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A B S T R A C T   

Urban flooding is a growing threat due to land use and climate change. Vulnerable populations tend to have 
greater exposure to flooding as a result of historical societal and institutional processes. Most flood vulnerability 
studies focus on a single large flood, neglecting the impact of small, frequent floods. Therefore, there is a need to 
investigate inequitable flood exposure across a range of event magnitudes and frequencies. To explore this 
question, we develop a novel score of inequitable flood risk by defining risk as a function of frequency, exposure, 
and vulnerability. This analysis combines high-resolution, parcel-scale compounded fluvial and pluvial flood 
data with census data at the census block group scale. We focus on six census tracts within Athens-Clarke County, 
Georgia that are highly developed with diverse populations. We define vulnerable populations as non-Hispanic 
Black, Hispanic, and households under the poverty level and use dasymetric mapping techniques to calculate the 
over-representation of these populations in flood zones. Inequitable risks at each census tract (approximately 
neighborhood scale) were estimated for multiple (e.g., 5-, 10-, 20-, 50-, and 100-year) flood return periods. 
Results show that the relatively greatest flood risk inequities occur for the 10-year flood and not at the largest 
event. We also found that the size of inequity is dynamic, depending on the flood magnitude. Therefore, 
addressing a range of events including smaller, more frequent floods can increase equity and reveal opportunities 
that may be missed if only one event is considered.   

1. Introduction 

Flooding is one of the most costly and frequent natural disasters 
facing the United States, with 41 million people estimated to currently 
reside in flood prone areas (Wing et al., 2018). Climate and land use 
change are expected to increase flooding, especially in urban areas 
(Hollis, 1975; Huang et al., 2007; Trenberth, 2011; Kunkel et al., 2013; 
Zhou et al., 2019). The growing threat of flooding in urban communities 
is concerning considering that urban populations are growing simulta
neously. The United Nations predicts that 90% of the North American 
population will live in urban areas by 2050 (United Nations Population 
Division, 2008). Without adequate adaptations, escalating flood expo
sure will threaten both a city’s built environment and residents. 

The harmful and long-lasting impacts of flooding are not experienced 
equally across communities (Coninx and Bachus, 2021). Socially 
vulnerable populations are commonly characterized by low-incomes, 
racial and ethnic minorities, limited education, disabilities, ages under 
16 and over 75, and/or single-parent households, and they bear the 
burdens of flooding, having been delegated to flood prone areas (Bigi 

et al., 2021; Debbage, 2019; Qiang, 2019). While they face greater 
exposure, socially vulnerable populations possess limited access to re
sources and support structures to respond to floods, diminishing resil
ience and prolonging recovery (Rufat et al., 2015). The existing flood 
exposure disparities will only be exacerbated by climate change (Mason 
et al., 2017; Rickless et al., 2020; Shepherd and KC, 2015; Wing et al., 
2022). This is especially true in the Southeast United States where his
torical racism and segregation have led to greater flood exposure for 
Black and African American communities (Cutter et al., 2003; Linscott 
et al., 2021; Tate et al., 2021; Ueland and Warf, 2006). 

To identify the inequities in flood exposure, many studies overlay 
flood exposure maps with a social vulnerability index to locate spatial 
coincidence of highly vulnerable populations and high flood risk 
(Chakraborty et al., 2014; Coninx and Bachus, 2021; Koks et al., 2015; 
Nelson et al., 2015; Tascón-González et al., 2020). These studies typi
cally investigate only a single flood magnitude, often the 100-year flood 
or a historical flood, producing spatial depictions of flood risk that are 
only applicable to one specific event. Nuisance flooding is the small, 
frequent flood events that can cause more cumulative damage over time 
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than a large, single event, and is a challenge for urban areas (Moftakhari 
et al., 2017, 2018). Nuisance flooding represents a category of flooding 
for which inequity has not been investigated. For this reason, there is a 
need to look at flood inequity across multiple flood magnitudes that 
captures the impacts of the small, but frequent floods. 

