otatistical Learning
Theory for Gontrol

A FINITE-SAMPLE PERSPECTIVE

ANASTASIOS TSIAMIS®, INGVAR ZIEMANN,
NIKOLAI MATNI®®, and GEORGE J. PAPPAS

earning algorithms have become an integral compo-
nent to modern engineering solutions. Examples
range from self-driving cars and recommender
systems to finance and even critical infrastruc-
ture, many of which are typically under the pur-
view of control theory. While these algorithms have al-
ready shown tremendous promise in certain applications
[1], there are considerable challenges, in particular, with
respect to guaranteeing safety and gauging fundamen-
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tal limits of operation. Thus, as we integrate tools from
machine learning into our systems, we also require an
integrated theoretical understanding of how they oper-
ate in the presence of dynamic and system-theoretic phe-
nomena. Over the past few years, intense efforts toward
this goal—an integrated theoretical understanding of
learning, dynamics, and control—have been made. While
much work remains to be done, a relatively clear and com-
plete picture has begun to emerge for (fully observed)
linear dynamical systems. These systems already allow
for reasoning about concrete failure modes, thus help-
ing to indicate a path forward. Moreover, while simple at
a glance, these systems can be challenging to analyze.
Recently, a host of methods from learning theory and
high-dimensional statistics, not typically in the control-
theoretic toolbox, have been introduced to our community.
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This tutorial survey serves as an introduction to these re-
sults for learning in the context of unknown linear dy-
namical systems (see “Summary”). We review the current
state of the art and emphasize which tools are needed to
arrive at these results. Our focus is on characterizing the
sample efficiency and fundamental limits of learning al-
gorithms. Along the way, we also delineate a number of
open problems. More concretely, this article is structured
as follows. We begin by revisiting recent advances in
the finite-sample analysis of system identification. Next,
we discuss how these finite-sample bounds can be used
downstream to give guaranteed performance for learning-
based offline control. The final technical section discusses
the more challenging online control setting. Finally, in
light of the material discussed, we outline a number of
future directions.

FINITE-SAMPLE ANALYSIS OF SYSTEM
IDENTIFICATION

In linear system identification, the goal is to recover the
model of an unknown system of the form

Xev1 = A X+ By + wy
Y= C.xi+ vy (1)

where x: € R* represents the state, y: € R% represents
the observations, u:e R* is the control signal, and
weR™ v,eRY are the process and measurement
noises, respectively. The question we answer in this sec-
tion is, How many samples are needed to guarantee that the

Summary

his tutorial survey provides an overview of recent

advances in statistical learning theory relevant to
control and system identification featuring nonasymp-
totic methods. While there has been substantial prog-
ress across all areas of control, the theory is most well
developed when it comes to linear system identification
and learning for the linear quadratic regulator, which
are the focus of this article. From a theoretical perspec-
tive, much of the work underlying these advances has
been in adapting tools from modern high-dimensional
statistics and learning theory. While highly relevant to
control theorists interested in integrating tools from ma-
chine learning, the foundational material has not always
been easily accessible. To remedy this, we provide a
self-contained presentation of the relevant material,
outlining all the key ideas and offering an overview
of the technical machinery that underpins recent re-
sults. We also present a number of open problems and
future directions.
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system identification error is small? We make this question
more formal by introducing the notion of sample com-
plexity. Prior to doing so, we establish the statistical
learning framing of the problem. While many of the
results presented in the following sections can be
extended to more general noise models, we keep the
exposition simple by focusing on Gaussian noise models.
In particular, we assume that both the process noise w:
and measurement noise v: are independent identically
distributed (i.i.d.) zero-mean Gaussians with covariance
matrices X, and X, respectively, and that these process
are all mutually independent of one another. Similarly,
we let the initial state xo be a zero-mean Gaussian, with
covariance I'o, and independent of the process and mea-
surement noise. We denote the covariance of the state x;
at time t by I't = Ex:x/. Here and in the sequel, the state
parameters (A., B.,C.) € R**@*%*%) are unknown. The
goal of the system identification problem is to recover
the a priori unknown model of system (1) from finite
input-output samples {(y;, u)) N, where Nit is the total
number of samples. Thus, this is an offline learning prob-
lem. The data can come from a single trajectory of length
T (that is, Nwt=T) or from Nu; multiple independent
trajectories with horizon T; that is, Nt = TNu. While
the learning task is to recover the state-space parameters
6.=(A., B.,C., Zu, Zy) of (1) using these data, the state-
space representation of system (1) is, in general, not
unique. Hence, we instead seek to recover one such rep-
resentation or a function f(6.) of the underlying true
parameters 6.. To streamline the exposition, we focus on
the single-trajectory case Nwt = T. A more refined analy-
sis can be used when samples are drawn from multiple
trajectories to yield similar conclusions [2] but under
weaker stability-type assumptions. Let the identification
algorithm A be a (measurable) function that takes as an
input the horizon T and the data {(yo, 10), (y1, t1),...,(yr, ur)}
and returns an estimate fr of the desired system quan-
tity f(6.). In some settings, the algorithm .4 may also
encompass an exploration policy, that is, the choice of
control inputs u; used during the data collection phase.
The goal of the exploration policy is to excite the system
in a way that maximizes the “richness” of the data, that
is, how much information the data carry about the under-
lying system. Formally, we define an exploration policy
7 to be a sequence of (measurable) functions 7 = {7},
where every function z; maps previous output-input
values yo,...,yt, uo,...,us-1 and potentially an auxiliary
randomization signal to the new input u;. This definition
encompasses both closed- and open-loop policies—in
the latter case, the exploration policy is a function only of
the auxiliary randomness. We can now define the notion
of sample complexity. Let Py, denote the probability dis-
tribution of the input-output data for the system (1)
defined by parameters 6. evolving under the exploration
policy 7.
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e - R
Sample Complexity

Fix a class Z~ of systems of the form (1) and a norm [l
Let f(6.) be the system quantity to be identified. Fix an
identification algorithm A with an exploration policy
7. Pick an accuracy parameter & and a failure probabil-
ity 5 € (0,1). Let fr be the system identification output
under the algorithm A. Then, the sample complexity N,
of learning f given the class #, the algorithm A, and the
policy 7 is the minimum N. = N.(¢, §, C, A, 7) such that

supPs.. (| f6.) —fr| =€) < &

6.€7

if T> Nc(¢, 6,7, A, n). ()]
We say that a class of systems # is learnable if there

exist an algorithm A and a policy z such that for any
ks > 0,6 €(0,1), the sample complexity N. is finite.

In the case of multiple trajectories, we can replace T with
Nt in the preceding definition. We can also define algo-
rithm-independent and/or policy-independent sample com-
plexity by considering the minimum N over all possible
algorithms/policies. By choosing % to be a neighborhood
around some system 6., we can also define local instance-
specific sample complexities; see, for example, [5]. Note that
for the sample complexity to be nontrivial, the algorithm
should perform well across all possible 6. € 7, which is what
the supremum over 7 achieves in (2). Otherwise, we can
construct trivial algorithms that overfit to a specific system
and fail to identify any other system in the class. Note that
one often encounters ranges of T and & for which the sample
complexity dependency on & behaves poorly. Typically, this
is due to transient phenomena. For instance, in a d-dimen-
sional linear regression problem, the design matrix can be
nearly singular if we have too few measurements (for exam-
ple, if fewer than d independent measurements are available).
Informally, for a fixed &, one typically refers to the smallest
sample size T such that there exists a finite (or meaningful)
sample complexity at accuracy e as the burn-in time. The
burn-in for linear system identification is given in (9).

From Asymptotics to Finite-Sample Guarantees

Before we proceed, let us take a step back and briefly dis-
cuss the historical development of system identification
from a mathematical methods perspective. Clearly, the sta-
tistical analysis of system identification algorithms has a
long history [6]. Until recently, this line of work has empha-
sized providing guarantees for system identification algo-
rithms in the asymptotic regime [7], [8], [9], [10], [11], in which
the number of collected samples tends to infinity. The main
focus of asymptotic analysis has been to establish consis-
tency, that is, the convergence of the estimated system
parameters to the ground truth (as modeled). Typically, this
is achieved if certain persistency of excitation (PE) conditions
hold [12]. Asymptotic tools can also go beyond consistency

and provide convergence rates. Standard tools for charac-
terizing such rates are the law of the iterated logarithm
(LIL) and the central limit theorem (CLT); see [14] for a
detailed exposition of both techniques. Nevertheless, even
the more advanced techniques (that is, the LIL and the
CLT) hold only as the number of samples tend to infinity.

Toward a Finite-Sample Analysis

Early work on the nonasymptotic analysis of system identi-
fication appeared in the 1990s [14], [15], [16], [17], [18] and
2000s [19], [20]. The setting of [14] and [15] focuses on worst-
case noise, which is different from the statistical setting
considered in this article. In [16], approximate expressions
for the finite-time identification error variance are given.
We cannot derive sample complexity guarantees directly
from [16]; the expressions therein are not directly comput-
able in our setting (they require exact computation of
expectations), and they do not characterize the finite-sam-
ple distribution of the identification error and how it
depends on the number of samples. The statistical learning
setting was first studied in [18], [19], and [20], where guar-
antees are typically given for the prediction error of the
learned model. Moreover, the guarantees rely heavily on
having a mixing, that is, a stable, process. As we soon see,
in many settings, mixing is not required, and in fact, faster
mixing systems can be harder to learn—at least when it
comes to parameter recovery [4]. Following papers by
Abbasi-Yadkori and Szepesvari [21] and Dean et al. [22],
there has been a resurgence of interest in using finite-data
tools for system identification and controls. This is partially
motivated by recent advances in high-dimensional probabil-
ity [3] and statistics [23], which provide us with new power-
ful tools and allow us to bypass asymptotic reasoning.

Why Do We Need Finite-Sample Guarantees?

In principle, our view is that both asymptotic and nonas-
ymptotic methods are useful for both control and learning
theorists to have in their toolbox. On the one hand, a careful
asymptotic analysis can provide sharp bounds and give a
clear picture of some key quantities involved in the problem
at hand. However, in reality, all data are finite, and asymp-
totic bounds are heuristics, albeit often sharp if the sample
size is large enough. On the other hand, nonasymptotic anal-
ysis is often more appropriate to carefully delineate notions,
such as transient phenomena (for example, burn-in times)
and failure probabilities; see “What Do Finite-Sample Meth-
ods Bring?” We gain a more detailed qualitative character-
ization of learning difficulty, often at the expense of
sharpness in the asymptotic regime. For instance, the ques-
tion, How many samples do we need to stabilize an unknown
linear system with a certainty-equivalent (CE) linear qua-
dratic regulator (LQR) controller? is necessarily answered
using finite-sample methods. Being able to combine these
sometimes distinct styles of analysis gives us a richer under-
standing of the dynamic phenomena under consideration.
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Many datasets are high dimensional, with the number of
explanatory variables not necessarily being small in pro-
portion to the number of samples collected; for example,
the state dimension dx might be of the same order as T. In
this case, asymptotic bounds with fixed dimension dx are
not always meaningful, while finite-sample guarantees
still hold. Examples from systems theory for when this may
be relevant include large networked systems and autore-
gressions of unknown order. An insightful discussion of
this matter from a statistics perspective is held by Wain-
wright [23, Ch. 1]. From the perspective of a control theorist,
obtaining sample complexity bounds as a function of

What Do Finite-Sample Methods Bring?

onsider an unknown scalar system

Xt+1=a.Xt + Wt (S1)

where |a.|<1, w; is independent identically distributed and
mean-zero Gaussian with variance one. Assume that our goal
is to recover the unknown scalar a. from single-trajectory data
(X0, ..., x7). One of the simplest algorithms is to minimize the
squared prediction errors

ar= argamin ZT: (xe — axe—1)2.
t=1

Given the stochastic nature of the data, the least-squares
estimate ar will fluctuate around the “true” value a.. Both as-
ymptotic and nonasymptotic methods aim to characterize the
statistical variability of the error ar — a.. One of the most pow-
erful asymptotic tools is establishing asymptotic normality, that
is, a time series version of the central limit theorem (CLT). For
this particular scalar system, Mann and Wald [S1] proved that
as the number of samples approaches infinity T — oo, the esti-
mation error is asymptotically normal:

YT (ar—a.)= N(0,1—a?)

where = denotes convergence in the distribution and N(x, 0?)
denotes the normal distribution, with mean x and variance o2.
This result can give us the exact distribution of the estimation
error in the asymptotic regime. However, being an asymptotic
result, it holds only approximately under finite samples; the ap-
proximation error cannot be ignored. Hence, some questions
remain unanswered: What is the distribution of the error under
finite samples? What is the transient behavior? We can par-
tially answer these questions by applying the nonasymptotic
tools reviewed in this survey. In particular, by following the ar-
guments in the “Sample Complexity Upper Bounds” section
[see (9) and (17)], we can establish a finite-sample tail bound
of the form

P(ar—a.|>e)<é6
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system-theoretic parameters, for example, the system dimen-
sion, controllability Gramian, and stability radius, could be
very useful. Finite-sample bounds can be qualitatively infor-
mative about learning difficulty and what can go wrong
with it. That is, they provide us with tools to answer ques-
tions like, Which systems are hard to learn? How does the
controllability structure affect learnability? Which algo-
rithms are optimal? Naturally, some of these questions can
also be answered using asymptotic tools. Nonetheless, we
believe that a finite-sample approach offers a new perspec-
tive, enabling us to even pose new questions; see, for
instance, the open problems in the following. Learning

orala ge e Oug sar ple size
n-iny 2 5

where € controls the accuracy of identification and § controls
the confidence. The constant ¢ is a so-called universal con-
stant; that is, it takes just a numerical value and is independent
of system parameters, confidence, and accuracy. The burn-in
time Toum-in Ccaptures the complexity of transient phenomena, for
example, the minimum time until we achieve persistency of exci-
tation (excitation of all modes of the system). It typically depends
on the desired confidence and the size of the system, that is, its
state dimension dx. For the simple scalar system (S1), we can
take Toumin =’ log1/8, where ¢’ is another universal constant.
For nonscalar systems, we can multiply the preceding burn-in
time with the state dimension dx. While we did not fully charac-
terize the finite-sample distribution of the estimation error, we
managed to characterize the tail probabilities. For example, we
have a log 1/8 term in the required number of samples, which is
sharp. This was not possible before by applying only asymptotic
tools. Forexample, CLT approximationresults, such as the Berry—
Esseen bound, provide a conservative characterization of tail
probabilities; see [3, Ch 2.1] for a detailed explanation. We can
generalize finite-sample bounds to the case a.>1 (not pre-
sented in this sidebar) when the system does not converge to
a steady-state distribution. We can also generalize the bounds
to the case vector-valued systems of high dimensions dx>1,
as presented later. In fact, we can even allow the state dimen-
sion dx to increase with the number of samples T, which is not
covered by the CLT. A downside of finite-sample bounds is that
we lose sharpness in the asymptotic regime. In particular, the
universal constants ¢, ¢’ (see [4] for exact expressions) are typi-
cally large numerical values, much larger than the ones that we
would obtain from a heuristic application of the CLT.
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control systems under finite samples is also interesting from
the perspective of a machine learning theorist. While the
setting of learning under finite, independent, or weakly
dependent (mixing) data has been studied extensively, new
challenges arise in control systems, where the data are not
only dependent but also affected by control inputs. Some
questions that are of interest are, When is learning under
dependent data as easy as learning under independent data?
Is mixing required? What is the tradeoff between exploration
and exploitation? Finally, a goal of this survey is to establish a
common language among control theorists, learning theo-
rists, and statisticians. Machine learning theory has, in prin-
ciple, been nonasymptotic from the outset, and modern
statistics has very much moved in this direction. Meanwhile,
the classical literature of system identification and adaptive
control relies, more often than not, on asymptotic tools. A
common language facilitates an exchange of ideas that is
likely to benefit all three fields. Besides, machine learning,
statistics, and control theory share common research agen-
das and often seek to tackle the same problems.

