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Urban flooding is a growing threat due to land use and climate change. Vulnerable populations tend to have
greater exposure to flooding as a result of historical societal and institutional processes. Most flood vulnerability
studies focus on a single large flood, neglecting the impact of small, frequent floods. Therefore, there is a need to
investigate inequitable flood exposure across a range of event magnitudes and frequencies. To explore this
question, we develop a novel score of inequitable flood risk by defining risk as a function of frequency, exposure,
and vulnerability. This analysis combines high-resolution, parcel-scale compounded fluvial and pluvial flood
data with census data at the census block group scale. We focus on six census tracts within Athens-Clarke County,
Georgia that are highly developed with diverse populations. We define vulnerable populations as non-Hispanic
Black, Hispanic, and households under the poverty level and use dasymetric mapping techniques to calculate the
over-representation of these populations in flood zones. Inequitable risks at each census tract (approximately
neighborhood scale) were estimated for multiple (e.g., 5-, 10-, 20-, 50-, and 100-year) flood return periods.
Results show that the relatively greatest flood risk inequities occur for the 10-year flood and not at the largest
event. We also found that the size of inequity is dynamic, depending on the flood magnitude. Therefore,
addressing a range of events including smaller, more frequent floods can increase equity and reveal opportunities

that may be missed if only one event is considered.

1. Introduction

Flooding is one of the most costly and frequent natural disasters
facing the United States, with 41 million people estimated to currently
reside in flood prone areas (Wing et al., 2018). Climate and land use
change are expected to increase flooding, especially in urban areas
(Hollis, 1975; Huang et al., 2007; Trenberth, 2011; Kunkel et al., 2013;
Zhou et al., 2019). The growing threat of flooding in urban communities
is concerning considering that urban populations are growing simulta-
neously. The United Nations predicts that 90% of the North American
population will live in urban areas by 2050 (United Nations Population
Division, 2008). Without adequate adaptations, escalating flood expo-
sure will threaten both a city’s built environment and residents.

The harmful and long-lasting impacts of flooding are not experienced
equally across communities (Coninx and Bachus, 2021). Socially
vulnerable populations are commonly characterized by low-incomes,
racial and ethnic minorities, limited education, disabilities, ages under
16 and over 75, and/or single-parent households, and they bear the
burdens of flooding, having been delegated to flood prone areas (Bigi
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et al.,, 2021; Debbage, 2019; Qiang, 2019). While they face greater
exposure, socially vulnerable populations possess limited access to re-
sources and support structures to respond to floods, diminishing resil-
ience and prolonging recovery (Rufat et al., 2015). The existing flood
exposure disparities will only be exacerbated by climate change (Mason
et al., 2017; Rickless et al., 2020; Shepherd and KC, 2015; Wing et al.,
2022). This is especially true in the Southeast United States where his-
torical racism and segregation have led to greater flood exposure for
Black and African American communities (Cutter et al., 2003; Linscott
et al., 2021; Tate et al., 2021; Ueland and Warf, 2006).

To identify the inequities in flood exposure, many studies overlay
flood exposure maps with a social vulnerability index to locate spatial
coincidence of highly vulnerable populations and high flood risk
(Chakraborty et al., 2014; Coninx and Bachus, 2021; Koks et al., 2015;
Nelson et al., 2015; Tascon-Gonzalez et al., 2020). These studies typi-
cally investigate only a single flood magnitude, often the 100-year flood
or a historical flood, producing spatial depictions of flood risk that are
only applicable to one specific event. Nuisance flooding is the small,
frequent flood events that can cause more cumulative damage over time
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Fig. 1. The six census tracts overlapping Brooklyn Creek Watershed and the sources of riverine flooding.

than a large, single event, and is a challenge for urban areas (Moftakhari
et al., 2017, 2018). Nuisance flooding represents a category of flooding
for which inequity has not been investigated. For this reason, there is a
need to look at flood inequity across multiple flood magnitudes that
captures the impacts of the small, but frequent floods.

