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Antimicrobial resistance (AMR) is arguably one of the major health and economic
challenges in our society. A key aspect of tackling AMR is rapid and accurate
detection of the emergence and spread of AMR in food animal production, which
requires routine AMR surveillance. However, AMR detection can be expensive
and time-consuming considering the growth rate of the bacteria and the most
commonly used analytical procedures, such as Minimum Inhibitory Concentration
(MIC) testing. To mitigate this issue, we utilized machine learning to predict
the future AMR burden of bacterial pathogens. We collected pathogen and
antimicrobial data from >600 farms in the United States from 2010 to 2021 to
generate AMR time series data. Our prediction focused on five bacterial pathogens
(Escherichia coli, Streptococcus suis, Salmonella sp., Pasteurella multocida, and
Bordetella bronchiseptica). We found that Seasonal Auto-Regressive Integrated
Moving Average (SARIMA) outperformed five baselines, including Auto-Regressive
Moving Average (ARMA) and Auto-Regressive Integrated Moving Average (ARIMA).
We hope this study provides valuable tools to predict the AMR burden not only of
the pathogens assessed in this study but also of other bacterial pathogens.
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1. Introduction

The discovery of antimicrobials is one of the best advances in therapeutic medicine
in humans and animals. Over time, microbes have evolved and developed resistance
mechanisms against these antimicrobial compounds. Increasing resistance to the available
antimicrobials and stagnation of developing novel antimicrobials limit treatment options for
patients with infectious diseases. Therefore, the emergence, dissemination, and persistence
of microbes that are resistant to existing antimicrobials pose an enormous threat to public
and animal health. Antimicrobials are extensively used in the food animal industry to treat
bacterial infections and promote health, welfare, and production. According to Food and
Drug Administration (FDA), ~80% of all antibiotics in the United States in 2011 were
sold for use in animal husbandry, and ~70% of them belonged to the antibiotic classes
used in human medicine (medically important antibiotics; FDA Department of Health and
Human Services, 2011). Pig farming is one of the leading sectors using antimicrobials. Thus,
increased levels of AMR are anticipated in swine farms due to the selective pressure of these
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antimicrobials and can spread via pork, direct contact with pigs, or
discharge of swine waste into the environment.

A key to preventing AMR emergence and spread is early
and accurate detection of potential AMR, which promotes
selecting appropriate antimicrobials and facilitating the prompt
investigation of drug-resistant disease outbreaks. Routine
monitoring and surveillance can enable exemplary stewardship by
detecting AMR emergence, tracing AMR patterns, and effectively
targeting antimicrobial interventions and mitigation strategies.
Currently, antimicrobial susceptibility testing (AST) is the primary
method for detecting AMR and selecting effective antimicrobials
against bacterial pathogens, which involves culturing the bacteria
in the presence of a panel of various antimicrobials. Effective
antimicrobials can be determined by detecting Minimum
Inhibitory Concentration (MIC), where antimicrobials with lower
MIC values are considered more effective (susceptible) because less
of the drug is needed to inhibit bacterial growth. However, these
procedures can be expensive and time-consuming, depending
on the growth rate of the bacteria and MIC testing procedures.
Alternative methods, such as DNA sequencing technologies,
are increasingly used to detect AMR at the molecular level,
but they require robust bioinformatics tools to evaluate the
genomic structure of the microbial resistomes. Thus, most clinical
laboratories still depend primarily on conventional AST to conduct
clinical therapy and observe AMR over time. Nevertheless, most
farms may not have the resources (e.g., time and budget) to perform
routine testing to detect AMR and quantify the AMR burden in
field settings. Therefore, developing a tool to predict AMR
burden based on available data, such as prior AMR information
(susceptible/resistance) against common antimicrobials, could be
very useful to better inform decision-making about antimicrobial
use at the farm level, which consequently helps mitigate AMR.

