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ABSTRACT

Animal infectious diseases interfere with the sustainability of live-
stock farming. Developing comprehensive strategies for disease
prevention and control requires professionals to study livestock
farms from a variety of data sources, such as veterinary medical
tests, financial reports, and animal movements between farms. How-
ever, investigating animal health surveillance is challenging as the
collected data is often heterogeneous, high-dimensional, and spatio-
temporal. Furthermore, data missingness, one common challenge
in disease surveillance, can limit the effectiveness of the analysis
and induce the misinterpretation of the result due to the lack of un-
certainty representation. In this paper, we present a visual analytics
interface of coordinated views that supports investigating disease
outbreaks by connecting the relationships of livestock farms from
different aspects — geospatial, transactional, and financial. Coupled
with unsupervised machine learning methods, we infer the health
status of a farm, despite the absence of its diagnostic history, with
uncertainty and provide interpretability to such inferences. With
these functionalities, we further quantify the influence of a disease
outbreak, severity and scale, guiding the user toward investigating
important outbreaks. We demonstrate the analysis capability of our
visual analytics interface with multiple use cases on a real-world
swine production dataset.

Keywords: animal health, disease surveillance, visual analytics,
machine learning

1 INTRODUCTION

Sustainable livestock farming shows promise to steady meat sup-
ply to a growing world while maintaining the environmental health.
However, the sustainability hinges on the maintenance of animal
health, high production efficiency, and proactive management prac-
tices. Animal infectious diseases can directly endanger animal health
and indirectly affect production efficiency. Furthermore, poor man-
agement practices may lead to higher infection rates across locations
over time. Understanding how animal infectious diseases interfere
with the sustainability assists animal health specialists in develop-
ing comprehensive strategies for disease prevention and control.
Yet, investigating the aforementioned factors requires the special-
ists to analyze livestock data collected from a variety of sources,
such as veterinary medical tests, financial reports, or even news
articles [9, 18]. While there are different analysis techniques spe-
cialized in processing certain data types [7, 35], challenges linger
for integrating analysis as the data is often heterogeneous, high-
dimensional, and spatio-temporal. These data characteristics impose
the burden of consuming excessive information for domain experts,
thus presenting challenges to disease prevention and control.
Effective management tools and analytical methods are therefore
needed to support animal health surveillance. Perez et al. [34] de-
scribed requirements for a system to support animal disease surveil-
lance, including visualization design and analysis functionality.
While some existing systems provide comprehensive information
of infectious diseases at a global scale for epidemic control [14],
there are some that focus on close monitoring by providing in-depth
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analysis tasks such as outbreak detection and molecular epidemi-
ology [9,40]. The commonality of these systems often includes
geographical information support with statistical methods. Machine
learning models further support such spatial analysis of heteroge-
neous data with growing volume [35].

Interactive visualizations assist the user in large data exploration.
When coupled with analysis methods, visual analysis further facili-
tates the understanding of complex data. Carroll et al. [7] surveyed
how visualization tools support disease surveillance with analytical
methods and integrate various data sources. However, in practice,
it is common to find data incompleteness, such as the lack of labo-
ratory diagnostic history in animal farms due to high testing costs.
Missing data can limit the analysis capability and may cause the
user to misinterpret the result [7,35]. It is thus critical to address
how to represent missing data and uncertainty in visualizations such
that valid analyses can still be carried out with limited information.

In this work, we present a visual interface that visually coordinates
the heterogeneous information to support disease outbreak investi-
gations. Our interface facilitates effective analysis via a methodol-
ogy that couples interactive visualization components with machine
learning methods — dimensionality reduction (DR) and contrastive
learning. We utilize an existing feature learning framework for
DR, FEALM [15], to extract the farms’ various relationships from
the high-dimensional financial reports and to further provide inter-
pretability to the resulting visual summary via contrastive learning.
This visual summary enables us to infer a farm’s health status, de-
spite the absence of one’s diagnostic history, which leads to the
capability of computing uncertainty. With this methodology, we
investigate how disease outbreaks affect the environment over space
and time by tracing animal movement. The health status inference
with uncertainty allows us to measure the potential influence of dis-
ease outbreaks, supporting the user in locating their analysis target
efficiently. Our visual analysis is capable of assisting disease pre-
vention and control by revealing potentially affected farms in close
proximity, risky animal movements between farms, and farms with
similar management practices.

We consider our main contributions are: (1) introducing a method-
ology that employs an existing feature learning framework for dimen-
sionality reduction to infer a farm’s health status with uncertainty
and interpretability; (2) prototyping a visual analytics interface that
uncovers the relationship of farms from geospatial, transactional, and
financial perspectives to investigate disease outbreaks; (3) demon-
strating the analysis capability of the visual analytics interface with
multiple use cases on a real-world pork production dataset.

2 RELATED WORK

We discuss representative research on related topics. As there is
little work on visual analytics for animal health surveillance, to our
best knowledge, we include work on human disease surveillance
and epidemiology. Visual analytics for public health often encounter
similar challenges incurred by the data characteristics as we do [37];
therefore, we review relevant analytical or visualization techniques
in the ensuing subsections.

2.1 Visual Analytics for Health Surveillance

EpidNews and EpidVis have analyzed news articles to support an-
imal health surveillance [12, 19]. They utilized coordinated visu-
alizations to facilitate spatiotemporal exploration of news items or
developed visual queries to capture disease characteristics from news
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articles. With the assistance of sunburst and chord diagrams, they
studied the hierarchical relationships between diseases, hosts, and
symptoms. In addition, while LHAVA [29] integrated animal health
data into their visual analysis, their goal was to support zoonotic
disease analysis for human health.

In contrast, there had been thorough discussions on the require-
ments, tasks, and visual analytic techniques to support human dis-
ease surveillance [7,37], including what techniques were employed
to handle certain data types. For instance, geographical information
support is often a vital analysis component for studying the connec-
tion between environmental factors and human health. While some
visual analytic solutions focus on disease outbreak detection [29],
disease spread simulation [44], or human response monitoring [28],
our work focuses on the understanding of disease outbreaks, such as
identifying the associations between heterogeneous spatio-temporal
information. For example, to characterize groups of interest (or
subpopulations), association rules [22] and subspace clustering [3]
have been employed to study the commonality of a group. We utilize
an existing DR framework [16] that combines contrastive learning
to learn about the characteristics of a group of farms in terms of their
production and financial information.

According to the relevant surveys [7,37], many visual analytic
solutions designed coordinated views in a web-based application
to assist health specialists. We also adopt this architecture in our
system for efficient integration of heterogeneous data. We further
review two visual analysis techniques regarding disease outbreak
assessment that are most relevant to our work.

2.2 Probabilistic Infection Inferences

Veterinary diagnostic tests, similar to human diagnostic tests, directly
assesses the health status of an animal or group of animals and are
usually a reliable indicator for the presence or absence of a disease;
thus, they have become the foundation to establish the health status
of an animal farm. In practice, however, it is common to find the
lack of diagnostic history for several livestock animal diseases at
farm level, due to high testing costs. This leads to the unavailability
of determining the health status of the farm and the possibility of
inferring the health status from other available information. Here,
we report what other kinds of data or techniques were utilized to
infer the health status.