Asymptotic Notation

In this article, we sometimes use the asymptotic notation
0, 0, Q to simplify the presentation. This does not imply
that our statements are asymptotic. For example, the
statement f(T) = O(g(T)) [f(T) = Q(g(T))] can be replaced
by statements of the form “there exists universal positive
constant ¢ > 0 such that f(T) <cg(T) [f(T) = cg(T)], for
T = Thumin,” Wwhere a universal constant takes just a numer-
ical value and is independent of system and algorithmic
parameters. Exact finite-time expressions for g(T), ¢, Tournin
are given either here, for example, see (18), or in the respec-
tive articles. The statement f(T) = ©(g(T)) is equivalent to
f(T)=0(g(T)), A(T) =Q(g(T)) holding simultaneously.
Finally, the O notation ignores polylogarithmic terms; for
example, f(T) = O(g(T)) is equivalent to f(T) = O(g(T)poly
(logT)), where “poly” denotes some arbitrary polynomial
function of fixed degree.

Fully Observed Systems

Let us now return to the technical task at hand: to provide a
finite-sample analysis of system identification. Recall that
we focus on the single-trajectory case Nt = T. We start by
analyzing the simplest system identification problem,
namely, the case of fully observed systems with C. =1 and
X, =0, yielding direct state measurements y: = x;, t < T. We
focus only on the identification of A., B., but the same tech-
niques could be applied for the estimation of the covariance
Z. For this reason, abusing the notation introduced in the
preceding, we denote 6. = (A., B.), f(6) = 6. Given the data
{(x0, uo), ..., (x1, ur)}, a natural way to obtain an estimate of
the system matrices is to employ the least-squares algorithm

R N T-1
6r = (Ar, Br) € argmina,s > | x¢+1 — Ax: — Bug H; 4

t=0

After some algebraic manipulations, we can verify that

Xt
n

éT—e.=<Tz’lwt[x: u?])(Til (! u?])fl ©)

t=0 t=0

provided that the matrix inverse on the right-hand side of (5)
exists. We characterize the sample complexity of the least-
squares estimator (5) by establishing bounds on the operator
norm || 67 — 6. op- 1t is possible to provide similar guarantees
for the Frobenius norm, but the dimensional factors differ
slightly. The techniques presented in the following can be
applied to open-loop nonexplosive systems when all the
eigenvalues of matrix A. are inside or on the unit circle; that
is, p(A.) <1, where p(A.) denotes the spectral radius. We
also assume that the open-loop inputs are ii.d. zero-mean
Gaussians with Eu;u/ = 021 for some o, > 0. We discuss
generalizations later on. To simplify the exposition, we also
assume that the noise is full rank; thatis, X > 0. This implies
that the noise directly excites all system states directly, making
PE easier to establish. We can also obtain PE for indirectly
excited systems as long as the controllability structure of the
system is well-defined [24]. Finally, we assume that the system
starts from the fixed initial condition xo = 0, and hence, the
initial state covariance is I'o = 0. The following terms will be
useful in the analysis of the least-squares algorithm:

$ TT Sxelor 7
Sr= Zwt[Xt Ut ],VTé Z[ ][xt uf]. 6)
t=0 =0 LUt
Using the preceding notation, we can break the least-
squares error into two separate terms:

|é6r—6.],, <

op — H STV;UZ Hop H V%l/z Hop

Self-normalized term  PE term

where V772 denotes a symmetric positive definite matrix
such that V7*V;Y*= V7', To obtain sample complexity
bounds for the least-squares algorithm, we need to analyze
both terms. The self-normalized term captures the contri-
bution of the noise to the least-squares error. The PE term
captures PE, that is, the richness of the data. The richer the
data, the larger the magnitude of the eigenvalues of the
Gram matrix Vy, leading to a smaller identification error.

Persistency of Excitation (PE)

If the collected trajectory data are rich enough, that is, if all
modes of the system are excited, then the Gram matrix Vr
defined in (6) is both invertible and well-conditioned. In
particular, if Amin(V1) grows unbounded with T, we say
that PE holds. Moreover, the smallest eigenvalue of Vr cap-
tures the direction of the system that is the most difficult to
excite. Recall that I'; = Ex;x{ is the covariance of the state.
Under i.i.d. white inputs, we can compute

t—1
Ti=Y A“62BB™ + Z.)(AT),, To=0. @)
k=0
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Since the state is driven by both exogenous inputs and
noise, both factors appear in the state covariance. By the
definition of the Gram matrix V7,

T
EVr= ,;O e o
0 oiTlI

Note that I'; is increasing in the positive semidefinite
cone since I'o = 0. It is easy to show that the expected Gram
matrix EVr is invertible and well-conditioned; that is, its
eigenvalues increase with time T. For example, we can
choose a 7 > 0 such that I'; > 0. Then, by monotonicity,
ZtT: oLt Z (T —7)I'z. The main technical difficulty is to con-
trol the difference between the Gram matrix and its expecta-
tion | Vr — EVz|. Such a task might be possible in the case of
strictly stable systems p(A.) <1 by using concentration
inequalities and mixing arguments. However, this approach
gives sample complexity bounds that explode as p(A.)
approaches one: two-sided concentration necessitates stabil-
ity. Instead, we appeal to small-ball techniques [25]. Rather

than bounding the difference between Vrand its expectation,
we seek only to obtain a one-sided lower bound. The name
small-ball refers to the fact that the distribution of Amin (V1) /T
is not concentrated in a neighborhood of the origin—it exhib-
its anticoncentration. Define the extended covariance matrix
Pzl ull= O E 1]

Choose a time index 7 > 0. Invoking the small-ball meth-
ods described in “Persistency of Excitation and Small-Ball
Bounds,” it is possible to show that with a probability of
at least 1 -6,

Vi) > crl%Jl:[f/zJ ®

where c is a universal constant, provided that we have a
large enough number of samples:

dx +du
19

detl'r
detTe/ )

T> TO((dx+du)10g +log ©)

Persistency of Excitation and Small-Ball Bounds

et zce R%, t > 0 be a stochastic process adapted to a filtra-
tion {Fi}i2,. Let the Gram matrix be

=
Vi=> zz.
t=0
The process z: is persistently exciting with a probability of
at least 1—§ if there exist ¢, To(6) > 0 such that

P(Vr=cT=1-6

for all T>=Toy(5). To prove persistency of excitation (PE), we
need only to establish one-sided lower bounds of the form

P(Amin(Vr)=cT)=1-6.

In other words, we need to show that the least singular value
of the Gram matrix does not concentrate in a small ball around the
origin. We now discuss a sufficient condition first presented in [4],
based on the small-ball method [25]. An alternative approach via
exponential inequalities can be found in [S2].

BLOCK MARTINGALE SMALL-BALL CONDITION

Before establishing PE for the whole vector z;, we first study
the projected processes £'z:, where £ € R% is a unit vector.
The process z: satisfies the block martingale small-ball con-
dition with parameters (k, [, p) if for every unit £ € R% and
every t =0,

k
> P<| E zeuiff 2 ETTwé| f) > p almost surely.

i=1

1
1 (s2)

The preceding condition states that, conditioned on ¢,
the block average probability of being away from the origin
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is nonzero. The average probability is taken over blocks of
size k. The geometry of the lower bound is captured by the
matrix I'n. Let condition (S2) hold. Then, it follows that z: is
persistently exciting, with the lower bound depending on the
parameter ',

<V7>7le/kJF1b) -0

- (S3)

as long as we have a large enough number of samples

T>T,=10k (Iog I 2dzlog 0, |ogdet(FubFﬁ;1)>

with Tw = (d;/8)max;<7{Ez:zi}. Informally, the term T is
an upper bound of V7/T, while the term T’y is a lower bound
of V7/T. Hence the burn-in time No depends logarithmically
on the condition number of V7. The proof of the result can be
found in [4] and [26].

LINEAR SYSTEMS
In the case of fully observed linear systems, we can select
z:=[x{ uf{]" to be the vector of the stacked state and input.
Under white noise inputs, it can be shown [4] that the process
z: satisfies the (k, I'x/2), 3/20) block martingale small-ball con-
dition, where

[F, 0 }

0 ol
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The right-hand side of the preceding equation increases
with T; fortunately, under the assumption that the system is
nonexplosive p(A) <1, it increases at most logarithmically
with T. Hence, condition (9) will be satisfied for nonexplo-
sive systems for a large enough T. The minimum time such
that condition (9) is satisfied is also known as the burn-in
time. The time index = gives us some control of the size of
the lower bound @:/2). Recall that the sequence I is
increasing in the positive semidefinite cone. Hence, choos-
ing a larger time index 7 allows us to guarantee a stronger
lower bound I'|z/2). On the other hand, the required burn-
in time increases linearly with 7.

Self-Normalized Term
We begin with two observations about the self-normalized

term
T 1"21 T\—1/2
)(tzo ) '

T-1

Srvi? =(Z w

t=0

Xt
U

Xt
N

Xt

U

Self-Normalized Martingales

n object that arises often in standard least-squares analy-

ses is the so-called self-normalized martingale. Let {F7};~
be a filtration, and let z; € R%, for some d. >0, be a stochastic
process such that z; is F7-1 measurable. Let n:€ R%, d,>0
be a martingale difference sequence with respect to F, that is,
n: is integrable, and # measurable, with E(7:|%7-1) = 0. Then,
a self-normalized martingale My € R is defined as

k k -1/2
My = (Z mz,T> (V +> zrzf)

t=0 t=0
where V is an arbitrary symmetric positive definite matrix of
appropriate dimensions.

BOUNDS FOR SCALAR PROCESSES

Assume that 7: € R is a scalar process. Under some regular-
ity conditions on the tail of 7:, we can establish finite-sample
bounds on the magnitude of Mx. Let the process 7: be condi-
tionally K sub-Gaussian for some K > 0:

K222

E(@e"|Fi-1)<e 2z,

forallA e R.

The preceding condition requires that the tails of 7: decay
at least as quickly as a Gaussian distribution. Now, we can
invoke [27, Th. 1]. Letting

k
Vk:V+<Z ztz?>
t=0
we then have the following finite-sample bound. Pick a failure
probability 6 €(0,1). Then, with a probability of at least 1— 9,

(54)

I Mk||§§2K2Iog<M 1 )

det(v)'2 &

First, note that the process noise w; is independent of
xi,u: for all t < T; thatis, the sum St has a martingale struc-
ture. Second, as its name suggests, the term is self-normalized:
if the covariates xi,u; are large for some ¢, then any increase
in Sr will be compensated by an increase in V72, For this
reason, StV7'"/? is called a self-normalized martingale. Such
terms have been studied previously in statistics in the
asymptotic regime [7]. Here, we are interested in establish-
ing finite-sample bounds. We invoke the results of Abbasi-
Yadkori et al. [27]; see “Self-Normalized Martingales” for
more details. Let V be a symmetric positive definite matrix
(to be decided later), and set V; = V;+ V. The extra term V
guarantees the positive definiteness of matrix V. Then,

(12)

o
|s2v:'2 ]2 <8l zw Hoplog< det(Vn) "~ 5° )

det(V)V2 &

Crucially, self-normalization implies that the preceding
term increases slowly (at most, logarithmically) with the

EXTENSION TO VECTOR PROCESSES

Assume now that the process 7 is vectored valued, with d; > 1,
and conditionally K sub-Gaussian (that is, for any unit vector
veR?, |v|l,=1, the projected process v'7: is conditionally
K sub-Gaussian). The bound (S4) does not apply directly since
it relies on the process 7: being scalar. Nevertheless, by ap-
pealing to covering techniques [3], it is straightforward to gen-
eralize this argument to vector processes. The idea is to apply
(S4) to projections v'n; of n: onto several directions v of the
unit sphere. In particular, we discretize the unit sphere by con-
sidering points v;, i=1,..., N such that the points are an ¢
net; that is, they cover the whole sphere with ¢ balls around
them. Then, by taking a union bound over all points v;, we ob-
tain with a probability of at least 1— 8,

(S5)

7 \1/2
M2, <2(1- e)-2;<2|og<M Nf)

det(V) &

where the number of points is at most
dy
Ne<(1+2)".

The term (1— )2 comes from the discretization error and
decreases as the discretization becomes finer. However, as
the discretization becomes finer, the number of points N.
increases. A typical choice is £=1/2. The preceding guar-
antees are with respect to the operator norm. We could also
obtain guarantees for the Frobenius norm by applying (S4) to
e/ vi, where e;, i=1,...,d, are the canonical vectors of R%. In
this case, with a probability of at least 1— 6,

det (V)" d,,) (s6)

2 2 USt\Vk)  Un
| M|z < 2d, K '°g<det(V)‘/2 5
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norm of Vr. If the data are generated by a stable system,
this dependency can be further reduced [at the cost of
inflating lower-order complexity terms by the inverse of
the stability margin 1—p(Ax)]; see [28, Sec. 5.2]. To apply
(12), we need to carefully select V. Moreover, to obtain data-
independent sample complexity guarantees, we require a
data-independent upper bound of Vr. For the former, we
choose V = ct|T/7|l|c/2. When lower bound (8) on Vr
holds, then

|srvi e <2 srvr2]E .

For the latter, we may appeal to the matrix version of
Markov’s inequality (due to Ahlswede and Winter [29, Th. 12]):

P(VT £ %TE) <s

where {VrZ&((dx+du)/8)Tl1} is the complement of
{Vi((dx+d.) /8)TTr}. We could improve the preceding
upper bound by applying the Hanson-Wright inequality
instead of Markov’s inequality. In this case, we would
get logarithmic dependence on the confidence log1/s
instead of linear 1/8. The improvement would be minor
since V7 (and a factor 1/6) already appears inside a loga-
rithm in (12).