Machine learning has been widely employed for studying
AMR, highlighting its importance in predicting resistance levels
mainly using features directly from genotypes (Pesesky et al., 2016;
Nguyen et al., 2018, 2019; Wang et al, 2022). However, there
are situations where we do not obtain genomic data to predict
AMR levels but only preserve historical phenotype information.
Time series analysis is a great solution to relevant tasks for such
situations. Time series has shown great performances in studying
AMR (Lopez-Lozano et al., 2000; Hsueh et al, 2005; Aldeyab
et al., 2008; Guo et al, 2019; Jeffrey et al, 2021; Strahlberg,
2021), and sometimes their methods are limited to Auto-
regressive Integrated Moving Average (ARIMA; Chatfield, 2003)
or subcategory methods that cannot properly incorporate seasonal
behavior of AMR levels. Among many time series approaches, the
Seasonal Auto-regressive Integrated Moving Average (SARIMA;
Chatfield, 2003) has received significant attention because of
its outstanding performance in time series forecasting. SARIMA
shows its usefulness when some degrees of seasonality-periodic
fluctuations occur repeatedly in the time series.

In this study, we used the SARIMA algorithm to predict
the future burden of AMR (AMR proportions) of five bacterial
pathogens (Escherichia coli, Streptococcus suis, Salmonella sp.,
Pasteurella multocida, and Bordetella bronchiseptica) prevalent in
the studied swine farms using the prior resistance information.
The data included the number of tested pathogens with confirmed
resistance (based on MIC interpretations) to their corresponding
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antimicrobials. Instead of direct use of binary (susceptible and
resistance) classified data, we generated integrated time series
data, i.e., quarterly-based AMR proportions for each of the
study pathogens. This approach enabled us to overcome the
limitations of missing data over time. We also compared the
performance of SARIMA to that of Auto-Regressive Moving
Average (ARMA; Wold, 1938), Auto-Regressive Integrated Moving
Average (ARIMA; Chatfield, 2003), and three other forecasting
baseline methods as follows: Naive, Seasonal Naive, and one-lagged
prediction (Ryu and Sanchez, 2003; Reza Hoshmand, 2009). These
three baselines were selected as benchmarks in our study because
they are often used in forecasting tasks and are simple yet effective.
We believe that predicting AMR proportions using time series
models can provide valuable information to facilitate the selection
of appropriate antimicrobials against pathogens and the prompt
investigation of drug-resistance disease outbreaks.

2. Materials and methods

In this section, we discuss the workflow, time series analysis
methods, and experimental design. Workflow after data collection
includes data processing (irregular binary data to quarterly time
series data) and time series analysis (model parameter selection and
model train/test; Figure 1).

2.1. Data collection

In this study, we used pathogen and antimicrobial information
from >600 farms owned by two swine production systems
in the United States. The samples were collected from pigs
infected with one of five bacterial pathogens (Escherichia coli,
Streptococcus suis, Salmonella sp., Pasteurella multocida, and
Bordetella bronchiseptica) from 2010 to 2021 and tested for AMR
against a panel of antimicrobials (Table 1). The resistance level of
each pathogen against antimicrobials was detected by determining
MIC and classified into two groups as follows: susceptible (S)
and resistant (R), based on an interpretation report received from
the American Association of Veterinary Laboratory Diagnosticians
(AAVLD) accredited laboratory in the United States.

2.2. Data processing for time series analysis

For each pathogen, different groups of antimicrobials were
employed for experiments (see Table 1). One challenge is that there
were missing data points between certain time periods. To tackle
this, we constructed a quarterly time series dataset by integrating
the data points every quarter. We converted our data points to a
quarterly basis dataset and define Res(Pathogen, Antimicrobial) the
resistance time series for each pathogen and antimicrobial as below.

sTn)s (1

Res(Pathogen, Antimicrobial) = (r1,12,- -

#0ofR
Fol(R+9)
and S stand for resistant and susceptible, respectively). Figure 1

where r; = Proportion(R) = over the ith quarter (R

shows how we processed our dataset. Figure 2 shows examples
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of quarterly based time series constructed for pathogens and
antimicrobials, and all of the time series examples are presented
as solid lines in Supplementary Figures 1-5. With the constructed
data, we focused on predicting AMR proportions in times series for
each Res(Pathogen, Antimicrobial) in our data.

We also output the mean and the standard deviations of
Res(Pathogen, Antimicrobial) which can be an indicator for the
averaged AMR proportions and dynamics of each time series
(Table 1). We also observed different degrees of fluctuation in
the processed dataset. For example, Res(Escherichia coli, Ampicillin)
changes more dynamically than Res(Escherichia coli, Tiamulin)
(Figure 2 and Table 1).