Molecular epidemiology is one approach that studies the spatial
and/or temporal distribution of genetic variants or pathogens in phy-
logenetic trees or dendrograms [7]. As the hierarchical relationships
suggest the similarity between all the genotypic information, the
health specialists can investigate different branches to determine if
one node (e.g., a farm on a date) is affected by a disease source, rep-
resented by another node. Another approach is to study the networks
of farms in terms of the disease exposures. Through hundreds of
disease spread simulations, prior work aggregated the simulations’
results and computed the probability of a patient being infected at a
given time point [28,43].

Recent work have leveraged machine learning to quantitatively
predict health status over time. Supervised classifiers trained on tem-
poral multivariate data are one of the popular techniques, surveyed
by [24]. However, the excessive data dimensions have presented
challenges to over-fitting problems in supervised models [13], lead-
ing to the increasing adoption of unsupervised approaches. For
instance, DPVis [25] utilized Hidden Markov models (HMMs) to
infer the progression of a patient’s disease status, represented by
different discrete states, from time-varying multivariate patient data.
They characterized each state with the distribution of date attributes
to provide interpretability, where uncertainty is determined by the
standard deviation of an attribute. ThreadStates [41] further em-
ployed DR methods to support state identifications in HMMs and
revealed disease progressions using Sankey-based visualizations.
However, the user is required to determine the number of states and
the set of attributes being used in HMMs.
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Our work utilizes DR to infer the health status, unlike exist-
ing work which commonly uses DR as a feature engineering tech-
nique [13]. Given a farm with no diagnostic history, we support
the automatic identification of its closest group (diseased or healthy
farms), which is one representative pattern identification task in DR
analysis [11]. We further compute uncertainty in the identification
task, in which we use a probability to indicate the confidence of a
farm being diseased.

2.3 Disease Propagation Visualizations

In livestock production, particularly in the swine industry, a com-
munity of highly specialized farms establishes a production system
and frequently transport animals among each other. Livestock move-
ments between farms thus represent one of the main pathways for
infectious disease transmission [8]. Researchers often performed
analysis on animal movements to evaluate their implications for
disease transmission, where a dynamic geospatial network has been
a common visual representation of a disease outbreak for exploring
the data and communicating analysis results [27,30].

We review visualization techniques for geospatial network vi-
sualizations, where a comprehensive survey can be found in [38].
While popular designs include node-link diagrams overlayed on the
geospatial map and flowmaps [20], recent work have introduced
novel visualizations to highlight other information in the disease
spread. Employing the storyline visualization, Baumgart et al. [4]
reconstructed the disease transmission and presented the patient
trajectories, with a focus on individual movement to locate the po-
tential disease source. To reduce the visual complexity caused by
the varying geospatial region sizes and shapes, Dunne et al. [10] in-
troduced three visual representations for geospatial maps, including
a centroidal Voronoi tesellation technique.

We seek visualization designs that clearly show the disease spread
over space and time. Therefore, we tailor node-link diagrams by
adopting an abstract layout spanned by locations and time, which
is free of visual clutter caused by geographical proximity. While
prior work in biomedical visual analytics introduced an abstract
network visualization to resolve visual clutter [33], their focus was
to address the hierarchy in human brains rather than the time aspect.
We integrate a Sankey-based visualization, focusing on the influ-
ence of animal movements, as an alternative representation of the
disease spread. A geospatial map is incorporated to supplement the
geographical information.

3 DATA AND DESIGN GOALS

We developed our visual interface through seven monthly meetings
with three animal health specialists, including two faculty specialized
in disease epidemiology and surveillance and one field veterinarian.
In this section, we first describe the data used to drive our analysis
and visualization design. Then, we present the design goals of our
visual analytic solution, which were derived through an extensive
discussion with the animal health specialists.

3.1 Data

We obtained a swine production dataset that describes a community
of animal farms belonging to the same production system. The data
was collected in the United States, through January 1st, 2020 to
December, 31st, 2020. For confidentiality, we have anonymized the
data and cannot disclose any identifiable information, such as the
number of farms in the production system. In the following, the
described data were already cleaned and processed by the authors.
Sites — General information of a list of more than 100 unique
animal farm sites. Each entry refers to a site and records its name,
premise ID, GPS coordinates, and its site type. The site type indi-
cates the site’s role in the livestock production system and includes
three types: sow farms, finishing farms, and food processing com-
panies. The production system consists of 8.5% sow farms, 83.0%
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finishing farms, and 8.5% processing companies. In particular, only
food processing companies do not have premise ID and GPS coordi-
nates; thus, they are only present in the transaction record.

Diagnostic history — The diagnostic test results for diseases or
antimicrobial resistance on a site. Each entry records the premise
ID of the tested site, the date when the sample is received, the type
of disease or antimicrobial, and the test outcome. Note that the test
outcome can be “undetermined”, besides “positive” or “negative”.
We consider the tests with undetermined outcome to be ineffective
and exclude them. This results in 246 effective entries, where 36
of them show positive outcomes. Among all the unique sites, only
28.4%, composed of 6.4% sow farms and 22.0% finishing farms,
have had at least one effective test results during the studied time
span. The rest have no record.

Animal movement — The transaction records of animals between
two sites, containing 10,337 entries in total. Each entry involves the
name of the sending site (i.e., source), the name of the receiving site
(i.e., target), the transaction date, the quantity of transported animals,
and the description of the trade purpose.

Production and financial report — The production and financial
statements of the finishing farms, related to aspects such as mortality,
feeding, storage, or sales. While we use all of the 32 numerical
attributes in our analysis, each statement also records the time range
and the working group. As each farm may have several working
groups active in different varying time periods (can be 2 weeks, 1
month, or 3 months per group; 1 month is the most common period),
we further take the average information across groups and time as
a farm’s representative profile, in order to perform analysis with
DR. We incorporate the original information in other parts of our
analysis, to be illustrated in Sect. 4.2. Note that among finishing
farms, 6% do not have any reports, thus only 94% of farms’ data is
used in our analysis.

Antibiotic history — The antibiotic usage history of finishing
farms, consisting of 776 records. Each entry records the site name,
the administered date, the product name, and the given dosage.

3.2 Design Goals

Our visual analytics interface supports experts, such as swine produc-
ers and field veterinarians, in analyzing disease outbreaks. The tasks
of disease outbreak investigations involve going over large amounts
of heterogeneous information. Through an extensive discussion with
the animal health specialists , we have derived the following specific
design goals to support essential analysis tasks.

DG1: Examining disease spread through animal movement.
The transportation of animals is one major interaction between live-
stock farms. Infectious diseases may spread through the direct
contact of animals [8,27]. When a disease outbreak is identified, we
should show the potential impact of an outbreak over time and space
by tracing the animal movement. Furthermore, we do not assume
an outbreak is necessarily the disease source; therefore, we should
trace both retrospectively and prospectively.

DG2: Summarizing high-dimensional information. It is time
consuming to review the high-dimensional attributes one by one.
While visualizations of high-dimensional data, such as parallel co-
ordinates and scatterplot matrices, can accurately depict the data
values, their effectiveness is limited by the scalability of data dimen-
sions. We should provide a visual summary of the high-dimensional
information that is agnostic to the number of dimensions.