Sample Complexity Upper Bounds

Combining the previous bounds, we finally obtain
instance-specific sample complexity upper bounds. For the
least-squares estimator (5),

P(l6.— 6], > 6) <6 (16)

1.75 {
— Trajectory 0.3
1.5 4 — i.i.d. 0.3
e —— Trajectory 0.9
w 1.25 ] — i.i.d.0.9
g 11 — Trajectory 0.99
2 — ii.d. 0.99
S 0.75 1
o
2 05
o
0.25 1
0 2,000 4,000 6,000 8,000 10,000
Time

(a)

if the burn-in time condition (9) is satisfied along with

, ” Lo op dx+du
ZC m <(dx + du)lOgT
detl'r
t+log——=—" 17
8 det F[T/ZI) 17)

where ¢’ is a universal constant. Once again, the right-hand
side of inequality (17) increases at most logarithmically
with the estimation horizon T for nonexplosive systems
(p(A) = 1), and hence will be satisfied for a large enough T.
In fact, the rate defined in (17) is nearly optimal in the sense
that it nearly matches the linear regression rate achieved
when all the samples are drawn independently. See Figure 1 for
an illustration.

To simplify the presentation, assume for now that we
have strict stability p(A) < 1. In this case, the burn-in con-
dition (9) and sample complexity bound (17) can be com-
bined and rewritten as

dx+du

T=¢" max{r, (al,(-l-alu)logT

oK)
62 SNR‘[

where ¢” is another universal constant, and

SNR, = Amin(Lz/2)
” Zw ||0p

captures the signal-to-noise ratio (SNR) of the system. The
larger the SNR, the larger the excitation of the state com-
pared to the magnitude of the noise. If the system has
eigenvalues on the unit circle [p(A) = 1], then the expres-
sion looks similar but with some additional logarithmic
terms; for simplicity, we omit this discussion here.

—0.3

— 0.9

— 0.99
— Baseline

—
w

-
(V)

—_
—_ —_

o
©

Relative Operator Norm Error

o
o

4,000 6,000 8,000 10,000

Time

(b)

0 2,000

FIGURE 1 The essence of the learning-without-mixing phenomenon [5]: dependence does not necessarily impede the rate of conver-
gence. (a) We plot the operator norm error of least-squares identification for p(A.)€{0.3,0,9,0.99}, Amn(A.) =0, and dx=25. Lines
marked “Trajectory” are sampled from a linear dynamical system x:+1 = A.x: + w, whereas lines marked “i.i.d.” are drawn from an inde-
pendent baseline motivated by [2]. These i.i.d. lines correspond to a linear regression model y: = A.x: +w: in which the x; are drawn
i.i.d. from N(0,dlyap(A.,/4)). (b) Even as the correlation length 1/(1— p(A.)) increases, the relative performance of the dynamic model

to the independent baseline oscillates around one.
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Ignoring logarithmic terms, the sample complexity
grows as fastas 1/ €%, as we require more accuracy. Alter-
natively, the identification error decays as fastas O(1/ VT)
with the number of samples T. It also increases linearly
with the dimension of the unknowns dx + du. Intuitively,
matrices A.,B. have di+dxds unknown entries. Every
state measurement has d. entries. Hence, we need at least
dx+dy state samples to match the number of unknowns
in A.,B.. The sample complexity is also inversely propor-
tional to the SNR. Finally, it depends logarithmically on §,
as (heuristically) predicted by the CLT. It is worth men-
tioning that the SNR depends heavily on the controllabil-
ity structure of the system. In particular, under white
noise inputs, the state covariance matrix I'x is actually the
controllability Gramian of the pair (A, [c2B Z/?]). In this
setting, controllability is equivalent to the excitability of
the system. When the noise is isotropic (or nonsingular),
the noise covariance X, has full rank. Then, we can con-
firm that T'1 =X, >0, which implies that the state is
directly excited. It is, thus, sufficient to select T =2 in the
burn-in time condition (9) and sample complexity bound
(17). When the noise is rank deficient, the state can be only
indirectly excited; we can still achieve PE if there exists a
7> 0 such that [z is nonzero. In particular, we can
select [7/2] to be equal to the controllability index of the
system [24], that is, the smallest possible k > 0 such that
I'c > 0. The preceding sample complexity upper bound is
instance specific; that is, it holds for a specific system
(A.,B.,Zv). To obtain class-specific sample complexity
upper bounds for some class ¥, we need to impose
global bounds on the norms of all (A.,B.,Z) € 7 as well
as a global bound on Amx (L), for some 7 > 0; see, for
example, [24].

Confidence Ellipsoids

Sample complexity guarantees are qualitative and data
independent. That is, they provide intuition about how the
number of required samples depends on various control-
theoretic parameters, such as the dimension of the system
and SNR. These guarantees depend directly on the quanti-
ties of the unknown system being estimated—see (9) and
(17)—limiting their practical applicability. Another limita-
tion is that the operator norm le.—6 ||Dp picks up the direc-
tion of the largest error. As a result, a guarantee, as in (16)
and (17), provides confidence balls, which can be conserva-
tive in certain directions of the state space. In practice, it
might be more useful to provide data-dependent confi-
dence ellipsoids. Toward this end, we can still apply the
tools for self-normalized martingales presented in “Self-
Normalized Martingales.” Let V be symmetric positive
definite, and define Vi = V; + V. Using the properties of the
least-squares estimator,

2

l6.-8) 72, | s:v7 2, | ¥vi .

Define the ellipsoid radius to be

det(VD)'? 5%\ c1/a0,-1/2|2
1’(5) = 8” o Hop10g<# 55 )H V%/z VTl/Z ”op'

Invoking (12), we obtain

P(|0.- o V¥ <r©®)=1-8.

(18)

Interestingly, the ellipsoid adapts to the informativity
of the data, as captured by Vr. If some mode of the system
is well excited in V7, the respective parameter error will
be small. With the exception of | Zw”op, all other quanti-
ties can be computed directly from data. In practice, one
could replace [Ze Hop by an upper bound or compute an
empirical covariance from data. Although this quantity
provides sharper confidence ellipsoids, it does not reveal
directly how the identification error depends on the
number of samples; that is, it does not reveal the statisti-
cal rate of estimating 6.. Other data-dependent methods
for establishing confidence ellipsoids can be found in
[22], [26], and [30].

Sample Complexity Lower Bounds

The upper bounds on the sample complexity of the system
identification of the previous section are valid only for
the least-squares estimator (5). One may naturally ask
whether we can do better with a different algorithm;
that is, are the sample requirements of the least-squares
algorithm a fundamental limitation, or are they sub-
optimal? One way to answer these questions is by estab-
lishing minimax lower bounds. The main technical
workhorse underpinning such lower bounds is infor-
mation-theoretic inequalities. As we show next, the least-
squares identification algorithm analyzed in the preceding
is nearly optimal in the case of fully observed systems. To
prove this, it is sufficient to construct system instances
that are difficult to identify for all possible identification
algorithms. By invoking information-theoretic inequali-
ties, we can show that any algorithm requires at least as
many samples as the least-squares algorithm. We estab-
lish lower bounds for systems without exogenous inputs,
but the same results also apply to systems with white
noise exogenous inputs. For simplicity, we focus on the
former case. Since there is no control input to implement
an exploration policy, we denote this setting by 7 = @.
Note that the case of more general exploration policies is
an active front of research and is also discussed later on.
Fix a spectral radius p, and define the class of scaled
orthogonal systems

0,={A. e R™#. A, = pO,070 = I}.

Let Nc=Nc(g,6,0,.A,0) denote the best possible
sample complexity for learning over the class of scaled
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orthogonal systems. In [4], it is shown that for any identifi-
cation algorithm A,

_ [dxtlogl/s
Ne= Q( £?SNRy. )

The result follows from a standard application of infor-
mation-theoretic lower bounds; see “Birgé’s Inequality” for
more details. This shows that the rate 1/&? the dimension
factor dx, and the confidence log1/8 are fundamental,
implying that the least-squares algorithm is nearly optimal.
The preceding result holds for the specific subclass O, of
autonomous scaled orthogonal systems. It is also possible
to obtain stronger instance-specific lower bounds, namely,
lower bounds that hold locally around any fixed system. In
particular, let 6. be an unknown system, and consider a
ball B(6.,3¢) of radius 3¢ around 6.. Let N. = Nc(¢,8, B(6.,
3¢), A, @) denote the minimum number of samples for iden-
tifying the local class B(6.,3¢). In [31], it is shown that for
any identification algorithm A, failure probability 6 € (0,1),
and accuracy ¢ € (0,), it holds true that

dx+log1/5)

Ne= Q( £2SNRy.

Birge’s Inequality
irgé’s inequality is a sharper version of Fano’s inequality, a
classical tool from information theory [S3]. It can be used
to establish lower bounds in multiple testing problems. Before
we state the inequality, recall the definition of Kullback—Leibler
(KL) divergence between two probability distributions (P, Q),

D(QIIP) = Eq(10g 92

where we assume that Q is absolutely continuous with respect
to P and dQ/dP denotes the density of Q with respect to P.
Now, let Py,...,P, be probability distributions over some mea-
surable space (Q,F) such that P;, i=1,...,n are absolutely
continuous with respect to Po. These probability distributions
represent, for instance, different hypotheses in a multiple-
hypothesis testing scenario. Let Eo,...,En€J be disjoint
events. For instance, Pi(E;) might represent the probability of
making a correct guess. Birgé’s inequality states that a neces-
sary condition for the minimum success probability to be lower
bounded as

! (S7)

rglnnP;(Ei)é 1-6= =

i=0,...,

is that the average pairwise KL divergence between P; and Po
satisfies the lower bound

13 D(elPy=h(1-5,5/n)

i=1

(S8)
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The proof is also based on Birgé’s inequality. Terms
capturing the SNR appear in both the upper and lower
bounds. However, there is a gap between the upper and
lower bounds. The former depend on Amin(T'2) for some
small enough 7, while the latter depend on Amin(I'1),
where T is the number of samples collected. Note that we
cannot increase T too much since it affects the burn-in
time condition (9). In the case of stable systems p(A.) <1,
this gap can be closed at the expense of a burn-in time
that depends on the mixing time 1/(1—p(A.)) of the
system [28]. The gap can also be made small, that is,
7 =0(T), in the case of diagonalizable marginally stable
systems with p(A.) =1 [2]. In the case of systems with
white noise control inputs, the same analysis can be
applied. In the case of general exploration policies, the
landscape is more complex since both the policy z and
the identification algorithm A affect the sample com-
plexity. Let N. = Nc(g,8, B(6.,3¢), A, 7) be the local sample
complexity defined as before, where now the policy 7
can also be varied. Following the result of [5], we obtain
the lower bound condition

log1/s >

Ne= Q( £2SNRx.

where h(p,q)=plogp/q+(1-p)log(1—p)/(1-q). The pre-
ceding condition states that making a correct guess with high
probability is possible only if the distributions P4,... P, are suf-
ficiently distinguishable from Po. Note that condition (S7) is
permutation invariant; that is, it is independent of the order-
ing of the probability distributions. Hence, Birgé’s inequality
(S8) should also hold if we swap Po with any P;, j <n. Hence,
Po, ..., Pn should be mutually distinguishable.

SYSTEM IDENTIFICATION

Let 7" ={0o,...,0,} be a class of systems that are 2¢ separat-
ed; that is, |6 — 6;| > 2¢. Let P; be the probability distribution
of the data {(yo, Uo), ..., (¥7, ur)} when the underlying system is
6;. Let 6 be the output of any identification algorithm. Since the
systems are separated, the events E;={|6;— 6| <e} will be
disjoint. If some algorithm performs well with high probability
across all systems, then (S7) holds, which (in turn) implies that
(S8) holds. To obtain the tightest lower bounds possible, we
aim to construct sets of 2e-separated systems that nonethe-
less lead to data distributions with a small KL divergence. In
other words, the separation should not be too large so that the
distributions are as indistinguishable as possible.
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where the exploration policy 7 is chosen to optimize the
SNR term:

Xt

Mt][x

To avoid arbitrarily large exploration inputs, we limit
the control input energy

Nc

1ZE

N &

T
t

uf

SNRi, = max ].

Elul; < of

for some o, > 0. Otherwise, we trivially obtain SNR" = cc.
Finding the optimal exploration policy is not a simple prob-
lem and requires knowledge of the system dynamics. In
[32], it is shown that the preceding lower bound can be
achieved asymptotically (as § — 0) by following an active
exploration policy based on sinusoidal signals.

Summary and Generalizations

In Table 1, we summarize some of the main results for the
sample complexity of identifying fully observed systems.
For compactness, we denote d = dx+dy. Only results for
open-loop nonexplosive systems [p(A.) < 1] are shown. If a
stabilizing feedback gain Ko is somehow known before-
hand, the results can immediately be extended to the case
of closed-loop stable systems [p(A.— B.Ko) < 1] under the
stabilizing feedback law u; = Kox:+ 7:. The case of open-
loop unstable systems with p(A.) > 1 is analyzed in [33]
and [35], where it is shown that under a regularity condition
on the eigenvalues of A., the error of learning explosive

systems decays exponentially quickly with the number of
samples. In [33], it is further shown that the error of learning
systems with all eigenvalues on the unit circle decays at least
as fast as O(1/T), as opposed to the O(1/+T) error we get
for strictly stable systems. The preceding rates agree with
previous asymptotic results [7]. As discussed in the presenta-
tion of the lower bounds, the least-squares algorithm is nearly
optimal in the case of white noise excitation. In the case of
nonexplosive systems p(A.) = 1, there is a gap between the
upper and lower bounds. The gap can be closed in the case
of stable systems p(A.) <1 [28]. This can be achieved by
exploiting the Hanson-Wright inequality (see “The Hanson—
Wright Inequality” for more details) instead of small-ball tech-
niques. However, the downside of using Hanson-Wright is
that the burn-in time depends on the mixing time of the
system 1/ (1 —p(A.)). As the system approaches instability
p(A.) — 1, the finite-sample guarantees degrade rapidly due
to the burn-in time going to infinity. A benefit of small-ball
techniques is that they hold even in the regime p(A.) = 1.

The Excitation Policy

In the presentation of sample complexity upper bounds, we
considered only white noise input signals. Although white
noise input signals can guarantee PE and lead to parameter
recovery, they constitute a suboptimal exploration policy. It
is a passive form of exploration that does not adapt online
to the gathered information. Instead, in [32], an active
exploration policy is employed based on sinusoidal inputs,
leading to sharper sample complexity guarantees. In fact,
in the regime where the failure probability goes to zero,

Sample complexities of fully observed system identification. Define d = dy+ d.. The total number of nonzero elements
is denoted by d.. By snr’, we denote the SNR under the best possible active exploration policy. For [36], we show only the
result for p(A.) <1. The sample complexities are given in terms of M = M T, that is, the total number of samples, where T

is the horizon and M; is the number of trajectories. For single-

use only the big-0 notation to simplify the presentation of the

trajectory data, N = T. All bounds are nonasymptotic, and we
bounds.