In a review of studies that analyzed flood risk using multiple return 
periods, we found they generally follow the same methodology where 
flood risk is the product of exposure and social vulnerability. A return 
period is analogous to a recurrence interval, and this term is used 
interchangeably with flood magnitude as a larger return period corre
sponds to a large, infrequent flood. Multiple papers integrate exposure 
from multiple return periods into a single flood exposure index and 
while this is useful for planning purposes, the reader cannot distinguish 

how risk changes across flood magnitudes (Chakraborty et al., 2005; 
Künzler et al., 2012; Vicente et al., 2006; Wing et al., 2022). Other 
studies produced risk maps separately for different return periods using 
separate flood exposure inputs but do not look at a wide range of events 
(Abdrabo et al., 2020; Liu et al., 2021). There are a few papers that 
employed different methods for estimating risk. Some studies incorpo
rated exposure as indicators (e.g., percent of flooded area, flood depth, 
tidal range, etc.) with the social vulnerability indicators into a single 
index instead of using a flood map or flood index to calculate risk 
(Hadipour et al., 2020; Ye et al., 2022). Additionally, a few papers used 
exposure maps with depth-damage curves to estimate economic dam
ages in the form of income loss, cost of repairs, etc. for different return 
periods (Schuster-Wallace et al., 2018; Tyagi, 2020; Yang et al., 2020). 

Fig. 1. The six census tracts overlapping Brooklyn Creek Watershed and the sources of riverine flooding.  
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One paper did conduct a flood equity analysis in the Liege province of 
Belgium, and they found that the lower to middle socio-economic status 
populations were more exposed to flooding (Poussard et al., 2021). The 
authors end their study by stating the need for further research on the 
relationship between flood frequencies and socioeconomic characteris
tics (Poussard et al., 2021). 

In the studies where flood risk was analyzed separately for multiple 
return periods, risk increases with return period (Abdrabo et al., 2020; 
Liu et al., 2021; Ye et al., 2022). These findings are reasonable because 
in all these instances, the exposure input (flood inundation) changed 
while the social vulnerability indicators remained the same. As flood 
exposure expands, risk increases. The social vulnerability indices values 
remained the same even though the population impacted by a flood may 
change with flood magnitude. For this reason, we employed methods 
from Debbage (2019) to calculate social vulnerability based on the 
disproportionate presence of socially vulnerable populations in the flood 
zone for each event separately. This allows us to incorporate social 
vulnerability in our analysis by accounting for how the demographics of 
the exposed population change according to inundation patterns from 
different size floods. 

In this paper, we investigate the trends in flood inequity across 
multiple flood frequencies. We use the framework that risk is a function 
of hazard, exposure, and vulnerability and define hazard as the likeli
hood of an certain flood magnitude occurring and exposure as the 

damages caused by this flood magnitude (Joyce et al., 2018; 
Kaźmierczak and Cavan, 2011; Koks et al., 2015; Kron, 2005; Preisser 
et al., 2022). We apply a unique definition of vulnerability as the 
overrepresentation of socially vulnerable population in the flood zone 
compared to non-socially vulnerable populations. The conceptualization 
of vulnerability is not based on static indicators, but changes with return 
period. Vulnerability is made up of the components of exposure, adap
tive capacity, and sensitivity and as a concept can be applied to a variety 
of spheres to describe the ability to cope with different environmental 
hazards, including social, technological, and ecological vulnerability 
(Chang et al., 2021). (Bigi et al., 2021; KC et al., 2015). We focus on 
social vulnerability, and while we do include exposure in our concep
tualization, we opted to not differentiate between sensitivity and 
adaptive capacity because the focus of our study is on evaluating equity. 
Defining social vulnerability further by distinguishing between adaptive 
capacity and sensitivity would have introduced more complexity than 
was necessary to answer our research questions. Using high resolution, 
parcel level flood data produced from modeled compound fluvial and 
pluvial flooding, we build on the work of Debbage (2019) to develop a 
novel metric to evaluate flood inequity. The flood inequity analysis will 
answer the following questions: (1) How does flood exposure inequity 
vary with flood magnitude, and (2) Which flood magnitude produces the 
largest inequities? We hypothesize that flood exposure inequity will be 
the greatest for the smaller flood magnitudes and will steadily decline 
until the 100-year event. 

2. Methods 

2.1. Study site 

The study site for this paper is six census tracts overlapping the 
Brooklyn Creek watershed in Athens-Clarke County, Georgia (Fig. 1). 
This 13.2 km2 area is highly developed with a mix of residential and 
commercial development that includes a hospital, a public library, and 
three public schools that provide critical services to the community. 

Brooklyn Creek watershed is demographically diverse and is made up of 
a mix of income levels, races, and ethnicities. We selected this area based 
on a preliminary study of Athens-Clarke County that compared flood 
exposure and demographics across the county (Selsor et al., 2021). We 
found that land cover of this area is 70% developed, resulting in larger 
runoff amounts that can lead to great flood exposure than less developed 
areas of the county. Flooding in these selected tracts is from rainfall and 
several streams: Brooklyn Creek, Middle Oconee River, Tanyard Creek, 
and the North Oconee River. 

