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Abstract—Ensuring the safety of human workers in a 

collaborative environment with robots is of utmost importance. 

Although accurate pose prediction models can help prevent 

collisions between human workers and robots, they are still 

susceptible to critical errors. In this study, we propose a novel 

approach called deep ensembles of temporal graph neural 

networks (DE-TGN) that not only accurately forecast human 

motion but also provide a measure of prediction uncertainty. By 

leveraging deep ensembles and employing stochastic Monte-

Carlo dropout sampling, we construct a volumetric field 

representing a range of potential future human poses based on 

covariance ellipsoids. To validate our framework, we conducted 

experiments using three motion capture datasets including 

Human3.6M, and two human-robot interaction scenarios, 

achieving state-of-the-art prediction error. Moreover, we 

discovered that deep ensembles not only enable us to quantify 

uncertainty but also improve the accuracy of our predictions. 

 
Index Terms—Human Motion Prediction, Deep Learning, Deep 

Ensembles, Human-Robot Collaboration (HRC) 

I. INTRODUCTION 

HE integration of automated robots into various 

industries has revolutionized repetitive task execution. 

As the demand for environmentally conscious 

manufacturing grows, there has been a surge in research on 

human-robot collaboration (HRC) to address electronic waste 

management tasks [1, 2]. In an HRC environment, accurate 

human motion prediction plays a pivotal role in ensuring the 

safety of human workers. It empowers robots to anticipate 

human movement, enabling them to adjust their motion plans 

and avoid collisions [3]. Extensive studies have been 

conducted on 3D human motion forecasting, primarily 

leveraging motion capture technology. With the rapid 

advancements in artificial intelligence and its applications, 

machine learning methods have emerged for human motion 

prediction. These include recurrent neural networks (RNNs) 

[4, 5], convolutional neural networks (CNNs) [6-9], graph 

convolutional networks (GCNs) [10-13], and transformers 
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[14]. While RNNs can struggle with computational demands 

and long-term forecasting tasks, CNNs are hampered by their 

limited receptive fields due to kernel sizes. Transformers 

present a promising solution for long-term forecasting, as they 

can process entire sequences, leveraging the self-attention 

mechanism to focus on relevant parts in the input sequence, 

regardless of their distance. Nevertheless, the computational 

and memory requirements of transformers for handling long 

input/output sequences can be significant compared to 

alternative methods. This inefficiency hampers their 

practicality for real-time applications [15]. 

Human motion is highly intricate, and accurately 

forecasting it entails dealing with a significant degree of 

uncertainty. In a collaborative robot setting, it is crucial for 

robots to recognize and account for such uncertain behaviors, 

allowing them to take appropriate actions when confidence 

level decreases. Several studies have been conducted to offer 

probabilistic outputs instead of deterministic ones, primarily 

through approximate variational inference and generative 

models [16-19]. However, conventional variational inference 

methods tend to generate samples from a local mode within 

the solution space, capturing only local uncertainty while often 

imposing training constraints such as prior distributions. To 

address these limitations, deep ensembles have emerged as a 

potential solution. Deep ensembles encompass a collection of 

deep learning models that generate samples derived from 

distinct training trajectories [20]. By leveraging this ensemble 

approach, deep ensembles tackle the issue of local uncertainty 

by providing a broader range of potential predictions. 

 
Fig. 1. Overview of the proposed deep ensembles of temporal 

graph neural networks. 

In this study, we present an innovative approach called 

Deep Ensembles of Temporal-Graph Neural Networks (DE-

TGN) for precise 3D human motion forecasting based on 

motion capture sequence data (Fig. 1). The contributions of 

this work are as follows: 1) We develop a novel deep learning 

architecture for human motion prediction, incorporating a 

blend of temporal convolutional networks (TCN) and graph 

T
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attention networks (GAT) with residual connections. 2) We 

employ deep ensembles in combination with Monte Carlo 

(MC) dropout sampling [21] to generate a diverse set of 

plausible motions. Notably, this marks the first instance of 

utilizing deep ensembles for human motion forecasting in 

existing research. 3) We propose a technique to construct 3D 

uncertainty boundaries using covariance ellipsoids derived 

from the probabilistic output. These boundaries offer valuable 

insights into the reliability of the model’s predictions in an 

HRC environment. 4) Our method surpasses state-of-the-art 

human motion prediction models in long-term human motion 

forecasting benchmarks, showcasing its superior performance. 

II. RELATED WORK 

A. GCN 

In the past decade, the field of human motion forecasting 

has been dominated by RNNs, with several groundbreaking 

RNN-based methods proposed [4, 5]. However, RNN-based 

methods exhibited noticeable discontinuities at the beginning 

of the forecast. To address this issue, Martinez et al. [5] 

proposed a sequence-to-sequence model with residual 

connections which predicts velocities instead of poses. Despite 

these advancements, long-term predictions remain challenging 

for these methods due to their one-step-ahead prediction 

mode, leading to error accumulation and increased 

computational cost. Feedforward networks attempt to solve 

many of the inherited issues in RNN-based methods. Earlier 

methods, however, relied on the predefined human kinematic 

tree [6], overlooking the need for coordinated motion between 

the different body parts, even those that are distant. Some 

methods have turned to CNN architectures to address these 

limitations [7]. Nevertheless, the challenges persist due to the 

reliance on kernel size for the temporal receptive field and the 

treatment of data as an image-like structure when modeling 

human motion. 