2.3. AR(I)MA, SARIMA, and three baselines

2.3.1. ARMA and ARIMA

Auto-Regressive Moving Average (ARMA) model consists of
two parts, such as autoregressive (AR) and moving average (MA)
parts (Wold, 1938). The model is usually referred to as ARMA(p, q),
where p and q are the order of the AR and MA parts, respectively
(Valipour et al., 2012). AR part takes previous observations as
inputs to predict future values. MA part uses previous errors
between predicted and observed as predictors for future values.
ARIMA model consists of three parts, such as AR, MA, and the
integrated (I) parts (Chatfield, 2003). The model is usually referred
to as ARIMA(p, d, q), where p and g are the same as for the ARMA
model, and d is the degree of differencing. The integrated part refers
to the differencing of observations to allow time series to become

stationary.
2.3.2. SARIMA
Seasonal  Auto-regressive Integrated Moving Average

(SARIMA) model (Chatfield, 2003), as an advanced method
of ARIMA with a seasonal component, overcomes the limitation
that ARIMA cannot tackle data with periodic behavior properly. In
this study, we employed SARIMA to predict AMR proportions for
bacterial pathogens considering AMR proportions vary over time
with a potential seasonality.

A typical SARIMA model has seven parameters, referred
to as SARIMA(p, d, q)(P, D, Q)s, where (p,q) and (P, Q) are the
order of the non-seasonal and seasonal (autoregressive, moving)
models, respectively, d and D are the numbers of non-seasonal and
seasonal differences, respectively, and S is the periodic seasonality
term. Choosing appropriate parameters is a key process for the
optimal SARIMA performance. To this end, autocorrelation and
partial autocorrelation functions are utilized. To be precise, we
first determine non-seasonality components (p, d, q), and then, we
find proper seasonal parameters (P, D, Q)s using autocorrelation
function and partial autocorrelation function. Time series datasets
often have trends in time series and changes in the statistical
structure of the series, which means non-stationarity. To find non-
seasonality parameters, trend and seasonality in time series should
be removed using differencing techniques. After the removal of
trend and seasonality, the autocorrelation function and partial
autocorrelation function help determine non-seasonal parameters.
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Additionally, we also check the p-value between time series data
and its lagged time series, and the number of lags with the lowest p-
value determines seasonality parameter S for the SARIMA model.
However, these steps do not always guarantee finding a specific
set of parameters for the optimal SARIMA model. In many cases,
parameter exploration using grid search is required, which means
that we set some possible candidates for parameters and check the
SARIMA model performance to find sets of parameters with the
best performance.

2.3.3. Three baselines

Naive method is the simplest time series forecasting method
where all remaining forecast is set equal to the observation made
in the last timestamp as below.

Frys=Yrfort >0, (2)

where F and Y are forecasting and observed times series,
respectively. T and T + ¢ are the timestamps of the last observation
and the forecast time, respectively.

Seasonal Naive method is an extension of the Naive method
with a seasonality. It predicts the forecasts based on the same
timestamp in the previous cycle as below.

Friys = Yri4_gk—1) for t >0, (3)

where s is seasonality and k is completed cycles.

One-lagged prediction methods rely on the most recently
acquired data (Ryu and Sanchez, 2003). One-lagged prediction
utilizes the data from the previous timestamp to forecast the current
timestamp as shown below.

Fry1 = Yrfort > 0. (4)

2.4. Experiments

2.4.1. Parameter selection for SARIMA

For accurate AMR time series prediction, it is crucial
to find appropriate SARIMA parameters (Ma et al,
2021). We selected Escherichia coli and Neomycin because
Res(Escherichia coli, Neomycin) provides the largest number of
data points to work with, and it shows visible seasonality. We have
seven parameters to determine as follows: (p,d,q), (P, D, Q), and
S. After using the differencing method to find parameter d and
to remove the trend component in Res(Pathogen, Antimicrobial),
autocorrelation function, partial autocorrelation function, p-value
analysis, and parameter exploration were attempted to assessing
SARIMA parameters. We choose optimal SARIMA parameters
that predict Res(Escherichia coli, Neomycin) with the lowest error.

2.4.2. ARMA and ARIMA parameter selection
Similar to SARIMA, we also employed parameter exploration

to find the optimal parameters for ARMA and ARIMA.

Res(Escherichia coli, Neomycin) was utilized for this process. We
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Data Processing: binary to time series
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FIGURE 1

analysis.