In a review of studies that analyzed flood risk using multiple return
periods, we found they generally follow the same methodology where
flood risk is the product of exposure and social vulnerability. A return
period is analogous to a recurrence interval, and this term is used
interchangeably with flood magnitude as a larger return period corre-
sponds to a large, infrequent flood. Multiple papers integrate exposure
from multiple return periods into a single flood exposure index and
while this is useful for planning purposes, the reader cannot distinguish

how risk changes across flood magnitudes (Chakraborty et al., 2005;
Kiinzler et al., 2012; Vicente et al., 2006; Wing et al., 2022). Other
studies produced risk maps separately for different return periods using
separate flood exposure inputs but do not look at a wide range of events
(Abdrabo et al., 2020; Liu et al., 2021). There are a few papers that
employed different methods for estimating risk. Some studies incorpo-
rated exposure as indicators (e.g., percent of flooded area, flood depth,
tidal range, etc.) with the social vulnerability indicators into a single
index instead of using a flood map or flood index to calculate risk
(Hadipour et al., 2020; Ye et al., 2022). Additionally, a few papers used
exposure maps with depth-damage curves to estimate economic dam-
ages in the form of income loss, cost of repairs, etc. for different return
periods (Schuster-Wallace et al., 2018; Tyagi, 2020; Yang et al., 2020).
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One paper did conduct a flood equity analysis in the Liege province of
Belgium, and they found that the lower to middle socio-economic status
populations were more exposed to flooding (Poussard et al., 2021). The
authors end their study by stating the need for further research on the
relationship between flood frequencies and socioeconomic characteris-
tics (Poussard et al., 2021).

In the studies where flood risk was analyzed separately for multiple
return periods, risk increases with return period (Abdrabo et al., 2020;
Liu et al., 2021; Ye et al., 2022). These findings are reasonable because
in all these instances, the exposure input (flood inundation) changed
while the social vulnerability indicators remained the same. As flood
exposure expands, risk increases. The social vulnerability indices values
remained the same even though the population impacted by a flood may
change with flood magnitude. For this reason, we employed methods
from Debbage (2019) to calculate social vulnerability based on the
disproportionate presence of socially vulnerable populations in the flood
zone for each event separately. This allows us to incorporate social
vulnerability in our analysis by accounting for how the demographics of
the exposed population change according to inundation patterns from
different size floods.

In this paper, we investigate the trends in flood inequity across
multiple flood frequencies. We use the framework that risk is a function
of hazard, exposure, and vulnerability and define hazard as the likeli-
hood of an certain flood magnitude occurring and exposure as the

Flood Inequity = Likelihood of flood x damages from flood x overrepresenation of

damages caused by this flood magnitude (Joyce et al., 2018;
Kazmierczak and Cavan, 2011; Koks et al., 2015; Kron, 2005; Preisser
et al.,, 2022). We apply a unique definition of vulnerability as the
overrepresentation of socially vulnerable population in the flood zone
compared to non-socially vulnerable populations. The conceptualization
of vulnerability is not based on static indicators, but changes with return
period. Vulnerability is made up of the components of exposure, adap-
tive capacity, and sensitivity and as a concept can be applied to a variety
of spheres to describe the ability to cope with different environmental
hazards, including social, technological, and ecological vulnerability
(Chang et al., 2021). (Bigi et al., 2021; KC et al., 2015). We focus on
social vulnerability, and while we do include exposure in our concep-
tualization, we opted to not differentiate between sensitivity and
adaptive capacity because the focus of our study is on evaluating equity.
Defining social vulnerability further by distinguishing between adaptive
capacity and sensitivity would have introduced more complexity than
was necessary to answer our research questions. Using high resolution,
parcel level flood data produced from modeled compound fluvial and
pluvial flooding, we build on the work of Debbage (2019) to develop a
novel metric to evaluate flood inequity. The flood inequity analysis will
answer the following questions: (1) How does flood exposure inequity
vary with flood magnitude, and (2) Which flood magnitude produces the
largest inequities? We hypothesize that flood exposure inequity will be
the greatest for the smaller flood magnitudes and will steadily decline
until the 100-year event.

2. Methods
2.1. Study site

The study site for this paper is six census tracts overlapping the
Brooklyn Creek watershed in Athens-Clarke County, Georgia (Fig. 1).
This 13.2 km? area is highly developed with a mix of residential and
commercial development that includes a hospital, a public library, and
three public schools that provide critical services to the community.
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Brooklyn Creek watershed is demographically diverse and is made up of
amix of income levels, races, and ethnicities. We selected this area based
on a preliminary study of Athens-Clarke County that compared flood
exposure and demographics across the county (Selsor et al., 2021). We
found that land cover of this area is 70% developed, resulting in larger
runoff amounts that can lead to great flood exposure than less developed
areas of the county. Flooding in these selected tracts is from rainfall and
several streams: Brooklyn Creek, Middle Oconee River, Tanyard Creek,
and the North Oconee River.