DG3: Inferring the health status of a site. The absence of
diagnostic results can limit the capability of disease surveillance
analysis. As described in Sect. 3.1, a majority of the animal farms
do not have diagnostic test results; therefore, the lack of diagnostic
labels induces difficulty in training an unbiased machine learning
model for health status prediction. We should seek other informa-
tion to facilitate health status inference. The user should also be
able to validate the inferences; thus, our interface ought to provide
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interpretations of inferences. Uncertainty should be considered to
avoid misinterpretation as much as possible.

DG4: Measuring the influence of disease outbreaks. While our
system should provide comprehensive analysis support to disease
outbreak investigations, the user may be overwhelmed by the number
of outbreaks that need to be analyzed, especially when the user is
exploring the data rather than targeting a specific site, disease, or
time period. We should develop metrics to quantify the potential
impact of a disease outbreak, which allows the users to locate the
analysis target efficiently.

DGS: Integrating analyses. We support the computational anal-
yses of heterogeneous data to extract important information for
investigating disease outbreaks. Our system should provide and
coordinate interactive visualization support for the users to perform
flexible analysis and derive insights, such as risky animal movements
highlighted by the health status inferences.

4 METHODOLOGY

To address these DGs, particularly DG1 and DG2, our approach is
to design individual visual components and coordinate them to fully
support essential analysis tasks. We extend the analytical solution of
DG2 to support DG3, leading to the feasibility of achieving DG4.
To better assist the user in exploring the heterogeneous data (DGS5),
as shown in Fig. 1, we coordinate multiple visual components in a
visual analytics system, including (a) visual summary of finishing
farms; (b) finishing farm group characteristics; (c) disease outbreak
overview; (d) geospatial map; and (e) disease outbreak selection
menu. During development, our interface and visual components
were reviewed by the animal health specialists in multiple monthly
meetings, where visualization researchers on our team demonstrated
how to perform the analysis through user interactions. We provide a
video to demonstrate the functionalities of our system [2].

Implementation. Our system is a web-based application for its
accessibility, available at [1]. For the back-end, we use Python
to perform all the computations and integrate FEALM, with the
implementation the original authors provided [15]. For the front-end
interface, we use a combination of HTMLS5, Javascript, React, and
D3 [5].

4.1 Visual Summary of Finishing Farms

We start with the visual summary of finishing farms, the most im-
portant component in the visual interface, as it drives the analysis
supported by our methodology. We illustrate a complete analysis
flow with a case study in Sect. 5. As mentioned in Sect. 3.1, the
financial reports of the finishing farms contain high-dimensional
attributes, which induces difficulty in performing analysis and un-
derstanding the subsequent results. Analyzing these financial and
production reports is beneficial, as the disease outbreaks may be
associated with management practices of a farm; therefore, the dis-
ease influence can reflect on certain data attributes such as mortality.
With fulfilling DG2 in mind, we seek an analytical solution to extract
important information from all available data attributes.

Dimensionality reduction (DR) finds low-dimensional, often 2D,
representations of entities with high-dimensional data. These low-
dimensional representations are commonly visualized as points on a
scatter plot, where entities with similar attribute values are in close
proximity. While a variety of DR methods have been developed with
a different focus on preserving certain characteristics (e.g., data vari-
ance), they can be considered as either linear or nonlinear methods
based on their algorithm design. Generally, the result interpretation
of linear DR methods is more accessible to humans due to linearity;
in contrast, nonlinear ones are favored for their capability of han-
dling more complex data structure. However, nonlinear DR methods
may fail to capture important patterns that are apparent only in a
subset of data attributes.
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Figure 1: The interface of our visual analytics system, consisting of the following visual components: (a) a visual summary that shows the similarity
among finishing farms derived from their financial reports; (b) a heatmap that displays the unique characteristics of the diseased farms and the
healthy farms in terms of the data attributes from the financial reports; (c) a disease outbreak overview presenting the outbreak in a Sankey-based
visualization, including the relevant animal movements and the health status inferences, where a toggle is provided to switch to the alternative
representation, the node-link diagram; (d) a geospatial map that reveals the farms in geographical proximity and shows the animal movements on
a certain date with arrows; and (e) a disease outbreak selection pop-up menu, currently in descending order of the Severity metric, displaying
general information of the disease outbreaks. Note that the legends at the bottom are annotated by the authors for visibility. In addition, (b1) and

(b2) are two attributes related to the inference example from Fig. 3.

FEALM is a feature learning framework that addresses this chal-
lenge by discovering latent features of data to generate significantly
different DR results [15]. Fig. 2 shows the 2D representations of
finishing farms with different DR methods being applied to their
financial reports, where we aggregate their diagnostic history into
the labels and color the points accordingly. In particular, Fig. 2-(c)
and (d) are representative results explored by FEALM-UMAP, i.e.,
UMAP [31] exemplified using FEALM. These representative results
reveal the separation between the healthy farms and the diseased
farms, suggesting that it is not an oversubtle pattern. Note that for the
diagnostic labels, we label a farm to be diseased (positive) if it has
ever had any positive diagnostic results; otherwise, it is considered
healthy (negative). Among the DR results explored by FEALM or
computed with other DR methods, we seek the one with clearer sepa-
ration, where spatially dense groups are preferable for showing high
similarity. Utilizing this visual summary, if we find a farm with an
unknown status close to a group of healthy (or diseased) farms, we
may assume they have similar data records; thus, the farm is inferred
likely healthy (or diseased). For example, in Fig. 3-(a), since Farm
FK is next to two red points (i.e., farms that had been tested positive
before), we may infer the report of Farm FK is similar to the two
diseased farms. This facilitates the health inference of farms with an
unknown status, to be further elaborated in the ensuing subsections.

It is important to note that, linear discriminant analysis [23] could
be a good candidate for the analytical solution, since it finds the
weights in the linear combination of data attributes to distinguish
between diseased and healthy farms. However, it is a supervised
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DR method taking the diagnostic labels of the finishing farms as
input. As we separate between the diseased and healthy farms (each
of which is less than 15) using all of the 32 numerical attributes, the
number of model coefficients (i.e., weights) is larger than the number
of training instances. The result then becomes untrustworthy as
now we have concerns for over-fitting problems. This issue applies
to other supervised classifiers as well; thus, we do not solve the
health status inference as a classification problem. Last, we do not
consider the combination of subspace clustering and DR techniques
for achieving DG2, since FEALM is designed for nonlinear DR
techniques and its search space includes that of subspace clustering.