2.2. Flood inequity (FI) score 

We developed a Flood Inequity score by applying our own definitions 
to modify the standard risk equation to measure equity with Eq. 1. The 
proposed score is scaled between zero and one and produces relative 
inequity among the six census tracts. A FI score of zero indicates that the 
distribution of flood exposure is apparently equitable, and any score 
above zero indicates inequitable distribution with the socially vulner
able bearing a disproportionate amount of the exposure. Because we are 
measuring the equity associated with flooding, and not flood risk itself, a 
score of zero means the area has equitable flood exposure, not that there 
is no flooding. We calculated the FI score for the 5-, 10-, 20-, 50-, and 
100-yr return periods for each census tract in the study area.  

2.3. Likelihood x damages 

When calculating the likelihood of a flood’s occurrence, we used the 
probability of a specific flood magnitude occurring at least once within 
30 years using Eq. 2 (Bedient et al., 2008). We opted to use this prob
ability because it is the likelihood a flood will occur over a time period 
which is more representative of a resident living in a neighborhood for 
several years than the likelihood it will occur at least once in any given 
year. In Eq. 2, Tr is the return period in years and n is the planning 
horizon in years (Bedient et al., 2008). 

Likelihood of flood = 1 −

(

1 −
1
Tr

)n

(2) 

To approximate the damages associated with an event, we used the 
median depth of flooding at buildings within the census tract, which can 
result in long-term health effects, emotional stress, and financial burden 
(Convery and Bailey, 2008; Wilson et al., 2021). We used flood data 
from First Street Foundation that models pluvial and fluvial flooding 
across the continental United States to estimate flood inundation and 
depth at the parcel scale (First Street Foundation, 2020). The First Street 
Foundation data were generated with the LISFLOOD-FP model that 
employs an inertial formulation of the shallow water equations to route 
floods and generate an inundation area based on assumptions of rect
angular channel geometry, uniform channel bed-slope, and uniform 
friction factor (Bates and De Roo, 2000; Wing et al., 2017). The 
modeling provides inundation depths for each parcel at the lowest 
elevation of the building footprint for multiple return periods. We chose 
the First Street dataset because it covers multiple return periods using 
consistent data and modeling approach unlike the Federal Emergency 
Management Agency (FEMA) Flood Insurance Rate Maps (FIRM) which 
provide flood extents for only the 100-yr and 500-yr events with 
inconsistent updates. To more directly consider damages to the com
munity, we only used parcels with flood inundation that reached a 
building. We included flood depths at all buildings, not just residential 

Flood Inequity = Likelihood of flood x damages from flood x overrepresenation of socially vulnearble population in flood zone (1)   
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buildings, because damages to other types of development (e.g., schools, 
grocery stores, businesses, etc.) can impact access to education, food, 
and other necessities that would not be captured by looking at resi
dences alone. 

In ArcMap (Version 10.3.1), we spatially joined the flood depths 
point file with a parcel shapefile of the area (Esri Inc, 2015). We filtered 
out parcels with buildings and imported that flood data to calculate the 
median depth of flooding within each tract for each return period. We 
had to calculate the median flood depth to match the scale of the 
vulnerability calculations which are at the census tract scale. We clas
sified the median flood depths across all scenarios into bins using natural 
breaks to prevent inflation of the least and worst-case scenarios (Moreira 
et al., 2021; Preisser et al., 2022). We used the BAMMtools package in R 
to calculate the thresholds for Jenks natural breaks (R Core Team, 2022; 
Rabosky et al., 2014). 

2.4. Vulnerability 

Studies of flood risk in the Southern United States found that non- 
Hispanic Black, Hispanic, other racial and ethnic minorities, and pop
ulations under the federal poverty level experienced significantly 
greater flood risk (Chakraborty et al., 2019; Collins et al., 2019; Deb
bage, 2019; Linscott et al., 2021). Ueland and Warf (2006) found that 
Black and African American communities are concentrated in low-lying 
areas and have greater flood risk. In a study of the state of Georgia, KC 
et al. (2015) found that Athens-Clarke County is moderately vulnerable 
to climate change and corresponding rainfall changes and explains that 
as a "Black Belt" county, Athens-Clarke County has a high African 
American population with an increasing Hispanic population. Because 
of the prevalence of Black, Hispanic, and low-income communities with 
disproportionate flood risk throughout the South, we chose to use these 
characteristics as the three dimensions of social vulnerability. We 
downloaded the non-Hispanic Black, non-Hispanic White, Hispanic, 
non-Hispanic, households under the poverty level, and total number of 
households data for each census block group from the American Com
munity Survey 2018 5-year estimates (U.S. Census Bureau, 2019a, 
2019b, 2019c). We used a 5-year estimate instead of a single year 
because this reduces the uncertainty in survey data at small scales 
(Spielman et al., 2014). 