Paper Trajectory Stability Actuation Upper Bound Burn-In Time Lower Bound

23] Muliple  Any White noise 0T d£'°§n1r/r 5) TO(d + log 1/5) _

5 Single  pa)<1 Whitenoise O dg'ggjri %) O (rdlogd/é) Q(%ﬁr‘/‘s)
[36] Single Any White noise O(%ﬂ?) O(dlogd/s) —

[6] Single Any Active — — Q( Ieozgslﬁ)

[30] Single p(A) <1 White noise ()( d: ks)gri/d ) O(%) —

[34] Single  p(A)<1 Active o(d Z';’S,Y‘S ) poly( p(A )) (d +log1/5) Q( 1;% :ﬁ >

[37] Single p(A) <1 White noise (D( i sniilig—d/SA ))) O( (1(15_';%:/;4) —

[25] Single  p(A)<1 Any ( 'og 1/ ) 6 (dlogd/d) Q(exp(d)lmi—l/s)
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& — 0, the proposed active exploration policy together with
the least-squares identification algorithm are nearly opti-
mal and achieve the minimax lower bound.

Systems With Sparse Structure

Another interesting problem is sparse system identification,
where there might be an underlying sparse structure in
the matrices (A.,B.). In [34], it is shown that under an
01-regularization penalty and certain mutual incoherence
conditions, the sample complexity of correctly identifying
the nonzero elements of (A.,B.) scales with d3, that is, the
number of nonzero elements squared, instead of the prob-
lem’s dimensions dx + du. Hence, if the nonzero elements are
fewer than the dimension of the problem, we suffer from a
smaller sample complexity. It is an open problem whether
the square exponent of term d3 can be improved. Moreover,
it is an open question whether the results of [34] can be
extended to open-loop nonexplosive systems p(A.) = 1.

Data From Multiple Trajectories

So far, we have focused on single-trajectory data. In prac-
tice, we might have access to data generated by several tra-
jectories. In [2] and [22], learning from multiple independent
trajectories is studied, where Nit = Nuoj T is the total number
of samples, T is the trajectory length, and Ni.; is the number
of trajectories. In [22], many samples are discarded (all but
the last two) to turn system identification into an i.i.d.
regression problem. As a result, there is an O(T) extra
sample overhead. These limitations are addressed by [2],
where single-trajectory and multiple-trajectory learning
are treated in a unified way; the parameter recovery guar-
antees are different and given in expectation, and hence,
we did not include them in Table 1. An interesting conclu-
sion in [2] is that in the “many” trajectories regime [for
example, N = Q(d)], learning is more efficient than in the
“few” trajectories regime [for example, N, = 0(d)]. Hence,
it might be more beneficial to increase the number of trajec-
tories Nu,j rather than the horizon T while keeping the
total number of samples constant.

The Hanson-Wright Inequality

n many situations of interest (for example, when analyzing

Gram matrices), we need to work with quadratic functions
of random variables. The Hanson-Wright inequality [3] is a
standard tool for analyzing the concentration of such quadratic
forms when the underlying random variables are sub-Gaussian.
Let X =(Xj,..., Xn) €R" be a random vector with independent
mean-zero K-sub-Gaussian coordinates satisfying

K22,
EeX<e 2, i=1,...n.

Let MR be a matrix. Then, there exists a universal
constant ¢ such that for every s >0,
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Systems That Are Hard to Learn

All previous results rely on the process noise being full rank
with positive definite covariance X, > 0. In this case, all
modes of the system are directly excited by the process noise,
making learning easier, as the system SNR is always lower
bounded by the condition number of the noise; that is,
SNR; > <H T Hop) / (Amin(Zw)). As a result, in this case, system
identification exhibits sample complexity, which scales poly-
nomially with the system dimension 4. If we take away this
structural assumption and allow degenerate noise, the
sample complexity can increase dramatically. In [24], it is
shown that there exist nontrivial classes of systems for which
the sample complexity scales exponentially with the dimen-
sion d. Such classes include underactuated systems, for exam-
ple, systems with an integrator/network structure. Such
systems are structurally hard to control/excite and, thus, dif-
ficult to identify. Under an additional robust controllability
requirement, it is shown in [24] that the sample complexity of
identifying underactuated systems cannot be worse than
exponential with the dimension 4. In fact, it cannot be worse
than exponential in the so-called controllability index, which
quantifies the degree of the underactuation of a system.

The Noise Model

We can obtain finite-sample guarantees if the process noise
sequence is a martingale difference sequence [36], thus
relaxing the i.i.d. requirement. Still, the methods presented
here are quite fragile to the martingale difference noise
assumption, which essentially amounts to a strong realiz-
ability assumption, implying, in some sense, that the model
class contains the true model. In certain situations with col-
ored noise, it is still possible to reduce the problem to a
white noise problem, allowing us to invoke the self-nor-
malized martingale inequality, for instance, by fitting a
filter of sufficient length [37]. However, in full generality,
sharply dealing with colored noise in the nonasymptotic
regime is very challenging. If one seeks to go beyond sub-
Gaussian tails, the situation becomes even more subtle. In a
heavy-tailed noise model (with, for instance, E| wi' < oo,

P(|X"MX — EX"MX|= K2s) < 26 *™{iiuE i .

Hanson—-Wright has been used as an alternative method
for establishing persistency of excitation in the case of the
identification of fully observed stable systems [28]. Contrary
to small-ball methods, the Hanson—Wright inequality is a two-
sided result, which is a stronger requirement. Hence, it can be
conservative in the case of unstable or marginally stable sys-
tems. The Hanson—Wright inequality has also been utilized for
proving isometry for Hankel matrices when the elements of the
Hankel matrix are independent identically distributed.
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but E||w: | = co for some finite p > 4), the least-squares esti-
mator is still optimal in expectation for most problems (at
least for i.i.d. data [38]). However, it is no longer optimal in
deviation—not even for i.i.d. data—meaning that it does not
uniformly in § attain the optimal log(1/6) failure probabil-
ity [39]. Still, for i.i.d. data, this optimal dependency can be
obtained by an alternative estimator (obtained by minimiz-
ing the so-called Huber loss; see [40, Sec. 6.4]). We do not
know of any results that sharply characterize the failure
probability in heavy-tailed linear system identification.

Partially Observed Systems

We now consider the more general case of partially
observed systems with C.# I and Z, # 0. Partial observ-
ability makes system identification harder, as we do not
have direct access to state measurements. In the case where
we do not know anything about the system, identifying the
“true” state-space parameters is impossible, as the state-
space representation is no longer unique, as the input-
output map from inputs u to measured outputs y remains
the same under similarity transformations. That is, for any
invertible matrix =, the systems

0.=(A.B.,C..Z0,%0)
0.=(Z'A.E,E'B. C.E,E' 2,2, L)

are equivalent from an input-output point of view. Another
source of ambiguity is that the noise model is also nonu-
nique [41]. Consider the system

Xe+1 = A.Xk+ B.uk+ L.ex

Yk = C.Xx+ ex 21

where L. is the steady-state Kalman filter gain

L.=A.8.CI(C.8.CI+%,)™
S.=A.S.AT+ 2, —A.5.C.(C.S.CT+2,)'C.S. AT

The innovation error is defined as
er = yk— C.Xx.

The innovation process is i.i.d. zero-mean Gaussian with
covariance Z.2 C.S.CI+ X, [42]. System (21) is called the
(steady-state) Kalman filter form or innovations form of
system (1). Under the assumption that the system is initial-
ized under its stationary distribution (that is, I'o=S.),
system (1) and its innovation form (21) are statistically equiv-
alent from an input—output perspective in that they generate
outputs with identical statistics. It has been common practice
in the system identification literature [43] to work with the
representation (21) instead of the original system (1). One
reason is that the innovation noise is always output measur-
able, as opposed to the process/measurement noise. Another
reason is that under certain observability conditions, the
closed-loopmap A.—L.C. isstable; thatis, p(A.—L.C.) < 1.
We present techniques that can be applied to open-loop non-
explosive systems that satisfy p(A.) < 1. Again, assume that
the open-loop inputs are white noise zero-mean Gaussian

iid. with Eu;u/ = 021 for some o, > 0. Also, assume that
(A.,C.) is detectable, (A.,Z%/?) is stabilizable, and X, is
invertible so that the innovation form (21) is well-defined
and p(A.—L.C.) < 1. To simplify the analysis, assume that
the Kalman filter starts from its steady state I'o = S., Exo = 0.
The latter is a weak assumption; due to the stability of the
Kalman filter, we converge to the steady state exponentially
fast. Most identification methods follow the prediction error
approach [6] or the subspace method [41]. The prediction
error approach is typically nonconvex and directly searches
over the system parameters 6. by minimizing a prediction
error cost. In the subspace approach, Hankel matrices of the
system are estimated first, based on a convex regression
problem. Then, realization is performed, typically based on
singular value decomposition (SVD). Here, we focus on the
subspace/realization approach. Recent work on the analysis
of the prediction error method can be found in [44].

Regression Step

The first step is to establish a regression between future out-
puts and past inputs and outputs. Let p > 0 be a past horizon.
By unrolling the innovation form (21), at any time step k > 0,
we can express Yk as a function of p past outputs and inputs,

Yk = C.K,Zr+C.(A. — L*C')”fck_p + ek

Gp bias

22)

where Zi is the vector of all the regressors stacked,
Zi=lyi1 wicr - yiop ui-,l’

and % is an extended controllability matrix,
%, =[[B. L.] -+ (A.—L.C)"'[B. L.]].

Equation (22) shows that there is a linear relation
between future outputs and past inputs/outputs, which is
determined by matrix G, = C.K,. We have a linear regres-
sion problem that is similar to the one encountered in the
fully observed case since the innovation process e; is i.i.d.
and the regressors Zi are independent of ex at time k. The
main differences are that 1) there exists a bias error term
and 2) the unknown matrix G, has a special structure. We
can deal with the bias by increasing the past horizon p; the
bias term goes to zero exponentially fast due to the stability
of the Kalman filter. Note that (22) is also utilized by pre-
diction error methods. In the prediction error approach, we
optimize over the original state-space parameters (for
example, A, B, and C), hence preserving the special struc-
ture of G,. Here, following the subspace approach, we do
not optimize over the original system parameters. Instead,
we optimize directly over the higher-dimensional repre-
sentation G, by treating it as an unknown without struc-
ture. This leads to a convex least-squares problem:

. T
Gyr € argming Y. ||y: — GZ:|f. (23)
i=p
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In machine learning, this lifting to higher dimensions is
referred to as improper learning [45]. After some algebraic
manipulations, we can verify that

T -1
-Gp= (Z erZ! )(Z zz?) + bias
t=p

where the bias term includes factors (A. — L.C.)" that decay
exponentially with the past horizon p. The analysis now
proceeds in a similar way as in the case of fully observed
systems. We break the least-squares error into two terms, a
self-normalized term and a term capturing PE:

” GP'T - GV

<]Vt |l Vot

ol

where Srand Vr are analogously defined as

T T
Sp,T = Z efZ;r/Vp,T = Z ZtZ;r

t=p t=p

For the self-normalized term, we exploit the tech-
niques for self-normalized martingales. For the second
term, we need to show PE. One way is to use again the
small-ball techniques discussed in the fully observed case.
An alternative way is establishing isometry for Hankel
matrices (see “Isometry for Hankel Matrices”). Using the
tools listed in the preceding, we can obtain sample com-
plexity upper bounds for recovering the matrix G,. Let
Izx=EZ:Z{ be the covariance of the regressors. For
example, in the case of no inputs B.=0, Tsiamis and
Pappas [37] show that under the least-squares algorithm
defined in the preceding,

P(” GP - Gp,T ”op -

8)55

Isometry for Hankel Matrices
et 70,...,nn-1 be a sequence of independent identically
distributed zero-mean isotropic Gaussian variables in
RY [that is, 7t~ N(0,/4,)], and consider the following Han-
kel matrix:

Mo M

© NN-L-1
Hin=

ne N+t -+ 1IN-1

Such matrices arise in the analysis of system identification
algorithms that use information of the past L steps for predic-
tion. For example, 7: could be the input process u: and/or the
(normalized) innovations e;. A crucial problem is determin-
ing whether the matrices H.n are persistently exciting. One
solution is to exploit the small-ball approach, as reviewed
in “Persistency of Excitation and Small-Ball Bounds.” Here,
we review an alternative way to answer this question, which
leads to a stronger two-sided result [S4], [46]. Fix a failure
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if we select p = Q(logT) and

r
dy10g<p;dy H ZVT“op )

p
>
T 5 Amn(T2)

>
£°SNR,
where c is a universal constant and the SNR is defined as

H Zf-’ ||op

SNRk = Ao T2 T

When we have inputs B. # 0, we can obtain a similar
result by repeating the same arguments as in [37] and replac-
ing dy with dy + du. Once again, we recover a rate of O@1/&?).
Equivalently, the error scales as O(1/vT). The main caveat
is that we need to select p to increase logarithmically with
the horizon T to mitigate the bias term. Ignoring &, the SNR,
and other system-theoretic parameters, the sample complex-
ity upper bound scales with p(dy +du); that is, it depends
linearly on the size of the past horizon p. This upper bound
suggests that there is a tradeoff between reducing the bias
term (a large p) and reducing the sample complexity (a small
p), as also discussed in prior work [10]. This dependence on
the past horizon p arises because we ignore the structure of
Gp and treat it as an unknown matrix. In this case, G, has
p(dy +du)dy unknown entries. Since every measurement y
contributes with dy components, a sample complexity of
O(p(dy + du)) suffices. However, it might be the case that this
sample complexity is suboptimal since the true number of
unknowns in 6. is of the order of d3+ dx(dy +du). It seems
that by lifting the problem to higher dimensions in (23), we
suffer from larger sample complexity.

Realization

Let us introduce the notations Ag.2A.—L.C.
B.=[B. L.]. For this section, assume for simplicity that
system (C ., Ad,.,B.) is minimal; that s, (C.,Aa,.) is observable,

and

probability § <1/2. Then, there exists a universal constant
¢ such that if

N> chqug%
then with a probability of at least 1— 6,

%va <HinHIn =X %/Ldn-

The result is adapted from [46, Th. A.2]. The proof is based
on the Hanson—Wright inequality along with Fourier domain
techniques. Similar results appear in [47] and [48] but require a
slightly larger burn-in time.
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and (Aa,.,B.) is controllable. Under this notation, matrix Gp
contains the Markov parameters C.A4.B. k < p—1 of
system (C ,Aa.B .), allowing for the use of standard real-
ization techniques to extract (C ., Ad,.,B.) from the Markov
parameters. A standard such approach is the Ho-Kalman
realization technique. If we assume that we know the true
Markov parameters G, then we can construct the follow-
ing Hankel matrix:

C.B. C.Aq.B. - C.AL"B

Hy, = C,Ad,.B. C.A%.B. CA” "B
P = .

C.AN.B. C.ANT'B. C. A" 'B.

The Hankel matrix has rank dx since it can be written as
the outer product of a controllability matrix and an observ-
ability matrix:

C.