2.2. Flood inequity (FI) score

We developed a Flood Inequity score by applying our own definitions
to modify the standard risk equation to measure equity with Eq. 1. The
proposed score is scaled between zero and one and produces relative
inequity among the six census tracts. A FI score of zero indicates that the
distribution of flood exposure is apparently equitable, and any score
above zero indicates inequitable distribution with the socially vulner-
able bearing a disproportionate amount of the exposure. Because we are
measuring the equity associated with flooding, and not flood risk itself, a
score of zero means the area has equitable flood exposure, not that there
is no flooding. We calculated the FI score for the 5-, 10-, 20-, 50-, and
100-yr return periods for each census tract in the study area.

socially vulnearble population in flood zone (@D)]

2.3. Likelihood x damages

When calculating the likelihood of a flood’s occurrence, we used the
probability of a specific flood magnitude occurring at least once within
30 years using Eq. 2 (Bedient et al., 2008). We opted to use this prob-
ability because it is the likelihood a flood will occur over a time period
which is more representative of a resident living in a neighborhood for
several years than the likelihood it will occur at least once in any given
year. In Eq. 2, Tr is the return period in years and n is the planning
horizon in years (Bedient et al., 2008).

"
Likelihood of flood = 1 — (1 - —> )

To approximate the damages associated with an event, we used the
median depth of flooding at buildings within the census tract, which can
result in long-term health effects, emotional stress, and financial burden
(Convery and Bailey, 2008; Wilson et al., 2021). We used flood data
from First Street Foundation that models pluvial and fluvial flooding
across the continental United States to estimate flood inundation and
depth at the parcel scale (First Street Foundation, 2020). The First Street
Foundation data were generated with the LISFLOOD-FP model that
employs an inertial formulation of the shallow water equations to route
floods and generate an inundation area based on assumptions of rect-
angular channel geometry, uniform channel bed-slope, and uniform
friction factor (Bates and De Roo, 2000; Wing et al., 2017). The
modeling provides inundation depths for each parcel at the lowest
elevation of the building footprint for multiple return periods. We chose
the First Street dataset because it covers multiple return periods using
consistent data and modeling approach unlike the Federal Emergency
Management Agency (FEMA) Flood Insurance Rate Maps (FIRM) which
provide flood extents for only the 100-yr and 500-yr events with
inconsistent updates. To more directly consider damages to the com-
munity, we only used parcels with flood inundation that reached a
building. We included flood depths at all buildings, not just residential
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Table 1
The demographic populations compared in each exposure ratio, and the
meaning of the results.
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Table 2
Results of the exposure ratio for each tract and different flood return periods,
with statistically significant results starred (alpha = 0.1).

Exposure Population #1 Population #2 Meaning of Results
Ratio
Race non- Hispanic non-Hispanic If exposure ratio > 1, non-
Black Population  white Population  Hispanic Black population
overrepresented
Ethnicity Hispanic Non-Hispanic If exposure ratio > 1,
Population Population Hispanic population
overrepresented
Income Households Households If exposure ratio > 1, low-
under the above the income population

poverty level poverty level overrepresented

buildings, because damages to other types of development (e.g., schools,
grocery stores, businesses, etc.) can impact access to education, food,
and other necessities that would not be captured by looking at resi-
dences alone.

In ArcMap (Version 10.3.1), we spatially joined the flood depths
point file with a parcel shapefile of the area (Esri Inc, 2015). We filtered
out parcels with buildings and imported that flood data to calculate the
median depth of flooding within each tract for each return period. We
had to calculate the median flood depth to match the scale of the
vulnerability calculations which are at the census tract scale. We clas-
sified the median flood depths across all scenarios into bins using natural
breaks to prevent inflation of the least and worst-case scenarios (Moreira
et al., 2021; Preisser et al., 2022). We used the BAMMTtools package in R
to calculate the thresholds for Jenks natural breaks (R Core Team, 2022;
Rabosky et al., 2014).