In recent years, there has been growing interest in using 

GCNs for human pose forecasting [10-13]. GCNs have shown 

promise in processing non-grid-like structures, such as the 

human pose, making them suitable for capturing inter-joint 

spatial correlations. Mao et al. [10] proposed a sequential, 

feed-forward network of GAT layers with fully connected 

graphs. This approach enables the learning of global spatial 

connectivity among joints through attention mechanisms in the 

trajectory space. In another study, Mao et al. [11] introduced 

motion attention layers to capture the similarity between the 

current motion and historical motion, resulting in more 

accurate predictions. To gain a deeper understanding of the 

spatiotemporal dynamics of joints, Sofianos et al. [12] 

proposed the use of depth-wise separable GCNs with trainable 

spatiotemporal adjacency matrices. Zhong et al. [13] took a 

mixture-of-experts approach in their GCN-based motion 

forecasting technique, where a gating network applies 

importance factors to a set of adjacency matrices. What 

distinguishes the GCN layers in our DE-TGN model from 

prior literature is the design of a GAT residual block. This 

block incorporates multiple GAT, normalization, dropout, and 

non-linear activation layers, along with a skip connection, 

making our model deeper and easier to train. 

B. TCN 

TCNs have gained attention as an efficient and effective 

alternative to RNN- and attention-based techniques for human 

motion forecasting, offering advantages such as reduced error 

accumulation and improved computational efficiency. 

However, the exploration of TCNs in this context has been 

limited compared to other time-series modeling methods. In a 

comparative study by Pavllo et al. [22], a GRU-based motion 

forecasting model was pitted against a WaveNet-based model, 

with the former demonstrating superior performance. Cui et al. 

[8] proposed a forecasting network consisting of GCN blocks 

that incorporated TCN layers to capture time dependencies. Li 

et al. [9] presented a similar approach but with the additional 

inclusion of a positional encoding module, allowing the 

network to predict action types alongside motion forecasting. 

Overall, despite the promising results and advantages offered 

by TCNs and dilated causal convolution in general, their 

applications in human motion forecasting remain relatively 

unexplored. Our TCN residual blocks are designed akin to 

TCN’s original architecture with minor adjustments [23]. 

Although a handful of previous researchers have explored 

GCN-TCN hybrids [8, 9], our design is the first of its kind, to 

the best of our knowledge. It encompasses distinct stages of 

spatial feature learning employing GAT, succeeded by 

temporal feature learning through TCNs. 

C. Probabilistic learning 

Several studies have put forth generative methods for 

human motion forecasting that aim to provide probabilistic 

output, allowing for diverse predictions without compromising 

accuracy. Barsoum et al. [16] introduced HP-GAN, drawing 

inspiration from generative adversarial networks, which 

employs a sequence-to-sequence generator to predict a set of 

plausible human motion predictions. Aliakbarian et al. [17] 

noted that HP-GAN begins to disregard stochastic components 

the longer it is trained and proposed a recurrent-based 

conditional variational autoencoder (CVAE) with a mix-and-

match strategy to address this issue. Another study by Yuan 

and Kitani [18] focused on diversifying generated samples and 

introduced the diversifying latent flows (DLow) sampling 

method, which utilizes a CVAE network. In a  different 

approach, Salzmann et al. [19] proposed a typed graph-GRU 

hybrid to directly predict motion distributions, providing a 

probabilistic perspective. To the best of our knowledge, deep 

ensembles have not been investigated as a viable option for 

generating probabilistic output in human motion predictions. 

Furthermore, previous literature on probabilistic human 

motion forecasting did not emphasize the utilization of the 

probabilistic output to establish uncertainty boundaries for 

ensuring safe human-robot interactions. 

III. NETWORK ARCHITECTURE 

In this section, we introduce the TGN architecture (Fig. 2) 

along with the Bayesian inference approximation using deep 

ensembles. Let us define : = , , … ,   as the 

historical motion sequence consisting of  3D human poses. If 

the collaborating robot’s motion is available, we denote its 
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sequence of  3D poses as : = ,  , … , . The 

vectors  ∈ ℝ  and  ∈ ℝ contains  and  parameters, 

respectively, that describe the poses. We posit that 

incorporating the robot's motion history into the input data 

holds valuable information for the predictive model. 

Consequently, adding this information enhances the accuracy 

of the forecast predictions. The input to our network is the 

concatenation of these two sequences: : , :. Our goal is 

to provide a forecast of the human motion poses for  time 

steps, represented by the sequence :. We propose 

TGN, a TCN-GAT hybrid network, to predict the future 

sequence based on the provided input. To provide a measure 

of uncertainty, we rely on deep ensembles and MC dropout 

sampling to obtain a diverse set of predictions.  