C Acl

Wk1,p— Ap y: ]

Cp-1-k1

[B Acl

On

To make sure that the Hankel matrix is of rank dy, it is
sufficient to select ki,p —1—k1 = dx. In the setting where
we know the true Markov parameters, a simple SVD suf-
fices to recover the observability and controllability matri-
ces up to a similarity transformation. In particular, letting
the singular decomposition be written as

Hip =[U1 Uz [

o]

T

we can select a balanced realization O, = U 2V?, Cp-1-k
=12Vl Then, from the observability/controllability matri-
ces, it is easy to recover (C., Ad,., B.) up to a similarity
transformation; see, for example, [48]. However, in practice,
we have access only to noisy Markov parameter estimates
Gp, N, obtained, for example, via the least-squares identifica-
tion step described previously. In this case, the correspond-
ing Hankel matrix 7:(k1,,, will also be noisy and no longer
have rank dy; instead, it will, in general, have a higher rank.
In this case, a low-rank approximation step is crucial for
recovering the correct observability and controllability
matrices. Assume that we know the true order dx of the
system. Then, we can perform SVD truncation, that is,
choose the singular vectors corresponding to the dx largest
singular values. If the SVD of the noisy Hankel matrix is

ol 217

then one solution is to keep the dx largest singular values,
that is, select Ok, = U121, Cp-1-k,r = £1/* V1. To capture
the error between the true and estimated observability/

Fip =T U

controllability matrices, we appeal to SVD perturbation
results; more details can be found in [49] and [50, Th. 5.14].
Essentially, these results state that, for some similarity
transformation T, the error | O, — Ok, Hop (similarly for the
controllability matrix) scales with the Markov parameter
error |G, — Gpr Hop as long as a robustness condition is sat-
isfied. Ignoring dependencies on ki, p, the robustness con-
dition is typically of the form

Gy =Gprllyy < O (Hrp)- (24)
That is, the Markov parameter estimation error should be
smaller than the smallest singular value of the true
Hankel matrix Hi, . Such a condition is a fundamental
limitation of the SVD procedure; it guarantees that the dx
singular vectors of the Hankel matrix Hi,, are approxi-
mated continuously, while the extra singular vectors in
7:(:”,,,, which come from the noise and contribute to full
rank, are rejected. While in the asymptotic regime such a
condition is satisfied asymptotically, in the finite-sample
regime, it imposes a high sample complexity, as the
smallest singular value of the Hankel matrix can be very
small in practice. It is an interesting open problem to
look at different realization approaches or model reduc-
tion techniques so that we avoid this restrictive robust-
ness condition.

Open Problem 1: Comparison of

Subspace Algorithms

Most results in the finite-sample regime analyze the
performance of the Ho-Kalman method (or similar
variants) [37], [47], [48], [51]. However, in the subspace
identification literature, this realization approach is
rarely used. Popular subspace identification algorithms
(for example, Multivariable Output Error State Space
[52] and Numerical Algorithms for Subspace State Space
System Identification [41]) premultiply and/or postmul-
tiply the Hankel matrix, with appropriate weighting
matrices, before performing the SVD step; see, for
example, [43, Sec. 3]. Several asymptotic properties of
such algorithmic variations have been studied before
[53]. However, it is an open problem to compare such
algorithms using finite-sample methods. In particular,
under finite samples, a robustness condition like (24)
should be satisfied for the SVD step to be well-behaved.
Different methods lead to different robustness condi-
tions, affecting finite-sample performance. Such robust-
ness conditions did not appear before in asymptotic
analyses, for example, [54], since as the number of sam-
ples goes to infinity, the SVD error decays continuously.

Overview and Limitations
An overview of prior work can be found in Table 2. Up to
now, we have studied the identification of Markov
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parameters of both the deterministic part, that is,
(C., Ag,., B.), and the stochastic part of the system, that is,
(C., A., L.). Prior work has also studied the identification
of exclusively the deterministic part [46], [47], [48], [55],
[56], [57], that is, the Markov parameters of (C., A., B.),
where only past inputs are used as regressors. By using
only inputs, these results hold only for stable systems
p(A.) <1 unless we use multiple trajectories [58]. In [59], it
is shown that the identification of nonexplosive systems
p(A.) =1 is possible if we also use past outputs as regres-
sors and include a prefiltering step in the system identifi-
cation algorithm, that is, learn an autoregressive filter first
before estimating the Markov parameters. The identifica-
tion of the stochastic part [that is, the Markov parameters
of (C., A, L.)] is investigated in [37]. A nonparametric
approach is considered in [17].

The Excitation Policy

Most of the aforementioned works rely on white noise
open-loop excitation to achieve parameter recovery. Closed-
loop identification under finite samples has been analyzed
in [51] and [60], where the closed-loop controller is a linear
dynamic feedback law, potentially driven by white noise
[51]. The problem of experiment design (that is, finding
good excitation policies in the finite-sample regime)
remains quite open. Still, it was studied in the classical
system identification literature using asymptotic tools [6].

The Noise Model

In the case of non-Gaussian noise, the system (1) and its
Kalman form (21) have similar second moments. How-
ever, they are no longer statistically equivalent, and the
innovation process is no longer i.i.d. Gaussian. For this
reason, some of the techniques presented in the preced-
ing might not be applicable. We also point out that in the
case of i.i.d. sub-Gaussian noise, the results of [47], [55],
and [59] still hold but recover only the deterministic part
of the system.

The system identification of partially observed systems.

System Order

The realization procedure that we presented previously
requires the order of the system dx to be known. The iden-
tification of systems under an unknown model order is
studied in [47], [56], and [57]. In [47], an approximate order,
which does not necessarily converge to the true one, is
obtained by truncating the estimated Hankel matrices at a
desired level of accuracy. In [56] and [57], the problem of
learning low-rank Hankel matrices via nuclear norm regu-
larization is studied.

Lower Bounds

Lower bounds have been studied before in the classical lit-
erature [6, Ch. 7]. In the case of a known system order, we
can characterize the best possible parameter estimation
variance among all estimators by invoking the Cramér—
Rao inequality [61], a variant of Van Trees’ inequality that is
studied in the following. One difference from Birgé’s
inequality is that the Cramér—Rao inequality characterizes
the expected error (variance), while Birgé’s inequality char-
acterizes tail probabilities providing information about
the confidence level §. Unlike fully observed systems,
existing lower bounds for partially observed systems do
not have transparent expressions in terms of system—theo—
retic properties, such as the system dimension and con-
trollability Gramians; see, for example, the derivation of
Cramér—Rao bounds in [62]. This is mainly due to the non-
linearity of the input-to-output map with respect to the
state-space parameters. Another issue is the nonunique-
ness of state-space representations.

Open Problems in the Partially Observed Setting

Under the assumption that the model order is known and
under certain conditions on the inputs, the asymptotic
optimality of several algorithms has been established. In
particular, it has been shown that the prediction error
method is equivalent to the maximum-likelihood method
[6, Ch. 9], while some subspace identification algorithms

Paper Trajectory Stability System Part
[49], [52] Single p(A) <1 Deterministic
[63] Single p(A.) =1 Deterministic
[40] Single p(A.) =1 Stochastic
[51] Single p(A.) <A1 Deterministic
[61] Single p(A)< Deterministic
[59] Single p(A.) <1 Deterministic
[55], [64] Single Closed loop Both

[62] Multiple Any Deterministic
[60] Multiple Any Deterministic
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Order dy Actuation Noise

Known Open loop Gaussian
Known Open loop Sub-Gaussian
Known — Gaussian
Unknown Open loop Sub-Gaussian
Unknown Open loop Gaussian
Known Open loop Sub-Gaussian
Known Closed loop Gaussian
Known Open loop Gaussian
Unknown Open loop Gaussian



asymptotically match the maximum-likelihood method
under white noise excitation [53], [63]. Obtaining a finite-
sample analog is an open problem.

Open Problem 2: Optimal Sample Complexity

What is the optimal sample complexity in the case of
partial observability? In the case of a known system
order, can we match the asymptotic performance of
maximum likelihood by a nonasymptotic analysis?
What if the order is unknown? How do system-theoretic
parameters affect complexity?

An open question is whether the optimal sample com-
plexity should depend on the past horizon p. As dis-
cussed in the “Regression Step” section, this might not
be the case since the number of unknowns in 6. is inde-
pendent of the horizon p. Some progress in this regard
has already been made: in [46], it is shown that in the
absence of process noise, the sample complexity depends
only logarithmically on the past horizon p while retain-
ing the 1/ e complexity rate. This is achieved by exploit-
ing repeated entries in Hankel matrices, which are
computed at different scales, that is, for different hori-
zons p. In the case of process noise, the complexity bound
in [46] still scales linearly with p. In [55], the sample com-
plexity is shown to be logarithmic with p at the expense
of a worse 1/&* complexity rate. This is achieved by
adding an (i-regularization penalty on G, in the regres-
sion step. To conclude, another open problem is the iden-
tification of open-loop (explosively) unstable systems,
(p(A.) > 1), in the case of single-trajectory data. While
this problem is resolved in the case of fully observed sys-
tems, (under certain regularity conditions) it is still open
in the case of partial observability.

Open Problem 3

Existing results for partially observable systems rely on
stability p(A.) <1. What, if any, are the necessary con-
ditions for conducting open-loop unstable identification
based on a sing]le trajectory of data?

One of the main technical difficulties in the case of
unstable systems is dealing with the bias term in (22). If the
state is increasing exponentially fast with time k, the bias
term might not decay fast enough with p. In the case of non-
explosive systems, two-step procedures (for example, per-
forming a prefiltering step [59] or estimating components
of the marginally stable subspace first [64]) guarantee
learnability. It is an open question whether a two-step pro-
cedure would work for (explosively) unstable systems.

OFFLINE CONTROL

In the previous section, we studied the system identifica-
tion of unknown systems under a finite number of sam-
ples. Although system identification is a problem of

independent interest, our ultimate goal is to control the
underlying unknown system. In this section, we connect
the previous results with controlling unknown systems
in a model-based framework. We also review some
model-free methods. We focus on offline learning archi-
tectures, where we design the controller once after col-
lecting the data. This setup is very similar to the setting
of episodic reinforcement learning (RL), which has
received renewed interest recently due to its success in
settings such as games [1], [65]. However, most existing
analyses focus on finite state and input (action) spaces.
Since learning methods are becoming increasingly ubiq-
uitous even for complex continuous control tasks [66],
the gap between theory and practice has become consid-
erable. The LOR and the linear quadratic Gaussian (LQG)
problems offer a theoretically tractable path forward to
reason about RL for continuous control tasks. By leverag-
ing the theoretically tractable natures of the LQR and
LQG, we obtain baselines and are able to quantify the
performance of learning algorithms in terms of natural
control-theoretic parameters. Perhaps most importantly,
given the safety-critical nature of many applications [67],
we are able to quantify what makes learning hard and
when it necessarily fails. To make this concrete, suppose
a learner (control engineer) knows that the system has
dynamics of the form

Xi+1 = A.xe+ B+ wy (25)
where, as in the previous section, x:and w: € R% are the
state and process noise, respectively, and u: € R™ is the
control input. The dynamics matrices are A. € R4 and
B. € R**%_ In the learning task, the parameters (A., B.) are
unknown to the learner. All that is known is that
(A., B.) € ©, where O is some subset of parameters, typi-
cally those corresponding to stabilizable systems. In the
offline setting, the learner is given access to N, sampled
trajectories of length T (a total of Nit= NusT samples)
from the system (25) and is tasked to output a policy 7 that
renders the following cost as small as possible:

T-1
V(0; K) = limsup ES |4 3~ (x7 Qui + ] Ruy) 26)
T—oo t=0

where expectation E§ is taken with respect to dynamics
0 = (A, B) under the feedback law u; = Kx;. In this case, it is
of course known that the optimal controller is a constant
state feedback law of the form u;=K(A., B.)x;=K.xy,
where the controller gain K(A, B) is specified in terms of
the solution P=P(A,B) to a discrete-time algebraic
Riccati equation:

P=Q+A'PA—A"PB(B'PB+R) 'B"PA
K=-(B"PB+R)'B'PA.

27)
(28)
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Model-Based Methods

A classical approach to designing the optimal LQR control-
ler for an unknown system (25), which we revisit from a
finite-data perspective, is to perform system identification
followed by a control design step. In RL terminology, this
approach is referred to as a model-based approach because
we explicitly parameterize and learn the transition dynam-
ics, which are then used to compute a policy. In particular,
suppose that we have obtained estimates (A,B) of
6.=(A., B.), and these estimates are guaranteed to be ¢
accurate; that is, max{H A.—-A ‘op, B.—B Hop} < . Such esti-
mates can be acquired and guaranteed to satisfy the desired
accuracy level (with high probability) by leveraging the
results of the discussion in the “Sample Complexity Upper
Bounds” section. Based on the system estimates, we can
either apply CE control or design a robust controller using
the error information &.

Certainty Equivalence

The CE approach is to simply use the estimates (A, B) as if
they were the ground truth and play the controller
K =K(A, B). This setting is analyzed in Mania et al. [68,
Th. 2]. They demonstrate that the controller K=K(A,B)
enjoys the suboptimality guarantee

V(6.; K) = V(6.; K.) < polys.£? (29)

where poly,. denotes a quantity polynomial in system quan-
tities, such as || P. Hop, and the spectral radius of the optimal
closed-loop dynamics A.+ B.K.—one can view the term
polys. as capturing the fact that systems with well-conditioned
closed-loop behavior [a small || .||, p(A.+ +B.K.)] are
easier to learn to control. Similar guarantees can also be pro-
vided for the partially observed LQG setting, in which the
entire linear dynamic controller is estimated from data

Riccati Equation Perturbation Theory

o provide a guarantee of the form (29) for the certainty-

equivalent approach, we need to guarantee that small
errors in the estimates max{||A. 72\||Dp, |B. fBHop}Se
translate to small errors in Riccati equation quantities
(27)—(28). Key to achieving such guarantees is an operator-
theoretic proof strategy, due to [S5]. Roughly, the idea is to
construct a map @, of which the error P. — P is the unique
fixed point over a set of elements with a small norm. A more
detailed account can be found in [68, Sec. 4.1]. Also note
that [36, Sec. 3] has recently developed an alternative or-
dinary differential equation approach, which gives tighter
bounds in terms of system-theoretic parameters.
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[68, Th. 3]. It is important to recognize, however, that guar-
antee (29) comes with the caveat that the accuracy & needs to
be small enough so that the controller K can be shown to be
stabilizing for the instance 6.= (A., B.). Mania et al. [68]
provide sufficient conditions on the accuracy ¢ in terms of
system parameters by leveraging Riccati equation perturba-
tion theory (see “Riccati Equation Perturbation Theory”).
The dependence on ¢ in inequality (29) is optimal, and it can
be shown that for almost every experiment consisting of input
state data {(xo, o), ..., (Nw-1, XNw)}, the least-squares esti-
mator described previously (in combination with CE con-
trol) is optimal [69, Th. 2.1] in that up to universal constants,
there exists no better strategy. In fact, it is later shown that
the CE approach is also the best-known strategy in the more
challenging online control setting. Combining guarantee
(29) with the sample complexity upper bounds of the previ-
ous section, we can obtain end-to-end guarantees for the
offline learning of the optimal LQR controller. In particular,
we obtain that the suboptimality gap decreases at least as
fast as O(1/Nwi). However, as stated earlier, this result
assumes that the number of samples is large enough that the
CE controller K is stabilizing for the original system, which
may require a large burn-in time.