We included the inundation extent for each scenario with dasymetric 
mapping to calculate vulnerability, producing different vulnerability 
values for each flood magnitude (Debbage, 2019; Maantay and Maroko, 
2009). With dasymetric mapping, the proportion of flooded, developed 
area becomes a factor that corresponds to the proportion of the flood 
exposed population within a census block group (Harner et al., 2002). 
To account for heterogeneity in the distribution of people, we applied 
the urban-filtering technique to filter land cover types and only use 
developed area when calculating the factor. This prevents the over
estimation of exposed populations in the flood zone (Debbage, 2019). 
We assigned a land cover type to each parcel based on the majority of the 
land cover cells within the parcel from the National Land Cover 

Database 2016 30 m resolution land use raster (Homer et al., 2020). 
Only parcels with a majority land cover type of developed open spaces, 
developed low intensity, developed medium intensity, or developed 
high intensity (Types 21–24) were included in calculating the factors of 
proportion of developed, flooded area, for each census block group. 

This factor was multiplied by each population of interest (i.e., non- 
Hispanic Black, non-Hispanic White, Hispanic, non-Hispanic, house
holds under the poverty level, and total number of households) in each 
block group to determine the exposed population for each block group. 
The census tract exposed population is the sum of its block group 
exposed populations. An Exposure Ratio (ER) compares the presence of 
two different demographics in the flood zone within census tract (Eq. 3) 
to determine if one is overrepresented. Each exposed population of a 
certain demographic is normalized by the total population of that de
mographic, so the results are not influenced by the size of one popula
tion being larger than the other. We performed the comparisons listed in  
Table 1. We calculated all three ERs (i.e., Race, Ethnicity, and Income) 
and corresponding p-values for each census tract and return period using 
the fmsb package in R (Nakazawa, 2019; R Core Team, 2022). We tested 
a null hypothesis of independence between flood exposure and 
socio-demographic characteristics and used a significance threshold of 
p ≤ 0.1 to reduce the likelihood of Type-II errors (false negatives), 
where there is over-representation of vulnerable populations in the flood 
zone, but it is not considered statistically significant. 

Exposure Ratio =

exposed population#1
total population#1

exposed population#2
total population#2

(3) 

We aggregated the exposure ratios into a single value to describe 
vulnerability. We attempted aggregation with four different methods 
and compared them with a sensitivity analysis in more detail in the 
Appendix. We selected the method where ERs less than one were reas
signed a value of one, and ratios greater than one were left as-is, and 
then the three ratios were summed. Reassigning the values less than one 

Table 1 
The demographic populations compared in each exposure ratio, and the 
meaning of the results.  

Exposure 
Ratio 

Population #1 Population #2 Meaning of Results 

Race non- Hispanic 
Black Population 

non-Hispanic 
white Population 

If exposure ratio > 1, non- 
Hispanic Black population 
overrepresented 

Ethnicity Hispanic 
Population 

Non-Hispanic 
Population 

If exposure ratio > 1, 
Hispanic population 
overrepresented 

Income Households 
under the 
poverty level 

Households 
above the 
poverty level 

If exposure ratio > 1, low- 
income population 
overrepresented  

Table 2 
Results of the exposure ratio for each tract and different flood return periods, 
with statistically significant results starred (alpha = 0.1).  

Exposure Ratios (ER) 

Tract Flood Return Period Race Ethnicity Income 

600 5 n/a n/a n/a 
10 2.19 * 0.46 0.96 
20 1.90 * 0.56 0.96 
50 2.34 * 0.42 * 0.95 
100 2.34 * 0.42 * 0.95 

900 5 0.81 2.00 0.77 
10 2.01 * 0.86 1.16 
20 1.54 * 0.72 1.18 
50 1.56 * 0.72 1.18 
100 1.56 * 0.72 1.18 

1200 5 1.11 1.15 1.06 
10 1.14 1.19 1.07 
20 1.18 1.24 1.09 
50 1.19 1.24 1.09 
100 1.19 1.24 1.09 

1800 5 0.50 0.57 0.71 
10 1.21 0.23 * 0.76 
20 1.20 0.23 * 0.76 
50 1.18 0.24 0.76 
100 1.18 0.24 0.76 

