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ABSTRACT

Dimensionality reduction (DR) plays a vital role in the visual analy-
sis of high-dimensional data. One main aim of DR is to reveal hidden
patterns that lie on intrinsic low-dimensional manifolds. However,
DR often overlooks important patterns when the manifolds are dis-
torted or masked by certain influential data attributes. This paper
presents a feature learning framework, FEALM, designed to gener-
ate a set of optimized data projections for nonlinear DR in order to
capture important patterns in the hidden manifolds. These projec-
tions produce maximally different nearest-neighbor graphs so that
resultant DR outcomes are significantly different. To achieve such a
capability, we design an optimization algorithm as well as introduce
a new graph dissimilarity measure, named neighbor-shape dissimi-
larity. Additionally, we develop interactive visualizations to assist
comparison of obtained DR results and interpretation of each DR
result. We demonstrate FEALM’s effectiveness through experiments
and case studies using synthetic and real-world datasets.

Keywords: Dimensionality reduction, feature learning, network
comparison, Nelder-Mead optimization, UMAP, visual analytics.

1 INTRODUCTION

High-dimensional data can contain a rich set of observations mea-
sured from phenomena. Dimensionality reduction (DR) constitutes
a tool for the understanding of the phenomena by visually reveal-
ing patterns in the data and facilitating human interpretation of the
patterns [4, 10, 34], leading to important and fundamental insights.
Among others, nonlinear DR, such as t-SNE [40] and UMAP [28],
is especially helpful when the patterns are hidden in nonlinear struc-
tures (or manifolds) and infeasible to be found from conventional
depictions of data (e.g., with scatterplot matrices, heatmaps, and
parallel coordinates [26]).

However, the nonlinear DR process is sensitive to an attribute’s
influence on manifolds. While nonlinear DR is commonly applied to
all available attributes, it may fail to capture patterns underlying man-
ifolds that are apparent only in a particular subset of attributes [23].
A similar problem also happens when manifolds are entangled by
the relationships among attributes. Although researchers have in-
vestigated the effect of attribute selection on linear DR results [36],
there is a lack of studies dealing with nonlinear DR as well as the
case where manifolds are entangled.

In this work, we complement nonlinear DR methods to enable
them to extract various important patterns existing in the manifolds
embedded in the attributes or combinations of attributes. We first
demonstrate that nonlinear DR suffers from the aforementioned
problems even when a trivial change in data, such as the inclusion of
one additional attribute, is made. We then present a feature learning
framework, FEALM, designed to discover latent features of data,
with which nonlinear DR produces significantly different results
from the one using all the available attributes as they are. These la-
tent features can be constructed with a linear projection that is equiv-
alent to a combination of data scaling and transformation, which
are commonly used for data preprocessing [14]. FEALM’s feature
learning is performed through the maximization of the differences
between data representations (e.g., nearest neighbor graphs) highly
related to nonlinear DR results. Within this framework, we design an
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exemplifying method for UMAP. We develop an algorithm utilizing
the Nelder-Mead optimization method (NMM) [13] to find latent
features to produce maximally different nearest-neighbor graphs,
which are intermediate products of UMAP, and consequently gener-
ate diverse UMAP results. To detect the difference of the graphs, we
introduce a new graph dissimilarity measure, called neighbor-shape
dissimilarity (or NSD). Using this method, analysts can find multi-
ple relevant UMAP results that are difficult to find through manual
preprocessing of data.

We further develop an interactive visual interface to allow an-
alysts to flexibly seek more patterns and gain insights from them.
The interface depicts the similarities of DR results generated during
the optimization process to notify unexplored embeddings. Also,
through brushing and linking, analysts can conveniently compare
multiple DR results. To help review each DR result, our inter-
face integrates an existing contrastive-learning-based interpretation
method [10], which highlights characteristics of a group of instances
through comparison with others.

We demonstrate the effectiveness of FEALM, the exemplifying
method, and the visual interface through experiments using synthetic
datasets and multiple case studies on real-world datasets. We also
conduct a performance evaluation to assess the efficiency of NSD
and the optimization algorithm. We provide a demonstration video
of the interface, detailed evaluation results, and the source code of
FEALM in the supplementary material [1].

In summary, we consider our primary contributions to be:
• a feature learning framework, FEALM, designed to extract a set

of latent features for nonlinear DR, each of which produces a
significantly different DR result;

• an exemplifying method for UMAP, where we introduce an NMM-
based algorithm as well as a graph dissimilarity measure, NSD;

• a visual interface that assists exploration of DR results and inter-
pretation of each DR result; and

• designed examples that illustrate nonlinear DR’s sensitiveness to
trivial disturbance to intrinsic manifolds.

2 RELATED WORK

Our work supplements existing DR methods by learning appropriate
features from high-dimensional data. Our feature learning explores
various linear subspaces of the original data to generate significantly
different DR results. We provide the background and relevant works
in DR methods and subspace exploration.

2.1 Dimensionality Reduction Methods
DR is widely used for visual exploration of high-dimensional
data [30,34]. Many visualization-purpose DR methods aim to reveal
overall data distributions (e.g., variances with principal component
analysis, or PCA) or patterns (e.g., clusters in t-SNE results [10,40])
in a low-dimensional space. When only performing a linear projec-
tion [6], a DR method is categorized as linear DR. More precisely, it
produces an embedding (or representation), Y, from input data, X,
with Y = XP, where Y∈Rn×m′

, X∈Rn×m, P∈Rm×m′
, and n, m, m′

are the numbers of instances, attributes, and latent features, respec-
tively. For example, PCA is a well-known linear DR method. While
linear DR only captures the linear structure of X, nonlinear DR can
uncover the nonlinear structure [42]. For example, t-SNE [40] and
UMAP [28] aim to preserve local neighborhoods of each instance,
which is often difficult when relying only on a linear projection.
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Despite the frequent use of the aforementioned DR methods for
visual analytics [34], they may fail to show important patterns when
data contains noises or influential attributes to the overall data dis-
tribution. Several DR methods have been developed to address this
limitation. For example, discriminant analysis [6, 17], such as linear
discriminant analysis (LDA), utilizes class information to reduce
noises that are irrelevant to class separation. Contrastive learn-
ing [2], such as contrastive PCA, compares two datasets to reveal
patterns that are more salient in one dataset when compared to an-
other. Unified linear comparative analysis [12] flexibly incorporates
the strengths of both discriminant analysis and contrastive learning.
However, all these methods require additional information (e.g.,
class labels) and focus only on revealing patterns related to a well-
defined analysis interest (e.g., classification). Thus, these methods
would not be suitable when performing an early-stage exploration
without complete knowledge of data and/or expected findings, which
is an important task that visual analytics should support.

Other than visualization, some of DR methods can be utilized for
feature selection and feature learning [49]. For example, PCA and
LDA are frequently used in data preprocessing for subsequent ma-
chine learning (ML) methods, such as deep neural networks or even
other DR methods (e.g., t-SNE), as reducing dimensions is helpful
to avoid high computational costs and the curse of dimensionality.
As shown in a comprehensive survey by Zebari et al. [49], a large
portion of this type of DR targets classification tasks.