Robust Control Methods
While the CE controller is optimal when the model error
is very small, there are nevertheless many cases of interest
where only a coarse model is available and where the
model error is too large to guarantee that the CE controller
is stabilizing [22]. In such settings, an alternative is to
design a robust controller that stabilizes all possible sys-
tems consistent with the model estimates and error bounds.
In [70], the problem of robust control from coarse system
identification was studied in the nonasymptotic regime. In
[22], a robust control scheme based on system-level synthe-
sis (SLS) [71] is introduced that uses finite-sample model
error information. The aforementioned robust control
designs are safer than the CE controller in general. How-
ever, the cost of this robustness is that the resulting control-
ler suboptimality guarantees are worse. Contrary to (29),
the suboptimality guarantees are of the order of
V(6.; K) = V(6.; K.) < polys.e (30)
where K is the robust controller. It is unknown whether
this suboptimality is inherent or an artifact of the analysis.
SLS controllers can also be deployed in the case of state/
input constraints [72] as well as partially observed systems
[73]. An alternative input-output parameterization frame-
work was adapted in [74] to deal with uncertain partially
observed systems.

Model-Free Methods
Model-free methods, in which (essentially) no structural infor-
mation about the problem is used to derive a learning-based
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policy, are very popular in the RL literature. The most basic
class of such methods are policy gradient methods, which
we discuss next in the context of the LOR problem.

Policy Gradient Methods

Policy gradient methods work exactly as their name adver-
tises: they run (stochastic) gradient descent on a controller
parameterization with respect to the cost (26). To make this
concrete, let us (for simplicity) first discuss the state feed-
back setting in which C. =14 and v;=0. In light of the
form (27)—(28) of the optimal policy, it appears reasonable to
parameterize the cost (26) by linear controllers of the form
u; = Kx; and run our descent steps on matrices K € Rewxex,

Do Exact Gradients Converge?

Assume for the moment that we have oracle access to exact
gradients, and we are able to run (nonstochastic) gradient
descent on the cost function (26):

K]'+1 = K] - VKVT(G/ K) |K=K;'

It is not obvious that such an algorithm will work, as
even in this simplified setting, there are two potential
obstacles to convergence: 1) the cost function (26) is non-
convex in K, and 2) the cost function (26) is not globally
smooth—in fact, it is not even finite for those K that do not
stabilize the system (25). Thankfully, the LQR objective
(26) satisfies “weaker versions” of convexity and smooth-
ness, which are entirely sufficient (see “Linear Quadratic
Regulator, Polyak-tLojasiewicz, and Approximate Smooth-
ness”). These weaker conditions were first established by
Fazel et al. [75], who showed that if initialized with a sta-
bilizing controller Ko, after only O(log1/e) iterations,

(nonstochastic) gradient descent outputs a controller
K satisfying

V(o, K) - min V(,K) <e. (31)

It should be noted that the authors of [75] consider a slightly
different cost function than the cost considered here. Namely,
they consider the infinite-horizon case with w; = 0, and only
the initial condition xo is allowed to be random. However, the
infinite-horizon and ergodic average cost functions are almost
identical (as functions of K), and it is straightforward to verify
that the convergence guarantee mentioned in the preceding
remains true with only minor modifications to problem-spe-
cific constants when applied to the ergodic average cost (26).
Having established that the exact gradient method converges,
Fazel et al. [75] also showed that a method based on zero-order
gradient estimates also converges. However, their results apply
only to the noiseless setting with a random initial condition.
By contrast, [76] analyzes a noisy finite-horizon setting and
shows that such methods still provably converge. Note that the
assumption of an initial stabilizing controller mentioned in the
preceding can be removed with a more sophisticated gradient
strategy [77]. We refer the reader to the recent survey [78] for a
more comprehensive overview of policy gradient methods.

Fundamental Limits and Model Based Versus Model Free

Given the optimality of the CE controller in the offline LOR
setting, it is natural to wonder whether similar guarantees are
achievable by model-free methods based on policy gradients.
To this end, Tu and Recht [79] study a simplified version of
LOR (26) in which R =0 and the optimal solution is of the
form K.=-B!A.. In this simplified scenario, they compute
asymptotically exact expressions for the risk of CE and a sto-
chastic policy gradient method (REINFORCE) and show that

Linear Quadratic Regulator, Polyak-tojasiewicz, and Approximate Smoothness

hile the linear quadratic regulator (LQR) objective is not

convex, the objective (26) satisfies the so-called Polyak—
tojasiewicz (PL) condition. Namely, Fazel et al. [75, Lemma 3]
show that as long as the tuple (A,vZw) is controllable, the
following PL condition holds:

V(e,K)— min V(6,K) < Al VkV(0,K) |2 (S9)

for some problem-specific constant A > 0. PL conditions, such
as inequality (S9), are known to be sufficient alternatives to
(strong) convexity in the optimization literature [S6], [S7]. In
particular, condition (S9) enforces that any stationary point is
a global minimizer, as is the case for convex functions. An
alternative perspective on the condition (S9) is offered in [S8],
in which it is shown to be a consequence of the existence of
a convex reparameterization for the LQR objective. Similarly,

even though the objective (26) is not globally smooth, it is suf-
ficiently regular in that

V(6,K)—V(6,K.)=(VkV(6,K),K — K.Sr + O(| K — K.|?)

in a neighborhood of the optimal policy K.. In combination,
these properties can be used to verify that if gradient descent
is initialized with a stabilizing controller, its updates remain sta-
ble and converge to the global optimum at the rate (31).
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that there is a polynomial gap in the problem dimension in
their respective sample complexities (with CE outperforming
REINFORCE). The fundamental limits of policy gradient
methods are further investigated and related to various sys-
tem-theoretic quantities in [80]. It is still an open problem to
explore whether the result of Tu and Recht [79] can be extended
to more general systems/gradient-based methods.

ONLINE CONTROL

Having discussed episodic RL tasks through the lens of control,
we now turn our attention to the more technically challenging
setting of online adaptive control. We rely on the notion of regret
to quantify the performance of an online algorithm. Just as in
offline control, suppose the system has dynamics are of the form

Xt+1 = A.xt+ Bour + wy

Y= C.xi+ vy (33)

where x;, w; € R™, u; € R™, y1, v: € RY, and A. € R**¥ B. €
Ré*d and C. e R However, in contrast to the offline
control setting, the learner now interacts iteratively with only
a single trajectory (Nuaj=1,T = Niot) from the system (33).
The parameters of (A., B., C.) are, as before, unknown to the
learner. For simplicity, assume that {w:} and {v:} are mutually
independent i.i.d. sequences of mean-zero sub-Gaussian
random variables, with covariance matrices X, and X,
respectively. Most of the current literature focuses on the
LOR setting, where C =14 and v:=0. Relatively less is
known about regret minimization for the partially observed
setting (in which case, the noise sequences are Gaussian). In
either setting, the goal in the adaptive LQR and LQG prob-
lems is to regulate the system (33) by using a policy 7z so as to
render the following cost functional as small as possible:

T-1
V#(0) 2 E§[x7Qrxr+ X, x{ Qi+ uf Ru:
t=0

34

where E§ stands for expectation with respect to dynamics
6= (A, B,C) under policy 7 and (Q, Qr, R) are positive
definite weighting matrices. The difficulty of the task arises
from the fact that the parameter 6 is assumed to be a priori
unknown, and hence, the optimal cost V7(6.) = inf,< V7(6)
cannot be realized. Instead, one seeks to design a policy
(algorithm) 7 with small regret.

( )
Regret
The regret of an algorithm measures the cumulative
suboptimality accrued over the entire time horizon as
compared to the optimal policy:

T-1
7(0) = xt Qrxr+ . xf Qxi+uf Rur— Vir(6)  (35)

t=0
where the law of {x:, u:}i<o is specified by (6, 7). Alter-
natively, one may be interested in the expected regret:
ER7(6) = V1(6) — V1(6). (36)
= J
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Note that the regret is a random quantity, whereas the
expected regret is not; however, in either case, the interpre-
tation is that one seeks to design a policy that has small
cumulative suboptimality as compared to the optimal
policy 7.(x) = K.x, which can be computed via Riccati
equations (38)—(39). Abstracting slightly, the regret of an
algorithm can be thought of as the rate of convergence of an
adaptive algorithm [see (40)]. Moreover, it quantifies the
dual nature of control [81], [82] (in RL terminology, the
exploration—exploitation tradeoff). We see in the sequel
that for an algorithm to have low regret, it necessarily must
generate sufficiently rich data. At a high level, by relating
(35) [or (36)] to quantities of interest (such as the time hori-
zon T, dimensional factors, and system-theoretic quantities),
we gain an understanding of the statistical properties of
adaptation and under which circumstances adaptation—if
only in an idealized environment—is easy or hard. Also
note that in the formulation (35)-(36), we compete with a
policy that has good average case performance (LQR) but
does not necessarily take into account robust or stability
margins. While certainly important, in this survey, we do
not cover robustness aspects of adaptive methods but,
rather, emphasize their statistical analysis.

State Feedback Systems

For state feedback systems (C.= I, v:=0), it has been
shown by Simchowitz and Foster [36] that certainty equiva-
lence with naive exploration (additive Gaussian noise injected
into the control input) attains, with probability 1 —§,

RE(6.) < coys y/dxd’Tlog (1/5)

for a system-dependent constant csys > 0 and provided that
T is sufficiently large (polynomial in dimension and sys-
tem-dependent quantities). Their result refined an earlier
result of [68] and essentially settled the question of what
the optimal dependence on system dimensions and the
time horizon is. A recent result due to Jedra and Proutiere
[83] also shows that, up to logarithmic factors, the same rate
can be attained in expectation ERF(6.) = O(vdxd3T). Sim-
chowitz and Foster [36] also provide a matching lower
bound with supecse. s ERF(6) = Q(vdxdiT ). However, char-
acterizing the optimal dependence on the system parame-
ters (A., B.) is still open. For instance, there is a polynomial
gap between the best-known upper bounds [36] and the
best-known lower bounds [84] in regard to the dependence
on P.=P(A., B.) [recall 27)]. A summary of the state of the
art for both state feedback and partially observed systems
is given in Table 3.

Certainty Equivalence

The key algorithmic idea to solve the regret minimization
problem for the LQR is again CE. The idea dates back to the
late 1950s [81], [82], [91] and was first analyzed in the con-
text of adaptive control of linear models by Astrém and
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Wittenmark [92], in 1973. Initially, the emphasis was solely
on asymptotic average cost optimality, corresponding to
sublinear regret, R7 = o(T), in our formulation. Regret min-
imization was introduced to the adaptive control literature
roughly a decade later by Lai [93]. Online CE LOQR control
takes continuously updated parameter estimates (A,B,C) of
(A.,B.,C.) as inputs and then solves the dynamic program-
ming problem for these estimates as if they were the ground
truth. For the LQR, the dynamic programming solution has
a closed-form solution in terms of the (discrete algebraic)
Riccati recursion (38)—(39), which can be solved efficiently by
numerical schemes. The resulting controller is then used to
regulate the system. To see why the CE strategy is successful
in the LOR, we note the following elementary relation
between the expected regret and the Riccati recursion [84]:

ER7(6) = Tf EZ [ (i — Kix)) "(B"Pi+1B + R) (us — Kixi) ] (37)
t=0

where 6 = (A, B), P = P,(0) and K: = K;(6) are given by

Ptf] = Q +ATPrA _ATPfB(BTP[B + R)ilBTPtA
Ki=—(B'PB+R)'B'PA

(38)
39)

and where the terminal condition is Pr = Qr. We further
denote the steady-state versions of the recursion (38)—(39)
by P(A, B) and K(A, B). It will be convenient to denote
P.2P(A. B.) and K.=K(A., B.). Equation (37) follows
from the “completing-the-square” proof of LOR optimality;
see [94, Th. 11.2]. Crucially, for naive exploration policies of
the form 7 :u, = Kixi + n: (with {7:} a mean-zero sequence
of exploratory noise, independent of all other randomness),
equation (37) becomes

T-1

ER7(6) = E§ > ni
t=0

T A A

+ > Ei[x{ (Ki — K)(B"Pi+1B + R)(K: — Ki) x:]. (40)

t=0

Equation (40) shows that the expected regret of a CE
policy is a quadratic form in the estimation error Ki—K..
Moreover, by a stability argument, it suffices to use the
steady-state versions of the Riccati recursion (38)—(39). This
suggests that the CE strategy with K=K (A, B) can be
shown to be successful, provided that one shows that the

1) estimates (A,B) are consistent estimators of the true

dynamics

2) map (A, B) — Ki(A, B) is sufficiently smooth in the

parameters (A, B)

3) policy 7 is stabilizing in that the state process x: does

not become too large.

Analogous reasoning is applicable in the high-probabil-
ity regret setting, but it becomes a little more involved (see
[36, Lemma 5.2]). Before we proceed, one remark is in order:
(40) suggests that ER7(6) = O(logT) should be possible.

Namely, we noted in the finite-sample analysis of system
identification that identification errors generally decline as
O(1/+'t), where t is the number of samples collected so far.
Since the suboptimality bound (29) is quadratic in the iden-
tification error, the square errors decline as O(1/t), and the
regret induced will scale as the sum of 1/t,¢t=0,...,T—1,
which is of order logT. We soon ask, Why do we need
exploration? and see that logarithmic regret is not possible
in general, for reasons of closed-loop identifiability.

Why Do We Need Exploration?

In the sketch of the CE approach presented in the preced-
ing, we mentioned that one typically requires a perturba-
tion 7 of the input u:;. The most common exploration
strategy, known as e-greedy exploration, uses simple addi-
tive perturbations to the control policy, yielding inputs of
the form u: = K:x; + 1, as previously. More intricate explo-
ration strategies are possible, as described in “Optimism
and Thompson Sampling.” To understand why such per-
turbations are necessary, consider again the least-squares
algorithm (4). Recall that the error of the estimator
6; = (As, B) satisfies the following equation:

@1

0-0.=(Zwill ) [l ””)_l

A summary of the results: regret minimization in
adaptive control (the state of the art is in blue).

