC scenarios, making the application
of HRC in disassembly significantly more challenging. Thus, the
paramount objective becomes the maximization of operational effi-
ciency while minimizing cost, all the while ensuring the utmost
safety for human workers. This balance is essential to facilitate
the widespread adoption of HRC in disassembly processes. Con-
quering these multifaceted challenges and devising effective solu-
tions remains an ongoing pursuit within this research domain.

When considering the perspective of workers in HRC scenarios
for disassembly, it becomes evident that ensuring physical safety
alone is insufficient. This is because the disassembly environments
for EoU products can often be characterized by poor structure, dis-
order, dirtiness, and potential hazards. Unlike assembly sites, which
are typically clean, well-organized, and equipped with advanced
technology, workers in disassembly settings face a higher vulnera-
bility to excessive mental stress and psychological workload.
Therefore, the design of HRC for disassembly must prioritize the
mental and psychological well-being of workers to foster comfort-
able interaction and collaboration between humans and technology.
Addressing these aspects introduces new challenges, particularly in
the development of comprehensive and dependable measurement
methods to evaluate the mental and psychological health of
workers engaged in HRC disassembly. Moreover, from an occupa-
tional safety standpoint, existing standards such as ISO standard
10218 generally do not explicitly account for personnel safety
[184], let alone in the context of disassembly environments.
These complexities in safety considerations extend beyond those
typically encountered in manufacturing sites. A noteworthy gap
emerges in the realm of regulations and policies related to the
mental and psychological health of human workers and occupa-
tional safety within the context of disassembly. These gaps must
be effectively addressed before the widespread implementation of
HRC in disassembly and remanufacturing can realized. It is impor-
tant to note that this particular aspect remains an underexplored area
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in the existing literature, highlighting the need for further research
and policy development in this crucial domain.

Regarding work, while substantial efforts have been made to
model the effects of artificial intelligence on labor markets and
the broader economy, recent studies [223,224] have yet to compre-
hensively account for the distinct characteristics of the emerging
remanufacturing sector, particularly within the context of advanced
HRC systems. Nevertheless, the potential for significantly enhanced
efficiency and productivity through HRC in disassembly is undeni-
able. By entrusting robots with repetitive or hazardous tasks, human
labor can pivot toward more strategic roles, thereby elevating the
overall quality of work. The evolution of disassembly with HRC
has the power to catalyze a transformation in the workforce, usher-
ing in new job opportunities and roles. The future of disassembly
labor within an HRC framework envisions a collaborative environ-
ment where humans and robots synergize to leverage their respec-
tive capabilities. However, realizing these benefits hinges on
meticulous planning and strategic investment. It is crucial to recog-
nize that there are tangible costs associated with the adoption of this
technology. Expenses linked to technology acquisition, training,
safety measures, and change management are very much real. For
example, existing HRC-enabled workstations designed for specific
products may not be economically adaptable to the disassembly of
EoU products, given their unique characteristics of low-volume and
high diversity. SMEs, which constitute a significant sector in the
disassembly and recycling of EoU products, often grapple with
limited capital resources required for the initial setup costs of col-
laborative robots. Thus, the challenge lies in finding ways to
reduce the cost of HRC-enabled disassembly, encompassing tech-
nology acquisition, training, safety measures, and more, while
simultaneously maximizing the profitability of recycling EoU prod-
ucts. Nonetheless, when evaluating these investments in the broader
context of potential benefits, they can be deemed as indispensable
steps. Such investments not only hold the promise of economic
prosperity but also aspire to shape a future where businesses
operate at heightened productivity levels, jobs are safer and more
fulfilling, and the manufacturing sector embraces sustainability as
a guiding principle.

Beyond the interconnected challenges discussed earlier, the inte-
gration and implementation of HRC in disassembly introduce an
even greater level of complexity. Several critical loops in this eco-
system remain insufficiently explored and unresolved: (1) product
design guidelines: Existing product design guidelines have yet to
encompass considerations related to HRC-enabled disassembly.
The current design principles tend to overlook the intricacies of dis-
assembly with human—robot collaboration. (2) Occupational safety
standards: Present occupational safety standards predominantly
emphasize short-term physical safety, particularly the prevention
of collisions and accidents. The broader aspects of safety, especially
concerning mental and psychological well-being, remain less
emphasized. (3) Economic literature: Conventional economic liter-
ature has not sufficiently addressed the modeling of HRC produc-
tion systems and their implications for labor markets. Often, these
models assume a scenario where robots entirely replace human
labor rather than focusing on how robots can complement human
work. Additionally, these models may not adequately account for
the unique dynamics of the remanufacturing sector, where data on
economic activities are limited. The absence of sector-specific eco-
nomic data in the remanufacturing domain further complicates the
development of accurate models and analyses.

In summary, the complexities of incorporating HRC into disas-
sembly processes are multifaceted, encompassing technology,
workers, work processes, and their integration. Although the poten-
tial advantages are significant, it is imperative to engage in meticu-
lous planning, substantial investment, and effective coordination
across various domains to successfully navigate these challenges.
Such efforts are instrumental in shaping a future where HRC
in disassembly translates into heightened productivity, increased
job satisfaction, and a more sustainable approach to industrial
processes.
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