2000 5 0.04 0.27 0.15 
10 1.59 1.39 1.45 * 
20 1.57 1.38 1.43 * 
50 1.60 * 1.40 1.45 * 
100 1.60 1.40 1.45 

2100 5 0.62 0.98 0.79 
10 0.75 0.99 0.84 
20 1.00 1.00 1.00 
50 1.00 1.00 1.00 
100 1.00 1.00 1.00  
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prevented the masking of over-represented socially vulnerable pop
ulations if one ER was high and the other two were less than one. 
Reassigning the values also allowed for a clear threshold to distinguish 
from an equitable distribution to an inequitable distribution of flood. We 
normalized the aggregate values using min-max normalization (Moreira 
et al., 2021). The individual ERs are weighted equally because weighting 
is the greatest source of uncertainty in aggregating social vulnerability 
indicactors, and the inclusion of a weighting scheme would introduce 
subjectivity in considering one vulnerable population (e.g., Hispanic) 
more vulnerable than another (e.g., low-income) (Rufat et al., 2015, 
2019; Tate, 2012, 2013). 

3. Results 

3.1. Statistical significance of exposure ratios 

While it was difficult to determine statistical significance of the 
exposure ratios due to small population sizes at the census tract scale, we 
were able to produce fine resolution results. Four of the six census tracts 
have a statistically significant exposure ratio in at least one scenario 
(Table 2). The largest, significant ER is 2.3 for the non-Hispanic Black 
population in Tract 600 for the 50-year event. The ratio of 2.3 means the 
non-Hispanic Black population is 2.3 times more likely to reside in the 
flood zone than the non-Hispanic white population. The greatest sta
tistically significant ratios were over 2.0, and all four of these were race 
ERs. 

Tract 900 and Tract 2000 have significant ratios that are greater than 
one, which means there are vulnerable populations over-represented in 
the flood zone within these tracts. Tract 1800 has a significant ratio that 
is less than one, which means that the non-vulnerable population is more 
likely to reside in the flood zone. Tract 600 has both a statistically sig
nificant race ER greater than one and a significant ethnicity ER less than 
one. Overall, the most extreme exposure ratios, with the greatest over- 
representation, are statistically significant while the smaller exposure 
ratios that are close to one are not statistically significant. 

3.2. Flood inequity score 

We identified inequities in all but one census tract with some tracts 
showing relatively larger flood inequities within our study, indicating 
that some census tracts have a more equitable distribution of flooding 
than others. The largest inequity occurs during the 10-year event for 
four out of six census tracts and for the 20-year event for the other two 
tracts (Fig. 2, Table 3). We also observed that the ranges and patterns of 
flood inequity scores across the flood magnitudes vary for the tracts. For 
Tracts 600, 900, and 2000, the FI scores are the largest for the 10-year 
event, while Tracts 1200, 1800, and 2100 have much smaller varia
tion in their FI scores across the return periods. The FI scores peak at the 
10-year event for Tracts 600, 900, and 2000 and then become asymp
totic for larger, less frequent events. After the peak, the behavior of the 
FI score varies until the 50-year event for all tracts. Generally, as the 
flood magnitudes increase beyond the 20-year event, the changes in the 
FI scores are less drastic, and the FI score approaches an asymptotic 
value for each tract. The spatial distribution of FI scores for the 10-year 
and 100-year event are compared in Fig. 3. Additionally, the tracts with 
significant ERs (i.e. Tract 600, 900, 2000), with over-representation of 
vulnerable populations in the flood zone, demonstrate the greatest 
variation in the FI score across the return periods. 

For comparison, we summed the Flood Inequity scores and damages 
across the return periods to compare exposure and equity of the census 
tracts. Tract 2100 has the highest exposure total of the tracts, but its FI 
total is almost zero because the vulnerability values are zero, which 
means all populations have equal flood exposure (Table 4). Tract 1200 
has the second highest exposure total, but has lower vulnerability 
values, so the FI total is in the middle range. Tracts 900 and 1800 have 
identical exposure values for each return period, but very different FI 
scores because 1800 has low vulnerability values and Tract 900 has high 
vulnerability values. Tract 2000 has the second to last lowest exposure 
total, but its high vulnerability values result in it having the highest FI 
total across all tracts. Tract 600 has the lowest exposure total and the 
lack of flooding at buildings for the 5-year event could be a contributing 
factor. While Tract 600′s exposure total was the lowest, it has some of 
the highest vulnerability values, so the FI scores are high. 