FEALM can be seen as an unsupervised linear DR method for
feature learning. We design FEALM to preprocess data to produce
significantly different nonlinear DR results from one obtained using
original data as is. FEALM does not require additional information,
such as class labels; thus, it supports an early-stage exploration.

2.2 Exploration of Axis-Parallel Subspaces
There are two major types of subspaces: axis-parallel subspaces
and linear subspaces. Axis-parallel subspaces are composed of a
subset of original data attributes. Thus, there are 2m subspaces we
can explore. On the other hand, linear subspaces consist of axes
obtained through linear projections of original data. Although linear
subspaces embrace axis-parallel subspaces, here we only describe
studies on axis-parallel subspaces and the rest in Sec. 2.3.

Scatterplot matrices and parallel coordinates are classic visual-
izations to explore axis-parallel subspaces [26]. A set of methods
have been developed to improve these visualizations’ scalability and
usability [45,47]. In response to the increase in the available number
of attributes, more efforts have been devoted to comparing a large set
of subspaces. A common approach is finding meaningful subspaces
with subspace selection, visualizing each subspace’s dissimilarity,
and informing patterns seen in each subspace with DR [19, 37, 43].
While this approach uses DR to understand subspaces, Sun et al. [36]
investigated subspace selection’s influences on PCA and multidi-
mensional scaling (MDS) results. More comprehensive descriptions
of relevant works can be found in a survey by Liu et al. [26].

Subspace clustering [23, 31] in the ML field shares a closely
related concept with our work. Subspace clustering aims to find clus-
ters within axis-parallel subspaces. By limiting the use of data to a
subset of attributes, subspace clustering can uncover clusters that are
masked by irrelevant attributes. Note that, in the visualization field,
“subspace clustering” is often confusingly used to represent cluster-
ing of subspaces; however, in standard ML terminology, subspace
clustering performs clustering within axis-parallel subspaces.

Our work seeks subspaces that produce significantly different
nonlinear DR results to reveal hidden patterns. The work by Sun
et al. [36] and subspace clustering methods [23, 31] are closely
related to our work in terms of analyzing the subspace change’s
influence on data patterns. However, our work is for the use with
nonlinear DR methods and provides optimization and visualization
methods to find appropriate linear subspaces, which are not limited
to axis-parallel subspaces.

2.3 Exploration of Linear Subspaces
To show high-dimensional data distributions in a selected 2D linear
subspace, scatterplots and star coordinates are often used with in-
teractive enhancements [26, 44]. We can see linear DR as a method
that selects a view suitable to see some characteristics of data (e.g.,
variance with PCA) [15]. Various interactive adjustment methods for
linear DR have been introduced, as summarized in surveys [30, 34].

When dealing with many attributes, manually finding informa-
tive subspaces becomes almost infeasible. Thus, researchers have
designed (semi)automatic and visual recommendations. For ex-
ample, Wang et al. [44] utilized LDA to suggest star coordinates
that show clear cluster separations. Zhou et al. [50] visualized the
similarities of original attributes as well as 1D subspaces to help
analysts construct interesting subspaces. Gleicher et al. [15] utilized
support-vector machines to suggest simple linear subspaces that
satisfy specifications provided by analysts. Grassmannian Atlas [25]
provides an overview of projection qualities (e.g., skewness) of all
2D subspaces sampled from the Grassmannian manifold. Lehmann
and Theisel [24] developed an optimization method to provide a set
of 2D subspaces that are significantly different from each other.

Lehmann and Theisel’s work [24] is the most related work as they
also aimed to mine various patterns in different subspaces. While
theirs only finds and visualizes 2D subspaces(i.e., equivalent to linear
DR onto 2D planes), ours searches multidimensional subspaces and
uses them as nonlinear DR inputs to uncover patterns hidden in
complex data.

3 MOTIVATING EXAMPLES

Using UMAP [28] as a representative nonlinear DR method, we pro-
vide concrete cases where nonlinear DR misses important patterns.
The datasets that we created, source code for the data generation,
and comprehensive experiment results are made available in the sup-
plementary materials [1]. As shown in Fig. 1-a, we first generated a
dataset with three attributes, with which instances are placed around
two different spherical surfaces. This dataset has approximately 200
blue (Sphere 1) and 100 orange (Sphere 2) instances. The inner
sphere corresponding to Sphere 2 has a radius with 40% length of
the outer sphere’s radius. Also, small noises following a normal
distribution are added for the placement of each instance.

When visualizing this dataset in a 2D space, linear DR can only
produce a plane cut of the 3D spheres; consequently, we cannot see a
clear distinction between them (see Fig. 1-b). Any linear DR causes
a similar issue when data has curved shapes, such as those in the
Swiss-Rolls dataset [32]. On the other hand, nonlinear DR methods
that aim to preserve each instance’s local neighbors such as t-SNE
and UMAP can separate Spheres 1 and 2, as shown in Fig. 1-c.

However, even nonlinear DR easily fails to find important patterns
when some attributes affect manifolds that contain the corresponding
patterns. This situation can happen even with subtle changes in a
dataset. To illustrate this, as shown in Fig. 1-d, we generated a new
dataset by adding one attribute that has three classes (Classes A–
C) having clearly different values. We shuffled the order of the
3-class attribute’s instances (i.e., there are no correspondence among
Spheres 1–2 and Classes A–C). Also, we applied the Z-score nor-
malization for each attribute to follow the standard preprocessing
for DR [14] and to avoid creating strong influences from the 3-class
attribute. UMAP results for this dataset are presented in Fig. 1-e, f.
We can see that UMAP does not show the separation of Spheres 1
and 2 anymore. Moreover, UMAP does not clearly distinguish
Classes A–C either. Similar issues happen even when using other
nonlinear DR methods, such as t-SNE. Also, hyperparameter adjust-
ments of UMAP, such as k used for the k-nearest neighbor (k-NN)
graph construction, cannot solve this issue as the manifold itself is
distorted (for details, refer to [1]).

The issue seen in this dataset (Fig. 1-d) can be solved by assigning
larger weights to the 2-sphere attributes (or excluding the 3-class
attribute), which leads to a clear separation of Spheres 1–2. Simi-
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Figure 1: Three datasets (a,d,g) and corresponding DR results: PCA
(b) and UMAP (c,e,f,h,i).

larly, by assigning a large weight only to the 3-class attribute, DR
can find Classes A–C. In fact, our method for UMAP, which we
introduce in Sec. 5, can reveal these two patterns by automatically
adjusting the weights. Fig. 2 shows three examples suggested by our
method. The results are produced with the same UMAP’s hyperpa-
rameters as those used in Fig. 1-e. In Fig. 2-c1, by using a relatively
small weight for the 3-class attribute (i.e., 0.2), UMAP shows clear
clusters of Spheres 1–2. Similarly, Fig. 2-b2 shows three clusters
of Classes A–C by assigning the 3-class attribute a large weight.

