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Abstract—Federated Learning (FL) is a distributed machine
learning paradigm where clients collaboratively train a model
using their local datasets. While existing studies focus on FL
algorithm development to tackle data heterogeneity across clients,
the important issue of data quality (e.g., label noise) in FL is
less explored. This paper aims to fill this gap by providing a
quantitative study on the impact of label noise on FL. We derive
an upper bound for the generalization error that is linear in
the summation of clients’ label noise levels. Then we conduct
experiments on MNIST and CIFAR-10 datasets using various
FL algorithms. Our empirical results show that the global model
accuracy linearly decreases as the noise level increases, which
is consistent with our theoretical analysis. We further find that
label noise slows down the convergence of FL training, and the
global model tends to overfit when the noise level is high.

Index Terms—Federated learning, data quality, label noise

I. INTRODUCTION

Federated Learning (FL) is a distributed machine learning
paradigm where clients (e.g., distributed devices or organi-
zations) collaboratively train a global model [1]. The local
data of the clients are often human-generated and have crit-
ical privacy concerns. An FL process consists of multiple
communication rounds. In each round, each client trains its
local model with its local data and then uploads the model
updates to a central server [2]. The central server aggregates
the local updates from clients and sends back an aggregated
global model to all clients. After that, clients update their local
models according to the information from the central server
[3]. The client-server interaction stops when the global model
converges.

There has been an increasing volume of research studies on
FL over the last few years [1], [4]-[6]. Among these studies,
a critical bottleneck, which without appropriate algorithmic
treatment usually fails FL, is data heterogeneity or non-
identical independent distributions (non-IID). For example,
in a classification task, some clients may collect more data
for class A while others may collect more data for class B.
Previous studies among this line focused on two categories of
non-IID: attribute skew and label skew [7].

While existing studies focus on tackling the non-IIDness,
most implicitly assume that the data are clean, i.e., the data are
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correctly labeled. In practical applications, however, clients’
datasets usually contain noisy labels [8]. Label noise has
been identified in many widely used ML datasets, including
MNIST [9], [10], EMNIST [11], [12], CIFAR-10 [11], [13],
ImageNet [9], [14], and ClothinglM [15]. The causes of
label noise can be human error, subjective labeling tasks,
non-exact data labeling processes, and malfunctioning data
collection infrastructure [16], [17]. Moreover, in an FL setting,
as clients collect and label local data in a distributed and
private fashion, their labels are likely to be noisy and have
different noise patterns [18]. For example, wearable devices
can access various human-generated data, such as heart rate,
sleep patterns, medication records, and mental health logs.
Such data could contain different levels of label noise due
to various sensor precision issues and human bias [19].

Label noise is known to lessen model performance [16].
This paper focuses on the issue of label noise in FL, and we
are particularly interested in answering the following two key
questions:

¢ Question 1: How does label noise affect FL convergence?
e Question 2: How does label noise affect FL generaliza-
tion?

To answer Question 1, we conduct numerical experiments
and show that the training loss converges slower with a
higher noise level. To answer Question 2, we proceed from
both theoretical and empirical perspectives. First, under mi-
nor assumptions, we prove that, for any distributed learning
algorithm, the generalization error of the global model is
linearly bounded above by a multiple of the system noise level.
Then we conduct experiments using MNIST and CIFAR-10,
showing that the results are consistent with the assumptions
and theoretical results. We further show that the global model’s
accuracy decreases linearly in the clients’ label noise level.
The key contributions of this paper are summarized below.

o To the best of our knowledge, this is the first quantitative
study that analyzes the impact of label noise on FL. Our
study bears practical significance for its use in different
applications, e.g., incentive and algorithm design [20].

« We provide a generic upper bound on the FL generaliza-
tion error that applies to any FL algorithms. We further
obtain a tighter upper bound considering the widely
adopted ReLLU networks in clients’ local models.

e We run experiments under various algorithms and dif-
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ferent settings in FL. Our numerical results justify our
theoretic assumption. We also observe that label noise
linearly degrades FL performance by reducing the test
accuracy of the global model.

e Our study reveals several empirical observations. First,
label noise slows down FL convergence. Second, label
noise induces overfitting to the global model when label
noise is high.

II. RELATED WORK
A. Label noise

Label noise has been an active topic in FL over the last few
years. We classify the existing methods into three categories:

(1) Some methods apply noise-tolerant loss functions to
achieve robust performance (e.g., [21]).

(2) Some methods distill confident training sample by
selection or a weighting scheme (e.g., [17], [22]-[32]). Li et
al. discovered that label noise might cause overfitting for Fe-
dAvg algorithm [29], [31]. However, they did not analytically
characterize the hidden linear relation between noise level and
the global model’s performance.