Paper Setting Method Upper Bound Lower Bound

[22] SF:(A,B)  Optimism O(+/T) but
unknown intractable

[93] SF: (A, B) CE O (1%
unknown

[94] CE

[72] SF: (A, B) CE OWT)
unknown

[95] Optimism

[39] SF:(A,B) CE OWdxd2T) Q(Vdxd?T)
unknown

[96] SF: A CE O(logT)
unknown
b Scalar CE QWT)
unknown

[97] PO: (A, B, C) Gradient O(+/T)
unknown

[92] SF: (A, B) Q(VdxdiT)
unknown
PO: (A, B, C) Q(/T)
unknown

[98] SF:(A,B) CE O(exp (k) of /1ot
unknown X Y dxdiT) ( dx )

SF: state feedback; PO: partially observed.
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provided that the matrix inverse on the right-hand side of
(41) exists. As mentioned in the preceding, as long as the
covariates do not grow more than polynomially with the
time horizon, it can be shown, using the theory of self-nor-
malized martingales, that the rate of convergence of 6s— 0.
is dictated by the smallest eigenvalue of the covariates matrix

42)

- s—1
” és_e. ”op - O[A;}m( (Z[XIf

i=olht

Suppose, for the moment, u: = K.x; in (42). In this case,
the matrix

E[zi][xf uI]xg[ﬁf]mI[mx K] 43)

is nearly singular. To see this, note that [Is, K!]" is a tall
matrix—the outer product of tall matrices is singular. Thus,
the error (42) diverges if the policy is too close to the opti-
mal policy K.; that is, the true parameters A. and B. are
not identifiable under the optimal closed-loop policy K.. In

Optimism and Thompson Sampling

lternative exploration strategies include optimism and

Thompson sampling. Indeed, the first complete treat-
ment of regret minimization in the linear quadratic regulator,
due to Abbasi-Yadkori and Szepesvari [21], relies on the
principle of optimism in the face of uncertainty (OFU). Just
as in the certainty-equivalent (CE) approach discussed in
the main text, OFU is based on constructing parameter es-
timates (4, B). However, OFU also maintains a (tuned)
confidence interval for these estimates. The adaptive con-
trol law is then obtained by selecting the most optimistic
parameter and CE control law—those resulting in the low-
est estimated cost—in this confidence interval. The original
algorithm of [27] was not computationally tractable, but this
was later remedied by [S9]. A related method, Thompson
sampling, is studied in [S10] and [S11]. Even though these
strategies, in principle, are more sophisticated, to date, the
tightest bounds have been proved for the simple input per-
turbation approach described in the main text [36].
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fact, this lack of identifiability is true under any policy of
the form u; = Kx;. Alternatively, the need for exploration can
be seen by noting that for every perturbation A € Ry
and (A(A), B(A)) oftheform A(A)=A.—sAK., B(A)=B +sA
(s€R), the closed-loop systems A.+B.K. and
A(A)+B(A)K. are identical: A.+B.K.=A(A)+B(A)K.
for all such A,s. Thus, from observing trajectories gener-
ated by the two systems

Xev1 = (A.+ B.K.)x¢ + we
Xt+1 = (A(A) + B(A)K.)x¢ + w;

it is impossible to distinguish between them. The reason-
ing in the preceding indicates that to obtain estimates that
converge sufficiently quickly to the true parameters
(A., B.), exciting inputs that lead to exploration away from
the optimal policy K. are necessary.

Do We Actually Need to Identify the True Parameters (A., B.)?
The answer to this question is in the affirmative. To see
this, we recall from [36, Lemma 2.1] that

a _
1 K(A.=sAK, B.+54) l—o

=—(BIP.B.+R)"'ATP.(A. + B.K.). (44)

As long as (A.+ B.K.) in the matrix on the right-hand
side of (44) is nonzero, this implies that there exists a con-
fusing parameter variation (which is not closed-loop dis-
tinguishable) that has a different optimal policy. Hence,
one necessarily must identify the true parameters A. and
B, in the adaptive control problem.

s N
A Historical Tangent on Identifiability

Closed-loop identifiability issues are well known in the
system identification literature [95], [96], [97]. Indeed, in
the LOR setting, Polderman [97] gives an elegant geo-
metric argument showing that the true parameters need
to be identified. It is also interesting to note that, pre-
cisely because the minimum variance controller
(Q=1 R =0) is closed-loop identifiable [95] (in contrast
to the more general LQR controller), logarithmic regret
can be achieved in this setting [93]. Reiterating the point
in the preceding: the reason for the necessity of the
“exploratory signals” 7: in (40) is precisely a lack of
kclosed—loop identifiability.

J

Returning to the estimation guarantee (42), note that an
ii.d. sequence 7: of rescaled isotropic noise of magnitude
(standard deviation) ¢ is sufficient to guarantee parame-
ter recovery at the rate ||6; — 6. |, = O(t*7"/?). In this case,
smoothness (combined with a naive Taylor expansion)
suggests that || K (A, Bi) — K. ”op = O(t*""/?). Balancing the
two terms in (40) demonstrates that « =1/4 leads to
Rr = O(/T), which is optimal. While the reasoning in the
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preceding about the necessity of the perturbations #: is
entirely heuristic, it can be made formal and will be dis-
cussed further in the following section.

Regret Lower Bounds

We now argue that the scaling Rf = ©(VdxdyT) is optimal
for state feedback systems by finding matching lower
bounds. The modern approach to lower bounds, or funda-
mental performance limits, for sequential decision-making
problems seeks to characterize local minimax lower
bounds. Such bounds quantify statements of the form
“there exists no algorithm that uniformly outperforms a
certain fundamental limit across a small (local) neighbor-
hood of problem parameters.” For the regret minimization
problem, such lower bounds typically take the form

sup ER7(6) =f(6., ¢ T)

0 B(6.,€)

(45)

for some £ > 0, some function f, and every (causal) policy 7.
The lower bound (45) states that the worst-case expected
regret over a neighborhood of the true parameter is lower
bounded by some function of the instance parameter 6. and
the horizon T. The appearance of supees. in inequality
(45) is not restrictive—while such lower bounds are “worst-
case,” one can typically allow for & — 0. In other words,
such lower bounds are applicable to all algorithms that are,
in some sense, robust to infinitesimal perturbations in the
model parameter 6., a rather mild criterion. Put differently,
a lower bound of the form (45) for vanishing & — 0 states
that there exists no algorithm that uniformly outperforms
the lower bound in an infinitesimal neighborhood.

Regret Lower Bounds via Reduction

to Bayesian Estimation

To arrive at a local minimax lower bound (45), suppose, for
simplicity, that QT = P so that (37) becomes

sup ER7(6)

0EB(6.2)

Tf EZ[(u:— K(©)x:) " (BT (6)P(6) B(6) + R) (u: — K(6) x:)]
t=0

T-1
> sup . Ealui—K@©)xlf

0€B(6.,6)t=0

(46)

where A.=mingese. ) Amin (BT (8) P () B(6)+ R)= Amin(R) >0.
The next step is crucial: we relax the supremum in inequal-
ity (46) by a introducing a prior A over 6 € B(6., ¢). The
exact choice of A is not particularly interesting, and its
influence on the final bound can be made to vanish. By
weak duality, we have for any such A that

T-1
sup ER%(6)s = 2;) EonES | ui — K(0) x:|f. 47)
t=

0EB(6.2)

The key insight is now that the quantity inf, Eos
z 2 . . ..
E§|ur—K(6)x:[, is simply the minimum mean-square

error for estimating the random variable K(6)x:, where 6 is
drawn according to the prior distribution A. Although it does
require rather a few intermediate steps [84, Th. 4.1], one can,
in principle, lower bound the right-hand side of inequality
(47) by using estimation-theoretic lower bounds, such as
the Bayesian Cramér-Rao inequality [61], namely, Van
Trees’ inequality The leading term in such lower bounds is
the inverse of the Fisher information:

(48)

10 =1 % [+l w)e3 e].

Heuristically, as &€ — 0, for two problem-dependent con-
stants c(0), ¢’ (6),

sup ERF(6) = T X c(6.) Amin(E5. I,(6.) + ' (6.)) .

0 B(6-,¢)

49)

The reason the constant c(6.) is nonzero is a conse-
quence of the derivative calculation (44). This expression
concludes that the Jacobian terms discussed in “Van Trees’
Inequality and Fisher Information” are invertible. Further,
it is instructive to note that the expression inside the condi-
tional expectation in (48) is proportional to the leading
term in the estimation error (41) related to the recovery of
the parameter 6 = (A, B). As argued in the preceding,

Van Trees’ Inequality and
Fisher Information
an Trees’ inequality is a mean-square-error lower bound for
Bayesian estimation problems. Suppose the learner seeks
to estimate a smooth function y (6) of a parameter 6. The learn-
er is given access to a sample Z, which is drawn conditionally
from a density p(z|6) and has access to a prior A(6). To state
Van Trees’ inequality, define the Fisher information as

1,(0) = [ [Vologp(z|6)][Velogp(z|6)] p(z|6)dz
and the prior information as
J(A)éf[VelogA(O)][VelOgA(Q)]Tﬂ,(G)dG.

Under a few relatively mild regularity conditions, Van
Trees’ inequality states that any estimate using Z satisfies
the lower bound

E[(—y(0))(¥—y (6)) 1 = EVey (B)[ET,(6) + I(A)] "E[Vey (6)]"

where E denotes expectation with respect to p(y, 6) = p(y |6)

A(0). For these purposes, note that the Fisher informa-

tion I,(0) for Z = {x¢, u:}=¢, with Xer1 = Ax¢ + Bu¢ +w; and
6 =vec(A,B), is equal to

Xt

I,(6)=E " 0.

[X,T uf]) ® Ty
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following (43), the optimal policy u: = Kx; renders the matrix
(48) singular, and so one needs to deviate from this policy
to consistently estimate the parameter 6 = (A, B). In fact, it
can be shown that the expected regret is an upper bound
for the Fisher information (48):

Amin (E5T,(6)) < c"(6) ER%(6) (50)

for a third problem-dependent constant c'(6); see [84,
Lemma 3.6]. This offers a slight change of perspective: the
expected regret (36) acts as a constraint on the set of possi-
ble experiment designs available to the learner. This idea
has also been explored from the perspective of regret upper
bounds in [98]. Balancing the upper and lower bounds on
the Fisher information in terms of the regret, as in the heu-
ristic inequalities (49)—(50), yields that the optimal scaling
must be VT. In particular, any policy attaining expected
regret on the order of magnitude OWT) generates a data-
set in which the smallest eigenvalue of the Fisher information
is O(v'T). Hence, identification of the parameter 6. = (A., B.)
can occur no faster than at the rate O(1/vT) for a regret-
optimal policy, by which we deduce that the optimal rate is
Q(/T). To obtain the correct dimensional dependence in
the lower bound Q(vdxdiT), this argument needs to be
slightly refined. Namely, we note that it, in fact, is not
just the smallest eigenvalue of I,(0) that is zero for laws
of the form u; = Kx; but all the smallest dxd,-many eigen-
values. To see this, note that the entire linear manifold
{(A,B): A+ BK.=A.+B.K.} corresponds to parameters
lacking PE in a closed loop. As mentioned in the preceding,
the optimal dimensional scaling of regret for feedback sys-
tems has been settled by [36]. However, there is currently a
gap in our understanding of the best possible scaling of the
regret in terms of key system-theoretic quantities. In partic-
ular, tight bounds for the scaling in terms of the solution P.
to the steady-state Riccati equation are unavailable; the best
known upper bound is due to [36, Th. 2] and is of order [ P. Hi;,
whereas the best known lower bound is of order o min(P.) [84,
Corollaries 4.2 and 4.3]. Note that ascertaining the exact
optimal dependence of the regret on P. and other system-
theoretic quantities in the LOR remains an open problem.

Quantity P, Can Be Exponential in the Dimension

We saw in the preceding that if one regards system-theoretic
parameters as “dimension-less,” the optimal dimensional
dependency for the state feedback regret minimization sce-
nario is polynomial in dx and dy. We now see that these sys-
tem-theoretic quantities can be rather significant. To this end,
consider the following system, which consists of two indepen-
dent subsystems:

oo

1)

o O
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The first subsystem (A1, B1), corresponding to the top and
leftmost part of the arrays in (51), is just a simple memory-
less system. The second subsystem (A, By) is an integrator
of order dx — 1. The system (51) is decoupled but is very sen-
sitive to misspecification in the coupling, due to the integra-
tor component’s potential for error amplification. Moreover,
the solution P.(As, By) is on the order 2% [90, Lemma 9].
Using this, one can construct a local minimax regret lower
bound for the instance (A, B) [system (51)] with scaling:

sup ER}(6) = Q(2*VT).

0€B((A,B),2)

A more general statement is given in [90, Th. 3]. While
the particular system (51) has exponential complexity in
the state dimension dy, it establishes a more general phe-
nomenon: the controllability index k—the number of steps
it takes to reset a noise-free system to the origin—can be
used to characterize the local minimax regret, and this
dependence is exponential (see also Table 3). The preceding
discussion leads to two conclusions:

1) Learning to control can be hard; exponential com-
plexity in the dimension can arise, for example, as
simply as integrators.

2) To appreciate this hardness, we need to understand
the role of control-theoretic quantities, such as P..

Partially Observed Systems

While our current understanding of the state feedback set-
ting is relatively complete, less is known when the learner
has access only to a measured output and not the actual
system state. In the state feedback setting, we know that the
correct scaling with time is YT, that the dimensional depen-
denceis vdxd? , and that the key system-theoretic quantity is
P.. In contrast, in the partially observed setting, we cur-
rently know only that the correct scaling with the time hori-
zonis VT. Determining the correct instance-specific scaling,
and which quantities are key to this, is an open problem.
Moreover, no current approach can handle the general LQG
cost structure (34) but instead applies to the criterion

- T-1
VE(6) = E5| Y. yi Qyi + uf Ruyl.
t=0

With these caveats in mind, we now sketch an elegant
approach due to [89] and based on the classical Youla
parameterization [99], [100], leading to OWT) regret for
partially observed systems.

Disturbance Feedback Control
Unrolling the dynamics (33), it is straightforward to verify that

t—1 t—1
yw=e+y C.A Tw+ > C.AT'B.us

s=0 s=0

52)

for some error signal e; decaying exponentially fast to zero
for stable systems. The approach as sketched here requires
p(A.) <1 but can be extended to open-loop unstable
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systems [89, Appendix C]. The representation (52) suggests
that there are two separate components to the input-output
dynamics. The first component,

t—1
yr=e+ > C. A 1w,

s=0

(53)

is referred to as “nature’s y” and is a counterfactual object
representing the evolution of the output in the absence of
controller inputs. The second component is simply the dis-
crete convolution of the inputs uo:-1 with the system
Markov parameters G¥'~', where G.(s) = C.AB.. Hence,
Y=y + G s ugy 1. With these preliminaries established,
for a sequence of matrices (M=) [89], define distur-
bance response controllers (DRCs) of order m as controllers
of the form

m=1
ur= ), Moy (54)
5=0

Notice that since y/* =y — Z{Z0C. A" B.u,, these are
admissible causal controllers by construction—had the
dynamics (A., B.,C.) been known, we would have been
able to execute controllers of the form (54). It can be shown
that controllers of the form (54) can approximate linear
dynamic controllers, such as the separation principle solu-
tion to the LQG (a Kalman filter with an LQR controller).