The above issue can be more complicated when patterns are
entangled in multiple attributes’ relationships. We create a dataset
exhibiting such a case by adding 20% portions of the 3-class attribute
values into one of the 2-sphere attributes and then applying the
Z-score normalization again, as described in Fig. 1-g. This type
of entanglements can be found in, for example, income statistics
partially influenced by age and a political opinion influenced by a
voter’s general ideology. The attribute weighting or selection cannot
resolve the issue in this dataset. Fig. 3-a1, a2 show UMAP results
on this dataset after removing the 3-class attribute, which still do not
show the separation of Spheres 1–2. This can be solved by learning
latent features by our method. The right two columns of Fig. 3 show
a subset of the generated UMAP results. We can see b1 and c2
clearly separate Spheres 1–2 and Classes A–C, respectively.

The above examples demonstrate that nonlinear DR can easily
overlook important, obvious data patterns when certain attributes
influence intrinsic manifolds—even a single attribute can cause this
situation. While the examples are the case for finding distinct data
groups, similar issues can happen even when finding, for example,
continuous value changes on manifolds as in the Swiss-Rolls dataset.

4 FEALM FRAMEWORK
We introduce a feature learning framework, FEALM, to address the
stated issues in nonlinear DR. We name the framework FEALM
because it performs FEAture Learning to capture or film patterns
underlying hidden Manifolds. As the problem can be overly com-
plicated based on the combinations of DR methods, their hyperpa-

Figure 2: UMAP results of the dataset shown in Fig. 1-d after using
our feature learning method. w shows the attribute weights.

Figure 3: UMAP results of the dataset shown in Fig. 1-g after selecting
only the first three attributes (a) and using our feature learning (b,c).

rameters, and hidden manifolds we should consider, we first specify
our scope. We then describe the architecture of FEALM, where op-
timized projection matrices are generated with the following steps:
(1) constructing a (graph) representation of data, (2) performing
optimization to find a projection matrix with which a (graph) rep-
resentation corresponding to projected data is maximally different
from the one constructed in the first step, and (3) repeating the opti-
mized projection matrix generation to produce a maximally different
(graph) representation from those obtained so far.

4.1 Problem Scope
FEALM aims to supplement nonlinear DR methods, even more
specifically, for those construct a graph-based data representation as
their intermediate product or those generate DR results highly related
to a graph-based data representation. This scope is reasonable and
still provides enough flexibility in FEALM because many DR meth-
ods can be considered graph-based [28, 46]. Such methods include
MDS, the Barnes-Hut t-SNE (common t-SNE implementation) [40],
and UMAP [28]. For example, MDS constructs a dissimilarity
matrix of instances, which can be converted to a kernel/similarity
matrix—corresponding to a weighted graph where nodes and edges
represent instances and their similarities, respectively. The Barnes-
Hut t-SNE and UMAP perform DR based on a similarity/weighted
graph derived from the k-NN graph of instances.

FEALM searches significantly different DR results for a given
DR method with given hyperparameters. FEALM is not designed to
select a DR method nor hyperparameters to reveal hidden patterns.

FEALM can only find patterns underlying (nonlinear) manifolds
that exist in a linear subspace of the original data. We set this scope
because of two reasons. First, we do not want to allow unintuitive or
excessive data manipulation not only to provide more interpretable
data preprocessing but also to avoid leading to false patterns as much
as possible. A linear projection only allows a set of linear transfor-
mations that can be converted into a single matrix multiplication
(i.e., Y = XP, as described in Sec. 2.1). Based on analysts’ demands,
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FEALM’s linear projection can be limited to data scaling (or at-
tribute weighting), orthogonal transformation, and a combination
of both, all of which are commonly used for data preprocessing.
Second, it is computationally challenging to handle manifolds that
cannot be uncovered even by applying linear projections to the data.
Such manifolds might be able to be found, for example, by utilizing
neural networks; however, it requires expensive parameter tuning.

4.2 Optimization Architecture
We describe the architecture of FEALM designed with considera-
tions of flexibility and computational efficiency.
Forms of the problem. For input data, X ∈ R

n×m (n, m: the num-
bers of instances and attributes), latent features can be computed
with XPi, where Pi ∈ R

m×m′
(m′ is the number of latent features and

m′ ≤ m) is a projection matrix. With fDR, a function that performs
DR with a given method and hyperparameters, we can obtain a DR
result or representation, Yi, i.e., Yi= fDR(XPi). We can measure a
dissimilarity of two DR results, Yi and Y j, with a certain function,
dDR(Yi,Y j) (e.g., the Frobenius norm). This expression shows that
the “difference” in DR results can be varied by dDR, and it should
be selected based on general analytical interests. Let Y0 denote a
DR result using X as is (i.e., Y0= fDR(X)). Then, we can write an
optimization problem to find P1 that generates Y1 maximally dif-
ferent from Y0 as: argmaxP1

dDR(Y1,Y0). When iteratively finding
a new projection matrix, Pi+1, we want to find one that generates
Yi+1 maximally different from a set of DR results already produced,
Yi={Y0, · · · ,Yi}. With some reduce function, Φ (e.g., mean), the
problem of finding Pi+1 can be written as:

argmax
Pi+1

Φ(dDR (Yi+1,Y0) , · · · ,dDR (Yi+1,Yi)) . (1)

Note that Eq. 1 shares some similarities with the one presented
by Lehmann and Theisel [24]. However, their optimization is only
to produce 2D linear DR results, and their case limits to Yi=XPi
(Pi ∈ R

m×2). Also, they only use the extended version of the Pro-
crustes distance [16] and Frobenius norm as a combination of dDR

and Φ (for more details, refer to [24]). FEALM can be used for non-
linear DR and provides flexibility for each function choice. For Φ,
rather than computing a norm or maximum, we recommend taking a
minimum of dissimilarities (i.e., Eq. 1 maximizes the minimum of
dissimilarities). With this, we can find a DR result that is different
from all the existing results and avoid a case where the optimization
keeps producing the same or similar results (e.g., a case where Y0

has an extremely larger dissimilarity with Y1 than with other poten-
tial DR results). We provide a graphical explanation of such a case
in the supplementary materials [1].

While Eq. 1 is a straightforward description of our goal, directly
performing this optimization for nonlinear DR methods is often dif-
ficult due to two-folded reasons. First, fDR is often computationally
expensive. For example, UMAP took 5 seconds to produce Fig. 1-h
from the data containing only 300 instances and 4 attributes. If the
optimization requires many evaluations/trials, completion time can
easily surpass several hours (e.g., about 1.5 hours for 1000 eval-
uations). Second, popularly used nonlinear DR methods such as
t-SNE and UMAP contain randomness in fDR. For example, random
initialization of a representation (as in t-SNE) or random sampling
during the optimization (as in UMAP) highly influences the final
result [22]. Consequently, it becomes difficult to adjust Pi during
the optimization—when the objective value of Eq. 1 becomes better,
we do not know whether it is the improvement from changes in Pi
or caused by the randomness in fDR.