4.2 Health Inference with Uncertainty and Interpretability

In this subsection, we describe how we compute the health inference
of a farm with an unknown status from the aforementioned visual
summary and provide explanations (DG3). Among all the finishing
farms, while 22.0% have had positive or negative test results, the rest
had none. This limits the analysis capability to investigate disease
outbreaks, since the user can barely perform an analysis due to
little available information. Continued from the example in Fig. 3-
(a), the visual summary enables us to infer that Farm FK is more
closer to the diseased farms than the healthy farms; therefore, Farm
FK is likely positive. This capability connects the relationships
among animal farms from financial and medical perspectives, and
provides implications to the user that were not available before.
However, each inference requires human judgment and may vary in
its susceptibility to human perceptions [11]. For instance, one may
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Figure 2: Comparison of the visual summaries, generated with differ-
ent DR methods. (a) was computed with principal component analysis
(PCA), a linear DR method; (b) was computed with UMAP, a nonlinear
DR method; (c) was one representative result explored by FEALM-
UMAP, adopted into our visual analytics system, that shows a clearer
separation between the diseased and healthy farms when compared
to (a) and (b); and (d) FEALM-UMAP reveals the separation between
the diseased and health farms, despite not being clear enough as
(c), in other representative results during the same search. This sug-
gests that the separation is not an oversubtle pattern. Note that the
hyperparameters used in UMAP and FEALM-UMAP are the same,
i.e., min_dist = 0.1 and n_neighbors = 15.

argue that Farm FK is fairly close to the community of the healthy
farms, and thus is possible to have a healthy status. More precisely,
this ambiguity comes from the lack of a concrete decision boundary
to determine the health status inference of a finishing farm.

We provide a systematic method that automatically computes the
health status inferences with uncertainty from the visual summary.
Given a point with unknown status (target point), we first compute
its Euclidean distance to all the points labelled as either diseased
or healthy. Then, we form a Gaussian probability distribution from
the obtained distances, centered at O (i.e., the distance to the target
point itself). Similar to determining neighbors in distance-based DR
methods, we may interpret the resulting probability as the likelihood
that the labelled point being in the neighborhood of the target point.
Next, among all the labelled points, we select the top 20% of can-
didates with the highest probabilities for further computation. We
consider this k-nearest neighbor selection to be a reasonable choice,
since human judgement often considers only some nearest labelled
points rather than all of them. We apply L1-normalization to the
probabilities of the candidates to obtain their relative importance
(summing up to 1). Finally, we sum up the relative importances of
positive-labelled candidates, returned as the computed probabilistic
label for the target point. For example, in Fig. 3-(a), as Farm FK
is now given a value of 82.8%, we may interpret this as an 82.8%
confidence that Farm FK is likely diseased. Note that when the user
hovers over any farms in the visual summary, a tooltip will display
the computed inference of the hovered farm.

In the absence of a farm’s diagnostic history, we compute prob-
abilistic inferences from its financial reports to complement the
limited information. However, this capability derives the subse-
quent question — how can we trust and validate these inferences?
As mentioned in the previous subsection, while the nonlinear DR
methods are capable of handling more complex data structure, in-
terpreting their DR results is hardly straightforward. Representative
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Figure 3: Understanding the health status inference of Farm FK with
two interpretation examples. (a) in the visual summary, the inference
is susceptible to human perception; however, our methodology com-
putes the inference with uncertainty, i.e., Farm FK is inferred likely
positive with 82.8% confidence; (b) the trends of “ration cost per ton”
(Fig. 1-(b2)) suggests that Farm FK is more diseased-leaning; (c) the
trends of “the average weight of sold pigs” (Fig. 1-(b1)) suggests that
Farm FK is more healthy-leaning instead, which explains its position-
ing in the visual summary. Note that for each data attribute, the lines
represent the interpolated records (i.e., the trends) of the farms, with
the solidity indicating that Farm FK is currently selected by the user.

approaches include statistical descriptions of data attributes and axis
mapping through user interactions [26]; however, they are not de-
signed to reveal important data attributes that characterize a group
of points.

FEALM integrates an existing DR method, ccPCA, that utilizes
contrastive learning to study the uniqueness of a group of points in
terms of data attributes [16]. By contrasting a group to others, ccPCA
uses a number between -1 and +1 for each data attribute to indicate by
how much is this group lower (or higher) than others in terms of their
attribute values (-1 indicates lower while +1 suggests higher). We
adopt this integration along with the heatmap-based visualization, as
shown in Fig. 1-(b), to understand what attributes make the diseased
farms more distinct than the healthy farms, and vice versa. We use a
heatmap with a brown-green diverging colormap (-1 for brown and
+1 for green) to display the characteristics per group, where each
column refers to one data attribute and each row refers to one group
of finishing farms. For example, in the leftmost column (Fig. 1-
(bl)), “Average weight sold”, the color for the diseased group is
brown-leaning, while it is green for the healthy group. This suggests
that in terms of the attribute values, the healthy group generally has
higher data values than the diseased group does. The observation
is reasonable since the illness can result in a lack of appetite and
hence weight loss. Note that we provide the representative profiles
of labelled farms to ccPCA (see Sect. 3.1).

The utilization of ccPCA provides us an overview on the unique
characteristics of the healthy and diseased finishing farms; yet, one
more step is required to help the users validate the computed infer-
ence of a farm. We provide the temporal data examination of the
financial reports for the user to assess how a farm is similar to the
healthy (or diseased) farms in terms of attribute values. The user can
focus on a farm of interest by either clicking its point on the visual
summary or selecting through the dropdown menu. When a farm is
selected, we offer the validation as a tooltip when hovering a block
on the heatmap, as shown in Fig. 3-(b) and (c). The tooltip is a multi-
line chart over time at month level, with respect to the hovered data
attribute, where each line represents the trend of one finishing farm
and is colored based on the corresponding diagnostic label. We show
the trends of the labelled farms with dashed lines, where the solidity
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is used to highlight the selected farm. For each farm, to regularize
the irregular time intervals, as described in Sect. 3.1, we first mark
the report using a single month, which is in the middle of the time
period. If there are multiple groups active in the same month, we
aggregate the data values by taking their average. We observe that a
majority of the finishing farms have monthly records for less than 6
months (e.g., Farm FK from Fig. 3-(b) and (c)); consequently, there
are countless line segments depicting the same farm. This leads to
the visual clutter and the difficulty of following a farm’s temporal
record. To address these issues, we employ interpolation to connect
the line segments and incorporate points to indicate the presence of
the actual data records. It is important to note that the purpose of the
interpolation is to reduce visual clutter rather than to fill in missing
data for performing analysis, since the interpolated records can be
biased due to the sparsity of the time points. In addition, we are
aware that the reliability of the inferences includes the inherent un-
certainty in DR projections, i.e., how accurately the low-dimensional
representations depict the data in the high-dimensional space, which
we provide a discussion in Sect. 7.

Returning to the example of Farm FK being inferred to be positive
with 82.8% confidence, we illustrate how we provide the validation
with ccPCA and the interpolated temporal record. In the group
characteristic view, as highlighted in Fig. 1-(b1) and (b2), we find
that for both attributes, there are diverging colors in the blocks,
where the diseased farms have a noticeably darker brown color in
(b2). This finding suggests that the attribute values of the disease
farms are generally lower than those of the healthy group; thus,
we expect a larger gap between two groups in (b2), compared to
(b1). Since (b2) is annotated as “Ration cost per ton®, a possible
explanation is that the ration quality (e.g., nutrition) is associated
with animal health, which is also reflected in the purchase price. By
selecting Farm FK in the visual summary or through the rightmost
dropdown menu in Fig. 1-(b), we use a solid line to highlight the
farm’s trend in the tooltip. As shown in Fig. 3-(c), we find the
difference between the diseased farms and the healthy farms and
that the trend of Farm FK is more diseased-leaning. In contrast,
in Fig. 3-(d), we can hardly decide which group Farm FK leans
more toward. This explains Farm FK’s positioning in the visual
summary and the health status inference of 82.81% confidence. We
provide more interpretation examples in Sect. 5.