A.  GAT 

GCNs are types of neural networks specifically designed to 

handle graph-structured data. Unlike CNNs, which operate on 

grid-like structured data with fixed local connectivity, GCNs 

consider varying connections for each node and its neighbors 

in the graph, as defined by an adjacency matrix. Among 

GCNs, GAT stands out as it utilizes self-attention mechanisms 

to assign varying importance to neighboring nodes, thereby 

adjusting the adjacency matrix [24].  In our model, we employ 

a GAT encoder to extract representative features that capture 

the spatial relations between pose nodes. Inspired by Mao et 

al. [10], we establish full connectivity among all nodes in the 

graph, allowing GAT to adapt the connections based on the 

available training data. In our case, we assume that both 

human and robot nodes form a fully-connected graph with a 

total of  =  +  nodes. The edges of this graph can be 

represented by an adjacency matrix, denoted as  ∈ ℝ×. To 

transform the input into the trajectory space, we utilize the 

Discrete Cosine Transform (DCT). Consequently, each node is 

associated with a matrix  ∈ ℝ×, where  represents the 

number of DCT coefficients. The graph convolutional layer 

estimates the output ′ using the following formula, acting as 

input for the subsequent layer:  

   = (  ) (1) 

where (∙) is an activation function and  ∈ ℝ× is the 

trainable weight matrix. Using self-attention mechanisms, 

GAT applies attention weights to the entries in  resulting in a 

learned adjacency matrix ∗ that replaces  in Eq. (1): 

  ∗ =  ∙  (2) 

where  ∈ ℝ× contains the edgewise attention weights 

obtained by averaging the output of multi-head attention. 

To incorporate GAT layers into our model, we adopt a 

residual architecture, as depicted in Fig. 2b. Within a GAT 

block,  two GAT layers are used, each followed by layer 

normalization [25], rectified linear unit (ReLU) activation 

[26], and dropout regularization [27]. A skip connection is 

then employed to merge the input with the output by means of 

element-wise addition. This residual architecture enables the 

blocks to focus on learning the relative changes in the feature 

maps, rather than the entire transformations, which can 

facilitate deep learning. 

B.  TCN 

TCNs are a specific type of CNNs designed to effectively 

handle sequential data [23]. Unlike RNNs, TCNs do not rely 

on recurrent connections to capture the temporal 

dependencies. Instead, they employ dilated causal convolution 

on the input sequence. This allows for the easy attainment of 

large receptive fields, making TCNs capable of efficiently 

processing very long sequences while mitigating the risk of 

vanishing gradients. For a one-dimensional sequence input  ∈ ℝ and a kernel : 0, … ,  − 1 → ℝ, the output () of 

a dilated convolution operation at step  is defined by: 

 () = ∑ ()( −  ∙ ) +  (3) 

where  represents the kernel size,  is the dilation factor, and  is the bias term. The dilation factor is often chosen with a 

base (e.g., 2) that doubles as the network gets deeper. 

Increasing the dilation factor  and the kernel size  in 

Equation (3) allows for the expansion of the receptive field. 

 
Fig. 2. Temporal graph neural network architecture. 

Similar to the GAT residual blocks, the TCN modules in 

our model utilize a residual architecture, as illustrated in Fig. 

2c. Each TCN block contains two sets of 1D dilated causal 

convolution layers, each followed by layer normalization, 

ReLU activation, and spatial dropout regularization [28]. 

Finally, the receptive field r of n successive TCN blocks can 

be defined as: 

  = 1 + 2 ∙ ( − 1) ∙ ∑   (4)  

C. Combined Architecture 

The TGN architecture facilitates spatio-temporal feature 

learning through the integration of three key modules: the 

GAT encoder, TCN encoder, and TCN decoder (Fig. 2a). The 

GAT encoder is dedicated to capturing the spatial features of 

poses and nodal connectivity, while the TCN encoder-decoder 

learns the temporal dependencies within sequences. First, the 

data undergoes DCT transformation and then passes through 

two GAT-Res blocks. Subsequently, the transformed data is 

converted back to the time domain using the inverse DCT 

operation. Both the TCN encoder and decoder consist of four 

TCN blocks, each corresponding to dilation values of 1, 2, 4, 
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and 8. The TCN blocks utilize a kernel size of 3. The decoder 

concludes with a fully-connected layer that generates output 

corresponding to the number of desired forecasting steps. 

Additionally, a global residual connection is established 

between the last input step and the output, allowing the 

model’s output to represent the relative position with respect 

to a query, which is typically the last known position [5]. 

D. Deep Ensembles 

Deep ensembles are machine learning techniques that entail 

training multiple neural networks with diverse initializations, 

architectures, or data subsets, and amalgamating their 

predictions to enhance accuracy [20]. This ensemble strategy 

enhances model robustness and uncertainty estimation by 

mitigating the influence of random initialization and 

optimization on the model's performance. Deep ensembles 

offer advantages over traditional Bayesian neural networks as 

they are easier to implement, require fewer computational 

resources, and involve minimal hyperparameter tuning. Deep 

ensembles are believed to excel because they can sample from 

distinct functions or modes within the function (solution) 

space, a capability not shared by variational methods, as 

illustrated in Fig. 3 [29]. In addition, subsampling techniques 

may sample from a local optimum based on the training loss, 

but there is no guarantee that it corresponds to a local 

optimum of the validation loss. Deep ensembles have been 

shown to be effective across various applications, including 

image classification, natural language processing, and time-

series forecasting [30]. 

