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Abstract—Ensuring the safety of human workers in a
collaborative environment with robots is of utmost importance.
Although accurate pose prediction models can help prevent
collisions between human workers and robots, they are still
susceptible to critical errors. In this study, we propose a novel
approach called deep ensembles of temporal graph neural
networks (DE-TGN) that not only accurately forecast human
motion but also provide a measure of prediction uncertainty. By
leveraging deep ensembles and employing stochastic Monte-
Carlo dropout sampling, we construct a volumetric field
representing a range of potential future human poses based on
covariance ellipsoids. To validate our framework, we conducted
experiments using three motion capture datasets including
Human3.6M, and two human-robot interaction scenarios,
achieving state-of-the-art prediction error. Moreover, we
discovered that deep ensembles not only enable us to quantify
uncertainty but also improve the accuracy of our predictions.

Index Terms—Human Motion Prediction, Deep Learning, Deep
Ensembles, Human-Robot Collaboration (HRC)

I. INTRODUCTION

HE integration of automated robots into various

industries has revolutionized repetitive task execution.

As the demand for environmentally conscious
manufacturing grows, there has been a surge in research on
human-robot collaboration (HRC) to address electronic waste
management tasks [1, 2]. In an HRC environment, accurate
human motion prediction plays a pivotal role in ensuring the
safety of human workers. It empowers robots to anticipate
human movement, enabling them to adjust their motion plans
and avoid collisions [3]. Extensive studies have been
conducted on 3D human motion forecasting, primarily
leveraging motion capture technology. With the rapid
advancements in artificial intelligence and its applications,
machine learning methods have emerged for human motion
prediction. These include recurrent neural networks (RNNs)
[4, 5], convolutional neural networks (CNNs) [6-9], graph
convolutional networks (GCNs) [10-13], and transformers
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[14]. While RNNs can struggle with computational demands
and long-term forecasting tasks, CNNs are hampered by their
limited receptive fields due to kernel sizes. Transformers
present a promising solution for long-term forecasting, as they
can process entire sequences, leveraging the self-attention
mechanism to focus on relevant parts in the input sequence,
regardless of their distance. Nevertheless, the computational
and memory requirements of transformers for handling long
input/output sequences can be significant compared to

alternative methods. This inefficiency hampers their
practicality for real-time applications [15].
Human motion is highly intricate, and accurately

forecasting it entails dealing with a significant degree of
uncertainty. In a collaborative robot setting, it is crucial for
robots to recognize and account for such uncertain behaviors,
allowing them to take appropriate actions when confidence
level decreases. Several studies have been conducted to offer
probabilistic outputs instead of deterministic ones, primarily
through approximate variational inference and generative
models [16-19]. However, conventional variational inference
methods tend to generate samples from a local mode within
the solution space, capturing only local uncertainty while often
imposing training constraints such as prior distributions. To
address these limitations, deep ensembles have emerged as a
potential solution. Deep ensembles encompass a collection of
deep learning models that generate samples derived from
distinct training trajectories [20]. By leveraging this ensemble
approach, deep ensembles tackle the issue of local uncertainty
by providing a broader range of potential predictions.
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Fig. 1. Overview of the proposed deep ensembles of temporal
graph neural networks.

In this study, we present an innovative approach called
Deep Ensembles of Temporal-Graph Neural Networks (DE-
TGN) for precise 3D human motion forecasting based on
motion capture sequence data (Fig. 1). The contributions of
this work are as follows: 1) We develop a novel deep learning
architecture for human motion prediction, incorporating a
blend of temporal convolutional networks (TCN) and graph
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attention networks (GAT) with residual connections. 2) We
employ deep ensembles in combination with Monte Carlo
(MC) dropout sampling [21] to generate a diverse set of
plausible motions. Notably, this marks the first instance of
utilizing deep ensembles for human motion forecasting in
existing research. 3) We propose a technique to construct 3D
uncertainty boundaries using covariance ellipsoids derived
from the probabilistic output. These boundaries offer valuable
insights into the reliability of the model’s predictions in an
HRC environment. 4) Our method surpasses state-of-the-art
human motion prediction models in long-term human motion
forecasting benchmarks, showcasing its superior performance.

II. RELATED WORK
A. GCN

In the past decade, the field of human motion forecasting
has been dominated by RNNs, with several groundbreaking
RNN-based methods proposed [4, 5]. However, RNN-based
methods exhibited noticeable discontinuities at the beginning
of the forecast. To address this issue, Martinez et al. [5]
proposed a sequence-to-sequence model with residual
connections which predicts velocities instead of poses. Despite
these advancements, long-term predictions remain challenging
for these methods due to their one-step-ahead prediction
mode, leading to error accumulation and increased
computational cost. Feedforward networks attempt to solve
many of the inherited issues in RNN-based methods. Earlier
methods, however, relied on the predefined human kinematic
tree [6], overlooking the need for coordinated motion between
the different body parts, even those that are distant. Some
methods have turned to CNN architectures to address these
limitations [7]. Nevertheless, the challenges persist due to the
reliance on kernel size for the temporal receptive field and the
treatment of data as an image-like structure when modeling
human motion.