4. Discussion 

It is typical for flood vulnerability assessments to use the 100-year 
flood zone or worst-case scenario of flooding under the assumption 

Fig. 2. A plot of FI scores versus return periods for each tract. Each point marks 
a flood event for which the flood inequity score was calculated as a function of 
the likelihood and extent of damages occurring for an event and the over- 
representation of vulnerable populations in the flood zone for that event. 

Table 3 
Flood inequity scores for census tracts across the return periods.  

Census 
Tract 

Flood 
Return 
Period 

Likelihood Damages Vulnerability Flood 
Inequity 
Score 

600 5 0.999 0 n/a n/a 
10 0.958 0.4 0.819 0.314 
20 0.785 0.2 0.618 0.097 
50 0.455 0.4 0.919 0.167 
100 0.260 0.6 0.919 0.144 

900 5 0.999 0.2 0.686 0.137 
10 0.958 0.4 0.805 0.308 
20 0.785 0.4 0.490 0.154 
50 0.455 0.6 0.509 0.139 
100 0.260 0.6 0.509 0.079 

1200 5 0.999 0.6 0.218 0.130 
10 0.958 0.6 0.273 0.157 
20 0.785 0.6 0.353 0.166 
50 0.455 0.8 0.357 0.130 
100 0.260 1 0.357 0.093 

1800 5 0.999 0.2 0.000 0.000 
10 0.958 0.4 0.141 0.054 
20 0.785 0.4 0.140 0.044 
50 0.455 0.6 0.125 0.034 
100 0.260 0.6 0.125 0.020 

2000 5 0.999 0.2 0.000 0.000 
10 0.958 0.4 0.984 0.377 
20 0.785 0.4 0.947 0.297 
50 0.455 0.4 1.000 0.182 
100 0.260 0.6 1.000 0.156 

2100 5 0.999 0.2 0.000 0.000 
10 0.958 0.8 0.000 0.000 
20 0.785 1 0.005 0.004 
50 0.455 1 0.005 0.002 
100 0.260 1 0.005 0.001  
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that the worst-case scenario of flooding reveals the most extreme in
equities. However, we found the relatively greatest flood inequities 
occur at the 10-year event, and that inequity varies across flood mag
nitudes and census tracts. These findings show that using only the 100- 
year flood zone or a single, large flood inundation scenario for a flood 
risk analysis can mask large inequities produced by smaller and more 
frequent events. Fig. 3 compares the 10-year and 100-year flood inequity 
scores spatially. The relative highest inequities occur at the 10-year 
event, implying pockets of highly vulnerable populations are concen
trated close to sources of frequent flooding. For example, we found large 
inequities within Tract 2000 for the 10-year event, and this tract has 
minimal vulnerability according to the Center for Disease Control’s 
Social Vulnerability Index (Centers for Disease Control and Prevention, 
2018). In this tract, the small, non-Hispanic Black population coincided 
with the 10-year flooded area. We used block group data to investigate 
equitable exposure within the tract, and inequity was revealed that 
would have been missed by using data at the census tract scale. This 
study supports previous work that using a fine scale analysis to consider 
heterogeneity within a tract can reveal inequity and can supplement the 
CDC/ATSDR Social Vulnerability Index (Rickless et al., 2020; Rufat 
et al., 2019; Spielman et al., 2020; Tate et al., 2021). 

We found slight differences between the 50- and 100-year events, 
which is similar to the findings of Liu et al. (2021) who conducted a 
flood risk analysis by overlaying a social vulnerability index with 
inundation maps from the 50-, 100-, and 200-year events separately. 
Their results also showed minimal differences between the events. There 
were slight differences between the flood depths from the First Street 
data for the 50- and 100-year events, shown by the same exposure values 
for Tracts 900, 1800, and 2100, contributing to the similar results for the 

two events. We also found that the flood inequities were lower for these 
two events. One explanation is that as the inundation extends spread in 
the 50- and 100-year events, inundation reaches more of the 
non-socailly vulnerable population, so the overall distribution appears 
to be more equitable. The deterministic FEMA FIRM boundaries have led 
to increased development right outside of the 100-year flood zone, and 
the compound flood modeling from First Street captures flooding 
outside of this deterministic boundary (Patterson and Doyle, 2009; Wing 
et al., 2018). Socially vulnerable populations are more likely to reside 
within the FEMA FIRM 100-year flood zone than right outside of it 
(Chakraborty et al., 2014). As the inundation in our study expands 
beyond FEMA’s 100-year boundary, flood exposure appears more 
equitable because the less vulnerable populations outside the FEMA 
extents are exposed for these large events. 