In our model, we utilize deep ensembles to enhance 

prediction accuracy and quantify uncertainty. Specifically, we 

train three models with the same architecture but different 

parameter initializations. The predictions for future poses are 

obtained by averaging the node-wise outputs of these models. 

Although this may increase training time and memory 

requirements, there is minimal to no increase in inference time 

compared to variational inference methods. To quantify 

uncertainty, we combine deep ensembles with MC dropout 

sampling. This combination allows for an increased number of 

samples, enabling the construction of more robust 

distributions without significant computational overhead. 

 
Fig. 3. The unique functions sampling hypothesis. 

IV. UNCERTAINTY BOUNDARY 

The stochastic output generated by the deep ensembles and 

the MC dropout sampling offers various possibilities for 

creating boundaries around pose estimates to indicate 

prediction uncertainty. In this section, we present an example 

of estimating uncertainty boundaries, which consists of two 

parts: 1) estimating uncertainty around the joints, and 2) 

estimating uncertainty along the segments. 

A. Joints Uncertainty 

To establish an uncertainty boundary around the estimated 

joint position in an ensemble of predictions, we construct a 

covariance (error) ellipsoid. After performing an eigenvalue 

decomposition of a joint’s position vector, we derive three 

uncorrelated principal axes that represent the joint's position. 

By treating the position vector components along these axes as 

random variables, following a Gaussian distribution, we can 

construct a confidence boundary using a three-degree-of-

freedom Chi-square distribution.  

Given the global joint position vector  = , , , the 

local position vector for the same joint is represented by  =, ,  where , ′, and  are positions along the joint 

principal axes. The equation of the error ellipsoid in the local 

coordinates can be expressed as: 

  +  +  = ,  (5) 

where , , and  are the eigenvalues of the position vector 

ensemble, while ,  represents the third-degree Chi-square 

value at a significance level . To determine if a point falls 

outside the error ellipsoid, the left-hand side must be greater 

than the right-hand side (the critical Chi-square value). In 

global coordinates, the general formulas for the error ellipsoid 

are as follows: 

 (, )(, )(, ) = , ∙ / () sin()() ()cos()  (6) 

where  and  are the local azimuth and zenith,  is the 

eigenvectors matrix, and / is a diagonal matrix containing 

the square roots of the eigenvalues. The following general 

form can be used to determine if a point falls inside or outside 

the ellipsoid: 

    /  = ,  (7) 

where / represents a diagonal matrix containing the 

reciprocals of the square root of the eigenvalues. 

B. Segments Uncertainty 

As our motion prediction model generates an ensemble of 

joint position predictions, connecting these joints according to 

the human kinematic tree results in a set of segment 

predictions in the 3D space. For a segment connecting two 

nodes, the model produces two groups of prediction points, 

one for each node. We construct the uncertainty boundary for 

the segment based on the mean segment connecting the mean 

points of the two groups, along with a dynamic 2D error 

ellipse that depends on the longitudinal position along the 

mean line. 

There are various forms of the 3D line equation, including 

the symmetric form defined by three line parameters and a line 

intersect. The parameters can be obtained given two points 

lying on the line:  = , ,  and  = ,  , . The 

symmetric form can be rearranged in vector form, expressing 

x and y as functions of z:  

 ()() =    1 (9) 

where  =  ,  =  −   ,  =  , and 
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 =  −  . We can define  = (), (),  = ,  1,  = , ,  = , , and then  = ,  . Equation (9) can be rewritten as:  

 () =  (10) 

Since we have an ensemble of point pairs,  and consequently (), contain random variables and possess a variance that we 

exploit to construct the segment uncertainty boundary. Taking 

the variance of Eq. (10): 

 () = () (11) 

where 

 () =  ()  (, )(, ) ()  (12) 

is a symmetric 4×4 matrix. () and () are regular 

covariance matrices while (, ) = (, )  

represents the cross-covariance matrices of the two random 

vectors  and . With some rearrangement, Eq. (11) 

becomes: () = () + (, ) + (, ) +                     ()  (13) 

which is the 2×2 covariance matrix of the points on the lines 

intersecting with the z plane. The covariance matrix can be 

used to construct a dynamic 2D error ellipse at any plane z and 

is defined as follows in local coordinates: 

 ()() = , ∙ / cos()sin() (14) 

where  ∈ [0, 2. The general form for testing is: 

  .  /  = ,  (15) 

The following formulas can be used to transform the 

positional vectors of the points from global to local 

coordinates at the z plane: 

  = ( − ) (16) 

where   is the point in the global coordinates, while   is the center of the error ellipse. The local axes are 

represented by three orthonormal dimensions, with the z-axis 

aligned with the mean segment’s longitudinal dimension. 