(3) Based on (2), some methods further correct noisy
samples (e.g., [18], [33]-[35]). Tsouvalas et al. proposed
FedLN that estimates per-client noise level and corrects noisy
labels[35]. They considered a case where the conditional
distributions Pr(label|feature) are the same across clients
[1]. But in practice, the conditional distributions could be
different for different clients. We provide a more general
definition in this work. Xu et al. studied an FL scenario where
different clients have different levels of label noise [18]. They
introduced local intrinsic dimension (LID), a measure of the
dimension of the data manifold. They discovered a strong
linear relation between cumulative LID score and local noise
level. However, their work did not provide either empirical
observation or theoretical results on the relation between the
global model’s performance and local noise level. Moreover,
there is no systematic study on how label noise affects FL
in terms of convergence and generalization. We bridge this
research gap in this work.

B. Path-norm

This work uses path-norm to measure the global model’s
generalization ability under label noise. Researchers intro-
duced different measures to explain the generalization ability
of neural networks (e.g., [36], [37]). Neyshabur et al. proposed
path-norm as a capacity measure for ReLU networks (e.g.,
[38], [39]). Empirical studies showed that path-norm positively
correlates with generalization in most categories of hyper-
parameters (e.g., [37]).

The value of path-norm increases throughout the learning
process. E et al. showed that the path-norm increases at most
polynomially under centralized training [40]. In this work, we
conduct the first formal study on the evolution of path-norm in

In some work, the conditional distribution is also referred to as “feature-
to-label mapping”.
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FL. This is also the first work that analyzes the generalization
ability of models in FL with path-norm proxy. We introduce
path-norm proxy to the FL context because this proxy does
not require strong assumptions and allows us to characterize
a large class of FL algorithms. For example, the assumptions
on convexity, smoothness, etc., are no longer necessary in our
analysis. Moreover, we have empirically verified our analysis
based on the definition of path-norm proxy.

III. PRELIMINARIES AND PROBLEM STATEMENT

A. Federated Learning

In this subsection, we briefly introduce the problem formu-
lation and algorithmic framework of FL.

Consider a typical FL task [1], where IV clients collabora-
tively train a global model under the coordination of a central
server through R communication rounds. FL aims to solve a
distributed optimization problem with distributed data, where
the objective is

nk

N
1 1
V{/nel{/l\/ N k5:1 nfk ZE:1 g(f(l'k,ia W)v yk,i) ) (D

where we define

o Hypothesis space: W C R? denotes the hypothesis
space of all feasible parameters of learning models, and
dy € N is the dimension of the hypothesis space.

o Local data: Each client has a local dataset .S;,. We assume
that in the k-th dataset Sy, each data point is drawn from
a distribution 7, over S C R%T% where d, denotes the
dimension of feature space and d,, denotes the dimension
of the label space. A data point (v,y) € R%=+dv is a
real-valued vector where x € R% denotes its feature and
y € R% denotes its label. There are in total n; data
points in client £’s local dataset

Sk ={(Tr1,%1), (@r2,Uk2) - - s (Thongs Yhone ) }-

Let py denote the ground truth distribution (i.e., clean
labels) and 7 denote client k’s possibly noisy data
distribution. There exists label noise in the local dataset
of client k if there exists 2 € R%, y € R% such that

Prﬂk(y|x) 7& Prmc(yh:)v (2)

where Pr represents a probability mass/density function
with a given distribution and an event. One can consider
the data points sampled from 7 as training data and
those sampled from py as test data. Although this may
not hold for all cases and the test data can also be noisy,
we make this assumption to simplify the analysis.

e Global parameter and local parameter: We denote the
global model’s parameter as a real-valued vector W € W.
Each client has a local model with parameter w;, € W.

o Meta model: We define the meta model f : R% x W —
R% as a function that maps the data feature and model
parameter to an estimated label. For example, a meta
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Algorithm 1 A General FLL Framework

Initialization: Local datasets {57, S5, ..
function ¢
Output: Global model parameter vector W and local model
parameter vectors {wi, ws, ..., wy} after the R-th com-
munication round
1: fort < 1to R do

., SN}, aggregation

2 Parallel for k <~ 1 to N do

3 fori < 1to E do > local training
4: Update local model parameter wy

5: end for

6 Send wy, to the central server

7 end for

8 W« ¢(wy,...,wn, W) > aggregation
9: for k < 1to N do > broadcast
10: Send W to client k&

11: Update local model parameter wy according to W
12: end for

13: end for

model could be a neural network with variable param-
eters. We obtain a model by substituting the variable
parameters with real number values.

o Loss function: We denote the loss function as

£: R x R — Rsy.