Thus, FEALM also introduces an optimization problem that max-
imizes the differences among graph representations of data. We can
use graph representations that are the same as or similar to interme-
diate products of given DR. This optimization is based on a general
observation: if such graph representations have maximal differences,
derived DR results are also significantly different. Let fGr denote
a function that generates some graph (e.g., k-NN graph, similarity

matrix) from an input matrix. Then, a graph, Gi, corresponding to Pi
can be obtained with Gi = fGr(XPi). Also, we denote a function that
measures a dissimilarity of two graphs, Gi and G j, by dGr(Gi,G j).
With a set of already produced graphs, Gi = {G0, · · · ,Gi}, we can
write a relaxed version of the optimization problem:

argmax
Pi+1

Φ(dGr(Gi+1,G0), · · · ,dGr(Gi+1,Gi)). (2)

When developing a method within FEALM, we can choose Eq. 1
or 2 based on the characteristics of a DR method, such as the com-
putational efficiency and stability. We can also use Eq. 1 and 2 in
a hybrid manner. For example, we can generate a large number of
projection matrices with Eq. 2 and then filter them with Eq. 1 to
obtain refined results.
Constraints on a linear projection. Another important considera-
tion of the optimization is the constraints on Pi. We should decide
the constraints based on data manipulation allowed for an analysis
goal and the optimization difficulty for a given dataset (Sec. 6 pro-
vides the detailed discussions). Here we list representative options:
(1) no constraint; (2) allowing only data scaling; (3) allowing data
scaling and orthogonal transformation. With any option, we can
interpret how data is transformed by reviewing values in Pi.

When there is (1) no constraint in a projection matrix, P, FEALM
most flexibly learns features. However, as orthogonality between
each learned feature is not guaranteed, distance-related functions
(e.g., k-NN graph construction using the Euclidean distance) might
be heavily influenced by the distortion. Also, the optimization needs
to search the best values for m×m′ parameters in P.

When (2) allowing only data scaling, P = diag(w) (i.e., with XP,
each column of X is multiplied by the corresponding weight in w)
where w is an m-dimensional vector. Practically, we can restrict
w =

√
mu where u is a unit vector. When u consists of uniform

values, w = (1 · · ·1)� (i.e., no scaling). Then, w can be identified
by searching a unit vector. This constraint is used when generating
the results in Fig. 2. As this search is only on m parameters, finding
the best P is much easier than the case with no constraint.

The last constraint (3) can be written as P = diag(w)Mdiag(v),
where M ∈ R

m×m′
is an orthogonal matrix (i.e., M�M = Im′ ; Im′ is an

m′×m′ identity matrix) and v is an m′-dimensional vector. Here M
ensures that Mdiag(v) generates orthogonal features of Xdiag(w).
And, v weights the features to control their influence on a projection.
Similar to w, we can decompose v with v =

√
m′u′, where u′ is a unit

vector. A projection under this constraint resembles a combination
of standard preprocessing steps (i.e., data scaling and orthogonal
data transformation). This constraint still needs to find the best
values for m×m′ parameters.
Regularization. To control how strongly P can be of uniform or non-
uniform values, we can optionally apply regularization by adding a
penalty term into Eq. 1 or Eq. 2. When applying data scaling (i.e.,
P = diag(w)), we can add an L1-norm-based penalty: −λ1 ‖w‖1
(λ1∈R). As λ1 becomes a larger positive value, the optimization
tends to produce w with nonuniform values. On the other hand, by
using large negative λ1, w can consist of more uniform values (e.g.,
when λ1=−∞, w becomes (1 · · ·1)�). Using negative λ1 is espe-
cially effective when we want to avoid generating dissimilar graphs,
Gi (or dissimilar DR results, Yi), that can be derived from a selection
of few attributes (e.g., when analyzing binary or ordinal data). Note
that the L2 norm of w is always constant (i.e., ‖w‖2=

√
m) and is

not suitable for this regularization.
For the other cases (e.g., P = diag(w)Mdiag(v)), similar

to the above, we can control the sparsity of P with the
L1-norm-based penalty: −λ11�m|P|1m′ where 1m=(1· · ·1)�∈Rm,
1m′=(1· · ·1)�∈Rm′

, and 1�m|P|1m′ is the sum of all elements of
|P|. To further regulate the difference of each column in P, we
can add a penalty based on the sum of each P row’s L2 norm:
−λ21�m((P◦P)1m′)1/2 where λ2 ∈ R and ◦ is the Hadamard prod-
uct. With large negative λ2, FEALM generates P in which each
attribute has diverse weights across columns, and vice versa. Note
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that the sum of each P row’s L1 norm is equal to the sum of each P
column’s L1 norm; thus, the L2 norm should be used to control the
differences in the columns.
General optimization strategies. Eq. 1 and 2 can be considered
as the optimization over manifolds (or often called manifold opti-
mization) [6, 38]. For example, for the no-constraint option (1), P
can be found from the Euclidean manifold. A solution under the
constraint (2) is derived by finding u from a unit sphere manifold.
Lastly, for the constraint (3), we can find u, u′ from unit sphere man-
ifolds and M from the Grassmann manifold [38] that is a manifold
of m′-dimensional subspaces of m-dimensional space. To perform
manifold optimization, we can utilize existing libraries, such as
Pymanopt [38]. These libraries can help us, for example, generate
parameters on a specified manifold.

To solve the optimization, when all functions involved in Eq. 1
(or Eq. 2) are differentiable, we can utilize automatic differentiation
together with a solver for differentiable functions (e.g., gradient
descent) through existing libraries [38]. When some functions are
not differentiable (e.g., k-NN graph construction), we can use a
derivative-free solver, such as the NMM.

In addition to the problem, constraints, and solver, we need to
select or design fGr, dGr, and/or dDR based on a DR method.

5 EXEMPLIFYING METHOD
We design an exemplifying method for UMAP, using FEALM. In the
rest of the paper, we denote this method FEALM-UMAP. We chose
UMAP because it is computationally rather efficient (e.g., when
compared with t-SNE) [28] and frequently used for visualization in
various applications [7, 11, 22]. The specific designs for UMAP can
also be generalized and easily adapted to other DR methods. For
example, we expect that a method for t-SNE can be developed based
on FEALM-UMAP with minor adjustments in fGr.

5.1 Graph Generation Function
UMAP processes data in two steps: graph construction and graph
layout. Through iterative optimization, the graph layout process
performs the placement of instances (often in 2D) based on a con-
structed graph. This iterative optimization involves random sampling
and expensive computations. Thus, we design a method using Eq. 2,
which requires fGr and dGr. During the graph construction process,
UMAP computes the instance dissimilarities (by default, using the
Euclidean distance) and then produces a k-NN graph based on the
dissimilarities. Afterward, UMAP constructs a fuzzy graph, which is
a weighted graph where the dissimilarities are converted to the fuzzy
topological representation (refer to [28] for details). From this fact,
fGr can be the generation of a k-NN or fuzzy graph. While a fuzzy
graph contains richer information of instances’ relationships, many
of the state-of-the-art graph dissimilarity measures, including those
we utilize to design our measure, are only available for unweighted
graphs [27]. Therefore, we use fGr that generates a k-NN graph;
however, we can replace this with a fuzzy graph once dGr suitable
for weighted graphs is developed.