In recent years, there has been growing interest in using
GCNs for human pose forecasting [10-13]. GCNs have shown
promise in processing non-grid-like structures, such as the
human pose, making them suitable for capturing inter-joint
spatial correlations. Mao et al. [10] proposed a sequential,
feed-forward network of GAT layers with fully connected
graphs. This approach enables the learning of global spatial
connectivity among joints through attention mechanisms in the
trajectory space. In another study, Mao et al. [11] introduced
motion attention layers to capture the similarity between the
current motion and historical motion, resulting in more
accurate predictions. To gain a deeper understanding of the
spatiotemporal dynamics of joints, Sofianos et al. [12]
proposed the use of depth-wise separable GCNs with trainable
spatiotemporal adjacency matrices. Zhong et al. [13] took a
mixture-of-experts approach in their GCN-based motion
forecasting technique, where a gating network applies
importance factors to a set of adjacency matrices. What
distinguishes the GCN layers in our DE-TGN model from
prior literature is the design of a GAT residual block. This
block incorporates multiple GAT, normalization, dropout, and
non-linear activation layers, along with a skip connection,
making our model deeper and easier to train.

B. TCN

TCNs have gained attention as an efficient and effective
alternative to RNN- and attention-based techniques for human
motion forecasting, offering advantages such as reduced error
accumulation and improved computational efficiency.
However, the exploration of TCNs in this context has been
limited compared to other time-series modeling methods. In a
comparative study by Pavllo et al. [22], a GRU-based motion
forecasting model was pitted against a WaveNet-based model,
with the former demonstrating superior performance. Cui et al.
[8] proposed a forecasting network consisting of GCN blocks
that incorporated TCN layers to capture time dependencies. Li
et al. [9] presented a similar approach but with the additional
inclusion of a positional encoding module, allowing the
network to predict action types alongside motion forecasting.
Overall, despite the promising results and advantages offered
by TCNs and dilated causal convolution in general, their
applications in human motion forecasting remain relatively
unexplored. Our TCN residual blocks are designed akin to
TCN’s original architecture with minor adjustments [23].
Although a handful of previous researchers have explored
GCN-TCN hybrids [8, 9], our design is the first of its kind, to
the best of our knowledge. It encompasses distinct stages of
spatial feature learning employing GAT, succeeded by
temporal feature learning through TCNs.

C. Probabilistic learning

Several studies have put forth generative methods for
human motion forecasting that aim to provide probabilistic
output, allowing for diverse predictions without compromising
accuracy. Barsoum et al. [16] introduced HP-GAN, drawing
inspiration from generative adversarial networks, which
employs a sequence-to-sequence generator to predict a set of
plausible human motion predictions. Aliakbarian et al. [17]
noted that HP-GAN begins to disregard stochastic components
the longer it is trained and proposed a recurrent-based
conditional variational autoencoder (CVAE) with a mix-and-
match strategy to address this issue. Another study by Yuan
and Kitani [18] focused on diversifying generated samples and
introduced the diversifying latent flows (DLow) sampling
method, which utilizes a CVAE network. In a different
approach, Salzmann et al. [19] proposed a typed graph-GRU
hybrid to directly predict motion distributions, providing a
probabilistic perspective. To the best of our knowledge, deep
ensembles have not been investigated as a viable option for
generating probabilistic output in human motion predictions.
Furthermore, previous literature on probabilistic human
motion forecasting did not emphasize the utilization of the
probabilistic output to establish uncertainty boundaries for
ensuring safe human-robot interactions.

III. NETWORK ARCHITECTURE

In this section, we introduce the TGN architecture (Fig. 2)
along with the Bayesian inference approximation using deep
ensembles. Let us define X,y = [x{,%;,..,xy]7 as the
historical motion sequence consisting of N 3D human poses. If
the collaborating robot’s motion is available, we denote its
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sequence of N 3D poses as Y.y = [¥1,¥2, -, ¥n]T. The
vectors x; € R% and y; € R% contains C, and C, parameters,
respectively, that describe the poses. We posit that
incorporating the robot's motion history into the input data
holds valuable information for the predictive model.
Consequently, adding this information enhances the accuracy
of the forecast predictions. The input to our network is the
concatenation of these two sequences: [X;.y, Y1.y]. Our goal is
to provide a forecast of the human motion poses for T time
steps, represented by the sequence Xy,i.yi7. We propose
TGN, a TCN-GAT hybrid network, to predict the future
sequence based on the provided input. To provide a measure
of uncertainty, we rely on deep ensembles and MC dropout
sampling to obtain a diverse set of predictions.