Workflow chart. Data processing example [from irregular binary data to quarterly based time series: Res(Pathogen, Antimicrobial)] and time series

TABLE 1 Full data of antimicrobial and pathogens used for study.

Escherichia Streptococcus Salmonella Pasteurella Bordetella
coli suis sp. multocida bronchiseptica

Clindamycin 1.0/0.0 0.8/0.18 1.0/0.0 1.0/0.01 1.0/0.0
Tiamulin 0.99/0.03 0.16/0.1 1.0/0.01 0.58/0.29 1.0/0.01
Tylosin - - - 0.98/0.06 -
Ampicillin 0.71/0.22 0.03/0.06 0.58/0.27 0.03/0.07 1.0/0.02
Gentamicin 0.32/0.16 - 0.51/0.39 - 0.04/0.1
Oxytetracycline 0.88/0.13 0.93/0.1 - 0.23/0.26 0.03/0.1
Penicillin 1.0/0.0 0.18/0.13 1.0/0.0 0.19/0.28 1.0/0.0
Spectinomycin 0.9/0.22 - - - -
Tilmicosin 0.99/0.03 0.73/0.21 1.0/0.0 0.21/0.31 -
Chlortetracycline 0.88/0.13 0.93/0.1 - 0.03/0.07 0.04/0.11
Sulphadimethoxine - 0.61/0.22 - - 0.97/0.08
Ceftiofur - 0.04/0.06 - 0.0/0.02 -
Enrofloxacin 0.34/0.25 0.07/0.07 0.29/0.38 0.0/0.02 -
Florfenicol 0.84/0.09 0.03/0.07 0.9/0.14 0.02/0.07 0.83/0.17
Neomycin 0.34/0.25 0.73/0.17 0.57/0.39 0.07/0.14 -
Sulfa./trimethoprim 0.26/0.27 - 0.32/0.32 - 0.89/0.14
Tulathromycin - - - 0.0/0.01 0.04/0.1

Note that - indicates that corresponding data are not used in the experiments.

Two numbers provided indicate mean and standard deviation of data, i.e., an indicator for averaged AMR proportions and how dynamically (uncertain) the time series is changing, respectively.

conducted two experiments for ARMA and ARIMA independently
because ARMA does not take parameter d into account while
ARIMA considers it.

2.4.3. Time series-based AMR proportions

prediction
We selected seven combinations of parameters from
previous analysis on  Res(Escherichia coli, Neomycin) and
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applied the chosen seven combinations of parameters to other
Res(Pathogen, Antimicrobial) to predict the AMR proportions.
Specifically, each  Res(Pathogen, Antimicrobial),
experiments with different parameter sets were conducted.
Each experiment returned a rooted mean squared error as
a performance measurement. We also used three baselines
as follows: Naive, Seasonal Naive (we set four as the
seasonality period), and one-lagged prediction. All baselines
also outputted root mean squared error values for each

for seven
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Examples of our processed quarterly based AMR proportions time series. (A) Res(Escherichia coli, Ampicillin), (B) Res(Escherichia coli, Gentamicin),
(C) Res(Escherichia coli, Tiamulin), and (D) Res(Escherichia coli, Sulfamethoxazole/trimethoprim).
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Res(Pathogen, Antimicrobial). All experiments were conducted in
Python (version 3.7.6).

3. Results

3.1. Seven selected sets of SARIMA
parameters

As shown in Figure 3, the autocorrelation function and
partial autocorrelation function provided information on choosing
the right parameters for SARIMA. P-value analysis for the
Res(Escherichia coli, Neomycin) and its lagged time series with a
different number of lags were also used to find the seasonal
parameter S. From these, we can determine our parameter S = 12,
but other parameters were not found properly from autocorrelation
function and partial autocorrelation function analysis. There were
no significant patterns of gradual decay or recurring cycles
observed in either the autocorrelation or partial autocorrelation
plots (Figure 3). Specifically, there is no data point with a lag value
greater than zero that fell outside the confidence interval (blue
shade area) in either plot (Figure 3), resulting in making it unable to
estimate the appropriate parameters for a moving average (MA) or
autoregressive (AR) models. From these analyses, the parameters
of the time series model could not be satisfactorily determined
without a parameter search.