5.2 Graph Dissimilarity Measure
We can select a dissimilarity measure for unweighted graphs based
on analysis interest. When using nonlinear DR for visualization,
however, we usually want to reveal patterns that are visually appar-
ent and related to the instances’ neighborhood relationships (i.e.,
shape and neighbors), such as clusters and outliers [30]. Another
critical consideration is computational efficiency as graph compari-
son itself is often expensive. But, it is difficult to judge only based
on theoretical time complexity because of their detailed implemen-
tation differences (e.g., requiring only fast matrix operations or slow
iterative loops). Based on our experiments (see Sec. C.2 in our sup-
plementary materials [1]), we identify that NetLSD [39] can better
capture differences of graph shapes with a greatly shorter runtime
than many other measures available in a library of graph dissimilari-
ties [27]. With the eigenvalue-based approximation [39], NetLSD’s

Figure 4: UMAP results of the dataset shown in Fig. 1-d, using the
same settings with Fig. 2 except for dGr. While Fig. 2 is generated
with NSD, here we use NetLSD (a) and the neighbor dissimilarity (b).

time complexity is O(qkn+q2n), where q is the total number of the
top and bottom eigenvalues to take for the approximation and k is the
number of neighbors set to generate an k-NN graph. NetLSD does
not consider the neighbor dissimilarity (i.e., the difference of neigh-
borhood relationships); thus, for dGr, we introduce a new measure,
NSD, to capture both neighbor and shape dissimilarities.

5.2.1 Neighbor-Shape Dissimilarity (NSD)
We design a neighbor dissimilarity measure, ND, and combine it
with NetLSD to introduce NSD. Fig. 2 and Fig. 4 demonstrate how
these measures affect DR results when applying FEALM-UMAP
to the same dataset. For example, as seen in Fig. 4-b, ND only con-
siders the changes of k-neighbors around each instance; as a result,
they tend to form similar shapes, where the orders of adjacent nodes
are likely different. On the other hand, the results with NetLSD
(Fig. 4-a) show different shapes; however, they might not involve
many neighborhood changes. Although we need more investiga-
tions to precisely conclude these tendencies, the algorithms used for
NetLSD and ND only consider the shape and neighbor differences,
respectively. When using NSD (Fig. 2), we can find patterns related
to both types of changes.

For the neighbor dissimilarity, one option is to utilize the steadi-
ness and cohesiveness (SnC) [20], which are developed to assess the
DR quality by measuring the changes of the neighborhood relation-
ships in the original data and a DR result. While SnC is adaptable
to graph comparison, it involves random-walk-based sampling and
expensive clustering steps. Thus, similar to the reasons why using
Eq. 2 instead of Eq. 1, SnC is not suitable for use in the optimization.
Inspired by SnC, we design ND based on shared-nearest neighbor
(SNN) similarity [9].

SNN similarity measures how much of neighbors are shared in
each pair of instances in a graph. Let A denote a directed adja-
cency matrix containing the information of each instance’s k-NNs.
Then, all instance pairs’ SNN similarities, S, can be computed with
S = AA�/k. Given two graphs, Gi and G j , we can obtain the differ-
ence of each instance’s SNN similarity with Di, j = Si −S j . Let D+

i, j
and D−

i, j denote matrices only taking positive and negative values
of Di, j, respectively. Then, D+

i, j and D−
i, j capture the increase and

decrease of SNNs for each instance in Gi when compared to G j.
We can compute the total increase and decrease with the Frobenius
norm, i.e., ‖D+

i, j‖F and ‖D−
i, j‖F . Lastly, we reduce them to one value

by taking the maximum. That is, ND of Gi and G j is defined as:

dND(Gi,G j) = max(‖D+
i, j‖F ,‖D−

i, j‖F ). (3)

Unlike SnC, ND involves only simple matrix computations while
keeping a similar strength to SnC to capture the neighbor dissimilar-
ity. We compare SnC and ND in Sec. 6.

Let dSD (dSD ≥ 0) denote the shape dissimilarity measure us-
ing NetLSD. Since NetLSD is only for undirected graphs, we use
undirected k-NN graphs as NetLSD’s inputs (i.e., A+A�−A◦A�
instead of A). Also, by default, we set q = 50 for the approximation.
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Then, we define the dissimilarity measured by NSD as:

dNSD(Gi,G j) = dND(Gi,G j)
β · log

(
1+dSD(Gi,G j)

)
(4)

where dNSD(Gi,G j)≥ 0 and β (0 ≤ β ≤ ∞) is a hyperparameter that
controls how strongly NSD focuses on the neighbor dissimilarity vs.
the shape dissimilarity. When β = 0, NSD is equivalent to using
NetLSD. As β increases, ND becomes more influential on NSD.
Based on our experiment, we set β = 1 by default. β can be adjusted
based on the patterns we look for. Since NetLSD involves an expo-
nential function when computing the dissimilarity (refer to [39]), we
take a logarithm of 1+dSD (1 is added to avoid taking a logarithm
of 0) to avoid excessive influence from the shape difference.

5.3 Optimization
FEALM-UMAP optimizes Eq. 2 while using the k-NN graph con-
struction as fGr and dNSD as dGr. As recommended, we use Φ to take
a minimum of the dissimilarities. For the constraints of a linear pro-
jection, FEALM-UMAP supports all the three representative options
described in Sec. 4.2. Since the k-NN graph construction is a non-
differentiable function, we develop an NMM-based derivative-free
solver. We provide pseudocode in the supplementary material [1].

The optimization by the ordinary NMM begins with initial (p+1)
solutions in a p-dimensional space, where p is the number of pa-
rameters (i.e., when only allowing data scaling, p = m; for the other
cases, p = m×m′). The initial solutions are typically generated at
random. Then, based on the evaluation of each solution’s objective
value, the NMM iteratively moves each solution toward a direction
along which a better solution can be likely found while gradually
shrinking a searching space. Then, after the user-indicated number
of evaluations or the convergence, the NMM returns the best solution
so far as a final result. When compared with other derivative-free
solvers such as the particle-swarm optimization [21], the NMM
does not involve many evaluations of the objective function, and
efficiently finds a reasonable solution [48]. By employing the NMM,
we can avoid an excessive number of graph dissimilarity calculations
that are part of the objective function.

However, based on the initial solutions, the ordinary NMM easily
falls into the local minimum. To mitigate this issue, similar to other
hybrid approaches of global and local optimization solvers [48], we
incorporate random search optimization into the NMM. Specifically,
instead of (p + 1) initial solutions, our solver generates a large
number of random solutions (by default, (10p+1) solutions). Then,
the solver selects the (p+1) best solutions and applies the NMM to
them to find the refined solution. For this refining step, to achieve
faster convergence than the ordinary NMM for a case with large
p (e.g., p > 5), we employ the adaptive NMM introduced by Gao
and Han [13]. Even with this adaptive method, the NMM is usually
suitable for the optimization involving a considerably small number
of parameters (e.g., p < 30). Thus, when X has extremely large m
(e.g., m = 100), we recommend preprocessing X with, for example,
PCA or clustering to generate compressed attributes. This type of
approaches is often recommended for a complex optimization (e.g.,
t-SNE [41] often employs PCA when m > 30).

Random initialization of solutions and restriction of their move-
ment on a specified manifold (e.g., the Grassmann manifold) can be
easily achieved by utilizing the manifold optimization libraries [38].
By repeating the above optimization, for example, till the evaluation
result of Eq. 2 converges (refer to [1]), we can obtain a set of pro-
jection matrices, P = {P0, · · · ,Pr} where r is the number repeats.
When r is large (e.g., r = 100), we can perform spectral cluster-
ing [29] on P to recommend a small number of projections (e.g., 10
projections) that produce significantly different DR results.

