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Abstract
Let 𝑀〈u,v,w〉 ∈ Cuv⊗Cvw⊗Cwu denote the matrix multiplication tensor (and write 𝑀〈n〉 = 𝑀〈n,n,n〉), and let
det3 ∈ (C9)⊗3 denote the determinant polynomial considered as a tensor. For a tensor T, let R(𝑇) denote its
border rank. We (i) give the first hand-checkable algebraic proof that R(𝑀〈2〉) = 7, (ii) prove R(𝑀〈223〉) = 10 and
R(𝑀〈233〉) = 14, where previously the only nontrivial matrix multiplication tensor whose border rank had been
determined was 𝑀〈2〉 , (iii) prove R(𝑀〈3〉) ≥ 17, (iv) prove R(det3) = 17, improving the previous lower bound of
12, (v) prove R(𝑀〈2nn〉) ≥ n2 + 1.32n for all n ≥ 25, where previously only R(𝑀〈2nn〉) ≥ n2 + 1 was known, as
well as lower bounds for 4 ≤ n ≤ 25, and (vi) prove R(𝑀〈3nn〉) ≥ n2 + 1.6n for all n ≥ 18, where previously only
R(𝑀〈3nn〉) ≥ n2 + 2 was known. The last two results are significant for two reasons: (i) they are essentially the first
nontrivial lower bounds for tensors in an “unbalanced” ambient space and (ii) they demonstrate that the methods
we use (border apolarity) may be applied to sequences of tensors.
The methods used to obtain the results are new and “nonnatural” in the sense of Razborov and Rudich, in that
the results are obtained via an algorithm that cannot be effectively applied to generic tensors. We utilize a new
technique, called border apolarity developed by Buczyńska and Buczyński in the general context of toric varieties.
We apply this technique to develop an algorithm that, given a tensor T and an integer r, in a finite number of steps,
either outputs that there is no border rank r decomposition for T or produces a list of all normalized ideals which
could potentially result from a border rank decomposition. The algorithm is effectively implementable when T has
a large symmetry group, in which case it outputs potential decompositions in a natural normal form. The algorithm
is based on algebraic geometry and representation theory.
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1. Introduction

Over 50 years ago Strassen [40] discovered that the usual row-column method for multiplying n × n
matrices, which uses 𝑂 (n3) arithmetic operations, is not optimal by exhibiting an explicit algorithm
to multiply matrices using 𝑂 (n2.81) arithmetic operations. Ever since then, substantial efforts have
been made to determine just how efficiently matrices may be multiplied. See any of [12, 8, 31] for
an overview. Matrix multiplication of n × ℓ matrices with ℓ × m matrices is a bilinear map, that is, a
tensor 𝑀〈ℓ,m,n〉 ∈ Cℓm⊗Cmn⊗Cnℓ, and since 1980 [6], the primary complexity measure of the matrix
multiplication tensor has been its border rank, which is defined as follows.

A nonzero tensor 𝑇 ∈ Ca⊗Cb⊗Cc =: 𝐴⊗𝐵⊗𝐶 has rank one if 𝑇 = 𝑎⊗𝑏⊗𝑐 for some 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵,
𝑐 ∈ 𝐶 and the rank of T, denoted R(𝑇), is the smallest r such that T may be written as a sum of r
rank one tensors. The border rank of T, denoted R(𝑇), is the smallest r such that T may be written as
a limit of a sum of r rank one tensors. In geometric language, the border rank is smallest r such that
[𝑇] ∈ 𝜎𝑟 (Seg(P𝐴 × P𝐵 × P𝐶)). Here, 𝜎𝑟 (Seg(P𝐴 × P𝐵 × P𝐶)) denotes the r-th secant variety of the
Segre variety of rank one tensors. For the relations between rank, border rank and other measures of
complexity, see [12, Ch. 14-15].