Additionally, the local origin,  , is chosen as the point on 

the mean segment at the plane of interest. The uncertainty 

boundary of the segments can be utilized to evaluate the 

proximity of robot segments by determining the points with 

the shortest distance between the robot and human segments. 

C. Using the Uncertainty Boundary 

The primary aim of quantifying uncertainty is to enhance 

the collision avoidance strategies employed by collaborative 

robots during trajectory planning. A major application of HRC 

is in assembly and disassembly processes. However, a crucial 

concern arises when robots operate in shared environments 

with human workers – ensuring the worker’s safety is of 

utmost importance. By integrating an uncertainty-aware 

human motion prediction model, robots can utilize real-time 

motion planning methods to dynamically adjust their routes, 

effectively avoiding collisions and ensuring a safer working 

environment. In typical robot trajectory planning scenarios, 

optimization revolves around collision avoidance and 

efficiency, guided by a predetermined probability of collision. 

Fortunately, the uncertainty boundary estimation method 

detailed in this section allows for control over human motion 

prediction confidence through the adjustment of the 

significance level α. Consequently, the uncertainty boundary 

can function as a danger zone that robots must navigate 

around while executing their tasks. 

V. EXPERIMENTS 

To evaluate our model, we utilize three motion capture 

datasets: Human3.6M [31], the Arm Motion dataset [3], and 

the Reaching Motion dataset. We first provide an overview of 

these datasets, followed by details on the model 

implementation, evaluation metrics, and finally, the results. 

A. Datasets 

Human3.6M: Human3.6M is a widely used publicly 

available dataset for motion capture data, particularly for 

human pose forecasting. It comprises motion capture 

recordings of seven actors performing 15 different actions, 

such as walking, eating, and engaging in discussions. Each 

pose includes the 3D Cartesian coordinates of 32 joints. We 

consider 17 joints after excluding joints with constant readings 

or close proximity to others. Following the approach in the 

literature [5], we use subject 5 for testing and subject 11 for 

validation. The remaining subjects (1, 6-9) are used for 

training. Additionally, we remove the global rotations and 

translation from each sequence and downsample all motions to 

25 frames per second. 

Arm motion dataset: This dataset focuses on the arm motion 

of human workers who grasp and relocate screwdrivers while 

being captured by the Vicon camera system. Only the 

trajectories of three nodes representing the arm motion are 

recorded. Three types of motions are performed, resulting in a 

total of 429 trajectories captured at a frequency of 25 Hz. The 

data is split into training, validation, and test sets using a ratio 

of 75/12.5/12.5, respectively, for each motion type. 

Reaching motion: In this dataset, a human worker attempts 

to collect screws from different locations while a robot is 

moving in the shared space. This scenario represents an HRC 

environment and introduces complexities such as collision 

risks. The dataset includes 463 motion sequences recorded in 

3D Cartesian coordinates, comprising six worker arm nodes 

and eight robotic arm nodes. The data is split into training, 

validation, and test sets using a ratio of 80/10/10, respectively. 

B. Evaluation Metrics 

We employ the mean per joint position error (MPJPE) to 

assess prediction accuracy, a metric suitable for motion 

datasets represented in 3D Cartesian coordinates [31]. We also 

rely on three commonly used metrics to evaluate both the 

diversity and accuracy of the probabilistic output [18]. For 

measuring sample diversity, we use the Average Pairwise 

Distance (APD), calculated as the average Euclidean distance 

between all pairs in the motion ensemble. The other two 

metrics employed are the Average Displacement Error (ADE) 

and the Final Displacement Error (FDE). ADE represents the 

lowest average Euclidean distance over all time steps between 

the ground truth motion forecast and the predicted samples, 

while FDE indicates the lowest Euclidean distance in the last 

time step between the ground truth and the predictions. 
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C. Implementation 

Using fixed-length windows, all motions are divided into 

segments. For Human3.6M and Arm Motion datasets, three 

separate experiments are conducted, each with a different 

output length. In all experiments, the input sequences (history) 

consist of 10 steps (400 ms), while the output sequences 

(forecasts) are 10, 25, and 50 steps long, respectively. An 

additional experiment on Human3.6M is conducted to 

evaluate the probabilistic performance of our model using 

ADP, ADE, and FDE metrics. In this experiment, the motion 

frame rate is set at 50Hz with a 25-step input sequence (500 

ms) and 100-step output sequence (2000 ms), enabling a 

meaningful comparison with existing probabilistic modeling 

literature. Furthermore, eight experiments are conducted on 

the reaching motion dataset using 10- and 25-step input 

sequences with 25- and 50-step output sequences. These 

experiments are conducted both with and without including 

robot history motion as part of the input sequence. 

Fig. 4. Examples of DE-TGN 10-25 (1000 ms) predictions on Human3.6m including the uncertainty boundary. From top to 

bottom, we show the ground truth, DE-TGN mean predictions, DE-TGN + MC-dropout generated samples, constructed 

uncertainty boundary. 