2.4. Vulnerability

Studies of flood risk in the Southern United States found that non-
Hispanic Black, Hispanic, other racial and ethnic minorities, and pop-
ulations under the federal poverty level experienced significantly
greater flood risk (Chakraborty et al., 2019; Collins et al., 2019; Deb-
bage, 2019; Linscott et al., 2021). Ueland and Warf (2006) found that
Black and African American communities are concentrated in low-lying
areas and have greater flood risk. In a study of the state of Georgia, KC
et al. (2015) found that Athens-Clarke County is moderately vulnerable
to climate change and corresponding rainfall changes and explains that
as a "Black Belt" county, Athens-Clarke County has a high African
American population with an increasing Hispanic population. Because
of the prevalence of Black, Hispanic, and low-income communities with
disproportionate flood risk throughout the South, we chose to use these
characteristics as the three dimensions of social vulnerability. We
downloaded the non-Hispanic Black, non-Hispanic White, Hispanic,
non-Hispanic, households under the poverty level, and total number of
households data for each census block group from the American Com-
munity Survey 2018 5-year estimates (U.S. Census Bureau, 2019a,
2019b, 2019c). We used a 5-year estimate instead of a single year
because this reduces the uncertainty in survey data at small scales
(Spielman et al., 2014).

We included the inundation extent for each scenario with dasymetric
mapping to calculate vulnerability, producing different vulnerability
values for each flood magnitude (Debbage, 2019; Maantay and Maroko,
2009). With dasymetric mapping, the proportion of flooded, developed
area becomes a factor that corresponds to the proportion of the flood
exposed population within a census block group (Harner et al., 2002).
To account for heterogeneity in the distribution of people, we applied
the urban-filtering technique to filter land cover types and only use
developed area when calculating the factor. This prevents the over-
estimation of exposed populations in the flood zone (Debbage, 2019).
We assigned a land cover type to each parcel based on the majority of the
land cover cells within the parcel from the National Land Cover

Exposure Ratios (ER)

Tract Flood Return Period Race Ethnicity Income
600 5 n/a n/a n/a
10 2.19 * 0.46 0.96
20 1.90 * 0.56 0.96
50 2.34 * 0.42 * 0.95
100 2.34 % 0.42 * 0.95
900 5 0.81 2.00 0.77
10 2.01* 0.86 1.16
20 1.54 * 0.72 1.18
50 1.56 * 0.72 1.18
100 1.56 * 0.72 1.18
1200 5 1.11 1.15 1.06
10 1.14 1.19 1.07
20 1.18 1.24 1.09
50 1.19 1.24 1.09
100 1.19 1.24 1.09
1800 5 0.50 0.57 0.71
10 1.21 0.23 * 0.76
20 1.20 0.23 * 0.76
50 1.18 0.24 0.76
100 1.18 0.24 0.76
2000 5 0.04 0.27 0.15
10 1.59 1.39 1.45*
20 1.57 1.38 1.43 *
50 1.60 * 1.40 1.45*
100 1.60 1.40 1.45
2100 5 0.62 0.98 0.79
10 0.75 0.99 0.84
20 1.00 1.00 1.00
50 1.00 1.00 1.00
100 1.00 1.00 1.00

Database 2016 30 m resolution land use raster (Homer et al., 2020).
Only parcels with a majority land cover type of developed open spaces,
developed low intensity, developed medium intensity, or developed
high intensity (Types 21-24) were included in calculating the factors of
proportion of developed, flooded area, for each census block group.

This factor was multiplied by each population of interest (i.e., non-
Hispanic Black, non-Hispanic White, Hispanic, non-Hispanic, house-
holds under the poverty level, and total number of households) in each
block group to determine the exposed population for each block group.
The census tract exposed population is the sum of its block group
exposed populations. An Exposure Ratio (ER) compares the presence of
two different demographics in the flood zone within census tract (Eq. 3)
to determine if one is overrepresented. Each exposed population of a
certain demographic is normalized by the total population of that de-
mographic, so the results are not influenced by the size of one popula-
tion being larger than the other. We performed the comparisons listed in
Table 1. We calculated all three ERs (i.e., Race, Ethnicity, and Income)
and corresponding p-values for each census tract and return period using
the fmsb package in R (Nakazawa, 2019; R Core Team, 2022). We tested
a null hypothesis of independence between flood exposure and
socio-demographic characteristics and used a significance threshold of
p < 0.1 to reduce the likelihood of Type-II errors (false negatives),
where there is over-representation of vulnerable populations in the flood
zone, but it is not considered statistically significant.

exposed population#l

. . total population#1
Exposure Ratio = exposed populationtl 3

total population#2

We aggregated the exposure ratios into a single value to describe
vulnerability. We attempted aggregation with four different methods
and compared them with a sensitivity analysis in more detail in the
Appendix. We selected the method where ERs less than one were reas-
signed a value of one, and ratios greater than one were left as-is, and
then the three ratios were summed. Reassigning the values less than one
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Fig. 2. A plot of FI scores versus return periods for each tract. Each point marks
a flood event for which the flood inequity score was calculated as a function of
the likelihood and extent of damages occurring for an event and the over-
representation of vulnerable populations in the flood zone for that event.