For example, a squared loss function is defined as ¢ :
(,9) = lly — 911
In each communication round, a client trains its local
model for E epochs to minimize the local training loss
%k Sk U(f(@k,i; W), yk,i) over its local dataset Sy. After
local model training, the clients upload their local model
parameters wj to a central server. The central server aggre-
gates the uploaded parameters and updates the global model’s
parameter W. After that, the central server sends the global
model’s new parameters back to each client. We provide a
general FL. framework in Algorithm 1.
Different FL algorithms use different aggregation mecha-
nisms. For example, in FedAvg, the aggregation is defined as

N
6 (wn,.. # 3)

where 7, denotes the global learning rate. Note that in
practice, there could be limitations in terms of computational
efficiency, communication bandwidth, and network robustness
[41]. For example, some clients may fail to communicate with
the central server due to network issues. Therefore, the server
only samples a subset of available clients. Since we focus on
data noise, we just assume that all clients participate in all
communication rounds.

.,WN,W)'_)(l_ngl)W+ngl

B. Model performance

This subsection introduces the theoretical tools to measure
a learning algorithm’s performance. Here we inherit most
notations from the last part with some revisions. We consider
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fixed data points for an FL process in the previous part. But in
this part, we consider each data point and each local dataset
S} as random variables to investigate the generalization perfor-
mance of an algorithm given an arbitrary training dataset. The
pair (z,y) in lowercase represents a deterministic data point,
and the pair (X,Y) in uppercase represents pair of random
variables. We re-write a local dataset .S), as

Sk = {(Xk,hYk,l)a (Xk,Qa Yk,2)7 D) (Xk,nkyyk,nk)}7

where (Xp;,Yy ;) ~ m;. We define the empirical risk L :
W — R of the global model as
N
LW) =" EBe, [((F(X5 W), Y), @
k=1

where n := chvzl ni and W denotes the parameter of the
global model. Given the ground truth distribution puy of each
client, we further define the ground-truth risk Lt:-w— R>q
of the global model as
M n
LIW) =) 0SB, [ (X W), )] 5)
k=1
Then we define the generalization error of the global model
as [42]
G(W) = |[LV(W) — L(W)|. (6)

C. Path-norm proxy

This paper uses ReLU network and path-norm proxy for a
case study of the generalization error.

Definition 1 (Path-norm proxy [40]). The path-norm proxy of
an L-layer ReLU network is defined as

L
1FCOlme = Y [TI0G a0l @
(i05++sin41) I=0
where 6 denotes the parameter vector of the ReLU network;
01(i1,141) refers to the weight of the edge connecting the i;-th
node in layer | and the i;.1-th node in layer | + 1.

E et al. [40] proved that the path norm proxy controls the
generalization error in a centralized learning setting. Next, we
will show that the path norm proxy controls the generalization
error in a distributed FL setting.

IV. THEORETICAL RESULTS

In this section, we provide a theoretical analysis of the
generalization error of the global model in FL. In particular,
we give proof of the upper bound of the global model’s
generalization error.

In practical FL applications, local data distributions are
complicated as we cannot explicitly find the distribution
functions. To simplify our theoretical analysis, we make the
following assumption:

Assumption 2 (Simplified label noise condition). For any
client i and client j, we assume

V(z,y) € R%=*% Pr(z;m;) = Pr(z;m;). (8)
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(a) Data distribution of client 1, (b) Data distribution of client 2,

Fig. 1: An example of label noise.

This assumption means that the feature distributions are the
same across all clients, which is a standard setting in studies
about concept drift [43]. Nonetheless, our numerical experi-
ments show that our results hold even if this assumption is
violated.

We first provide a general result on the upper bound of
generalization error in Theorem 3. Then we extend this general
bound by studying some specific cases with more assumptions
in Corollary 8.

Theorem 3 (Bound the evolution of generalization error).
Let Assumption 2 hold. Consider any FL algorithm with an
arbitrary model (e.g. neural networks, decision trees). For a
classification task of C classes with cross-entropy loss under
label noise, we have

GW) < Q- Ex [0, S0, % [Pry, (Y = ilX) = Pro (¥ = z‘|X)g,
©)
where ) is the upper bound of f.

Interpretation of Theorem 3: This theorem implies that
the generalization error of global model in FL is linearly
bounded by the degree of label noise in the distributed system.
The theorem quantitatively characterizes the impact of label
noise. This linear bound is also consistent with our empirical
findings. When N = 1, this linear bound applies to centralized
learning. When pj, = m, for all k, the generalization error is
zero as the distributions of training and test datasets are the
same.