In this regard, we explore the set of parameters that output
the lowest error estimation measured by rooted mean squared
error. In other words, we conducted trial and error for finding
appropriate undetermined parameters remained. Our parameter
exploration includes integers from 0 to 5 for three parameters p,
d, ¢, and from 0 to 6 for the other three parameters P, D, Q,
for which we end up having 67° combinations to attempt. For
each attempt with a combination of parameters, SARIMA predicted
Res(Escherichia coli, Neomycin), i.e., tried to predict the 10% of
the last values in Res(Escherichiacoli, Neomycin) after being trained
with the first 90% of the Res(Escherichia coli, Neomycin), and a
prediction error was reported. With outputted errors, we selected
seven parameter combinations that return the lowest rooted mean
squared error values because the next best one after these seven has
a relatively big gap in the errors from the first seven parameters, and
interestingly, our three parameters (P, D, Q)s are fixed as (1,0, 1)12
while seven different (p, d, q) are acquired from Table 2.

3.2. Seven parameter sets for ARMA and
ARIMA

To find  the
Res(Escherichia coli, Neomycin) ~ with

that
the lowest

parameter  sets predicted
errors, we
explored integers from 0 to 5 for all parameters (p,q) and (p, d, q)
for ARMA and ARIMA, respectively. Each experiment requires 6>
and 6 iterations to search independently. In the end, seven sets of
(p,d,q) and (p, q) that outputted the lowest rooted mean squared

error were selected (Table 2).
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3.3. Error estimation for AMR proportions
prediction

For each Res(Pathogen, Antimicrobial) time series prediction
using SARIMA, the seven previously selected SARIMA parameter
sets were applied. Each experiment outputted a rooted mean
squared error value which represents how good the prediction
is, i.e, the lower the rooted mean squared error value, the
more accurate the method (Figure4). The lowest error value
was provided among seven errors from seven experiments
of SARIMA for each Res(Pathogen, Anmtimicrobial). For each
ARMA and ARIMA, seven parameters were conducted, and
the lowest rooted mean squared error values were outputted
among seven different experiments. We observed that our
SARIMA method showed lower rooted mean squared error values
compared to ARMA, ARIMA, and the other three baselines in
general. The rooted mean squared error gap between SARIMA
and three baselines became bigger when the AMR proportion
time series [Res(Pathogen, Antimicrobial)] have greater deviation
values (equivalently, more dynamical). This is because higher
deviation implies more fluctuation in AMR proportion time
series that are harder to predict. For example, rooted mean
squared error values were similar between SARIMA and three
baselines for Res(Escherichia coli, Tilmicosin) (standard deviation:
0.03), while root mean squared error gap became bigger
for Res(Escherichia coli, Enrofloxacin) (standard deviation: 0.03;
Figure 4 and Table 1).

4. Discussion

This study investigated the plausibility of executing data-
driven forecasting of the future AMR burden using the available
resistance data in >600 swine farms in the United States from
2010 to 2021. AMR burden was quantified quarterly by calculating
the proportions of resistant strains of five crucial bacterial
pathogens (Escherichia coli, Streptococcus suis, Salmonella sp.,
Pasteurella multocida, and Bordetella bronchiseptica) against their
corresponding antimicrobials. The bacterial species assessed in this
study were the most prevalent swine bacterial pathogens dispersed
within the studied farms, significantly affecting their health,
welfare, and productivity. These pathogens can cause various
infections in pigs, including respiratory, gastrointestinal, and/or
systemic infections, and antimicrobials are the primary mode
of therapy and prevention of these infectious diseases (Robbins
et al., 2014). Therefore, early and accurate detection of potential
AMR of these pathogens is essential to determine the appropriate
antimicrobials to use against and monitor for drug-resistant disease
outbreaks. In this study, we used three machine learning-based time
series analyses to predict the future AMR proportions in the studied
farms and compared their performances to select the most efficient
and accurate approach for future use. According to our findings,
SARIMA predicted AMR proportions accurately and outperformed
ARMA, ARIMA, and three baselines according to the rooted mean
squared error value. However, parameter exploration remains a
light limitation due to the potential computational burden because
the key to prediction using SARIMA was to find appropriate
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TABLE 2 Seven selected parameters of SARIMA, ARMA, and ARIMA used for overall AMR proportions prediction acquired from Res(Escherichia coli,
Neomycin) analysis.