Table 3
Flood inequity scores for census tracts across the return periods.

Census Flood Likelihood  Damages  Vulnerability = Flood

Tract Return Inequity
Period Score

600 5 0.999 0 n/a n/a
10 0.958 0.4 0.819 0.314
20 0.785 0.2 0.618 0.097
50 0.455 0.4 0.919 0.167
100 0.260 0.6 0.919 0.144

900 5 0.999 0.2 0.686 0.137
10 0.958 0.4 0.805 0.308
20 0.785 0.4 0.490 0.154
50 0.455 0.6 0.509 0.139
100 0.260 0.6 0.509 0.079

1200 5 0.999 0.6 0.218 0.130
10 0.958 0.6 0.273 0.157
20 0.785 0.6 0.353 0.166
50 0.455 0.8 0.357 0.130
100 0.260 1 0.357 0.093

1800 5 0.999 0.2 0.000 0.000
10 0.958 0.4 0.141 0.054
20 0.785 0.4 0.140 0.044
50 0.455 0.6 0.125 0.034
100 0.260 0.6 0.125 0.020

2000 5 0.999 0.2 0.000 0.000
10 0.958 0.4 0.984 0.377
20 0.785 0.4 0.947 0.297
50 0.455 0.4 1.000 0.182
100 0.260 0.6 1.000 0.156

2100 5 0.999 0.2 0.000 0.000
10 0.958 0.8 0.000 0.000
20 0.785 1 0.005 0.004
50 0.455 1 0.005 0.002
100 0.260 1 0.005 0.001

prevented the masking of over-represented socially vulnerable pop-
ulations if one ER was high and the other two were less than one.
Reassigning the values also allowed for a clear threshold to distinguish
from an equitable distribution to an inequitable distribution of flood. We
normalized the aggregate values using min-max normalization (Moreira
etal., 2021). The individual ERs are weighted equally because weighting
is the greatest source of uncertainty in aggregating social vulnerability
indicactors, and the inclusion of a weighting scheme would introduce
subjectivity in considering one vulnerable population (e.g., Hispanic)
more vulnerable than another (e.g., low-income) (Rufat et al., 2015,
2019; Tate, 2012, 2013).
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3. Results
3.1. Statistical significance of exposure ratios

While it was difficult to determine statistical significance of the
exposure ratios due to small population sizes at the census tract scale, we
were able to produce fine resolution results. Four of the six census tracts
have a statistically significant exposure ratio in at least one scenario
(Table 2). The largest, significant ER is 2.3 for the non-Hispanic Black
population in Tract 600 for the 50-year event. The ratio of 2.3 means the
non-Hispanic Black population is 2.3 times more likely to reside in the
flood zone than the non-Hispanic white population. The greatest sta-
tistically significant ratios were over 2.0, and all four of these were race
ERs.

Tract 900 and Tract 2000 have significant ratios that are greater than
one, which means there are vulnerable populations over-represented in
the flood zone within these tracts. Tract 1800 has a significant ratio that
is less than one, which means that the non-vulnerable population is more
likely to reside in the flood zone. Tract 600 has both a statistically sig-
nificant race ER greater than one and a significant ethnicity ER less than
one. Overall, the most extreme exposure ratios, with the greatest over-
representation, are statistically significant while the smaller exposure
ratios that are close to one are not statistically significant.

3.2. Flood inequity score

We identified inequities in all but one census tract with some tracts
showing relatively larger flood inequities within our study, indicating
that some census tracts have a more equitable distribution of flooding
than others. The largest inequity occurs during the 10-year event for
four out of six census tracts and for the 20-year event for the other two
tracts (Fig. 2, Table 3). We also observed that the ranges and patterns of
flood inequity scores across the flood magnitudes vary for the tracts. For
Tracts 600, 900, and 2000, the FI scores are the largest for the 10-year
event, while Tracts 1200, 1800, and 2100 have much smaller varia-
tion in their FI scores across the return periods. The FI scores peak at the
10-year event for Tracts 600, 900, and 2000 and then become asymp-
totic for larger, less frequent events. After the peak, the behavior of the
FI score varies until the 50-year event for all tracts. Generally, as the
flood magnitudes increase beyond the 20-year event, the changes in the
FI scores are less drastic, and the FI score approaches an asymptotic
value for each tract. The spatial distribution of FI scores for the 10-year
and 100-year event are compared in Fig. 3. Additionally, the tracts with
significant ERs (i.e. Tract 600, 900, 2000), with over-representation of
vulnerable populations in the flood zone, demonstrate the greatest
variation in the FI score across the return periods.