A. GAT

GCNs are types of neural networks specifically designed to
handle graph-structured data. Unlike CNNs, which operate on
grid-like structured data with fixed local connectivity, GCNs
consider varying connections for each node and its neighbors
in the graph, as defined by an adjacency matrix. Among
GCNs, GAT stands out as it utilizes self-attention mechanisms
to assign varying importance to neighboring nodes, thereby
adjusting the adjacency matrix [24]. In our model, we employ
a GAT encoder to extract representative features that capture
the spatial relations between pose nodes. Inspired by Mao et
al. [10], we establish full connectivity among all nodes in the
graph, allowing GAT to adapt the connections based on the
available training data. In our case, we assume that both
human and robot nodes form a fully-connected graph with a
total of C = Cy + C,, nodes. The edges of this graph can be
represented by an adjacency matrix, denoted as A € R€*¢. To
transform the input into the trajectory space, we utilize the
Discrete Cosine Transform (DCT). Consequently, each node is
associated with a matrix H € R¢*F, where F represents the
number of DCT coefficients. The graph convolutional layer
estimates the output H' using the following formula, acting as
input for the subsequent layer:

H =c(AHW) (1)

where o () is an activation function and W € RF*F is the
trainable weight matrix. Using self-attention mechanisms,
GAT applies attention weights to the entries in A resulting in a
learned adjacency matrix A that replaces A in Eq. (1):

A=aA 2)

where @ € RE*C contains the edgewise attention weights

obtained by averaging the output of multi-head attention.

To incorporate GAT layers into our model, we adopt a
residual architecture, as depicted in Fig. 2b. Within a GAT
block, two GAT layers are used, each followed by layer
normalization [25], rectified linear unit (ReLU) activation
[26], and dropout regularization [27]. A skip connection is
then employed to merge the input with the output by means of
element-wise addition. This residual architecture enables the
blocks to focus on learning the relative changes in the feature
maps, rather than the entire transformations, which can
facilitate deep learning.

B. TCN

TCNs are a specific type of CNNs designed to effectively
handle sequential data [23]. Unlike RNNs, TCNs do not rely
on recurrent connections to capture the temporal
dependencies. Instead, they employ dilated causal convolution
on the input sequence. This allows for the easy attainment of
large receptive fields, making TCNs capable of efficiently
processing very long sequences while mitigating the risk of
vanishing gradients. For a one-dimensional sequence input
x € RY and a kernel k: {0, ..., w — 1} - R, the output F(t) of
a dilated convolution operation at step t is defined by:

F(6) = X" k(Dx(t —d-i) + b 3)

where w represents the kernel size, d is the dilation factor, and
b is the bias term. The dilation factor is often chosen with a
base (e.g., 2) that doubles as the network gets deeper.
Increasing the dilation factor d and the kernel size w in
Equation (3) allows for the expansion of the receptive field.
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Fig. 2. Temporal graph neural network architecture.

Similar to the GAT residual blocks, the TCN modules in
our model utilize a residual architecture, as illustrated in Fig.
2c. Each TCN block contains two sets of 1D dilated causal
convolution layers, each followed by layer normalization,
ReLU activation, and spatial dropout regularization [28].
Finally, the receptive field r of n successive TCN blocks can
be defined as:

r=1+2-(w-1) 3 d' )

iDCT
: GATRes Block
x GATRes Block

Input: Xj.¢
past sequence

C. Combined Architecture

The TGN architecture facilitates spatio-temporal feature
learning through the integration of three key modules: the
GAT encoder, TCN encoder, and TCN decoder (Fig. 2a). The
GAT encoder is dedicated to capturing the spatial features of
poses and nodal connectivity, while the TCN encoder-decoder
learns the temporal dependencies within sequences. First, the
data undergoes DCT transformation and then passes through
two GAT-Res blocks. Subsequently, the transformed data is
converted back to the time domain using the inverse DCT
operation. Both the TCN encoder and decoder consist of four
TCN blocks, each corresponding to dilation values of 1, 2, 4,
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and 8. The TCN blocks utilize a kernel size of 3. The decoder
concludes with a fully-connected layer that generates output
corresponding to the number of desired forecasting steps.
Additionally, a global residual connection is established
between the last input step and the output, allowing the
model’s output to represent the relative position with respect
to a query, which is typically the last known position [5].

D. Deep Ensembles

Deep ensembles are machine learning techniques that entail
training multiple neural networks with diverse initializations,
architectures, or data subsets, and amalgamating their
predictions to enhance accuracy [20]. This ensemble strategy
enhances model robustness and uncertainty estimation by
mitigating the influence of random initialization and
optimization on the model's performance. Deep ensembles
offer advantages over traditional Bayesian neural networks as
they are easier to implement, require fewer computational
resources, and involve minimal hyperparameter tuning. Deep
ensembles are believed to excel because they can sample from
distinct functions or modes within the function (solution)
space, a capability not shared by variational methods, as
illustrated in Fig. 3 [29]. In addition, subsampling techniques
may sample from a local optimum based on the training loss,
but there is no guarantee that it corresponds to a local
optimum of the validation loss. Deep ensembles have been
shown to be effective across various applications, including
image classification, natural language processing, and time-
series forecasting [30].