SARIMA
#2 2 2 3 1 0 1 12 #2 3 0 #2 2 2 3
#3 3 0 4 1 0 1 12 #3 3 1 #3 2 2 1
#4 3 1 4 1 0 1 12 #4 1 0 #4 3 2 2
#5 4 0 0 1 0 1 12 #5 1 1 #5 3 1 0
#6 4 3 4 1 0 1 12 #6 1 2 #6 2 1 0
#7 4 2 4 1 0 1 12 #7 1 3 #7 2 2 2
A Escherichia coli B Streptococcus suis
o« 040 — Naive P « 040 —+— Naive
E —e— Seasonal Naive ) 8 —e— Seasonal Naive
5 035 —e— Onelagged 5 035 —e— One Lagged
3 —e— ARMA - ~—#— ARMA
D 030 o ARmA o 030 A —e— ARIMA
— \
S 025 SARIMA T 025 —e— SARIMA
o o
v 0.20 2 0.20
=
® 015 g 0.15
=
- 0.10 B 0.10
% 0.05 © 005
o
& 0.00 & 000
Ampicillin Gentamicin Penicillin Tiamulin Chiorlelracycline  Florfenicol ~ TRIMETHSULFA Chlertetracycline  Sulphadimethoxine  Neomycin _ Cefliofur Penicillin Ampicillin
Clindamycin  Oxytetracycline  Spectinomycin Tilmicosin Enrofloxacin Neomycin Oxytetracycline Clindamycin Tilmicosin Enrofloxacin Tiamulin Florfenicol
c Salmonella sp. D Bordetella bronchiseptic
_ 08 - L 06 - e B
o ~+— Naive ‘*\» o ~+— Naive
c —e— Seasonal Naive AR = —e— Seasonal Naive — it
w 05 —e— One Lagged L | g 5 SEE One Lagged /
- —=— ARMA 2 —+— ARMA /
5 |oa == ARIMA © 04 —* ARIMA /i
=] —*— SARIMA g_ —e— SARIMA /
o /
%)
":’ 0.3 =03
© @©
o ]
S 02 = 02
- £ o)
O Q
2 o1 S 01
) o
o o
. Ampicillin Florfenicol Penicillin Tilmicosin TRIMETHSULFA 0 Clindamycin Sulphadimethoxine  TRIMETHSULFA i i I
Clindamygin Gentamicin lamulin Neomycin Enrofloxacin Penicillin Tiamulin Ampicillin Florfenicol Oxyletracycline
E Pasteurella multocida
B 0.40 “+ Naive
= 035 —e— Seasonal Naive
W —e— One Lagged
T 0.30 —&— ARMA
L —o— ARIMA
S 025 —s— SARIMA
o
020
|
8 0.15
=
5 010
a8
D 0.05
o]
= 0.00
Clindamycin Tylosin Ampicillin fur o cl i
Tiamulin Tilmicosin Neomycin Penicillin Florfenicol Enrofloxacin
FIGURE 4
Rooted mean squared errors for five pathogens with corresponding antimicrobials. (A) Escherichia coli, (B) Streptococcus suis, (C) Salmonella sp., (D)
Bordetella bronchiseptica, and (E) Pasteurella multocida.

parameters which cannot always be acquired from the general
process using partial autocorrelation function.

According to this study, we observed distinct temporal
trends in AMR proportions for the five pathogens against
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their corresponding antimicrobials during the study period
(Supplementary Figures 1-5). For example, pathogens, such as
Escherichia coli and Salmonella sp., showed very high or increasing
trends of AMR proportions against Enrofloxacin, Neomycin,
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Sulfamethoxazole/trimethoprim, and Clindamycin, etc., while
Streptococcus suis exhibited low resistance to ampicillin, ceftiofur,
enrofloxacin, florfenicol, and tiamulin. Most of the studied
antimicrobials are effective against Pasteurella multocida, whereas
Bordetella bronchiseptica displayed higher resistance levels against
most antimicrobials assessed in our study. Nevertheless, these
quarterly based-AMR proportions showed frequent fluctuations
in most pathogens against their corresponding antimicrobials
throughout the
However, our SARIMA models were able to correctly capture all

study period (Supplementary Figures 1-5).
these individual trends and predict the future AMR proportions
with high accuracy. Specifically, our study demonstrated that
SARIMA works well for dynamic time series, such as AMR
proportion time series for the studied five pathogens even if it is
difficult to fairly compare our results to those from other relevant
studies, as each system has its unique data samples and methods. In
addition, this method could be applied to predict other unexplored
pathogens unless the available data are limited. In other words, this
work can be generalized to AMR proportion time series for any
pairs of pathogens and antimicrobials. Furthermore, our SARIMA
model can also be applied to other time series analyses in the
domain, such as swine mortality rate.