Regret Bounds for Partially Observed Systems

The following algorithm combines the convex Youla-like
parameterization (54) with modern online convex optimi-
zation [101]. In particular, Simchowitz et al. [89] propose an
algorithm in which they

1) inject exploratory noise for a period of length propor-

tional to vT

2) use this dataset to estimate the Markov parameters M

3) for the remainder of the horizon, compute estimates of

nature’s y (53) using the estimated Markov parameters

4) use the estimated nature’s y to run online (projected)

gradient descent on the parameters M; of the distur-
bance feedback controller.

Simchowitz et al. [89] show that for a properly tuned
order m of DRCs, the approach outlined in the preceding
yields OWT) regret. While, in this setting, there is no gen-
eral lower bound to date, the authors of [84] have shown
that Q(+/T) regret is unavoidable in the worst case by con-
sidering instances with a large input dimension.

Logarithmic Regret?

It is also interesting to note that for an alternative notion of
regret, in which the learner competes with the best persis-
tently exciting policy instead of the optimal policy, [102] has
shown that logarithmic regret is possible in the partially
observed setting. Note, however, that the optimal LQG
policy might not necessarily be persistently exciting. Indeed,

known lower bounds show that it is not persistently exciting
in 1) the state feedback setting [see (43)] and 2) the partially
observed setting for certain large-input-dimension systems.
Thus, it is an open problem to characterize the relation
between the regret definition (35) and the one defined in
[102]. Note that a related situation arises in the state feed-
back setting if the learner is given access to the precise value
of B.. In this case, it suffices to identify the matrix A., which
isidentifiable in a closed loop given knowledge of B.. Cassel
et al. [88] show that this observation leads to logarithmic
regret—against the optimal controller—if B. is known a
priori. A related problem where logarithmic regret is possi-
ble is that of adaptive Kalman filtering or online prediction
[45], [103], [104], [105]. The objective is to predict future
observations yx online based on the past yk-1, k-1, ..., Yo, to.
Since the only goal is prediction, the cost of control does not
enter the objective. Interestingly, for this problem, it is pos-
sible to attain logarithmic regret [103], [104], [105]. Hence, we
can learn the Kalman filter online with a smaller regret than
that achievable in online LQR control. In light of our discus-
sion, this is hopefully no longer surprising. In the LQR
problem, we need to inject additional exploratory signals
into the system, which also affects the cost of control. In the
prediction problem, exploration is “free,” as the cost of con-
trol does not affect prediction performance. In fact, we can
predict even without PE [104]; informally, if the covariates
lie on a certain subspace, so will their future versions.

Open Problem 4

Provide matching upper and lower bounds on either the
regret (35) or the expected regret (36). In the partially
observed setting, we currently do not even know the cor-
rect dimensional dependence (or what the correct notion
of the dimension is, although it is to be suspected that
this is related to the order of the system and the input and
output dimensions dy and dy). To resolve this problem, it
is required to find a function f such that for a universal
constant c1 > 0 independent of all problem parameters,

RE(A., B.) < c1f(A., B.,C.,Q, R, Ew, Zv, T)

for some specific algorithm 7 and T sufficiently large
with high probability (or in expectation). A resolution
will also provide a matching lower bound, which for
some & =or(l) and some constant ¢, > ( depending
only on ¢, establishes that

sup
A,BEB((A.,B.),£)

RE(A, B) > oof(A., B.,C.,Q, R, Zw, Zv, T)

for all algorithms 7z and T sufficiently large with at least
constant probability (or in expectation). A partial reso-
lution applying only to state feedback systems, thus
determining the correct dependence on system-theo-
retic quantities, is also of interest.
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SUMMARY AND DISCUSSION

We have provided a tutorial survey of recent advances in
statistical learning for control. One of the key takeaway
messages is that we now have a relatively complete picture
of the learning problem in fully observed linear dynamical
systems, both in terms of system identification (as summa-
rized in Table 1) and in terms of regret minimization (as
summarized in Table 3). We have also provided an over-
view and listed a number of open problems with respect to
partially observed extensions of the previously mentioned
results. As exciting as the developments over the past few
years in this field have been, there is still much work to be
done. With this mind, we now outline some future direc-
tions we believe are important for the field to consider as
next steps.

Future Directions

Control-Oriented Identification

In finite-sample analysis of system identification, we stud-
ied methods of obtaining high-probability bounds on the
parameter estimation error of the form

|Ar-A.|,<e

where Ar is the output of the least-squares algorithm (4).
Similar bounds can be obtained for the other state param-
eters as well. As discussed in the “Confidence Ellipsoids”
section, the operator norm picks up the worst-case direc-
tion, which is the most difficult to identify. As shown in
[24], the sample complexity of identifying the worst-case
direction can grow very large for certain systems. How-
ever, a question that arises is whether this worst-case direc-
tion affects control: Does the bottleneck of identification, that
is, the worst direction, affect control design? Do we always
need to identify everything? Consider, for example, the fol-
lowing system:

0ao0 0 117"
Ar=|0 0 gl B=|0|Z.=|0]0
000 1 ollo

where only @ and B are unknown. Let the control objective
be stabilization by state feedback, that is, finding a feed-
back gain K such that the closed-loop system A + BK is
asymptotically stable. The only way to excite xx2 is via xx3;
the coupling coefficient 8 determines the degree of excita-
tion. Note that as the coupling S goes to zero, the excitation
of x> becomes smaller. As a result, if 3 is very small, it is
very difficult to identify the parameter «, and the complex-
ity of the system identification increases with B!, How-
ever, it is trivial to stabilize the system, even without
knowledge of «, for example, with K = 0. In this particular
example, the worst direction of the identification error is
not relevant for stabilization. Hence, the complexity of
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stabilization should be independent of B7'. On the other
hand, consider system

1a0 0 11"
A>=[0 0 g|,B=|o},Z.=|0f0
000 1 ollo

where now the first state has marginally stable dynamics.
Unfortunately for this pathological example, it is, in fact,
necessary to identify o to stabilize the system (this example
is adapted from [90]) suffering from complexity that scales
with B7'. In particular, we cannot stabilize the system
unless we identify the sign of o, showing that for some sys-
tems, the worst direction of the identification error matters.
The preceding example shows a system for which stabiliza-
tion depends on an identification bottleneck. However, it
seems that the constructed systems are artificial or patho-
logical. It is an open problem to characterize the conditions
under which we can avoid such corner cases. Similar ques-
tions have been previously studied in the context of control-
oriented identification or identification for control [106]. In
many situations of practical interest, we need to identify
only the part of the model that matters for a specific closed-
loop objective. In this case, it is reasonable to tune the iden-
tification toward the objective for which the model is to be
used, that is, to ensure that the model error is “orthogonal”
to the control objective. This is particularly important in the
case of agnostic learning, that is, when there is no “true
model” and the model class can only approximate the
system, which is typically the case in practice.

Learning With Structure and Regularization

In many practical situations, certain structural properties
of the system to be identified and controlled are known a
priori. For instance, when trying to learn a networked
system, the engineer might have prior knowledge that
interconnections between states are relatively sparse. Other
examples of relevant structural priors include low-order (as
captured by the rank of a system Hankel matrix) or physi-
cal properties, such as passivity and dissipativity.

Sparsity

In the case of a linear dynamical system, sparsity amounts
to the matrix A. in the dynamics x:+1 = A.x;+ w; having
many zero entries; that is, A. will be sparse and have only
s < d% nonzero entries. Many modern networked systems
have the property that they are large-scale but not maxi-
mally connected, leading to a high-dimensional state
vector with a sparse A.. There are many other examples
that fall into this category, including snake-like robots,
which can be modeled by an integrator-like structure:

an a2 0 0 0
Asnake =| 0 axm axn 0 0].
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The matrix Asnake has only s = 2dx < dz many nonzero
entries, and so one is justified to hope for a polynomial
speedup in the sample complexity of the system identifica-
tion as compared to the standard minimax rate achieved by
the least-squares estimator.

In such high-dimensional situations, running linear
regression, which suffers a minimax rate of convergence
proportional to dx in the Frobenius norm (proportional
to dx in the operator norm), is not sample efficient or
might not even be tractable. To alleviate this issue,
Fattahi et al. [34] analyze the least absolute shrinkage and
selection operator (LASSO) estimator as applied to sys-
tem identification. Recall that the ¢' norm of a vector
v=(v1,...,0d) € RY takes the form |[v ||01 =2%,|vi| The
LASSO penalizes the least-squares solution by this norm
by using a fixed regularization parameter A > 0 and takes
the form

N T-1
Ae argmin{% > w1+ Axe HZ + 4| vec(A) Hél}. (55)
t=0

AeR¥

It is by now well known that 0 regularization promotes
sparse least-squares solutions [107], [108]. The authors of
[34] show that the LASSO also avoids polynomial depen-
dence on the state dimension for linear dynamical sys-
tems. Unfortunately, the rate in [34] degrades with the
stability of the system—precisely that which we sought to
avoid in our discussion of the finite-sample analysis of
system identification by leveraging the PE and small-ball
bounds. Moreover, by instantiating recent results in [109],
it can be shown that the minimax rate (in the Frobenius
norm) over the class of s-sparse linear dynamical systems
is no more than O(ys62 /Amin(I'r)), where I'r is as in (7)
(with B. = 0). Unfortunately, instantiating [109] does not
yield an effective algorithm and reduces to running
(f@ =O(dxexp(2s)) separate regressions, each one over an
s-dimensional submanifold. This quickly becomes intrac-
table, even for rather moderate cases of the degree of
sparsity s.

Open Problem 5

Studying the tension between dependence on mixing
time (stability) and computational intractability is an
exciting direction for future work. Can we refine exist-
ing analyses of the LASSO (or provide some other poly-
nomial algorithm) to match minimax rates, or is there a
fundamental computational barrier introduced by
sparsity? Resolving this issue may well require the
development of new tools since existing analyses of the
LASSO in the ii.d. setting invariably depend on the
condition number of the covariates matrix [23], [110],
which, for a linear dynamic system, is proportional to
the mixing time (degree of stability), leading to subop-
timal rates.

Low-Order Models

Sparsity, as discussed in the preceding, is also relevant
when estimating input-output models of unknown order.
For example, consider the following model:

: t
Yie1= 2 Ajyi—j+ O Bju—j+wi, y;=0forj<0. (56)
j=0

j=0

In this scenario, there is no nontrivial upper bound on
the lag order available to the engineer, and it may be as
large as the entire horizon T. Converting the process (56)
into state-space form and running least squares is not trac-
table: recall that the minimax rate of convergence depends
on the ratio of the number of unknown parameters and the
number of samples (in this case, given by the horizon T).
Without further assumption, this ratio is constant in the
worst-case for model (56). However, if there is hope that the
true model is of low order so that many of the {Aj, B} are
zero, a variation of the LASSO (55) may also be appropriate
for model selection in this scenario.

Low-Rank Models

A more sophisticated notion of model order than discussed
in the preceding section is that of the Hankel matrix rank
(McMillan degree). Let h.=[C.B. C.A.B. C.A?B. ...]
denote the impulse response (matrix) associated to the
tuple (A., B., C.), and notice that model (1) can be written as

Y= N -1+ e

where * denotes discrete convolution and {7:} is some (not
necessarily i.i.d.) noise sequence. Denote by H the Hankel
(linear) operator mapping impulse responses to Hankel
matrices. The nuclear norm of a matrix M e R is
| M|l = Z&1 6:(M). This norm plays a similar role to the ('
norm but promotes low-rank solutions rather than sparse
solutions [108]. Since the rank of the Hankel matrix H(h.)
coincides with the McMillan degree of the system (1), it is
natural to consider the following nuclear norm-regularized
problem (see, for example, [56]):

T-1
>y +hs weevoly + Al H(n)
t=0

he argminy, {%

} (57)

As of the writing of this article, no finite-sample analy-
sis exists for the nuclear norm-regularized estimator (57).

Learning for Nonlinear Identification and Control

While the vast majority of the literature on statistical learn-
ing for identification and control has been on linear sys-
tems, most real systems are not linear. Learning in linear
dynamical systems escapes many nonlinear phenomena
and does not capture one of the most fundamental issues in
modern machine learning: distribution shift. For linear
models, parameter recovery is always possible as long as
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the average covariance matrix of the covariates is suffi-
ciently nondegenerate (invertible) and the rate of the
parameter recovery is (asymptotically) completely described
by the second-order statistics of the process under investi-
gation. Put differently, all equilibrium points of a linear
system are (dynamically) equivalent. This stands in stark
contrast to more general nonlinear systems in which, in the
worst case, learning the behavior around one equilibrium
point gives no information about the behavior of the system
in other regions of the state space. Moreover, recent
advances in learning and estimation for nonlinear dynam-
ics bypass these issues of distribution shift by either con-
sidering models that behave almost linearly [111], [112],
[113], [114], [115] or by sidestepping the issue entirely and
considering only a prediction error associated with the
invariant measure of the system [109], [116]. For statistical
learning to be truly informative for downstream control
applications, a more integrated understanding of learnabil-
ity, nonlinear dynamic phenomena, and control-theoretic
notions, such as incremental stability or contraction, are
needed [117], [118], [119].

Realizability and Approximation

Existing work on learning in dynamical systems makes
strong realizability assumptions. For instance, it is often
assumed that the true model is generated by a linear
dynamical system of the form (1) driven by i.i.d. mean-zero
(or martingale difference) noise. Even if one considers more
complicated nonlinear models, such additive mean-zero
noise models completely sidestep bias or misspecification
challenges. This is significant since ignoring this issue
might mean that existing analyses are overly optimistic.
The work in [120] shows that in the worst case, misspecifi-
cation in a simple linear regression model leads to a deflated
sample complexity by a factor linear in the mixing time of
the covariates process. This stands in stark contrast to the
results in [4], in which linear regression over a well-speci-
fied model class is analyzed completely without reference
to mixing. While the fundamental limits in [120] may seem
discouraging at first, they are worst-case and may be avoid-
able by introducing further regularity assumptions. As a
first step, one could analyze the sample complexity of
recovering the best linear approximation to an almost
linear autoregression, for example, adding a small nonlin-
earity, or considering a generalized linear model with a
nearly isometric link function.

Structured Nonlinear Identification

A host of new opportunities present themselves in struc-
tural nonlinear identification as compared to the linear set-
ting. While sparse and low-rank structures are certainly of
interest and applicable to learning in nonlinear dynamical
systems, there are other exciting (and arguably more fun-
damentally system-theoretic) alternatives. For instance,
one might ask how properties such as passivity or

94 |EEE CONTROL SYSTEMS » DECEMBER 2023

dissipativity affect the minimax rate of estimation and
whether there are efficient algorithms that might take
advantage of this. More concretely, one might be interested
in the 1D autoregression x:+1 = f.(x;) + w: and seek to iden-
tify f. under the physically motivated hypothesis that f. is
the negative gradient of an unknown convex potential.
Taking advantage of structure may also be inherently more
important in nonlinear identification since, otherwise, the
curse of dimensionality is quick to present itself. For
instance, in the model

ye=f.(x) + Wi

running regression over the hypothesis class .7 = {f : R -
[0,1] c Rand f is k smooth} incurs a minimax rate that
degrades exponentially with a large dx.
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