TABLE I. Human3.6M MPJPE values (mm) on the 15 action types at different forecasting steps for our proposed method (DE-TGN) trained on forecasting 

10, 25, and 50 steps (400 ms, 1000 ms, and 2000 ms). Results of other methods in the literature are also provided (reported from [11] and [13]). *Our models. 

 Directions Discussion Eating Greeting 

milliseconds 80 160 320 400 1000 2000 80 160 320 400 1000 2000 80 160 320 400 1000 2000 80 160 320 400 1000 2000 

Res-GRU 25-25 [5] 21.6 41.3 72.1 84.1 129  25.7 47.8 80.0 91.3 132  16.8 31.5 53.5 61.7 98.0  31.2 58.4 96.3 109 154  

ConvS2S 50-25 [7] 13.5 29.0 57.6 69.7 116  17.1 34.5 64.8 77.6 129  11.0 22.4 40.7 48.4 87.1  22.0 45.0 82.0 96.0 147  

LTD 10-25 [10] 9.2 20.6 46.9 58.8 109  12.2 25.8 53.9 66.7 119  7.7 15.8 30.5 37.6 74.1  16.7 33.9 67.5 81.6 140  

HRI 50-10 [11] 7.4 18.4 44.5 56.5 107  10.2 23.4 52.1 65.4 120  7.0 14.9 29.9 36.4 75.7  13.7 30.1 63.8 78.1 139  

GAGCN 10-25[13] 7.3 12.8 30.3 34.5 69.9  9.7 17.1 31.4 38.9 76.9  6.4 11.5 21.7 25.2 51.4  11.8 20.1 40.5 48.4 87.7  

DE-TGN 10-10* 3.1 3.8 4.0 5.9   3.6 4.9 5.4 7.1   3.8 4.9 5.2 7.4   3.8 4.2 4.3 5.8   
DE-TGN 10-25* 5.9 8.6 8.3 8.2 12.9  5.5 8.6 10.3 10.2 14.9  5.9 8.9 10.3 10.5 15.4  6.0 8.7 9.0 9.0 13.5  

DE-TGN 10-50* 8.0 12.9 15.4 15.4 13.8 19.4 7.6 12.7 15.7 16.6 16.0 23.1 7.6 12.7 15.7 16.0 18.4 25.6 8.8 14.3 15.5 14.9 16.4 20.8 

 Phoning Posing Purchases Sitting 

milliseconds 80 160 320 400 1000 2000 80 160 320 400 1000 2000 80 160 320 400 1000 2000 80 160 320 400 1000 2000 

Res-GRU 25-25 [5] 21.1 38.9 66.0 76.4 126  29.3 56.1 98.3 114 183  28.7 52.4 86.9 1001 154  23.8 44.7 78.0 91.2 153  

ConvS2S 50-25 [7] 13.5 26.6 49.9 59.9 114  16.9 36.7 75.7 92.9 187  20.3 41.8 76.5 89.9 152  13.5 27.0 52.0 63.1 121  

LTD 10-25 [10] 10.2 20.2 40.9 50.9 105  12.5 27.5 62.5 79.6 172  15.5 32.3 63.6 77.3 136  10.4 21.4 45.4 57.3 119  

HRI 50-10 [11] 8.6 18.3 39.0 49.2 105  10.2 24.2 58.5 75.8 178  13.0 29.2 60.4 73.9 134  9.3 20.1 44.3 56.0 116  

GAGCN 10-25[13] 8.8 13.5 25.5 28.7 66.0  10.1 17.0 35.5 45.1 99.1  11.9 20.7 41.8 47.6 85.1  9.3 14.4 29.6 38.5 71.1  

DE-TGN 10-10* 4.0 5.2 5.5 7.3   3.4 3.9 4.0 5.4   3.7 4.3 4.4 6.0   3.4 4.6 5.0 6.9   

DE-TGN 10-25* 6.4 9.5 10.7 10.9 16.4  6.1 8.3 8.1 8.5 12.9  6.0 8.4 8.3 8.3 13.2  5.3 8.1 9.7 9.8 15.3  

DE-TGN 10-50* 8.6 14.2 17.1 17.3 19.0 29.4 8.9 14.1 15.0 14.7 14.4 17.3 10.8 15.9 16.6 17.3 16.4 19.3 7.6 12.4 16.6 17.0 17.0 24.4 

 Sitting Down Smoking Taking Photo Waiting 

milliseconds 80 160 320 400 1000 2000 80 160 320 400 1000 2000 80 160 320 400 1000 2000 80 160 320 400 1000 2000 

Res-GRU 25-25 [5] 31.7 58.3 96.7 112 187  18.9 34.7 57.5 65.4 102  21.9 41.4 74.0 87.6 154  23.8 44.2 75.8 87.7 135  

ConvS2S 50-25 [7] 20.7 40.6 70.4 82.7 150  11.6 22.8 41.3 48.9 81.7  12.7 26.0 52.1 63.6 128  14.6 29.7 58.1 69.7 118  

LTD 10-25 [10] 17.0 33.4 61.6 74.4 144  8.4 16.8 32.5 39.5 73.6  9.9 20.5 43.8 55.2 120  10.5 21.6 45.9 57.1 107  
HRI 50-10 [11] 14.9 30.7 59.1 72.0 144  7.0 14.9 29.9 36.4 69.5  8.3 18.4 40.7 51.5 116  8.7 19.2 43.4 54.9 108  