For comparison, we summed the Flood Inequity scores and damages
across the return periods to compare exposure and equity of the census
tracts. Tract 2100 has the highest exposure total of the tracts, but its FI
total is almost zero because the vulnerability values are zero, which
means all populations have equal flood exposure (Table 4). Tract 1200
has the second highest exposure total, but has lower vulnerability
values, so the FI total is in the middle range. Tracts 900 and 1800 have
identical exposure values for each return period, but very different FI
scores because 1800 has low vulnerability values and Tract 900 has high
vulnerability values. Tract 2000 has the second to last lowest exposure
total, but its high vulnerability values result in it having the highest FI
total across all tracts. Tract 600 has the lowest exposure total and the
lack of flooding at buildings for the 5-year event could be a contributing
factor. While Tract 600’s exposure total was the lowest, it has some of
the highest vulnerability values, so the FI scores are high.

4. Discussion

It is typical for flood vulnerability assessments to use the 100-year
flood zone or worst-case scenario of flooding under the assumption
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A. FIS for the 10-year event

B. FIS for the 100-year event
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Fig. 3. A map of flood inequity scores, comparing the results for the 10-year event and the 100-year event. The darkest red area has the greatest inequity and the gray

areas have the most equitable flood distribution.

Table 4
Ranks of tracts from highest to lowest exposure total and highest to lowest FI
total.

Exposure Total Tract FI Total Tract
4 2100 1.01 2000
3.6 1200 0.82 900

2.2 900 0.82 600

2.2 1800 0.68 1200
2 2000 0.15 1800
1.8 600 0.01 2100

that the worst-case scenario of flooding reveals the most extreme in-
equities. However, we found the relatively greatest flood inequities
occur at the 10-year event, and that inequity varies across flood mag-
nitudes and census tracts. These findings show that using only the 100-
year flood zone or a single, large flood inundation scenario for a flood
risk analysis can mask large inequities produced by smaller and more
frequent events. Fig. 3 compares the 10-year and 100-year flood inequity
scores spatially. The relative highest inequities occur at the 10-year
event, implying pockets of highly vulnerable populations are concen-
trated close to sources of frequent flooding. For example, we found large
inequities within Tract 2000 for the 10-year event, and this tract has
minimal vulnerability according to the Center for Disease Control’s
Social Vulnerability Index (Centers for Disease Control and Prevention,
2018). In this tract, the small, non-Hispanic Black population coincided
with the 10-year flooded area. We used block group data to investigate
equitable exposure within the tract, and inequity was revealed that
would have been missed by using data at the census tract scale. This
study supports previous work that using a fine scale analysis to consider
heterogeneity within a tract can reveal inequity and can supplement the
CDC/ATSDR Social Vulnerability Index (Rickless et al., 2020; Rufat
et al., 2019; Spielman et al., 2020; Tate et al., 2021).

We found slight differences between the 50- and 100-year events,
which is similar to the findings of Liu et al. (2021) who conducted a
flood risk analysis by overlaying a social vulnerability index with
inundation maps from the 50-, 100-, and 200-year events separately.
Their results also showed minimal differences between the events. There
were slight differences between the flood depths from the First Street
data for the 50- and 100-year events, shown by the same exposure values
for Tracts 900, 1800, and 2100, contributing to the similar results for the

two events. We also found that the flood inequities were lower for these
two events. One explanation is that as the inundation extends spread in
the 50- and 100-year events, inundation reaches more of the
non-socailly vulnerable population, so the overall distribution appears
to be more equitable. The deterministic FEMA FIRM boundaries have led
to increased development right outside of the 100-year flood zone, and
the compound flood modeling from First Street captures flooding
outside of this deterministic boundary (Patterson and Doyle, 2009; Wing
et al., 2018). Socially vulnerable populations are more likely to reside
within the FEMA FIRM 100-year flood zone than right outside of it
(Chakraborty et al., 2014). As the inundation in our study expands
beyond FEMA’s 100-year boundary, flood exposure appears more
equitable because the less vulnerable populations outside the FEMA
extents are exposed for these large events.