5.4 Implementation Details and Complexity Analysis
Implementation. FEALM and FEALM-UMAP are implemented
with Python and libraries for matrix computations and optimizations:
NumPy/SciPy, Scikit-learn [32], and Pymanopt [38]. While many

graph dissimilarities, including NetLSD, are available in netrd [27],
we use our implementation, which fully utilizes matrix computations
to achieve faster calculation (e.g., our implementation of NetLSD is
approximately 20 times faster [1]). Moreover, Pathos is utilized to
use multiprocessing for the NMM-based solver.
Time complexity analysis. The k-NN graph construction used for
fGr has O(n log(n)m) when using a ball-tree method [32]. NSD is
composed of NetLSD (O(qkn+q2n)) and ND (O(kn2)), where q
is the number of eigenvalues (see Sec. 5.2); because q ≤ n, NSD
has O(q2n+ kn2). Thus, when computing the best solution with the
NMM, the cost calculation for each solution takes O(rn(q2 + kn)),
where r is the number of produced graphs so far.

6 COMPUTATIONAL EVALUATIONS

We evaluate the performance of computations related to FEALM-
UMAP as well as the design of ND by comparing it with SnC [20].
As an experimental platform, we used the MacBook Pro (16-inch,
2019) with 2.3 GHz 8-Core Intel Core i9 and 64 GB 2,667 MHz
DDR4. We prepared datasets with the data generation code provided
in [12]. From the 20 Newsgroups dataset [8], their code can generate
data with various numbers of instances (documents) and attributes
(topics) by utilizing the latent Dirichlet allocation. All source code
used for the evaluations is available online [1].
Comparison of ND and SnC. We have introduced ND as a faster,
more stable alternative to SnC. Here we validate that ND and SnC
similarly capture the neighbor changes. Analogous to ND’s ‖D+

i, j‖F
and ‖D−

i, j‖F , SnC produces two distinct values, the steadiness and
cohesiveness. We define the SnC-based dissimilarity measure as
dSnC = 1−min(steadiness,cohesiveness). Note that steadiness and
cohesiveness take a range of 0–1; the larger, the fewer changes.
For this experiment, we set n=200,m=10, and k=15 and randomly
generated 500 different projection matrices with the size of 10×5
and graphs corresponding to the projection matrices (with fGr(XP)).

Fig. 5-a shows dND and dSnC of a graph corresponding to the
original data and each of the 500 generated graphs. As SnC contains
the randomness and dSnC can be inconsistent, we took the mean of
50 executions in Fig. 5-a. The mean dSnC of 50×500 results was
0.20 and the mean of 500 standard deviations was 0.02 (i.e., 10%
of the mean). Fig. 5-a presents strong correlations between dND

and dSnC with Pearson’s and Spearman’s correlation coefficients of
0.73 and 0.72, respectively. Thus, similar to SnC, ND captures the
neighbor changes, while ND has no randomness and a significantly
smaller computational cost, as discussed in the performance evalu-
ation below. ND’s strengths enable us to provide computationally
efficient, stable NSD.
Performance of fDR, fGr, dGr, and the optimization. We evaluate
the efficiency of functions related to Eq. 1 and 2, specifically, UMAP
( fDR), k-NN graph construction ( fGr), ND (dND), NetLSD (dSD),
NSD (dNSD), and SnC. The number of instances, n, dominates these
functions’ complexities. Thus, we ran the functions with different
n (n=50, · · · ,3200) but fixed k, m, and q: k=15 (UMAP’s default),
m=10, and q=50 (NSD’s default). As we expect many executions
for the NMM, we measured the completion time of 1000 executions.

As expected, UMAP and SnC spent much longer completion
time than others: e.g., 1616 and 527 seconds, respectively, for 1000
executions when n=50. Therefore, these functions are not suitable
to be used in optimizations that require many evaluations or deal
with a larger n—this is the reason why we have designed Eq. 2 and
ND. Other functions’ completion times are shown in Fig. 5-b. We
observe that, as n increases, dND requires more computations, and
dominates the completion time of dNSD. However, 1000 executions
of dNSD still can be completed within 520 seconds when n=3200.

We next evaluate the performance of FEALM-UMAP as a whole.
In addition to the same settings above, we set m′=2, no constraint
on a projection matrix, and 1000 as the number of objective function
evaluations. We then generated a single UMAP result through the
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Figure 5: Computational evaluation results: (a) relationships between
SnC-based dissimilarity and ND; (b) completion time for 1000 execu-
tions; (c) relative accuracy of solutions.

optimization (i.e., r=1). From the result shown in Fig. 5-b, we can
see the completion time of FEALM-UMAP generally follows dNSD.
Even though FEALM-UMAP involves more computations (e.g.,
k-NN graph construction and the solution update for the NMM),
FEALM-UMAP tends to show faster completion than dNSD. This is
probably because our implementation of the NMM partially employs
parallel computations, as described in Sec. 5.4.
Quality of the optimization. Similar to the above experiment,
we generated a single UMAP result with no constraint. For this
experiment, we used the same number of instances (n=800) but a
different number of attributes (m=5,10,20). We set m′=2. Also, to
see the effect of the NMM’s settings on the optimization quality, we
tested different numbers of evaluations (from 100 to 2000) and initial
random solutions (p+1, 10p+1, 20p+1). As we do not know the
truly best solution, we analyzed relative accuracy to the optimized
solution with large numbers of initial solutions and evaluations,
specifically, (50p+1) solutions and 5000 evaluations. We also set
a randomly selected solution as the baseline solution. Let v, vbest,
and vbase denote objective values of Eq. 2 for the comparing, best,
and baseline solutions, respectively; then, the relative accuracy is
(v− vbase)/(vbest − vbase). As the NMM’s solutions can be varied
based on the initialization, we computed each of v, vbest, and vbase

by taking a mean of 10 trials.
Fig. 5-c shows the relative accuracy. Generally, the increase in

the number of evaluations improves the accuracies. Also, our hybrid
approach using many initial random solutions improves the accura-
cies (e.g., (10p+1) reaches better accuracies than (p+1)). Also, we
observe that the relative accuracy tends to be higher for the smaller
searching space (e.g., the red lines have higher accuracies). For the
20×2 searching space, the accuracy relative to vbest is still low even
with 2000 executions and (20p+1) initial solutions. Thus, we should
use even larger numbers of evaluations and initial solutions to obtain
better results. However, as discussed, the NMM is more suitable
for a small search space; thus, PCA or clustering of attributes can
be applied for data preprocessing when the original search space is
too large. An analysis example applying PCA can be found in the
supplementary materials [1]. For a small search space, our default
parameter, (10p+1) initial solutions, with 1000 evaluations would
provide reasonable results.