In our model, we utilize deep ensembles to enhance
prediction accuracy and quantify uncertainty. Specifically, we
train three models with the same architecture but different
parameter initializations. The predictions for future poses are
obtained by averaging the node-wise outputs of these models.
Although this may increase training time and memory
requirements, there is minimal to no increase in inference time
compared to variational inference methods. To quantify
uncertainty, we combine deep ensembles with MC dropout
sampling. This combination allows for an increased number of
samples, enabling the construction of more robust
distributions without significant computational overhead.

Ensembles
Sampling from different modes

Variational Inference
Sampling from a single mode

Training

Objective function

Validation

Space of solutions
Fig. 3. The unique functions sampling hypothesis.

IV. UNCERTAINTY BOUNDARY

The stochastic output generated by the deep ensembles and
the MC dropout sampling offers various possibilities for
creating boundaries around pose estimates to indicate
prediction uncertainty. In this section, we present an example
of estimating uncertainty boundaries, which consists of two
parts: 1) estimating uncertainty around the joints, and 2)
estimating uncertainty along the segments.

A. Joints Uncertainty

To establish an uncertainty boundary around the estimated
joint position in an ensemble of predictions, we construct a
covariance (error) ellipsoid. After performing an eigenvalue
decomposition of a joint’s position vector, we derive three
uncorrelated principal axes that represent the joint's position.
By treating the position vector components along these axes as
random variables, following a Gaussian distribution, we can
construct a confidence boundary using a three-degree-of-
freedom Chi-square distribution.

Given the global joint position vector P = {x,y,z}T, the
local position vector for the same joint is represented by P’ =
{x',y’,z'}" where x',y’, and z' are positions along the joint
principal axes. The equation of the error ellipsoid in the local
coordinates can be expressed as:

(f_)z + (Z—)Z + (7)2 = Xa )

where 44, 4,, and A; are the eigenvalues of the position vector
ensemble, while x5, represents the third-degree Chi-square
value at a significance level a. To determine if a point falls
outside the error ellipsoid, the left-hand side must be greater
than the right-hand side (the critical Chi-square value). In
global coordinates, the general formulas for the error ellipsoid
are as follows:

x(0, p) cos(60) sin(¢p)
y(@,d)| = /)(;a - VAY? |sin(0) sin(¢) 6)
z(0, ) cos(¢)

where 6 and ¢ are the local azimuth and zenith, V is the
eigenvectors matrix, and A%/? is a diagonal matrix containing
the square roots of the eigenvalues. The following general
form can be used to determine if a point falls inside or outside
the ellipsoid:

X
[x ¥ 7] VA_l/ZVT[§]=X§,a )

where A~1/2 represents a diagonal matrix containing the
reciprocals of the square root of the eigenvalues.

B. Segments Uncertainty

As our motion prediction model generates an ensemble of
joint position predictions, connecting these joints according to
the human kinematic tree results in a set of segment
predictions in the 3D space. For a segment connecting two
nodes, the model produces two groups of prediction points,
one for each node. We construct the uncertainty boundary for
the segment based on the mean segment connecting the mean
points of the two groups, along with a dynamic 2D error
ellipse that depends on the longitudinal position along the
mean line.

There are various forms of the 3D line equation, including
the symmetric form defined by three line parameters and a line
intersect. The parameters can be obtained given two points
lying on the line: p; = [x1,y1,21] and p, = [x3, V5, 2,]. The
symmetric form can be rearranged in vector form, expressing
x and y as functions of z:

x(z)} P11 ﬁlz] zZ

= 9

Lo =lo 5210 ©

where By =70 iy = x; — (222) 21, B0 = 222 and
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By =V — (yz_yl) z;. We can define P, = [x(2),y(2)]",

Zy—2Z1
zn =z, 11", B =[B11,B21]", B2 = [B12,B22]", and then
B = [B;, B]. Equation (9) can be rewritten as:
P(z) = Bz, (10)

Since we have an ensemble of point pairs, B and consequently
P(z), contain random variables and possess a variance that we
exploit to construct the segment uncertainty boundary. Taking
the variance of Eq. (10):