We found that the largest and statistically significant exposure ratios
occurred for the race category. These results can be explained by the
legacy of systemic racism in the Southeast United States. Governments
used different mechanisms such as racial zoning, road location and
construction, and discriminatory housing policies to keep Black and
African American populations segregated from other neighborhoods
(Bayor, 1988; Linscott et al., 2021; Rothstein, 2017; Ueland and Warf,
2006). Our findings present evidence of the modern-day environmental
justice implications of historical discriminatory practices.

The rankings of tracts based on damages and flood inequity were
different. The tract with the greatest exposure total (Tract 2100) has FI
scores close to zero, while the tracts with the greatest FI scores have
lower exposure totals. We also found inequitable distribution of flooding
for all but one tract, and even though less severe, the smaller inequalities
reveal concerns that need remedying. Our findings emphasize the
importance of prioritizing an equity analysis when assessing flood risk. If
mitigation efforts are targeted based solely on flood depths, the tract
with equitable flood exposure would be prioritized, leaving the tracts
with large inequities unaddressed, perpetuating and potentially
increasing inequity in the area.

One limitation to this study is the accuracy of the flood inundation
data given the necessary simplifications employed to model floods at the
scale of the conterminous United States (Wing et al., 2017). For
example, the model includes levees from the National Levee Database,
but not local structures such as smaller levees, culverts, or bridges (Wing
et al., 2017). However, the model does accurately represent flood
inundation during peak flows, and we used the largest depth which was
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A. Vulnerability results from aggregating ERs with Method #1
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B. Vulnerability results from aggregating ERs with Method #2
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Fig. Al. The graphs of vulnerability scores from aggregating the exposure ratios with four different methods across flooding scenarios for each census tract.

likely to occur during the peak flow (Bates et al., 2021). Even though
there are limitations to the modeling, the flood data we used are widely
available and provide depths across multiple return periods, without
which we could not have performed this analysis. Going forward, un-
certainty analysis has the potential to reveal how estimated differences
in exposure ratios among return periods may be affected by hydrologic
and hydraulic model accuracy. The lack of uncertainty analysis, such as
a Monte Carlo simulation accounting for error propagation in estimating
inundation areas and depths, was not feasible within the scope of the
present study and is a limitation of this research. Nevertheless, this
research provides a novel framework within which uncertainty analysis
could be incorporated in future studies. Even without the uncertainty
analysis, there is value in demonstrating how different flood magnitudes
can have unique exposure effects. Another limitation is the classification
schemes employed. Exposure was classified using Jenks natural breaks
and the vulnerability value was achieved through min-max normaliza-
tion. While both approaches are justified, they produce FI scores that are
relative to the data in the dataset, limiting the comparability of results if
the same methods were applied to a different study area. To address this
issue, we recommend using a human scale to categorize exposure based
on where water depths hit the average human and building (e.g., knee
height, chest height, first flood of a building, etc.) (Liu et al., 2021; Luke
et al., 2018).

We performed a flood inequity analysis across multiple return pe-
riods using reproducible methods based on widely available data from
First Street Foundation and the American Community Survey. An

advantage of the employed methods is that vulnerability calculations are
specific to the exposed population at a fine scale. This differs from a
social vulnerability index where vulnerability is calculated by aggre-
gating socio-demographic characteristics, typically at a coarser scale,
without differentiating the exposed area or population. The explicit in-
clusion of flood extents creates a social vulnerability value specific to
flooding rather than general to all hazards. While a general measure of
social vulnerability is useful, our approach is more fitting for a flood
exposure analysis. Another advantage is that flood inequity is aggre-
gated into a single score and not only identified spatially. This score can
be used to measure the performance of mitigation efforts by quantifying
resulting improvements in equity. The flood inequity score provides an
additional way to evaluate flood damages besides property damage or
other monetization schemes, which tend to underestimate the severity of
impacts on vulnerable populations (Drakes et al., 2021; Gourevitch
et al., 2020).

We recommend future work focused on developing hydrologic and
hydraulic models that more accurately quantify flood inundation
through greater fidelity to compound flooding mechanisms and complex
flow paths. Incorporating local features will also improve accuracy as
the effects of hydraulic structures have been shown to significantly
affect flood depths (Stephens and Bledsoe, 2020). Another next step is to
develop a method to effectively distinguish sensitivity and adaptive
capacity when defining vulnerability and to incorporate a variety of
socio-demographic factors such as age, health insurance, and family
makeup. Additional work can identify potential solutions for reducing
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Table Al
Adjustment of the initial exposure ratios before their summation, shown for the
four different aggregation techniques.