7 VISUAL INTERFACE

To efficiently investigate FEALM-UMAP’s results, as shown in
Fig. 6, we develop a visual user interface (UI), which is also applica-
ble to other methods developed within FEALM. The UI is developed
as a web application with Python, JavaScript, and D3. We provide a
supplementary demonstration video of the UI [1].
Exploration of DR results. The views in Fig. 6-a and b are designed
for exploration and comparison of the DR results. Fig. 6-a visual-
izes the information obtained through the optimization described in
Sec. 5.3, including the set of UMAP results (i.e., Y), dissimilarities
of each result (i.e., dDR(Yi,Y j)), and clustering-based recommen-
dations. To visually convey the dissimilarities of UMAP results,
we generate a 2D plot by applying UMAP based on dDR(Yi,Y j)
(i.e., UMAP on the UMAP results). In this plot, each square point
corresponds to a single UMAP result and their spatial proximities
represent the similarities of the UMAP results. We indicate each

point’s belonging cluster by coloring each point and the isocontour
generated by Bubble Sets [5]. We use black color to distinguish
the selected points, which initially correspond to the recommended
UMAP results. Also, a point of the original DR (i.e., Y0) is annotated
with the cross mark and text, “OG”. We also support fundamental
interactions, such as zooming and tooltiping for previewing UMAP
results (e.g., one in Fig. 6-a). A scrollable view in Fig. 6-b shows
the UMAP results corresponding to Y0 and the selected black points.
Their belonging clusters are indicated with texts and colored boxes
(e.g., 7 with the green box). A circle point in each UMAP result
represents a data instance. Also, we color these points based on their
group labels with a different color scheme from Fig. 6-a. For the
comparison, each instance’s color is consistent across all the UMAP
results. Analysts can select one UMAP result from this view for
more detailed-level investigations, as explained below.

Interpretation of a DR result. To help interpret the selected UMAP
result, the view in Fig. 6-d shows the information on (1) the projec-
tion matrix used to generate the UMAP result and (2) each attribute’s
contribution to the characteristics of groups in the UMAP result.

The projection matrix, P, contains the information of more
(dis)regarded attributes for the generation of the result. This in-
formation is useful to understand the cause of the selected UMAP
result’s difference from the others. As described in Sec. 4.2, P can be
either diagonal (i.e., P = diag(w)) or more dense (i.e., when using
no constraint or P = diag(w)Mdiag(v)). When P = diag(w), we
visualize values of w as a bar chart, as shown on the left side of
Fig. 6-d. For the other case, we visualize values in P as a heatmap
using a diverging colormap (e.g., Fig. 8-b (left)).

Reviewing patterns shown in the DR result is essential to uncover
analytical insights as well as to avoid deriving insights from false
patterns due to excessive data transformation. The patterns are
often examined through the comparison of data groups in the DR
result [10, 30]. To assist group comparison, as shown on the right
side of Fig. 6-d, the UI integrates an existing contrastive-learning-
based interpretation method, called ccPCA, and the heatmap-based
visualization [10]. ccPCA contrasts a target group with a background
group to reveal highly-contributed attributes to the characteristics
of the target. The attributes’ contributions are obtained as a weight
vector, where the larger magnitude, the stronger contribution to the
target group’s characteristics. In addition, the sign of the weight
vector can represent the direction of the contribution when using
the sign adjustment method [11]. For example, while alcohol in
Fig. 6-d contributes to the characteristics of both Cultivars 1 and
2, according to their sign, they likely have higher and lower alcohol
percentages than others, respectively. Also, to enable the comparison
of attribute values of instances, we update the size of each point in
Fig. 6-c when a certain attribute name is hovered in Fig. 6-d.

Although the UI uses predefined labels by default (e.g., the cul-
tivar classes in Fig. 6), interactive refinement of groups can be
performed with the lasso-selection available in Fig. 6-c and controls
shown in Fig. 6-e. The changes in groups automatically update the
attributes’ contributions in Fig. 6-d. By default, when computing the
contributions with ccPCA, each group is selected as a target group
and the other groups are set as one background group. The UI also
allows explicit selection of a background group. This is useful when
the comparison of two specific groups is more desired.

Through a collective use of the above functionalities and visualiza-
tions, we can assess the DR result and patterns. When the observed
groups do not result from false patterns, the projection matrix values,
attributes’ contributions, and distribution of attribute values should
show some consistency. This is because the separation visible in the
DR result should be highly related to the projection matrix, the dif-
ferences should be captured in the attributes’ contributions, and the
attributes’ contributions should reflect the attribute value distribution.
We provide a concrete example in our case studies.
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Figure 6: Analyzing the Wine dataset [8] with FEALM-UMAP and the UI. The UI shows the similarities of the generated DR results (a), a
representative subset of the DR results (b), a single selected DR result (c), the information for interpreting the DR result (d), and the group
information (e). The DR result of the original data is also shown as a reference (f).

8 CASE STUDIES

We demonstrate the effectiveness of our approach through case stud-
ies on real-world datasets. Throughout all case studies, we generate
UMAP results using two different constraints: P = diag(w) and
P = diag(w)Mdiag(v). Here we only describe the essential infor-
mation to present the analysis results. In the supplementary materi-
als [1], we provide all the other details and one additional case study
as an analysis example dealing with a large number of attributes
(over 700). Note that the patterns uncovered in the case studies
are difficult to identify with the aforesaid optimization method by
Lehmann and Theisel [24] or attribute selection (refer to [1]).

8.1 Study 1: Diverse Categorization of Wines
We analyze the Wine dataset [8], which consists of 178 instances,
13 attributes, and cultivar labels. As shown in Fig. 6-f, DR on this
dataset usually reveals three clusters highly related to the cultivars.
With FEALM-UMAP, we seek patterns different from those clusters.

As shown in Fig. 6-b, FEALM-UMAP produces the results with
greatly different patterns. We select a UMAP result that contains
three clusters (see Fig. 6-c). These clusters (especially, the cluster
mainly consisting of Cultivar 1) seem to contain different wines
from the three clusters in the original UMAP result shown in Fig. 6-
f. Also, the proximity of each cluster is clearly different from
the original UMAP result (e.g., the clusters mainly consisting of
Cultivars 1 and 3 are placed close with each other in Fig. 6-c). As
shown in Fig. 7-a1, we interactively define the clusters seen in Fig. 6-
c as Groups A–C. From the auxiliary information displayed in Fig. 7-
a2, the UMAP result is generated with the constraint of P = diag(w),
where ash, ash alcalinity, and magnesium have larger weights
than others. Also, these attributes show strong contributions to each
clusters’ characteristics, especially for Groups A and C (see Fig. 7-
a2(right)). We further verify the strong associations between the
clusters and each of the three attributes. For example, as shown
in Fig. 7-a1, Group C has small magnesium. According to existing
research on this data [3], only these three attributes represent the
mineral content of wines. Thus, FEALM-UMAP seems to find a new
wine categorization that highly corresponds to the mineral content.

From Fig. 6-b, we select a representative UMAP result of DR
Cluster 6 (orange) as another categorization example. This result
contains multiple clusters, each of which is composed of multiple

Figure 7: Study 1: Diverse categorizations of wines. DR results (a1,
b1) selected from the Fig. 6-b and their auxiliary information (a2, b2).

cultivars. As shown in Fig. 7-b1 and b2, we create Groups D–G and
visualize the related auxiliary information. From the weights and
contributions in Fig. 7-b2, we see that multiple attributes, such as
malic acid, proanthocyanins, flavanoids, strongly influence
the forming of Groups D–G. These attributes are related to wine taste
(e.g., proanthocyanins contributes to the dryness) [3]. As low
weights are assigned for the attributes related to fermentation (i.e.,
alcohol and proline), mineral content (e.g., ash), and appearance
(e.g., color intensity), we can say that FEALM-UMAP identifies
Groups D–G that have the difference more in the taste.