4.3 Disease Spread through Animal Movements

By analyzing animal movements together with the health status
inferences, we extend our methodology to include the relationship
among farms from the transactional perspective. Next, we describe
how we design our disease spread visualizations to support DG1.

We identify each unique positive result from the 246 entries of
diagnostic history as one disease outbreak, resulting in 36 outbreaks.
Each disease outbreak is characterized by its location (i.e., a farm),
the date, and the type of disease or antimicrobial resistance. Using
this collection of information, we capture the potential disease spread
by tracing through animal movements recursively and recording the
farms that could be exposed to the disease either directly or indirectly.
More precisely, we use a set of nodes and edges to represent the
disease spread of the outbreak. While each edge is one animal
movement, as described in Sect. 3.1, each node is characterized by a
farm’s premise ID and a date, extracted from the animal movement
that we visit from. For each node, we incorporate the time-balanced
health status inference to include the temporal consideration. Since
we do not assume the outbreak is necessarily the disease source,
we track both prospectively and retrospectively. The animal health
specialists suggest two weeks to be a suitable time period of effective
infection; thus, we collect relevant animal movements within two
weeks for both tracking directions.

We use the retrospective tracking as an example to illustrate the
complete process. Starting with the outbreak farm, we collect all
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of the movements involving itself as the receiving farm (target)
within the past two weeks. For each movement, we create a node
of the sending farm (source) along with the trade date. For every
node, we compute the health status inference of the associated farm,
and scale down the confidence every 3 days in the duration of the
associated date and the outbreak date. If the node has never been
visited before, we push it to a queue for recursive tracking. This
process repeats until the queue becomes empty or a stopping criteria
is met. We record all of the visited animal movements and nodes
to return as the disease spread for a given outbreak. Besides the
search period of two weeks, we consider another stopping criteria,
the recursion depth, which is set to 2 to prioritize analyzing close
farm contacts. Currently, the user cannot interactively adjust the two
stopping criteria from the visual interface; however, the criteria can
be updated from the back-end of the system.

We develop two visualization views, a node-link diagram and
a Sankey-based visualization, to present the disease spread of an
outbreak with different analysis focuses. Our first design, the node-
link diagram, focuses on the disease spread over space and time. As
shown in Fig. 4-(a), the diagram layout is spanned by the unique
dates (x-axis) and the unique sites (y-axis). Based on the associated
sites and dates, the nodes are positioned as circular points in the
diagram, where their health status inferences determine the point
color. We leave the circular point hollow for unavailable inferences.
When hovering over a point, a tooltip displays the associated site
name, date, and balanced health status inference, where the same site
in the visual summary will be highlighted accordingly, if applicable.
For the edges, we visualize the animal movements as the links to
show how the disease spreads among the points. We overlay a
yellow-green gradient on the links to indicate which node is the
sender (indicated by yellow) or the receiver (suggested by green)
in each movement. It is important to note that, identifying the date
of an animal movement in our visualizations is heavily related to
whether the movement is retrospective or prospective, due to the
aforementioned tracking process. For retrospective movements, the
animal movements are associated with the date in the source node; in
contrast, the prospective ones are related to the date in the target node.
Two interpretation examples can be found in Fig. 4-(a). We have
attempted using directional pointers instead; however, this design
choice resulted in visual clutter, and the user can hardly identify
which node is the sender or the receiver in a movement at first glance.
To reduce visual clutter and highlight critical animal movements, we
add opacity to the nodes and the links, which is determined by the
health status inferences, if available; thus, the nodes and the links
associated with inferences of low confidence are more transparent.
Furthermore, we provide a filter on the health status inference for
the user to interactively highlight the nodes and the links associated
with highly confident inferences, as shown in Fig. 4-(b). In addition,
as annotated in Fig. 6-(d), we display the antibiotic history of farms
as the cross icons to indicate what farms administered antibiotics on
which date, with the details of the antibiotics provided with a tooltip.

Our alternative design, the Sankey-based visualization, focuses on
influential animal movements in terms of the number of transferred
animals. As shown in Fig. 1-(a), similar to the node-link diagram, we
display the unique dates horizontally as the x-axis. While each of the
bands refer to the individual animal movement, each of the blocks
represents a site rather than a node (which is further characterized
by a date). More precisely, instead of aligning a column of blocks to
indicate the sites on a specific date, we utilize the between-columns
to refer to a date. For each date , the column of blocks on the left
of its label represents the sites as the source in animal movements;
similarly, the column on the right describes the sites as the target
in animal movements. For example, as annotated in Fig. 1-(a), on
March 4th, we find three blocks on the left of the date label and
one block on its right. The blocks represent either the receiving
farms (target) on March 3rd or the sending farms (source) on March
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4th, depending on their associated animal movements, while the
receiving farm on March 4th refers to the block on the right of the
date label. We adopt the aforementioned visual encodings and user
interactions in this design, excluding the antibiotics history. We
also encode the bandwidth with the number of transported animals
per movement to highlight influential animal movements, e.g., large
animal movements involving farms with highly confident health
status inferences. However, compared to the node-link diagram, the
user can hardly track a specific farm over time due to the optimized
layout; thus, we adopt the node-link diagram as the default view
and provide a toggle for the user to switch between the two visual
representations.

We have described how we develop visualizations of the disease
outbreaks with the abstract layouts. Since some infectious diseases
can spread via airborne transmission, it is crucial to provide the
spatial context for performing analysis. We incorporate the geospa-
tial map to provide the user a geographical understanding of the
disease outbreaks. When a disease outbreak is selected, as shown
in Fig. 1-(d), we position all the involved farms as points, which
are colored based on site types, with the outbreak farm having a
larger point size. The map also displays other outbreaks for the same
disease as icons, as shown in Fig. 6-(b). Upon clicking on a specific
date label in the disease outbreak overview, we highlight the label
in bold and show the movements associated with the date as arrows
on the map, pointing from the sending farm to the receiving farm.
For instance, the label of March 10th is selected in Fig. 1-(c); thus,
three arrows are displayed on the map, each of which refer to each
of the highlighted three blocks in the disease outbreak view. When
hovering over the arrows, the points, or the icons, a tooltip provides
relevant details. With these functionalities, the user may inspect the
influence of the disease outbreak in terms of geospatial proximity.

4.4 Impact Quantification

Through these previous subsections, we have shown how the user can
analyze one disease outbreak and relate to information incorporated
from different aspects. However, it remains labor intensive if the
user has to go through hundreds or thousands of disease outbreaks
to gain a general understanding of the data.

Utilizing the nodes associated with the balanced health status
inferences, we develop two metrics to quantify the potential impact
of disease outbreaks. The first metric is Severity, that is the sum of
transferred animal counts from the involved trades, with the animal
count per trade being weighted by the corresponding health status
inference. For a retrospective trade, we take the inference of the
source node; otherwise, that of the target node. This metric allows
us to quickly highlight outbreaks that potentially affect the most
animals. Note that we exclude those movements with no inferences
in computing Severity. The second metric is Scale, that is the number
of visited nodes, regardless of the availability of their health status
inferences. While the algorithm may count a site multiple times
(i.e., the nodes of the same site on multiple dates), we choose not
to consider the number of the unique sites, in order to highlight the
outbreaks with higher disease exposure.