Var(P) = z['Var(B)z, (11)
where
_[ Var(By)  Cov(By,B2)
Var(B) = Cov(ﬁz,lﬂl) Var(zfz)z ] (12)

is a symmetric 4x4 matrix. Var(B;) and Var(B,) are regular
covariance matrices while Cov(By, ) = Cov(B,, B1)T
represents the cross-covariance matrices of the two random
vectors f; and f,. With some rearrangement, Eq. (11)
becomes:
Var(P) = z*Var(B,) + z(Cov(By, B;) + Cov(By, B1)) +
Var(B,) (13)
which is the 2x2 covariance matrix of the points on the lines
intersecting with the z plane. The covariance matrix can be
used to construct a dynamic 2D error ellipse at any plane z and
is defined as follows in local coordinates:

x(t)] ST uaAl2 [cos(t)]
[y (t)] = VAan va sin(t) (14)
where t € [0, 21]. The general form for testing is:
X
[ v ] = a2, (15)

The following formulas can be used to transform the
positional vectors of the points from global to local
coordinates at the z plane:

Pocar = V_l(Pglobal - o‘rigin) (16)
where Pgiopq is the point in the global coordinates, while
Pyrigin 1s the center of the error ellipse. The local axes are
represented by three orthonormal dimensions, with the z-axis
aligned with the mean segment’s longitudinal dimension.
Additionally, the local origin, P,,;gn, is chosen as the point on
the mean segment at the plane of interest. The uncertainty
boundary of the segments can be utilized to evaluate the
proximity of robot segments by determining the points with
the shortest distance between the robot and human segments.

C. Using the Uncertainty Boundary

The primary aim of quantifying uncertainty is to enhance
the collision avoidance strategies employed by collaborative
robots during trajectory planning. A major application of HRC
is in assembly and disassembly processes. However, a crucial
concern arises when robots operate in shared environments
with human workers — ensuring the worker’s safety is of
utmost importance. By integrating an uncertainty-aware
human motion prediction model, robots can utilize real-time
motion planning methods to dynamically adjust their routes,
effectively avoiding collisions and ensuring a safer working
environment. In typical robot trajectory planning scenarios,
optimization revolves around collision avoidance and
efficiency, guided by a predetermined probability of collision.
Fortunately, the uncertainty boundary estimation method

detailed in this section allows for control over human motion
prediction confidence through the adjustment of the
significance level a. Consequently, the uncertainty boundary
can function as a danger zone that robots must navigate
around while executing their tasks.

V. EXPERIMENTS

To evaluate our model, we utilize three motion capture
datasets: Human3.6M [31], the Arm Motion dataset [3], and
the Reaching Motion dataset. We first provide an overview of
these datasets, followed by details on the model
implementation, evaluation metrics, and finally, the results.

A. Datasets

Human3.6M: Human3.6M is a widely used publicly
available dataset for motion capture data, particularly for
human pose forecasting. It comprises motion capture
recordings of seven actors performing 15 different actions,
such as walking, eating, and engaging in discussions. Each
pose includes the 3D Cartesian coordinates of 32 joints. We
consider 17 joints after excluding joints with constant readings
or close proximity to others. Following the approach in the
literature [5], we use subject 5 for testing and subject 11 for
validation. The remaining subjects (1, 6-9) are used for
training. Additionally, we remove the global rotations and
translation from each sequence and downsample all motions to
25 frames per second.

Arm motion dataset: This dataset focuses on the arm motion
of human workers who grasp and relocate screwdrivers while
being captured by the Vicon camera system. Only the
trajectories of three nodes representing the arm motion are
recorded. Three types of motions are performed, resulting in a
total of 429 trajectories captured at a frequency of 25 Hz. The
data is split into training, validation, and test sets using a ratio
of 75/12.5/12.5, respectively, for each motion type.

Reaching motion: In this dataset, a human worker attempts
to collect screws from different locations while a robot is
moving in the shared space. This scenario represents an HRC
environment and introduces complexities such as collision
risks. The dataset includes 463 motion sequences recorded in
3D Cartesian coordinates, comprising six worker arm nodes
and eight robotic arm nodes. The data is split into training,
validation, and test sets using a ratio of 80/10/10, respectively.

B. Evaluation Metrics

We employ the mean per joint position error (MPJPE) to
assess prediction accuracy, a metric suitable for motion
datasets represented in 3D Cartesian coordinates [31]. We also
rely on three commonly used metrics to evaluate both the
diversity and accuracy of the probabilistic output [18]. For
measuring sample diversity, we use the Average Pairwise
Distance (APD), calculated as the average Euclidean distance
between all pairs in the motion ensemble. The other two
metrics employed are the Average Displacement Error (ADE)
and the Final Displacement Error (FDE). ADE represents the
lowest average Euclidean distance over all time steps between
the ground truth motion forecast and the predicted samples,
while FDE indicates the lowest Euclidean distance in the last
time step between the ground truth and the predictions.
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Fig. 4. Examples of DE-TGN 10-25 (1000 ms) predictions on Human3.6m including the uncertainty boundary. From top to
bottom, we show the ground truth, DE-TGN mean predictions, DE-TGN + MC-dropout generated samples, constructed
uncertainty boundary.