We can interpret the expectation term in the upper bound
with an example. In this example, we set N = 2, i.e., two
clients. The input space consists of 25 discrete grid points
and two classes. Client 2’s local data distribution is identical
to the ground truth. Client 1 has label noise in its local data
where three circled data points in class A are mislabelled as
class B.

If the two clients has the same number of data samples, i.e.,

The detailed proofs are given in [44].
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ni1 = ng, then

C N
Ex |35 ™ Pr, (v = i X) — Pro, (¥ = ¢|X)|]
=1 k=1 n
C 1 |
— Ex ZQ|Pru<Y=z'X>—Prm<Y=i|X>|] (19)
=1

1 o4p 1[4 1 _ 3
5|5 5|/ 25

This expectation represents the expected percentage of noisy
data points in a dataset, e.g. there are in total 25 grid points
and 3 noisy data points in Figure la.

Before we prove Theorem 3, we need a lemma on cross-
entropy.

Lemma 4. Consider a classification problem of C' classes.
Given a data distribution 7 such that (xz,y) ~ 7,y € [1: C],
a neural network f and a probability measure Pr, then the
expectation of cross-entropy loss is

c c
= Pro(Y =i)Exy_; [ fi(X) —log (Z exp( fT(X))ﬂ :

i=1 r=1

(11

Note that here we abuse the notation f. We previously name
f:R% x W — R% as the meta model. The meta model is a
generator of classification models. It takes the model parame-
ters and features as its input and produces the predicted label.
When we fix the model parameters, we can consider it as a
neural network.

In most machine learning tasks, it is reasonable to assume
that the input and output of the model are bounded, which we
formalize in Assumptions 5 and 6.

Assumption 5 (Bounded input space). The input space X is
bounded in [0,1]% C R,

Assumption 6 (Bounded model output). Consider a neural
network f : R% x W — R%. We assume that its range
f(R%E=; W) is bounded in R%. That is, 3C; > 0 such that
Vo € R% VO € W, Vi € {1,...,C},|fi(x;0)] < Cy.

Note that the upper bound of model output could change as
we train the model for more epochs. To model the evolution of
the output upper bound, we can relax Assumption 6 and study
a specific family of classifiers: ReLU networks. Later we can
bound the generalization error evolution given the growth of
path-norm proxy through iterations.

Proposition 7 (Polynomial growth of path-norm proxy).
Consider an FL process with an L-layer neural network
f:R% x W — R as its global model, then its path-norm
increases at most polynomially until the t-th communication
round,

I3 0())|pnp = OFETEETD/2), (12)

where E denotes the local training time.
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If we consider a general decentralized algorithm (including
but not limited to FL algorithms), we have

1£(:0() |pnp = O(CTEFVEEFD/2) - (13)

where C' is a constant independent of t, L, E.

Interpretation of Proposition 7: By Corollary 3.14 in [40],
small path-norm value guarantees an ‘“‘easier” hypothesis
space. Note that our upper bound on path-norm proxy is
independent of dataset statistics and label noise.

Corollary 8. We can specify 2 in Theorem 3 with various
assumptions:

1) By Assumption 6, Q) = Cj.

2) If we use ReLU networks, Q@ = || f(-;0(¢))| pnp-

3) By Assumption 5 and Proposition 7,

0= COtL+1E(L+1)/2,
where Cy is a constant independent of t, E, L.

There are some important implications behind Corollary 8.

e Since the first two statements of the corollary do not
rely on the aggregation mechanism, they could also be
extended from FL to a decentralized learning scenario,
e.g. Swarm learning in decentralized clinical ML [45],
decentralized optimization algorithms [46], [47], ML on
blockchain [48].

e Theorem 3 does not characterize the upper bound with
communication rounds and local epochs in its general
form. But it is a symbolic and concise term that helps us
understand the impact of label noise. Nonetheless, case
3 in Corollary 8 provides the interplay between the label
noise, communication rounds, and local epochs.

V. NUMERICAL RESULTS

We present three numerical experiments to validate our
theoretical results and draw new insights. We first verify
our theoretical work on the path-norm proxy. Then we show
experiments for N € {2,4,15,30}.

Our main findings are 1) the growth of path-norm proxy
empirically increases in a polynomial order in FL; 2) there
exists an approximate negative linear relation between the
test accuracy of global model and the number of incorrectly
labeled data; 3) label noise slows down the convergence of
FL algorithms and induces over-fitting to the global model.