We found that the largest and statistically significant exposure ratios 
occurred for the race category. These results can be explained by the 
legacy of systemic racism in the Southeast United States. Governments 
used different mechanisms such as racial zoning, road location and 
construction, and discriminatory housing policies to keep Black and 
African American populations segregated from other neighborhoods 
(Bayor, 1988; Linscott et al., 2021; Rothstein, 2017; Ueland and Warf, 
2006). Our findings present evidence of the modern-day environmental 
justice implications of historical discriminatory practices. 

The rankings of tracts based on damages and flood inequity were 
different. The tract with the greatest exposure total (Tract 2100) has FI 
scores close to zero, while the tracts with the greatest FI scores have 
lower exposure totals. We also found inequitable distribution of flooding 
for all but one tract, and even though less severe, the smaller inequalities 
reveal concerns that need remedying. Our findings emphasize the 
importance of prioritizing an equity analysis when assessing flood risk. If 
mitigation efforts are targeted based solely on flood depths, the tract 
with equitable flood exposure would be prioritized, leaving the tracts 
with large inequities unaddressed, perpetuating and potentially 
increasing inequity in the area. 

One limitation to this study is the accuracy of the flood inundation 
data given the necessary simplifications employed to model floods at the 
scale of the conterminous United States (Wing et al., 2017). For 
example, the model includes levees from the National Levee Database, 
but not local structures such as smaller levees, culverts, or bridges (Wing 
et al., 2017). However, the model does accurately represent flood 
inundation during peak flows, and we used the largest depth which was 

Fig. 3. A map of flood inequity scores, comparing the results for the 10-year event and the 100-year event. The darkest red area has the greatest inequity and the gray 
areas have the most equitable flood distribution. 

Table 4 
Ranks of tracts from highest to lowest exposure total and highest to lowest FI 
total.  

Exposure Total Tract FI Total Tract 

4 2100 1.01 2000 
3.6 1200 0.82 900 
2.2 900 0.82 600 
2.2 1800 0.68 1200 
2 2000 0.15 1800 
1.8 600 0.01 2100  
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likely to occur during the peak flow (Bates et al., 2021). Even though 
there are limitations to the modeling, the flood data we used are widely 
available and provide depths across multiple return periods, without 
which we could not have performed this analysis. Going forward, un
certainty analysis has the potential to reveal how estimated differences 
in exposure ratios among return periods may be affected by hydrologic 
and hydraulic model accuracy. The lack of uncertainty analysis, such as 
a Monte Carlo simulation accounting for error propagation in estimating 
inundation areas and depths, was not feasible within the scope of the 
present study and is a limitation of this research. Nevertheless, this 
research provides a novel framework within which uncertainty analysis 
could be incorporated in future studies. Even without the uncertainty 
analysis, there is value in demonstrating how different flood magnitudes 
can have unique exposure effects. Another limitation is the classification 
schemes employed. Exposure was classified using Jenks natural breaks 
and the vulnerability value was achieved through min-max normaliza
tion. While both approaches are justified, they produce FI scores that are 
relative to the data in the dataset, limiting the comparability of results if 
the same methods were applied to a different study area. To address this 
issue, we recommend using a human scale to categorize exposure based 
on where water depths hit the average human and building (e.g., knee 
height, chest height, first flood of a building, etc.) (Liu et al., 2021; Luke 
et al., 2018). 

We performed a flood inequity analysis across multiple return pe
riods using reproducible methods based on widely available data from 
First Street Foundation and the American Community Survey. An 

advantage of the employed methods is that vulnerability calculations are 
specific to the exposed population at a fine scale. This differs from a 
social vulnerability index where vulnerability is calculated by aggre
gating socio-demographic characteristics, typically at a coarser scale, 
without differentiating the exposed area or population. The explicit in
clusion of flood extents creates a social vulnerability value specific to 
flooding rather than general to all hazards. While a general measure of 
social vulnerability is useful, our approach is more fitting for a flood 
exposure analysis. Another advantage is that flood inequity is aggre
gated into a single score and not only identified spatially. This score can 
be used to measure the performance of mitigation efforts by quantifying 
resulting improvements in equity. The flood inequity score provides an 
additional way to evaluate flood damages besides property damage or 
other monetization schemes, which tend to underestimate the severity of 
impacts on vulnerable populations (Drakes et al., 2021; Gourevitch 
et al., 2020). 