TABLE I. Human3.6M MPJPE values (mm) on the 15 action types at different forecasting steps for our proposed method (DE-TGN) trained on forecasting
10, 25, and 50 steps (400 ms, 1000 ms, and 2000 ms). Results of other methods in the literature are also provided (reported from [11] and [13]). "Our models.

Directions Discussion Eating Greeting
milliseconds 80 160 320 400 1000 2000|80 160 320 400 1000 2000|80 160 320 400 1000 2000|80 160 320 400 1000 2000
Res-GRU 25-25 [5](21.6 41.3 72.1 84.1 129 25.7 47.8 80.0 91.3 132 16.8 31.5 53.5 61.7 98.0 312 584 963 109 154
ConvS2S 50-25 [7] [13.5 29.0 57.6 69.7 116 17.1 345 64.8 77.6 129 11.0 22.4 40.7 484 87.1 22.0 45.0 82.0 96.0 147
LTD 10-25 [10] 92 20.6 469 588 109 122 258 539 66.7 119 7.7 15.8 30.5 37.6 74.1 16.7 339 67.5 81.6 140
HRI 50-10 [11] 74 184 445 565 107 102 234 52.1 654 120 7.0 149 299 364 75.7 13.7 30.1 63.8 78.1 139
GAGCN 10-25[13] (7.3 12.8 30.3 34.5 69.9 9.7 17.1 314 389 76.9 64 115 21.7 252 514 11.8 20.1 40.5 484 87.7
DE-TGN 10-10" |3.1 3.8 4.0 5.9 36 49 54 71 38 49 52 74 38 42 43 58
DE-TGN 10-25" |59 8.6 83 82 129 55 8.6 103 102 149 59 89 103 105 154 60 87 9.0 9.0 135
DE-TGN 10-50" |8.0 129 154 154 13.8 194 (7.6 12.7 157 16.6 16.0 23.1|7.6 12.7 157 16.0 184 25.6 |8.8 14.3 155 14.9 164 20.8
Phoning Posing Purchases Sitting
milliseconds 80 160 320 400 1000 2000|80 160 320 400 1000 2000|80 160 320 400 1000 2000|80 160 320 400 1000 2000
Res-GRU 25-25 [5]|21.1 38.9 66.0 76.4 126 29.3 56.1 983 114 183 28.7 524 86.9 1001 154 23.8 44.7 78.0 91.2 153
ConvS2S 50-25 [7] [13.5 26.6 49.9 59.9 114 16.9 36.7 75.7 92.9 187 203 41.8 76.5 89.9 152 13.5 27.0 52.0 63.1 121
LTD 10-25 [10] 10.2 20.2 409 509 105 12.5 27.5 62.5 79.6 172 15.5 323 63.6 773 136 10.4 214 454 573 119
HRI 50-10 [11] 8.6 183 39.0 49.2 105 10.2 242 585 758 178 13.0 29.2 604 739 134 93 20.1 443 56.0 116
GAGCN 10-25[13] (8.8 13.5 25.5 28.7 66.0 10.1 17.0 35.5 45.1 99.1 11.9 20.7 41.8 47.6 85.1 93 144 29.6 385 71.1
DE-TGN 10-10° |40 52 55 173 34 39 40 54 3.7 43 44 6.0 34 46 5.0 69
DE-TGN 10-25" |64 9.5 107 109 16.4 6.1 83 81 85 129 60 84 83 83 132 53 81 97 98 153
DE-TGN 10-50" 8.6 142 17.1 17.3 19.0 29.4 (8.9 14.1 15.0 14.7 144 17.310.8 159 16.6 17.3 164 19.3|7.6 124 16.6 17.0 17.0 24.4
Sitting Down Smoking Taking Photo Waiting
milliseconds 80 160 320 400 1000 2000|80 160 320 400 1000 2000|80 160 320 400 1000 2000|80 160 320 400 1000 2000
Res-GRU 25-25 [5]|31.7 58.3 96.7 112 187 18.9 34.7 57.5 65.4 102 219 414 740 87.6 154 23.8 442 758 87.7 135
ConvS2S 50-25 [7] [20.7 40.6 70.4 82.7 150 11.6 22.8 413 489 81.7 12.7 26.0 52.1 63.6 128 14.6 29.7 58.1 69.7 118
LTD 10-25 [10] 17.0 334 61.6 744 144 84 16.8 325 39.5 73.6 9.9 20.5 438 552 120 10.5 21.6 459 57.1 107
HRI 50-10 [11] 149 30.7 59.1 72.0 144 7.0 149 299 364 69.5 83 184 40.7 51.5 116 8.7 192 434 549 108
GAGCN 10-25[13] [14.1 24.8 40.0 474 84.1 7.1 11.8 21.7 243 48.7 8.5 139 288 35.1 70.0 8.5 14.1 29.8 33.8 69.3
DE-TGN 10-10" (3.8 5.1 55 175 33 45 49 6.7 30 37 40 54 33 42 44 6.1
DE-TGN 10-25" |57 9.0 102 105 17.3 54 82 9.6 9.7 146 53 75 79 178 115 55 81 88 87 137
DE-TGN 10-50" (8.4 14.0 17.7 184 18.1 26.8 (7.2 11.8 14.6 14.8 17.1 23.8 |74 12.0 13.5 13.0 13.0 21.1 |82 13.7 159 154 163 23.6
Walking Walking Dog Walk Together Average
milliseconds 80 160 320 400 1000 2000|80 160 320 400 1000 2000|80 160 320 400 1000 2000|80 160 320 400 1000 2000
Res-GRU 25-25 [5]{23.2 40.9 61.0 66.1 79.1 364 64.8 99.1 111 166 204 37.1 594 67.3 98.2 25.0 46.2 77.0 883 137
ConvS2S 50-25 [7] [17.7 33.5 56.3 63.6 82.3 27.7 53.6 90.7 103 162 153 304 53.1 612 874 16.6 33.3 614 72.7 124
LTD 10-25 [10] 12.6 23.6 394 445 60.9 229 435 745 864 142 10.8 21.7 39.6 47.0 65.7 12.4 252 499 609 113
HRI 50-10 [11] 10.0 19.5 342 39.8 58.1 20.1 40.3 733 86.3 147 89 184 351 419 69.6 10.4 22.6 47.1 583 112
GAGCN 10-25[13][10.3 16.1 28.8 234 51.1 17.0 28.8 50.1 59.4 91.3 8.8 13.8 262 299 504 10.1 16.9 32.5 385 773
DE-TGN 10-10" |54 6.9 7.9 10.6 57 65 71 93 42 50 58 77 39 50 54 73
DE-TGN 10-25" (8.7 12.6 13.8 14.0 21.6 92 128 133 139 21.8 73 103 11.0 11.2 17.1 63 93 103 104 16.0
DE-TGN 10-50"  |12.2 19.9 23.1 22.7 242 37.0 |143 23.0 219 21.6 23.7 33.8|9.9 156 165 159 182 274 (89 145 17.1 17.2 18.0 26.0