With Severity and Scale, we measure the potential impact of
disease outbreaks (DG4). We provide a pop-up menu on the visual
interface for the user to select a disease outbreak for analysis, as
shown in Fig. 1-(e). This menu records the general information of
an outbreak as follows — the site name, the date, the type of disease
or antimicrobial resistance, the Severity score, and the Scale score.
Sorting and filtering are provided for all of the columns, supporting
the user to efficiently locate their analysis interest, such as outbreaks
of the same disease at the same farm on different dates.

5 CASE STUDIES

In the previous section, we have introduced the visual components
and the user interactions in our system. We present three case studies
on the real-world swine production dataset described in Sect. 3.1.
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Figure 4: Revealing the risky movements through filtering and in-
terpreting the health status inferences. (a) The node-link diagram
of Outbreak A, happened at Farm SI; (b) The animal movements
involve the farms with health status inferences of over 60% confi-
dence; (c) The geospatial map shows no outbreak icons, indicating
that no other Rotavirus outbreaks happened during the search; (d)
The visual summary shows the three finishing farms with their health
status inferences, annotated by the authors for space efficiency; (e)
While Farm FAO is labelled positive, it has the actual record in March,
providing better validation as the record is dissimilar to those of the
healthy farms; (f) Despite the fact that Farm FI is inferred positive with
64% confidence, we find some of its records dissimilar to the healthy
farms; and (g) Using the same attribute in (f), we find Farm FCT is
diseased-leaning.

5.1 Case 1: Revealing risky movement

This case starts with the disease outbreak selection, dives into one
outbreak guided by the Severity metric, and uncovers the poten-
tially critical animal movements highlighted by the health status
inferences.

As annotated in Fig. 1-(e), when sorting the outbreaks in a de-
scending order of the Severity metric, we find a Rotavirus outbreak
on Farm SI on March 13th, 2020 with the highest Severity score of
19488, implying the expected number of affected pigs in this out-
break (DG4). Upon selecting this outbreak (addressed as Outbreak
A for simplicity), the disease outbreak view presents the relevant
animal movements in a node-link diagram, as shown in Fig. 4-(a).
In addition, Fig. 1-(c) shows the Sankey-based representation of
the same outbreak. From the geospatial map Fig. 4-(c), the lack
of the outbreak icons indicates that there was no other Rotavirus
outbreaks happened in the investigated time period, suggesting the
low possibility of infection from geographical proximity (DGS5).
While there are numeral animal movements shown to be potentially
affected by Outbreak A, we can barely analyze some of them (e.g.,
the retrospective movement example in Fig. 1-(a)) due to the lack
of the health status inferences (DG1). We can filter out movements
involving farms with health status inferences of low or no confi-
dence to highlight potentially critical movements (DGS5). By setting
the positive rate (i.e., confidence) to be no less than 60%, we con-
sequently find 6 movements involving 4 animal farms, one sow
farm (Farm SI) and three finishing farms (Farm FI, Farm FCT,
and Farm FAO), which happened during March 9th and March 16th,
as shown in Fig. 4-(b).

We can further inspect the computed health status inferences of
these farms to understand more about the potentially critical move-
ments. When hovering over the nodes of these three finishing farms
in the disease outbreak view, we may find their corresponding point
in the visual summary are also highlighted. We can further validate
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Figure 5: Comparing multiple Rotavirus outbreaks. (a) Through filter-
ing and sorting, the outbreak selection menu shows three Rotavirus
outbreaks, where Oubreak A is already explored in previous case;
(b1) and (b2) presents Outbreak B in a Sankey-based visualization
and a node-link diagram, respectively; and similarly, (c1) and (c2) are
for Outbreak C. For Outbreak B, in (b2), we observe that Farm FCL
may be crucial for being inferred with the highest confidence. For
Outbreak C, in both (c1) and (c2), we see no movements to Farm SF
prior to the outbreak. In (c2), we observe that while two farms are
inferred healthy, the other three farms are inferred diseased but with
low confidence.

the inferences of these three farms by selecting each of them in the
visual summary (DG2, DG3), as shown in Fig. 4-(d). As annotated
in the visual summary, Farm FAO has had positive diagnostic results,
indicated by the red point color. However, since the movement be-
tween itself and Farm ST happened rather earlier prior to Outbreak
A, our method balances the inference to be positive but with 92.1%
confidence. In Fig. 4-(e), we can see that Farm FAO has the actual
data record in March, which allows us to understand the inference
better by examining the comparison with those of other labelled
farms. As the data values of the healthy farms tend to be under $29
U.S. dollars, while those of the diseased farms can be more than $30,
we may trust that Farm FAO is likely positive in March, 2020. On
the other hand, despite their absent diagnostic history, Farm FI and
Farm FCT are inferred positive with 64.1% and 94.5% confidence,
respectively. When hovering over the same data attribute, i.e., the
average cost of ration with delivery included, Fig. 4-(f) and (g) show
that the records of Farm FI and Farm FCT are more similar to the
diseased farms than the healthy ones, which provides support to
high confidence behind the positive inferences. Note that for the
space efficiency, we are only able to provide one interpretation for
each finishing farm. The user can go through more data attributes to
determine the trustworthiness of these inferences.

After validating that the inferences are reasonable, we conjecture
that these critical movements together could affect the animal farms
as follows: Prior to the outbreak on March 13th, the sow farm, Farm
SI, sent animals to one finishing farm, Farm FCT, on March 10th
and to another finishing farm, Farm FI, both on March 9th and 1 1st.
Farm FCT sent animals to Farm SI on March 10th, while Farm FI
transported animals to Farm SI on March 13th. Posterior to the
outbreak, Farm ST sent animals to the other finishing farm, Farm
FAO, on March 16th. We have shown that these three finishing farms
are inferred to be likely positive as some of their financial records
are similar to the diseased farms than the healthy farms. Thus, we
understand better about Outbreak A that it may be associated with
these critical animal movements as well as the three finishing farms.
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5.2 Case 2: Comparing multiple outbreaks

In this case, we compare two Rotavirus outbreaks and investigate
their differences. After the user analyzed a disease outbreak, they
can explore other outbreaks through the disease selection menu
to continue their analysis. Filtered by the keyword provided by
the user, the menu displays three Rotavirus outbreaks (Fig. 5-(a)),
where Outbreak A is already discussed in the previous case. One
of the remaining two outbreaks (Outbreak B) happened at Farm
SJ on May 1st, 2020, whereas the other (Outbreak C) happened
at Farm SF on May 22nd, 2020. Compared to Outbreak A, we
find both Outbreak B and C have significantly lower Severity and
Scale scores. Meanwhile, in comparison to Outbreak B, the higher
Scale score of Outbreak C suggests that it involves more potentially
relevant animal movements while maintaining the lowest Severity
score among the three (DG4).