Despite the vast literature on matrix multiplication, previous to this paper, the precise border rank
of 𝑀〈ℓ,m,n〉 was known in exactly one nontrivial case, namely 𝑀〈2〉 = 𝑀〈222〉 [29]. We determine the
border rank in two new cases, 𝑀〈223〉 and 𝑀〈233〉 . We prove new border rank lower bounds for 𝑀〈3〉 and
two infinite sequences of new cases, 𝑀〈2nn〉 and 𝑀〈3nn〉 . Previous to this paper, there were no nontrivial
lower bounds for these sequences. In fact, there were no nontrivial border rank lower bounds for any
tensor in Ca⊗Ca⊗Cb, where b > 2a other than Lickteig’s near trivial bound [37] R(𝑀〈m,n,n〉) ≥ n2 + 1
when m < n, (where the bound of n2 is trivial). We also determine the border rank of the 3 × 3
determinant considered as a tensor, which is important for proving upper bounds on the exponent of
matrix multiplication as discussed below. See §1.2 below for precise statements.

1.1. Methods/History

This paper deals exclusively with lower bounds (“complexity theory’s Waterloo” according to [5, Chap.
14]). For a history of upper bounds, see, for example, [8, 31].

Let 𝜎𝑟 (Seg(P𝐴 × P𝐵 × P𝐶)) denote the set of tensors of border rank at most r, which is called
the r-th secant variety of the Segre variety. Previously, border rank lower bounds for tensors were
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primarily obtained by finding a polynomial vanishing on 𝜎𝑟 (Seg(P𝐴 × P𝐵 × P𝐶)) and then showing
the polynomial is nonzero when evaluated on the tensor in question. These polynomials were found by
reducing multilinear algebra to linear algebra [41], and also exploiting the large symmetry group of
𝜎𝑟 (Seg(P𝐴 × P𝐵 × P𝐶)) to help find the polynomials [35, 36]. Such methods are subject to barriers
[18, 21]; see [32, §2.2] for an overview. A technique allowing one to go slightly beyond the barriers was
introduced in [34]. The novelty there was, in addition to exploiting the symmetry group of 𝜎𝑟 (Seg(P𝐴×
P𝐵 × P𝐶)), to also exploit the symmetry group of the tensor one wanted to prove lower bounds on.
This border substitution method of [34] relied on first using the symmetry of the tensor to study its
degenerations via the Normal Form Lemma 2.3, and then to use polynomials on the degeneration of the
tensor.

The classical apolarity method studies the decompositions of a homogeneous polynomial of degree
d into a sum of d-th powers of linear forms, (these are called Waring rank decompositions); see,for
example, [27]. It was generalized to study ranks of points with respect to toric varieties [22, 23]. To
prove rank lower bounds with it, one takes the ideal of linear differential operators annihilating a given
polynomial P and proves it does not contain an ideal annihilating r distinct points. In [11], Buczyńska
and Buczyński extend this classical method to the border rank setting. They also extend the Normal
Form Lemma to the entire ideal associated to the border rank decomposition of the tensor, their Fixed
Ideal Theorem (Theorem 2.4). (In the language introduced below, the Normal Form Lemma is the (111)
case of the Fixed Ideal Theorem.) In the present work, we describe an algorithm to enumerate a set of
parameterized families of ideals which together exhaust those which could satisfy the conclusion of the
Fixed Ideal Theorem, and we show this enumeration fails to produce any candidates in important cases of
interest.

The ideals subject to enumeration are homogeneous in three sets of variables, so we have a Z3-
graded ring of polynomials, that is, 𝐼 =

⊕
𝑖, 𝑗 ,𝑘 𝐼𝑖 𝑗𝑘 , and we may study a putative ideal I in each

multidegree. Given r, the ideal enumeration algorithm builds a candidate ideal family step by step,
starting in low (multi) degree and building upwards. At each building step, there are tests that restrict
a so-far built family to a subfamily, and after these tests empty families are removed. If at any point
there are no remaining candidates, one concludes there is no border rank r decomposition. For tensors
with large symmetry groups, the dimensions of candidate ideal families one needs to consider during
this enumeration are typically small. All the results of this paper require examining only the first few
multigraded components of candidate ideal families.

The restrictions to subfamilies result from upper bounding the ranks of certain linear maps. The
linear maps are multiplication maps. On one hand, in order for a candidate space of polynomials to be
an ideal, it must be closed under multiplication. On the other hand, our hypothesis that the ideal arises
via a border rank r decomposition upper-bounds its dimension in each nontrivial multidegree; in fact
one may assume it has codimension r in each multidegree.