C. Implementation ADP, ADE, and FDE metrics. In this experiment, the motion
frame rate is set at 50Hz with a 25-step input sequence (500
ms) and 100-step output sequence (2000 ms), enabling a
meaningful comparison with existing probabilistic modeling
literature. Furthermore, eight experiments are conducted on
the reaching motion dataset using 10- and 25-step input
sequences with 25- and 50-step output sequences. These
experiments are conducted both with and without including
robot history motion as part of the input sequence.

Using fixed-length windows, all motions are divided into
segments. For Human3.6M and Arm Motion datasets, three
separate experiments are conducted, each with a different
output length. In all experiments, the input sequences (history)
consist of 10 steps (400 ms), while the output sequences
(forecasts) are 10, 25, and 50 steps long, respectively. An
additional experiment on Human3.6M is conducted to
evaluate the probabilistic performance of our model using

Authorized licensed use limited to: Texas A M University. Downloaded on January 22,2024 at 17:32:32 UTC from IEEE Xplore. Restrictions apply.
© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3354628

ELTOUNY et al.: DE-TGN: UNCERTAINTY-AWARE HUMAN MOTION FORECASTING USING DEEP ENSEMBLES 7

D. Results

Human3.6M: Table 1 presents the MPJPE values for the
three DE-TGN models. trained on the Human3.6M dataset.
The values are provided for each of the 15 actions and
different forecasting steps. Additionally, results from other
models in the literature are included for comparison. Our
proposed DE-TGN models outperform all other models across
all actions. However, it is worth noting that models trained to
produce long-term forecasts perform worse in shorter-term
predictions compared to models focused on short-term
forecasts (e.g., DE-TGN 10-50 vs. DE-TGN 10-10). As a
result, there are a few instances where other models
outperform our long-term model (DE-TGN 10-50) in the 80
milliseconds forecast range (e.g., Walk Together). This trade-
off indicates that long-term forecast models sacrifice short-
term forecast accuracy to achieve exceptional accuracy in
long-term predictions. This observation is supported by
significant improvements in long-term predictions when
compared to state-of-the-art models. Fig. 4 showcases
examples of DE-TGN predictions and the estimation of
uncertainty boundary at multiple time steps.

Table II presents the average MPJPE values for each
individually trained model in the deep ensembles, covering the
10, 25, and 50 steps variants. Notably, the deep ensembles
technique achieves lower MPJPE values compared to all
individual TGN models used to construct DE-TGN. Similarly,
Table III demonstrates that deep ensembles offer enhanced
diversity along with improved accuracy. This is evident from
the higher APD values and the lower ADE and FDE values
compared to all individual TGN models. In comparison to
other studies, note that the existing methods in Table III are
particularly designed to diversify the predictions, serving
different purposes than DE-TGN. Therefore, our models
exhibit lower APD values but notably superior ADE and FDE
results. This aspect renders our models’ predictions more
accurate and realistic with a certain variation level, a crucial
factor for HRC tasks.