To understand the differences between Outbreak B and C, we
first start with the analysis of Outbreak B, which happened at Farm
SJ on May Ist, 2020. As observed in Fig. 5-(b2), the finishing farm
Farm FCL may have a strong association with Outbreak B as itis
inferred likely positive with 72.4% confidence, while those other
involved farms are with low confidence or have no record (DG3).
The user can further perform the same analysis in the previous case
to understand the inference of Farm FCL and determine if risky
movements exist. When we analyze Outbreak B in the Sankey-
based visualization, as shown in Fig. 5-(bl), the movement from
Farm FCL to Farm SJ prior to the outbreak involves much fewer
pigs; in contrast, the movements from Farm SJ tend to transport
more pigs to destinations (DG1). This finding reflects one common
management practice in the swine industry, the double stocking
strategy. While the double stocking strategy can enhance production
efficiency [42], the frequent deployment of such a strategy may
increase the likelihood of pathogen transmissions when the animals
are transported from different sources (farms).

We proceed to analyze Outbreak C, which occurred at Farm
SF on May 22nd, 2020. As seen in both Fig. 5-(c1) and (c2), we
find that there is no animal movement to Farm SF prior to the
outbreak, implying that the disease source may be irrelevant to
animal movement (DG1). Moreover, unlike Outbreak A and B,
the farms involved in this outbreak are inferred either healthy or
diseased but with less than 40% confidence (DG3). This finding
suggests that Outbreak C may have little influence on other farms
through animal movement (DGS). Compared to Outbreak A and B,
we could speculate that Farm SF may have implemented effective
prevention measures, such that the disease does not spread through
animal movement.

Through this analysis flow, we have gained the understanding of
Outbreak B and C as well as their differences. While additional
analysis is required for validation, Outbreak B may be associated
with one common management practice in the swine industry. Con-
versely, perhaps Farm SF in Outbreak Cis equipped with effective
infection control practices, since the disease source may be irrelevant
to animal movements, and the prospective movements involve no
farm with highly confident inferences.

5.3 Case 3: Identifying risky community of the farms

This case demonstrates a complete analysis flow for investigating
an outbreak, studies the potential disease source by analyzing farms
in geographical proximity, and understands the potential influence
of the outbreak on other farms by associating the farms’ antibiotic
history with their health status inferences. In the first case, we
investigated a Rotavirus outbreak (or Outbreak A) for its Severity
score being the highest. We now focus on another outbreak with the
second highest Severity score (DG4), as shown in Fig. 1-(e), which
is a Mycoplasma outbreak (addressed as Outbreak D) at Farm SI
on June 10th, 2020.

To gain a comprehensive understanding of Outbreak D, our first
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Figure 6: Investigate one Mycoplasma outbreak and identify a poten-
tially risky community. (a) The source of Outbreak C may be relevant
to two animal movements, (al1) and (a2); (b) The geospatial map
discloses other three recent Mycoplasma outbreaks. Particularly, one
outbreak at Farm FM is 8 days prior to the outbreak; (c) Upon select-
ing the date and zooming in, the movement (a2) takes place in the
proximity of Farm FM; (d) Critical animal movements filtered on 50%
confidence, with FBT and Farm FK inferred with over 80%. In addition,
(d1), (d2), and (d3) highlights that the antibiotics were administered
at three different finishing farms on June 11th, 2020; and (e) One
interpretation example that reveals the interpolated trend of Farm FBT
is diseased-leaning.

step is to look into what may be associated with the disease source
of the outbreak. From the disease outbreak view (Fig. 6-(a)), we find
that two animal movements, as annotated in Fig. 6-(al) and (a2), may
be relevant (DG1). The movement (al) happened two weeks prior to
Outbreak D and involved Farm FK that is inferred diseased with
low confidence due to the time balance; in contrast, the movement
(a2) from Farm FL happened 2 days prior to the outbreak, despite
no health status inference due to the lack of its financial reports.
The geospatial map reveals other three Mycoplasma outbreaks that
happened in the proximity of Farm SI during the investigated time
period, as indicated in Fig. 6-(b). While two of them happened
posterior to Outbreak D, the other is detected at Farm FM on June
2nd, 2020, 6 days prior to the outbreak. We further examine if
there is any relation between the two findings. By selecting the date
of June 8th in the disease outbreak view, our system presents the
animal movement (a2) in the geospatial map, as shown in Fig. 6-
(c). We observe that while Farm FL in the movement (a2) has
no health status inference, it is geographically close (4 miles or
6.48 kilometers) to the Mycoplasma outbreak at Farm FM (DGS).
According to and Otake et al. [32], besides nose-to-nose contact
among pigs, Mycoplasma can also be transmitted via aerosol over
several miles. This suggests that the surrounding area of Farm SI
may be under the risk of Mycoplasma infection.

Our next step is to investigate the farms that may be affected by
Outbreak D. We narrow down our analysis targets by filtering out
the movements involving inferences with less than 50% confidence
(DGS). As shown in Fig. 6-(d), three finishing farms (Farm FK,
Farm FBT, and Farm FCU) are likely under the influence due to
their highly confident inferences. We focus only on the analysis of
Farm FBT as one example, since we have demonstrated the inter-
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pretation process with multiple farms (Farm FK included) in Case 1
and Sect. 4.2. As shown in Fig. 6-(e), in terms of the feeding cost, the
trends of Farm FBT are more similar to those of the diseased farms,
supporting the high confidence behind its health status inference
(DG3). Moreover, the cross icon on June 11th (Fig. 6-(d3)) indi-
cates that Farm FBT administered antibiotics, Aivlosin and Excede.
Hovering over other cross icons on the same date, as annotated in
Fig. 6-(d1) and (d2), we find that Aivlosin was administered at Farm
FK and that Farm FBI administered Excede. One of the animal
health specialists explained that since Mycoplasma is a respiratory
disease, it is possible that a farm, being aware of the symptoms but
not the exact disease, treats for respiratory pathogens in general with
the antibiotics. While Aivlosin has been approved for Mycoplasma
control in swine [36], Excede is relevant to the control of other res-
piratory pathogens. This insight suggests that Farm FBT and Farm
FK may be aware of the outbreak already and have taken prevention
measures by administering antibiotics.

In this case, we have demonstrated how we can perform a com-
prehensive analysis of an outbreak by investigating the retrospective
and the prospective movements. We reveal a risky community of
farms, including Farm ST and Farm FM, by associating the animal
movements with the geospatial map and validate the health status
inferences with the antibiotic history.

6 EXPERT REVIEW

Our system was designed to support experts in performing essential
analysis tasks, as described in Sect. 3.2. Initially, the design goals
were derived through multiple meetings with three animal health
specialists. We subsequently presented our methodology along with
the first two use cases to nine field veterinarians who are constantly
working with swine production systems. In addition, this work
was presented at an online national exhibition to more than 2,000
registered participants, where many share the background in disease
prevention and control for either human health or animal health.
With all these expert reviews, we were thus able to refine our design.

Generally, we received positive feedback from all the domain
experts, who confirmed that the system effectively coordinates the
heterogeneous data to support disease outbreak investigations. The
three animal health specialists commented that the health status in-
ferences drive effective analysis, since the lack of diagnostic history
previously limited the capability of their analyses. In particular,
they added that the utilization of the financial reports improves the
applicability of our methodology in practice as it incorporates the
financial perspective into analysis to generate more insights.