Early detection of emerging AMR and future prediction of
AMR burden and trends are vital to comprehend the extent of the
threat and implement appropriate antimicrobial interventions and
mitigation strategies. Numerous studies have explored various ML
algorithms to study AMR using available phenotypic data (Lopez-
Lozano et al., 2000; Hsueh et al., 2005; Aldeyab et al., 2008; Guo
et al, 2019; Jeffrey et al., 2021; Strahlberg, 2021) and genotypes
(Pesesky et al., 2016; Nguyen et al, 2018, 2019; Wang et al.,
2022). Specifically, the recent advancements in affordable and rapid
DNA sequencing technologies (e.g., whole genome sequencing)
combined with ML approaches have drastically transformed AMR
surveillance and prediction prospects. Predicting pathogens that
might express AMR by using their genomics data has shown great
promise in the real-time detection of AMR determinants. However,
this process requires robust bioinformatics tools and advanced
analytical skillsets to assess the microbial genomic structure and
the resistomes, and these limitations still preclude cost-effective,
user-friendly, and rapid antimicrobial resistance surveillance. In
addition, phenotyping approaches provide direct visual evidence of
interaction between a bacterial strain and an antimicrobial. Thus,
most clinical laboratories, to date, rely mainly on traditional AST
to guide clinical therapy and monitor AMR over time. Therefore,
the SARIMA model we proposed in our study will be an efficient
and practical alternative to predict AMR burden, especially for
situations where we do not have genomic data but only have
historical phenotype information.

There are a few limitations to our study. The AMR data used
for prediction were comprised of data from multiple swine farms
within the United States. Although these farms were managed
under two major swine production systems, individual farms
can have different management practices, biosecurity measures,
treatment protocols, etc. Previous studies disclosed various factors,
such as transportation, farm management, housing conditions,
metals consumption, feeding strategies, antimicrobial usage, and
co-infections that can affect the spread of antimicrobial-resistant
bacteria and the AMR levels in a farm (Mathew et al, 2003;
Dewulf et al.,, 2007; Medardus et al., 2014; Luiken et al., 2022;
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Odland et al., 2022). However, we did not incorporate these factors
in our study. Thus, the future AMR burden (proportions) can
vary from the predicted levels due to the variations in these farm
factors. Since the AMR predictions were made using a limited
number of swine farms in the United States, we cannot generalize
our findings to the entire swine population in the United States.
Therefore, we cannot generalize our findings to the entire swine
population in the United States. However, our results depict the
potential of using time series analysis to predict AMR levels within
a farm or geographical region. In this study, we transformed
the AMR data into a binary variable (susceptible/resistance)
using breakpoints acquired from the interpretation report from
AAVLD-accredited laboratories in the United States. Some of
these breakpoints were extrapolated from other species (e.g.,
human and canine) if swine-specific breakpoints were not
available for a pathogen-antimicrobial combination (Watts et al.,
2018; Lubbers et al, 2020). Breakpoint MICs depend on the
clinical pharmacology of antimicrobials and are generally specific
for bacterial-antimicrobial-host-disease-tissue-dosing  regimen
combinations (Watts et al., 2018; CLSI, 2019; Lubbers et al., 2020);
thus, different testing laboratories may use different standards for
resistance classifications, which may cause misclassifications of
pathogens. Nevertheless, predicting AMR burden directly from
MIC values will minimize these misclassifications or classification
errors. Hence, future studies are suggested to perform time series
analysis based on the raw MIC data.

5. Conclusion

This study proposed to use time series methods for the
prediction of future AMR burden by constructing the quarterly
based AMR proportion times series. The SARIMA approach
showed low errors in terms of rooted mean squared error
compared with ARMA, ARIMA, and three other forecasting
baselines, and it worked even for highly dynamic time series. We
believe that our time series prediction can help to advise using
appropriate antimicrobials and reduce the risk related to AMR
events by predicting anticipation of AMR occurrences in farms or
geographical regions. Furthermore, our study may also contribute
to the analysis of similar problems and scenarios.
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