We recommend future work focused on developing hydrologic and 
hydraulic models that more accurately quantify flood inundation 
through greater fidelity to compound flooding mechanisms and complex 
flow paths. Incorporating local features will also improve accuracy as 
the effects of hydraulic structures have been shown to significantly 
affect flood depths (Stephens and Bledsoe, 2020). Another next step is to 
develop a method to effectively distinguish sensitivity and adaptive 
capacity when defining vulnerability and to incorporate a variety of 
socio-demographic factors such as age, health insurance, and family 
makeup. Additional work can identify potential solutions for reducing 

Fig. A1. The graphs of vulnerability scores from aggregating the exposure ratios with four different methods across flooding scenarios for each census tract.  
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inequitable flood risk. For example, green infrastructure has been shown 
to effectively reduce stormwater volumes and peak flow rates for 
smaller, more frequent events (Hoghooghi et al., 2018; Lammers et al., 
2022). Green infrastructure may therefore be effective at reducing the 
flood inequities, which were the highest for these types of events 
(Hopkins et al., 2020; Woznicki et al., 2018). 

5. Conclusions 

Our findings show that (1) flood inequities vary according with flood 
magnitude and the behavior depends on the demographic distribution in 
the tract and (2) the 10-year event produced the greatest flood in
equities. We found that the worst-case scenario of flood depths and 
extents does not necessarily correspond to the worst-case scenario of 
flood inequity, and these results have implications for flood planning 
and mitigation. Using flood depths alone to prioritize areas for flood 
mitigation can further perpetuate inequity for vulnerable populations. 
Vulnerable populations are facing inequitable flood exposure and 
possess a lower capacity to recover from floods due to a lack of resources 
to bear the costs of flood damages; thus, exposure to flooding can 
perpetuate the cycle of poverty (Coninx and Bachus, 2021; Rufat et al., 
2015). Vulnerable communities are willing to move out of flood prone 
areas, but experience difficulties in doing so (Welch-Devine and Orland, 
2020). These vulnerable communities are aware of the flood risk they 
are facing, but due to “chronic underprivileged circumstance” they are 
unable to take action to protect themselves (Harlan et al., 2019). Flood 
equity analyses can be used in decision-making and planning to address 
inequity and increase flood resiliency for all members of a community. 
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Appendix 

see Fig. A1. 
see Table A1. 
Method 1 was simply summing up the three ERs. In methods 2, 3, and 

4, the ratios less than one were reassigned a different value before 

summing as described in Table A1. Ratios less than one indicate that 
there is not a vulnerable population overrepresented, and we reassigned 
values to prevent them from masking over-represented populations. 

Method 4 is the most appropriate aggregation method based on a 
comparison of vulnerability scores to in statistical significance of the ERs 
(Fig. A1). Method 1 is straightforward, but when all three ratios for a 
census tract are very close to one (within 0.9–1.1), it appears to have the 
same vulnerability as a tract that has one, large ER with the other two 
ratios under one. For example, Tract 1200 has all three ERs very close to 
1.0 in almost every scenario while Tract 600 has ERs greater than 2.0 
that are statistically significant. With Method 1, the two appear to have 
similar vulnerability across the return periods, even though Tract 1200 
has a proportional presence of vulnerable populations in the flood zone. 

Method 2 masks large ERs, and ratios close to zero were very large 
when taking the inverse. For the 20-year event, Tracts 2100 and 1200 
appear to have vulnerability as high as Tract 2000 even though their ERs 
are not much greater than one or statistically significant. Tracts 600 and 
900 appear to have lower flood vulnerability than other tracts even 
though both have statistically significant over-representation of 
vulnerable populations. Method 3 also erroneously represents vulnera
bility because Census Tracts 600 and 900 still appear to have relatively 
small vulnerability. Again, Tract 2100 appears to have higher vulnera
bility even though all ERs are less than or equal to one so there is 
equitable representation of vulnerable population inf the flood zone. 

A key issue with Methods 2 and 3 is that there is no clear threshold to 
indicate a shift from proportional representation to over-representation 
of vulnerable populations. Method 4 provides this threshold by reas
signing the ERs less than one a value of one which represents propor
tional representation in the flood zone. A vulnerability score of three 
indicates equitable presence in the flood zone for all demographic 
groups. Method 4 most accurately represents the vulnerability scores we 
expected based on the ERs. Tracts 600, 900, and 2000 have the greatest 
vulnerability score across all return periods and also have the largest, 
statistically significant ERs. Tract 2100, which has no ERs greater than 
one, has a vulnerability score of three across all return periods. For these 
reasons, we used Method 4 to calculate the vulnerability score in the 
flood inequity equation. 
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