We also received comments from the experts on potential im-
provements on the system. The three animal health specialists liked
how we provide the interpretations to the health status inferences;
however, one of them felt the group characteristic component (i.e.,
the heatmap in Fig. 1-(b)) was overwhelming without any guidance
provided. While the contribution values summarize the general
trends of the diseased and healthy farms (e.g., on one attribute, the
diseased farms tend to have higher data values than the healthy
farms), these values do not effectively highlight the attributes that
are most relevant to the inferences of the selected farm. Another
specialist thus suggested that we could provide an attribute filter
that prioritizes attributes where the diseased or healthy farms show
a decreasing/increasing trend in the temporal records. For the tech-
nical aspect, one computer science researcher wondered whether
the visual summary can include unseen data, while one field veteri-
narian was curious about the computation time of generating the
visual summary. In our experience, with the default hyperparame-
ters in FEALM-UMAP, it takes FEALM-UMAP around 3 minutes
to explore the latent features of the data attributes. However, as
FEALM-UMAP is a nonlinear DR method, we are required to re-
compute the visual summary to include unseen data. Finally, the
other field veterinarian was further interested in extending our work

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on January 22,2024 at 18:05:54 UTC from IEEE Xplore. Restrictions apply.



to investigate control strategies in response to disease outbreaks,
where one expert in disease prevention and control mentioned the
potential incorporation of spatial analysis into our work.

Overall, the participants agreed that the analysis tasks that our
system supports are essential. We plan to extend the system function-
alities using another newly obtained real-world production dataset,
which involves a larger community of farms and provides more data
entries. Our top two priorities are: (1) extending the health status in-
ferences to be disease-aware; (2) highlighting crucial interpretations
relevant to a selected farm and improving the design of our group
characteristic component. One of our long-term goals is to integrate
the capabilities of our system into Disease Bioportal [40] to support
swine producers and field veterinarians in near real-time fashion.

7 DiscussioN

We have demonstrated the effectiveness of our current system with
the analysis examples and the expert review. Here we discuss the
essential topics relevant to such a visual analytics system in practice.
Generalizability. Our methodology employs DR to infer the
health status of the farms from their financial reports, despite the
absence of their diagnostic history. This visual analytics approach
is an alternative to solving the prediction problem when supervised
techniques are not an option. With these health status inferences
of the farms, we contextualize the disease outbreak investigations
and develop two metrics that measure the potential influence of an
outbreak. These two metrics provide intuitive interpretations and
guide the user in locating their analysis interest efficiently, as shown
in Sect. 5. This concept can inspire researchers to provide analysis
guidance in the system. Finally, our workflow demonstrates how
we work with limited heterogeneous data in a visual interface of
coordinated views to support the user in performing valid analyses.
Lessons learned. From the collaboration with animal health spe-
cialists and the review from other domain experts, we have learned
how we can further improve the applicability of our system in prac-
tice. The first is reducing the model interpretation cost. As described
in Sect. 6, the experts confirm that while the interpretations are help-
ful, it is overwhelming for them to explore the group characteristic
component. Besides our plan to provide more visual guidance to sup-
port their exploration, future work can explore the automatic summa-
rization of the interpretations. The second is advancing exploratory
analysis. We develop visualizations that are not over-complicated
and encompass important information for driving effective visual
analysis. In Sect. 5, we have shown how the user can utilize our
system to explore and analyze different outbreaks. However, the ulti-
mate goal of our system is to assist our target users, swine producers
and field veterinarians, in their decision making. Once the user has
gained trust in our system, they may prefer examining the analysis
outcome directly due to time efficiency. It would be interesting to
see how we can automate the analysis process in a visual analytics
system and consequently generate a visual summary [6].
Spatiality and temporality. One limitation of our health status
inferences is the lack of consideration of the continuity among
different time points and locations. As some disease pathogens
can transmit via aerosol or survive over varying time periods, it is
possible that a farm gets infected by its neighborhood or at farther
time points. However, for temporality, the sparse and irregular
sampling intervals (mostly 3 or 4 out of 12 time points per farm) have
imposed the difficulty of performing functional data analysis or data
imputation. As described in Sect. 4.2, we design a tooltip, presenting
the temporal distribution of farms per attribute, to provide temporal
context to the user when performing analysis.  In the disease
outbreak overview, we also balance the health status inferences to
highlight the animal movements that are most recent to the disease
outbreak. With more time points in the future, besides functional
analysis, we may employ other methods to extend our health status
inferences, such as MulTiDR [17], a DR framework that considers
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the temporal context of the data, or dynamic mode decomposition.
To complement the spatiality consideration, our system displays
recent outbreak icons of the same disease on the geospatial map
to raise the awareness of geographical proximity. We can extend
our health status inferences to be spatially aware. For instance, we
may balance the inference with the interpolation computed from
the neighboring farms, which are faced with recent outbreaks of the
same disease. While it requires expert curation to determine the
neighborhood range for each disease (the transmissibility is disease-
specific), future work can investigate the incorporation of spatial
pattern analysis for its capability of automatically revealing spatial
patterns such as a community of farms under the infection risk.

Uncertainty in health status inferences. We provide a sys-
tematic method, driven by k-nearest neighbors, that computes and
aggregates the importance of the labelled points to the given entity
as a probabilistic number for the health inference. Here, we discuss
uncertainty derived from limited data and distortions in DR.

One assumption for the health status inference is the impact of the
diseases reflects on some attributes in the financial reports, regardless
of the types of infectious diseases. As mentioned in Sect. 6, while
we plan to extend our methodology to be disease-aware, we should
address one subsequent issue — how to maintain the reliability of
the inferences when there are less effective results for a disease?
Our system incorporates the farms’ antibiotic history, one prevention
measure for disease control, for analysis validation. Since each of
the antibiotics is effective against certain infectious diseases, their
administration history can inform which farms have been aware of
the presence of certain diseases or symptoms.

There exists inherent uncertainty in DR projections due to algo-
rithm accuracy. Inaccurate DR projections may degrade the reliabil-
ity of the inferences, since entities of similar data now may not be
placed in close proximity in DR projections. Several works [21,39]
have been dedicated to addressing the distortion issue by introduc-
ing novel interaction techniques; that is to inform the relocation of
the points as they are missing or false neighbors. However, their
learnability may impose cognitive burden on our target users, swine
producers and field veterinarians, whose expertise tend not to in-
clude DR analysis. To maintain the intuition for performing visual
analysis, we design the group characteristic component to provide
interpretations instead, as described in Sect. 4.2.

8 CONCLUSION

We have introduced a visual analytics interface that supports an-
imal disease outbreak investigations by analyzing heterogeneous
spatio-temporal multivariate data. The analysis relies on an effective
coupling of machine learning and visualization methods. Through
this interface, we infer the health status of farms with uncertainty
and interpretability, despite the absence of their medical information.
This capability enables the impact quantification that guides the user
toward analyzing important outbreaks. As demonstrated with three
case studies, our system facilitates efficient and effective analysis in
animal disease surveillance.
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