8.2 Study 2: Investigation of Political Opinion Patterns
As a case with a larger number of instances, we analyze a survey
dataset from the 2020 Cooperative Election Study [35], which con-
sists of US residents’ responses on various political opinions. From
this dataset, we select 12 ordinal attributes/questions that do not have
a high correlation with each other (specifically, less than 0.7 Pear-
son’s correlation coefficient). We focus on instances/respondents
who support either the Democratic (Dem) or Republican (Rep) party
and discard instances that have missing values for the 12 attributes.
After the above process, 4462 instances are included in Dem in con-
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Figure 8: Study 2: Investigation of political opinion patterns in US residents. The original UMAP result (a) and representative FEALM-UMAP’s
results produced with different constraints—(b): P = diag(w)Mdiag(v) and (c): P = diag(w).

trast to 1154 instances in Rep. We randomly sampled 1154 instances
from Dem to avoid producing patterns related to the sample size
difference. The resulting dataset contains 2308 instances with 12
attributes. For detailed information of each attribute, refer to [35].

As in [18], DR on political survey data of US residents often only
reveals two clusters related to the left-right ideology. In fact, as
shown in Fig. 8-a, when applying UMAP to the dataset, we can only
see such clusters corresponding to Dem and Rep. We utilize FEALM-
UMAP to reveal political opinion patterns hidden in the data. Here
we describe a few representative findings from our analysis.

As shown in Fig. 8-b, we find one UMAP result where Dem
and Rep are heavily overlapped with each other. Because the
information of the projection matrix, P, is shown as a heatmap
(see Fig. 8-b (left)), the result is generated with the constraint of
P = diag(w)Mdiag(v). Based on each attribute weight, we see that
CC20.307 and CC20.443.4 have dominant weights in two of three
columns of P. While the question of CC20.307 is if the US police
make the respondent feel safe or unsafe (1: mostly safe–4: mostly
unsafe), CC20.443.4 is how the respondent would like to their
legislature to spend money on law enforcement (1: greatly increase–
4: greatly decrease). As these two attributes’ weights have different
signs (CC20.307: negative; CC20.443.4: positive), P seems to de-
rive new features while debiasing the opinion of future money usage
on law enforcement from the current opinion of the police. We can
say that, within the resultant features by P, there are no clear opinion
differences between Dem and Rep unlike the result in Fig. 8-a.

Fig. 8-c shows another UMAP result, where we can still see the
separation between Dem and Rep (Dem’s instances tend to be around
the bottom-right side) as well as new clusters that cannot be seen
in Fig. 8-a. As shown in Fig. 8-c (left), large weights are assigned
to CC20.440b (racial problems), CC20.443.1, CC20.443.2, and
CC20.443.5 (legislature’s money use on welfare, healthcare, and
transportation/infrastructure, respectively). By interactively chang-
ing the point size based on each of these attributes, we observe
that CC20.440b (racial problems) and CC20.443.2 (healthcare)
closely associate with the separation between Dem and Rep. On
the other hand, as seen in the sizes of the points in Fig. 8-c (right),
CC20.443.5 is highly related to the clusters aligned along the di-
agonal direction (e.g., small CC20.443.5 can be seen around the
top right). Thus, we can say that the opinions on the money use
on transportation/infrastructure are diverse even within each party’s
supporters. By assigning large weights to the above attributes while
minimizing the influences from certain attributes (e.g., CC20.340a,
political ideology), FEALM-UMAP seems to find political sub-
groups that are difficult to find with the conventional use of DR.

9 DISCUSSION

FEALM and FEALM-UMAP have provided a primary step in ad-
dressing the stated problem of hidden manifolds. We discuss our
approach’s limitations as observed through the theoretical and ex-
perimental analyses, and discuss further potential enhancements.
Scalability. As discussed in Sec. 5.4 and Sec. 6, FEALM-UMAP
has limited scalability for the numbers of instances (n) and attributes
(m). Because of NSD’s time complexity, FEALM-UMAP is compu-

tationally expensive when n is large. Based on the results in Sec. 6,
FEALM-UMAP is practical up until data with a few thousand in-
stances when using a midrange computer. When m is large, on the
other hand, the search space becomes very large; consequently, the
NMM requires large numbers of initial solutions and evaluations to
find solutions of adequate quality. Thus, we recommend preprocess-
ing with PCA or attribute clustering for the case with large m. One
potential approach for efficient optimization is to make all functions
differentiable and use derivative-based solvers. We expect this can
be achieved by utilizing differentiable variants of k-neighbor selec-
tions [33] as well as developing NSD for weighted graphs. While the
equations used in ND and NetLSD [39] can be naturally extended
weighted graphs, we need further investigations to understand their
characteristics in the context of weighted graphs.
Reliability. Similar to other ML methods, FEALM-UMAP could
suffer from overfitting when n is relatively small compared to m [17].
Therefore, FEALM-UMAP is suitable for data where n is consid-
erably larger than m (e.g., n=1000, m=20). When n is relatively
small, we can apply PCA to reduce m or define stronger constraints
on the projection matrix (e.g., only data scaling). In addition to the
projection constraint, FEALM-UMAP has several hyperparameters,
m′, λ1, λ2, q, β , r, which can also influence the DR results. We
have suggested default values for q and β (i.e., q=50 and β=1 as
explained in Sec. 5.2.1), while r (the number of different DR results)
can be increased till the convergence of the optimization or set as
large as possible based on the available computational power. The
remaining hyperparameters that need to be adjusted are m′, λ1, and
λ2 (the number of latent features in a projection matrix and the
weights for L1 and L2 norm-based regularizations). As in other ML
methods, currently, we recommend manually searching appropriate
values based on the observed results (e.g., the quality of optimization
in Sec. 6). In future work, we would like to investigate automatic
hyperparameter selection. To reduce the risk of false findings, our
visual interface assists the analyst to inspect the obtained DR results
with expert knowledge of their data.
Generalizability. FEALM is designed as a general framework for
nonlinear DR methods. We emphasize that FEALM is applicable to
various nonlinear DR methods, such as t-SNE, as discussed in Sec. 5.
FEALM can also be used for linear DR methods. For example, Eq. 1
can be applied to the linear DR method designed by Lehmann and
Theisel [24]. Furthermore, we can extend Eq. 2 to recommend sets of
graph-related hyperparameters of DR (e.g., the number of neighbors
in UMAP), which produce significantly different DR results [4].
This can be achieved by replacing a linear projection matrix with
hyperparameters for the optimization’s search parameters.

10 CONCLUSION

We have presented FEALM, a feature learning framework that en-
ables investigation of data patterns via a conjoint use with non-
linear DR. The derived exemplifying method and visual interface
have demonstrated the utility of FEALM for analyses of real-world
datasets. This work also exposes the limitations of conventional
ways of data exploration using dimensionality reduction and thus
contributes toward the maximal utilization of data.
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