A. Path-norm Proxy

In this subsection, we study the path norm proxy and

observe its relation with the number of layers L and com-
munication rounds R.
Compare different FL algorithms. We use the same neural
network structure and consider N = 4 clients. We study three
FL algorithms, FedAvg [49], SCAFFOLD, and FedNova on
MNIST dataset. We observe a concave growth of the global
model’s path-norm in Figure 2a.

These results empirically show that the path norm increases
polynomially in FL.
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Fig. 2: A case study on MNIST dataset. (a) The path-norm
generated by different FL algorithms with 3-layer ReLU
network. (b) The path-norm generated by FedAvg algorithm
and ReLU networks with different numbers of layers.

Compare ReLLU networks with different numbers of layers.
We train ReLU networks using FedAvg on MNIST. We
use different numbers of layers in {2,3,4}. The result is
illustrated in Figure 2b. To verify the polynomial rule, we use
a logarithmic scale on the y-axis. The three path-norm curves
have similar shapes and almost differ up to a constant factor.
This result is consistent with Proposition 7.

B. Pilot experiments

We run 2-client experiments with FedAvg algorithm on
MNIST dataset. We study a 2-client setting for multiple
considerations.

o 2-client setting exists in practice. In cross-silo FL, clients
could be enterprises, and each client could provide abun-
dant data, so the total number of clients is relatively small.
For example, since 2019, two insurance companies, Swiss
Re and WeBank, have collaborated on federated learning
[50].

o This experiment serves as a starting point and gives us
a thorough pedagogical understanding of the impact of
label noise. We will study the 4-client, 15-client, and 30-
client cases in the next subsection.

We generate the local datasets for two clients by dividing
the whole dataset into two equally-sized parts. We add label
noise to local datasets by uniformly flipping some instances’
labels to other class labels. Each client has different noise
levels. Denote the noise level of client 7 as wp,, then
(Wp1, wpy) € {0%, 10%,20%, . . .,80%, 90% }2. Pathological
noise levels (greater than 50%) have been studied in supervised
learning settings [51]. We illustrate the test accuracy of global
models under different degrees of label noise as bar charts
in Figure 3. To verify the linear trend of test accuracy, we
perform linear regression and visualize the result in Figure 4.
Negative bilinear trend by label noise. Figure 3 shows a
negative bilinear relation between the test accuracy of the
global model and noise label. When we apply linear regression
on the test accuracy of the global model and the proportion of
wrongly labeled data, we obtain a coefficient of determination
of 0.98 in Figure 4. That means the relation between the test
accuracy and label noise has a strong linear relation.
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Fig. 3: (a) Bar plot of global model accuracy. X,y axes control
the levels of label noise of each client. z axis represents the
test accuracy of the global model; (b) Slice of bar plot when
client 1 has 30% of wrongly labelled data; (c) Slice of bar
plot when client 2 has 10% of wrongly labelled data.
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Fig. 5: Training loss of Client 1 for 0%, 2%, 4%, 6%, 8%
percentages of wrongly labelled data (4-client setting).

Comi ds

(c) FedNova,

(a) FedAvg,

Fig. 6: Training loss of Client 1 for 0%, 2%, 4%, 6%, 8%
percentages of wrongly labelled data (15-client setting).

(b) SCAFFOLD,

(b) SCAFFOLD, (c) FedNova,

(a) FedAvg,

Fig. 7: Test accuracy of global model for 0%, 2%, 4%, 6%, 8%
percentages of wrongly labelled data (4-client setting).
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Fig. 8: Test accuracy of global model for 1%, 2%, 3%, 4%
percentages of wrongly labelled data (30-client setting).
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Fig. 9: Test accuracy of global model by different FL algo-
rithms under different label error rates.

C. Experiments with larger cohort size

We run experiments on CIFAR-10 dataset respectively with
4 clients and 15 clients. Local datasets are generated by divid-
ing the whole dataset into equally-sized parts. We add label
noise to local datasets by uniformly flipping some instances’
labels to other class labels. In a case study by Gu et al., the
real human annotation has a rater error rate of around 4.8%
[52]. Therefore it is reasonable to study the error rate within
a relatively small range that contains 4.8%, i.e., from 0% to
10%. We set the same proportion of wrongly labeled data for
each client in {0%, 2%, 4%, 8%}.
Slow Convergence by label noise. In Figure 5 and Figure 6,
we plot how client 1’s local model loss depends on the
communication rounds at different percentages of wrongly
labeled data. The training loss decreases slower with a larger
proportion of wrongly labeled data, i.e., the algorithm con-
verges slower with a larger proportion of wrongly labeled data.
Overfitting by label noise. We observe in Figure 7 that for all
three algorithms, the global model’s test accuracy decreases
after 20 communication rounds. The global model is more
over-fitted with a larger percentage of wrongly labeled data.
This result provides an engineering insight in FL that the over-
fitting of the global model could result from some wrongly
labeled data in the local datasets. It also motivates the study
of mitigating label noise in FL [29].
Negative linear trend by label noise. In Figure 9, all three
algorithms show a negative linear relation between the test
accuracy of the global model and the proportion of wrongly
labeled data. This is consistent with our theoretical analysis.
We also observe piece-wise linear trend in the experiments.
The model accuracy decreases more when the total noise level
exceeds certain threshold.
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D. Experiments with both label imbalance and instance-
dependent label errors