TABLE II. Human3.6M average MPJPE values (mm) over all actions for
individual TGNs and their deep ensembles. All models use 0.4s input.

Forecast length 400 ms 1000 ms 2000 ms
TGN #1 6.24 12.7 20.8
TGN #2 6.65 12.7 23.2
TGN #3 6.18 13.9 20.7
DE-TGN 5.02 10.6 17.7

TABLE III. Human3.6M APD, ADE, and FDE results (mm) for DE-TGN and
exiting methods (reported from [18] and [19]).

Model APD 1 ADE | FDE |
HP-GAN [16] 7214 858 867
MT-VAE [32] 403 457 595
DLow [18] 11741 425 518
Motron [19] 7168 375 488
TGN #1 MC-dropout” 1252 107 139
TGN #2 MC-dropout 1210 99 128
TGN #3 MC-dropout” 1258 104 134
DE-TGN + MC-dropout” 1395 98 122

Arm Motion Dataset: The MPJPE results for the Arm
Motion dataset are displayed in Table IV. For comparison, we
include the results of a residual sequence-to-sequence
(Seq2Seq) GRU-based model with input and output lengths of
25 steps each. The DE-TGN 10-25 variant not only

outperforms the Seq2Seq model but also utilizes a shorter
input length and requires fewer computational resources due
to the efficiency of the convolutional layers. Moreover, the
DE-TGN 10-50 variant achieves slightly improved predictions
compared to the Seq2Seq model while offering double the
forecast length. The results also demonstrate that deep
ensembles reduce prediction errors in all models.

TABLE IV. Arm Motion Dataset average MPJPE values (mm) over all
actions for individual models and their deep ensembles.

Model type TGN TGN TGN Seq2Seq
10-10 10-25 10-50 25-25
Model #1 1.94 4.21 7.83 8.27
Model #2 1.89 423 7.99 8.17
Model #3 1.91 4.18 7.99 8.24
Deep Ensembles 1.83 4.06 7.61 7.89
Reaching Motion Dataset: Table V presents the

performance metric values for the eight DE-TGN models
using the Reaching Motion dataset. Consistent with previous
experiments, we observe enhancements in all metrics due to
the utilization of the deep ensembles and an increase in errors
as the forecast length grows. Moreover, Table V examines the
impact of including robot motion in the input sequence. While
there is no significant impact on the metrics when including
robot motion in the 25-step output models, we note slight
improvements in both accuracy- and diversity-based metrics
for the 50-step output models. This suggests that the
forecasting model could benefit from incorporating robot
motion in long-term predictions. Our analysis also indicates
that these improvements remain consistent even when
increasing the input sequence length, as shown by the metrics
differences observed in models with the same output length
but varying input lengths, both with and without appending
the robot history motion to the input. Fig. 5 showcases
example predictions on the reaching motion dataset.
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Fig. 5. Three Examples (a-c) of DE-TGN predictions for the
Reaching Motion Dataset at time steps 11, 30, 50, and 60.
From left to right, we show the ground truth, mean
predictions, generated samples, and constructed uncertainty
boundary. The robot arm is shown in green.

TABLE V. Reaching Motion Dataset evaluation metrics (mm) using multiple
DE-TGN variants, with and without robot motion input.

Model Including robot input Not including robot input
type 10-25 25-25 10-50 25-50 [10-25 25-25 10-50 25-50
MPIPE | |7.18 7.08 16.62 1645 |7.22 72 17.54 17.16

APD 1 91.1 928 259 251 89.9 964 278 256
ADE | 143 143 344 329 (143 146 345 351
FDE | 25.6 239 537 487 261 245 541 49
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V. CONCLUSION

This study highlights the advantages of employing deep
ensembles for human motion forecasting. We have introduced
the DE-TGN architecture, which surpasses the current state-
of-the-art methods in human motion prediction for the
Human3.6M benchmark, while also offering longer-term
forecasts. Furthermore, our models have demonstrated low
prediction errors in two HRC datasets that capture the motions
of human workers engaged in collaborative tasks with a
robotic arm. We have also proposed a statistical method for
estimating uncertainty boundaries of human body nodes and
segments utilizing deep ensembles and MC dropout sampling.
Leveraging convolutional layers, our approach proves to be
highly efficient compared to traditional sequence-to-sequence
models.

By providing accurate predictions and assessing the
reliability of the models through uncertainty estimation, our
framework lays a solid foundation for safer HRC.
Nevertheless, the method has several potential limitations.
Deep ensembles might demand extra computational resources
to achieve real-time performance comparable to individual
models. Furthermore, this method was not evaluated in
scenarios involving sensors and tracking errors (e.g.,
occlusions) and other environmental disturbances. It is
advisable for future studies to address these limitations
through further investigation.
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