GAGCN 10-25[13] 14.1 24.8 40.0 47.4 84.1  7.1 11.8 21.7 24.3 48.7  8.5 13.9 28.8 35.1 70.0  8.5 14.1 29.8 33.8 69.3  

DE-TGN 10-10* 3.8 5.1 5.5 7.5   3.3 4.5 4.9 6.7   3.0 3.7 4.0 5.4   3.3 4.2 4.4 6.1   

DE-TGN 10-25* 5.7 9.0 10.2 10.5 17.3  5.4 8.2 9.6 9.7 14.6  5.3 7.5 7.9 7.8 11.5  5.5 8.1 8.8 8.7 13.7  

DE-TGN 10-50* 8.4 14.0 17.7 18.4 18.1 26.8 7.2 11.8 14.6 14.8 17.1 23.8 7.4 12.0 13.5 13.0 13.0 21.1 8.2 13.7 15.9 15.4 16.3 23.6 

 Walking Walking Dog Walk Together Average 

milliseconds 80 160 320 400 1000 2000 80 160 320 400 1000 2000 80 160 320 400 1000 2000 80 160 320 400 1000 2000 

Res-GRU 25-25 [5] 23.2 40.9 61.0 66.1 79.1  36.4 64.8 99.1 111 166  20.4 37.1 59.4 67.3 98.2  25.0 46.2 77.0 88.3 137  

ConvS2S 50-25 [7] 17.7 33.5 56.3 63.6 82.3  27.7 53.6 90.7 103 162  15.3 30.4 53.1 61.2 87.4  16.6 33.3 61.4 72.7 124  

LTD 10-25 [10] 12.6 23.6 39.4 44.5 60.9  22.9 43.5 74.5 86.4 142  10.8 21.7 39.6 47.0 65.7  12.4 25.2 49.9 60.9 113  

HRI 50-10 [11] 10.0 19.5 34.2 39.8 58.1  20.1 40.3 73.3 86.3 147  8.9 18.4 35.1 41.9 69.6  10.4 22.6 47.1 58.3 112  

GAGCN 10-25[13] 10.3 16.1 28.8 23.4 51.1  17.0 28.8 50.1 59.4 91.3  8.8 13.8 26.2 29.9 50.4  10.1 16.9 32.5 38.5 77.3  

DE-TGN 10-10* 5.4 6.9 7.9 10.6   5.7 6.5 7.1 9.3   4.2 5.0 5.8 7.7   3.9 5.0 5.4 7.3   

DE-TGN 10-25* 8.7 12.6 13.8 14.0 21.6  9.2 12.8 13.3 13.9 21.8  7.3 10.3 11.0 11.2 17.1  6.3 9.3 10.3 10.4 16.0  
DE-TGN 10-50* 12.2 19.9 23.1 22.7 24.2 37.0 14.3 23.0 21.9 21.6 23.7 33.8 9.9 15.6 16.5 15.9 18.2 27.4 8.9 14.5 17.1 17.2 18.0 26.0 
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D. Results 

Human3.6M: Table I presents the MPJPE values for the 

three DE-TGN models. trained on the Human3.6M dataset. 

The values are provided for each of the 15 actions and 

different forecasting steps. Additionally, results from other 

models in the literature are included for comparison. Our 

proposed DE-TGN models outperform all other models across 

all actions. However, it is worth noting that models trained to 

produce long-term forecasts perform worse in shorter-term 

predictions compared to models focused on short-term 

forecasts (e.g., DE-TGN 10-50 vs. DE-TGN 10-10). As a 

result, there are a few instances where other models 

outperform our long-term model (DE-TGN 10-50) in the 80 

milliseconds forecast range (e.g., Walk Together). This trade-

off indicates that long-term forecast models sacrifice short-

term forecast accuracy to achieve exceptional accuracy in 

long-term predictions. This observation is supported by 

significant improvements in long-term predictions when 

compared to state-of-the-art models. Fig. 4 showcases 

examples of DE-TGN predictions and the estimation of 

uncertainty boundary at multiple time steps. 

Table II presents the average MPJPE values for each 

individually trained model in the deep ensembles, covering the 

10, 25, and 50 steps variants. Notably, the deep ensembles 

technique achieves lower MPJPE values compared to all 

individual TGN models used to construct DE-TGN. Similarly, 

Table III demonstrates that deep ensembles offer enhanced 

diversity along with improved accuracy. This is evident from 

the higher APD values and the lower ADE and FDE values 

compared to all individual TGN models. In comparison to 

other studies, note that the existing methods in Table III are 

particularly designed to diversify the predictions, serving 

different purposes than DE-TGN. Therefore, our models 

exhibit lower APD values but notably superior ADE and FDE 

results. This aspect renders our models’ predictions more 

accurate and realistic with a certain variation level, a crucial 

factor for HRC tasks. 