We run experiments on CIFAR-10 dataset with thirty clients
(Figure 8). Local datasets are generated by dividing the whole
dataset with label imbalance. First, we generate the label im-
balance with a symmetric Dirichlet distribution Dir(a = 10)
[2]. Then we set the error ratio in the range of 0.1 to 0.4 and
add label noise to local datasets with an instance-dependent
error generator. Here we use a classifier (a pretrained ResNet-
18) as our error generator. The classifier learned to correctly
classify some easy instances while failing on the difficult ones.

VI. DISCUSSIONS

Improving theoretical bounds: We prove a linear upper
bound for the generalization error, and the bound is consistent
with numerical results. Our result can apply to general non-
IID data distributions. However, the upper bound can be loose.
One can provide a lower bound or improve the upper bound
by making more restrictive assumptions. For example, one
can consider a regression task with MSE loss function that
provides nicer theoretical properties [53].

More comprehensive experiments: Our experiments use a
small number of clients, which applies to cross-silo FL. In
future research, we plan to study the impact of label noise
with a larger number of clients (e.g., as in cross-device FL).
Application: Our results potentially serve as “domain knowl-
edge” to improve FL algorithm design. Our theoretical analysis
revealed that taking average over local model parameters in ag-
gregation always leads to a linear relation between label noise
and the global model performance. Researchers could think
of other aggregation methods to avoid this phenomenon. Our
work could also be used in designing incentive mechanisms in
FL systems [20]. In particular, the qualitative relation in this
paper helps model the performance of global model under
label noise.

VII. CONCLUDING REMARKS

This paper takes the first step to quantify the impact of label
noise on the global model in FL. The critical challenge is that
we have little knowledge of the underlying information related
to local data distributions and we do not have an explicit
expression of the outcome of an FL algorithm. We show with
both empirical evidence and theoretical proof that 1) label
noise linearly degrades the global model’s performance in FL;
2) label noise slows down the convergence of the global model;
3) label noise induces overfitting to the global model.

REFERENCES

[1] P. Kairouz et al., “Advances and open problems in federated learning,”
Foundations and Trends in Machine Learning, 2021.

[2] T. H. Hsu, H. Qi, and M. Brown, “Measuring the effects of non-
identical data distribution for federated visual classification,” CoRR, vol.
abs/1909.06335, 2019.

[3] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “Fedavg with
fine tuning: Local updates lead to representation learning,” 2022.

[4] J. Wang et al., “A field guide to federated optimization,” ArXiv, 2021.

ISBN 978-3-903176-55-3 © 2023 IFIP

[5]

[6

[7

—

[9]

[10]
(11]
[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

189

Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, and B. He, “A
survey on federated learning systems: Vision, hype and reality for data
privacy and protection,” IEEE Transactions on Knowledge and Data
Engineering, pp. 1-1, 2021.

Z. Jiang, W. Wang, B. Li, and Q. Yang, “Towards efficient synchronous
federated training: A survey on system optimization strategies,” I[EEE
Transactions on Big Data, pp. 1-1, 2022.

H. Zhu, J. Xu, S. Liu, and Y. Jin, “Federated learning on non-iid data:
A survey,” Neurocomput., vol. 465, no. C, p. 371-390, nov 2021.

C. G. Northcutt, A. Athalye, and J. Mueller, “Pervasive label errors
in test sets destabilize machine learning benchmarks,” in Thirty-fifth
Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 1), 2021.

C. Northcutt, L. Jiang, and I. Chuang, “Confident learning: Estimating
uncertainty in dataset labels,” J. Artif. Int. Res., vol. 70, p. 1373-1411,
may 2021. [Online]. Available: https://doi.org/10.1613/jair.1.12125

Y. LeCun and C. Cortes, “The mnist database of handwritten digits,”
2005.

M. S. Al-Rawi and D. Karatzas, “On the labeling correctness in
computer vision datasets,” in JAL@PKDD/ECML, 2018.

G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “Emnist: Extending
mnist to handwritten letters,” in 2017 International Joint Conference on
Neural Networks (IJCNN), 2017, pp. 2921-2926.