Aggregation Methods

If exposure ratio < 1 If exposure ratio > 1

Method #1 ERnew = ERoriginal ERnew = ERoriginal
Method #2 -1 ERnew = ERoriginal
ERnpew =
ERriginal
Method #3 ERpew =0 ERnew = ERoriginal
Method #4 ERpeyw =1 ERnew = ERoriginal

inequitable flood risk. For example, green infrastructure has been shown
to effectively reduce stormwater volumes and peak flow rates for
smaller, more frequent events (Hoghooghi et al., 2018; Lammers et al.,
2022). Green infrastructure may therefore be effective at reducing the
flood inequities, which were the highest for these types of events
(Hopkins et al., 2020; Woznicki et al., 2018).

5. Conclusions

Our findings show that (1) flood inequities vary according with flood
magnitude and the behavior depends on the demographic distribution in
the tract and (2) the 10-year event produced the greatest flood in-
equities. We found that the worst-case scenario of flood depths and
extents does not necessarily correspond to the worst-case scenario of
flood inequity, and these results have implications for flood planning
and mitigation. Using flood depths alone to prioritize areas for flood
mitigation can further perpetuate inequity for vulnerable populations.
Vulnerable populations are facing inequitable flood exposure and
possess a lower capacity to recover from floods due to a lack of resources
to bear the costs of flood damages; thus, exposure to flooding can
perpetuate the cycle of poverty (Coninx and Bachus, 2021; Rufat et al.,
2015). Vulnerable communities are willing to move out of flood prone
areas, but experience difficulties in doing so (Welch-Devine and Orland,
2020). These vulnerable communities are aware of the flood risk they
are facing, but due to “chronic underprivileged circumstance” they are
unable to take action to protect themselves (Harlan et al., 2019). Flood
equity analyses can be used in decision-making and planning to address
inequity and increase flood resiliency for all members of a community.
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Appendix

see Fig. Al.

see Table Al.

Method 1 was simply summing up the three ERs. In methods 2, 3, and
4, the ratios less than one were reassigned a different value before
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summing as described in Table Al. Ratios less than one indicate that
there is not a vulnerable population overrepresented, and we reassigned
values to prevent them from masking over-represented populations.

Method 4 is the most appropriate aggregation method based on a
comparison of vulnerability scores to in statistical significance of the ERs
(Fig. A1l). Method 1 is straightforward, but when all three ratios for a
census tract are very close to one (within 0.9-1.1), it appears to have the
same vulnerability as a tract that has one, large ER with the other two
ratios under one. For example, Tract 1200 has all three ERs very close to
1.0 in almost every scenario while Tract 600 has ERs greater than 2.0
that are statistically significant. With Method 1, the two appear to have
similar vulnerability across the return periods, even though Tract 1200
has a proportional presence of vulnerable populations in the flood zone.

Method 2 masks large ERs, and ratios close to zero were very large
when taking the inverse. For the 20-year event, Tracts 2100 and 1200
appear to have vulnerability as high as Tract 2000 even though their ERs
are not much greater than one or statistically significant. Tracts 600 and
900 appear to have lower flood vulnerability than other tracts even
though both have statistically significant over-representation of
vulnerable populations. Method 3 also erroneously represents vulnera-
bility because Census Tracts 600 and 900 still appear to have relatively
small vulnerability. Again, Tract 2100 appears to have higher vulnera-
bility even though all ERs are less than or equal to one so there is
equitable representation of vulnerable population inf the flood zone.

A key issue with Methods 2 and 3 is that there is no clear threshold to
indicate a shift from proportional representation to over-representation
of vulnerable populations. Method 4 provides this threshold by reas-
signing the ERs less than one a value of one which represents propor-
tional representation in the flood zone. A vulnerability score of three
indicates equitable presence in the flood zone for all demographic
groups. Method 4 most accurately represents the vulnerability scores we
expected based on the ERs. Tracts 600, 900, and 2000 have the greatest
vulnerability score across all return periods and also have the largest,
statistically significant ERs. Tract 2100, which has no ERs greater than
one, has a vulnerability score of three across all return periods. For these
reasons, we used Method 4 to calculate the vulnerability score in the
flood inequity equation.
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