TABLE II. Human3.6M average MPJPE values (mm) over all actions for 

individual TGNs and their deep ensembles. All models use 0.4s input. 

Forecast length 400 ms 1000 ms 2000 ms 

TGN #1 6.24 12.7 20.8 

TGN #2 6.65 12.7 23.2 

TGN #3 6.18 13.9 20.7 

DE-TGN 5.02 10.6 17.7 

TABLE III. Human3.6M APD, ADE, and FDE results (mm) for DE-TGN and 

exiting methods (reported from [18] and [19]).  

Model APD↑ ADE↓ FDE↓ 

HP-GAN [16] 7214 858 867 

MT-VAE [32] 403 457 595 

DLow [18] 11741 425 518 

Motron [19] 7168 375 488 

TGN #1 MC-dropout* 1252 107 139 

TGN #2 MC-dropout* 1210 99 128 

TGN #3 MC-dropout* 1258 104 134 

DE-TGN + MC-dropout* 1395 98 122 

 

Arm Motion Dataset: The MPJPE results for the Arm 

Motion dataset are displayed in Table IV. For comparison, we 

include the results of a residual sequence-to-sequence 

(Seq2Seq) GRU-based model with input and output lengths of 

25 steps each. The DE-TGN 10-25 variant not only 

outperforms the Seq2Seq model but also utilizes a shorter 

input length and requires fewer computational resources due 

to the efficiency of the convolutional layers. Moreover, the 

DE-TGN 10-50 variant achieves slightly improved predictions 

compared to the Seq2Seq model while offering double the 

forecast length. The results also demonstrate that deep 

ensembles reduce prediction errors in all models. 

TABLE IV. Arm Motion Dataset average MPJPE values (mm) over all 

actions for individual models and their deep ensembles. 

Model type TGN 

10-10 

TGN 

10-25 

TGN 

10-50 

Seq2Seq 

25-25 

Model #1 1.94 4.21 7.83 8.27 

Model #2 1.89 4.23 7.99 8.17 

Model #3 1.91 4.18 7.99 8.24 

Deep Ensembles 1.83 4.06 7.61 7.89 

Reaching Motion Dataset: Table V presents the 

performance metric values for the eight DE-TGN models 

using the Reaching Motion dataset. Consistent with previous 

experiments, we observe enhancements in all metrics due to 

the utilization of the deep ensembles and an increase in errors 

as the forecast length grows. Moreover, Table V examines the 

impact of including robot motion in the input sequence. While 

there is no significant impact on the metrics when including 

robot motion in the 25-step output models, we note slight 

improvements in both accuracy- and diversity-based metrics 

for the 50-step output models. This suggests that the 

forecasting model could benefit from incorporating robot 

motion in long-term predictions. Our analysis also indicates 

that these improvements remain consistent even when 

increasing the input sequence length, as shown by the metrics 

differences observed in models with the same output length 

but varying input lengths, both with and without appending 

the robot history motion to the input. Fig. 5 showcases 

example predictions on the reaching motion dataset. 

 

Fig. 5. Three Examples (a-c) of DE-TGN predictions for the 

Reaching Motion Dataset at time steps 11, 30, 50, and 60. 

From left to right, we show the ground truth, mean 

predictions, generated samples, and constructed uncertainty 

boundary. The robot arm is shown in green. 

TABLE V. Reaching Motion Dataset evaluation metrics (mm) using multiple 

DE-TGN variants, with and without robot motion input. 

Model 

type 

Including robot input Not including robot input 

10-25 25-25 10-50 25-50 10-25 25-25 10-50  25-50 

MPJPE↓ 7.18 7.08 16.62 16.45 7.22 7.2 17.54 17.16 

APD↑ 91.1 92.8 259 251 89.9 96.4 278 256 

ADE↓ 14.3 14.3 34.4 32.9 14.3 14.6 34.5 35.1 

FDE↓ 25.6 23.9 53.7 48.7 26.1 24.5 54.1 49 
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V. CONCLUSION 

This study highlights the advantages of employing deep 

ensembles for human motion forecasting. We have introduced 

the DE-TGN architecture, which surpasses the current state-

of-the-art methods in human motion prediction for the 

Human3.6M benchmark, while also offering longer-term 

forecasts. Furthermore, our models have demonstrated low 

prediction errors in two HRC datasets that capture the motions 

of human workers engaged in collaborative tasks with a 

robotic arm. We have also proposed a statistical method for 

estimating uncertainty boundaries of human body nodes and 

segments utilizing deep ensembles and MC dropout sampling. 

Leveraging convolutional layers, our approach proves to be 

highly efficient compared to traditional sequence-to-sequence 

models.  

By providing accurate predictions and assessing the 

reliability of the models through uncertainty estimation, our 

framework lays a solid foundation for safer HRC. 

Nevertheless, the method has several potential limitations. 

Deep ensembles might demand extra computational resources 

to achieve real-time performance comparable to individual 

models. Furthermore, this method was not evaluated in 

scenarios involving sensors and tracking errors (e.g., 

occlusions) and other environmental disturbances. It is 

advisable for future studies to address these limitations 

through further investigation. 
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