A. Krizhevsky, “Learning multiple layers of features from tiny images,”
20009.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. Berg, and L. Fei-
Fei, “Imagenet large scale visual recognition challenge,” International
Journal of Computer Vision, vol. 115, 09 2014.

T. Xiao, T. Xia, Y. Yang, C. Huang, and X. Wang, “Learning from
massive noisy labeled data for image classification,” in 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015,
pp. 2691-2699.

J. M. Johnson and T. M. Khoshgoftaar, “A survey on classifying big
data with label noise,” J. Data and Information Quality, apr 2022, just
Accepted. [Online]. Available: https://doi.org/10.1145/3492546

C. Chen, S. Zheng, X. Chen, E. Dong, X. S. Liu, H. Liu, and D. Dou,
“Generalized dataweighting via class-level gradient manipulation,” in
Advances in Neural Information Processing Systems, M. Ranzato,
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., vol. 34.
Curran Associates, Inc., 2021, pp. 14097-14 109.

J. Xu, Z. Chen, T. Q. Quek, and K. F. E. Chong, “Fedcorr: Multi-stage
federated learning for label noise correction,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2022.

B. H. Kim, S. Jo, and S. Choi, “Alis: Learning affective causality behind
daily activities from a wearable life-log system,” IEEE Transactions on
Cybernetics, pp. 1-13, 2021.

C. Huang, S. Ke, C. Kamhoua, P. Mohapatra, and X. Liu, “Incentivizing
data contribution in cross-silo federated learning,” 2022.

R. Sharma, A. Ramakrishna, A. MacLaughlin, A. Rumshisky, J. Ma-
jmudar, C. Chung, S. Avestimehr, and R. Gupta, “Federated learning
with noisy user feedback,” in Proceedings of the 2022 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies.  Seattle, United States:
Association for Computational Linguistics, Jul. 2022, pp. 2726-2739.
S. Yang, H. Park, J. Byun, and C. Kim, “Robust federated learning with
noisy labels,” IEEE Intelligent Systems, vol. 37, no. 2, pp. 35-43, 2022.
M. Yang, H. Qian, X. Wang, Y. Zhou, and H. Zhu, “Client selection for
federated learning with label noise,” IEEE Transactions on Vehicular
Technology, vol. 71, no. 2, pp. 2193-2197, 2022.

J. Ma, X. Sun, W. Xia, X. Wang, X. Chen, and H. Zhu, “Client selection
based on label quantity information for federated learning,” in 2021
IEEE 32nd Annual International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC), 2021, pp. 1-6.

Y. Chen, X. Yang, X. Qin, H. Yu, P. Chan, and Z. Shen, Dealing
with Label Quality Disparity in Federated Learning. Cham: Springer
International Publishing, 2020, pp. 108-121.

X. Fang and M. Ye, “Robust federated learning with noisy and hetero-
geneous clients,” in 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2022, pp. 10062-10071.

S. Duan, C. Liu, Z. Cao, X. Jin, and P. Han, “Fed-dr-filter: Using
global data representation to reduce the impact of noisy labels on the
performance of federated learning,” Future Gener. Comput. Syst., vol.
137, no. C, p. 336-348, oct 2022.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on January 22,2024 at 18:11:05 UTC from IEEE Xplore. Restrictions apply.



(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

ISBN 978-3-903176-55-3 © 2023 IFIP

Y. Han and X. Zhang, “Robust federated learning via collaborative
machine teaching,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 04, pp. 4075-4082, Apr. 2020.

L. Li, L. Gao, H. Fu, B. Han, C.-Z. Xu, and L. Shao, “Federated noisy
client learning,” 2021.

S. Kim, W. Shin, S. Jang, H. Song, and S.-Y. Yun, “FedRN,” in
Proceedings of the 31st ACM International Conference on Information
& Knowledge Management. ACM, oct 2022.

J. Li, J. Pei, and H. Huang, “Communication-efficient robust federated
learning with noisy labels,” in Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, ser. KDD °22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
914-924.

T. Tuor, S. Wang, B. Ko, C. Liu, and K. K. Leung, “Overcoming
noisy and irrelevant data in federated learning,” 2020 25th International
Conference on Pattern Recognition (ICPR), pp. 5020-5027, 2021.

B. Zeng, X. Yang, Y. Chen, H. Yu, and Y. Zhang, “Clc: A consensus-
based label correction approach in federated learning,” ACM Trans.
Intell. Syst. Technol., vol. 13, no. 5, jun 2022.

Z. Wang, T. Zhou, G. Long, B. Han, and J. Jiang, “Fednoil: A simple
two-level sampling method for federated learning with noisy labels,”
2022.

V. Tsouvalas, A. Saeed, T. Ozcelebi, and N. Meratnia, “Federated
learning with noisy labels,” 2022.

S. Zheng, Q. Meng, H. Zhang, W. Chen, N. Yu, and T.-Y. Liu, “Capacity
control of relu neural networks by basis-path norm,” in Proceedings
of the Thirty-Third AAAI Conference on Artificial Intelligence and
Thirty-First Innovative Applications of Artificial Intelligence Conference
and Ninth AAAI Symposium on Educational Advances in Artificial
Intelligence, ser. AAATI'19/IAAT' 19/EAAT’19. AAAI Press, 2019.

Y. Jiang*, B. Neyshabur*, H. Mobahi, D. Krishnan, and S. Bengio, “Fan-
tastic generalization measures and where to find them,” in International
Conference on Learning Representations, 2020.

B. Neyshabur, R. R. Salakhutdinov, and N. Srebro, “Path-sgd: Path-
normalized optimization in deep neural networks,” in Advances in
Neural Information Processing Systems, C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett, Eds., vol. 28. Curran Associates, Inc.,
2015.

B. Neyshabur, S. Bhojanapalli, D. Mcallester, and N. Srebro, “Exploring
generalization in deep learning,” in Advances in Neural Information
Processing Systems, 1. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran
Associates, Inc., 2017.

W. E and S. Wojtowytsch, “On the banach spaces associated with multi-
layer relu networks: Function representation, approximation theory and
gradient descent dynamics,” CSIAM Transactions on Applied Mathemat-
ics, vol. 1, no. 3, pp. 387440, 2020.

A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, “An efficient
framework for clustered federated learning,” in Advances in Neural
Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020,
pp. 19586-19597.

S. Yagli, A. Dytso, and H. Vincent Poor, “Information-theoretic bounds
on the generalization error and privacy leakage in federated learning,” in
2020 IEEE 21st International Workshop on Signal Processing Advances
in Wireless Communications (SPAWC), 2020, pp. 1-5.

E. Jothimurugesan, K. Hsieh, J. Wang, G. Joshi, and P. Gibbons,
“Federated learning under distributed concept drift,” in NeurlPS 2022
Workshop on Distribution Shifts: Connecting Methods and Applications,
2022.

S. Ke, C. Huang, and X. Liu, “Quantifying the impact of label noise on
federated learning,” 2023.

S. Warnat-Herresthal, H. Schultze, K. Shastry, S. Manamohan,
S. Mukherjee, V. Garg, R. Sarveswara, K. Héndler, P. Pickkers, N. A.
Aziz, S. Ktena, FE. Tran, M. Bitzer, S. Ossowski, N. Casadei, C. Herr,
D. Petersheim, U. Behrends, F. Kern, and T. Velavan, “Swarm learning
for decentralized and confidential clinical machine learning,” Nature,
vol. 594, 06 2021.

C. Zhang, M. Ahmad, and Y. Wang, “Admm based privacy-preserving
decentralized optimization,” IEEE Transactions on Information Foren-
sics and Security, vol. 14, no. 3, pp. 565-580, 2019.

L. Luo and H. Ye, “Decentralized stochastic variance reduced extragradi-
ent method,” 2022. [Online]. Available: https://arxiv.org/abs/2202.00509

(48]

[49]

(501

[51]

[52]

[53]

190

Y. Liu, F. R. Yu, X. Li, H. Ji, and V. C. M. Leung, “Blockchain and
machine learning for communications and networking systems,” IEEE
Communications Surveys & Tutorials, vol. 22, no. 2, pp. 1392-1431,
2020.

H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS, 2017.

C. Huang, J. Huang, and X. Liu, “Cross-silo federated learning: Chal-
lenges and opportunities,” 2022.

Y. Luo, G. Liu, Y. Guo, and G. Yang, “Deep neural networks learn
meta-structures from noisy labels in semantic segmentation,” in AAAI,
2022.

K. Gu, X. Masotto, V. Bachani, B. Lakshminarayanan, J. Nikodem, and
D. Yin, “An instance-dependent simulation framework for learning with
label noise,” Machine Learning, 2022.

A. Damian, T. Ma, and J. D. Lee, “Label noise sgd provably prefers flat
global minimizers,” in NeurIPS, 2021.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on January 22,2024 at 18:11:05 UTC from IEEE Xplore. Restrictions apply.