The fact that the elimination conditions are rank conditions implies that the lower bound barriers [18,
21] still hold for the technique as presented in this paper. In §1.3, we explain how we plan to augment
these tests to go beyond the barriers in future work and how our techniques might be used to overcome
upper bound barriers for the laser method as well.

We use representation theory at several levels. For tensors with symmetry, the Fixed Ideal Theorem
significantly restricts the candidate 𝐼𝑖 𝑗𝑘 ’s one must consider, namely to those that are fixed by a Borel
subgroup of the symmetry group of the tensor. Without this additional condition, even low degree ideal
enumeration would likely be impossible to carry out except for very small examples.

We also make standard use of representation theory to put the matrices whose ranks we need to
lower-bound in block diagonal format via Schur’s lemma. For example, to prove R(𝑀〈2〉) > 6, the
border apolarity method produces three size 40 × 40 matrices whose ranks need to be lower bounded.
Decomposing the matrices to maps between isotypic components reduces the calculation to computing
the ranks of several matrices of size 4 × 8 with entries 0,±1, making the proof easily hand-checkable.

Our results for 𝑀〈3〉 and det3 are obtained by a computer implementation of the ideal enumeration
algorithm.
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For 𝑀〈2nn〉 and 𝑀〈3nn〉 , we must handle all n uniformly, and a computer calculation is no longer
possible. To do this, we consider potential 𝐼110 candidates as a certain sum of ‘local’ contributions,
which we analyze separately (Lemmas 7.2 and 7.4). Given this analysis, it is possible to give a purely
combinatorial necessary condition for the suitability of a potential 𝐼110 candidate, and the analysis of
all potential candidates then takes the form of a combinatorial optimization problem over filled Young
diagrams (Lemma 7.7). This technique reduces the problem to checking three cases of local contribution
for 𝑀〈2nn〉 and eight cases for 𝑀〈3nn〉 . This method for proving lower bounds is completely different
from previous techniques.

To enable a casual reader to see the various techniques we employ, we return to the proof that
R(𝑀〈2〉) > 6 multiple times: first using the general algorithm naïvely in §4, then working dually to
reduce the calculation (Remark 4.1), then using representation theory to block diagonalize the calculation
in §6.2 and finally we observe that the result is an immediate consequence of our localization principle
and Lemma 7.2 (Remark 7.3).

1.2. Results

Theorem 1.1. R(𝑀〈3〉) ≥ 17.

The previous lower bounds were 14 [41] in 1983, 15 [36] in 2015 and 16 [34] in 2018.
Let det3 ∈ C9⊗C9⊗C9 denote the 3 × 3 determinant polynomial considered as a tensor. That is, as a

bilinear map, it inputs two 3× 3 matrices and returns a third such that if the input is (𝑀, 𝑀), the output
is the cofactor matrix of M.

Strassen’s laser method [39] upper bounds the exponent of matrix multiplication using “simple”
tensors. In [2, 3, 1, 13], barriers to proving further upper bounds with the method were found for many
tensors. In [15], we showed that the (unique up to scale) skew-symmetric tensor inC3⊗C3⊗C3, which we
denote 𝑇𝑠𝑘𝑒𝑤𝑐𝑤,2, is not subject to these upper bound barriers and could potentially be used to prove the
exponent of matrix multiplication is two via its Kronecker powers. Explicitly, if one were to prove that
lim𝑘 → ∞ R(𝑇�𝑘𝑠𝑘𝑒𝑤𝑐𝑤,2)

1
𝑘 equals 3, that would imply the exponent is two. One has R(𝑇𝑠𝑘𝑒𝑤𝑐𝑤,2) = 5 and

𝑇�2
𝑠𝑘𝑒𝑤𝑐𝑤,2 = det3; see [15]. Thus, the following result is important for matrix multiplication complexity

upper bounds:

Theorem 1.2. R(det3) = 17.

The upper bound was proved in [15]. In [9], a lower bound of 15 for the Waring rank of det3 was
proven. The previous border rank lower bound was 12 as discussed in [19], which follows from the
Koszul flattening equations [36]. Note that had the result here turned out differently, for example, were
the border rank 16 or lower, 𝑇𝑠𝑘𝑒𝑤𝑐𝑤,2 would have immediately been promoted to the most promising
tensor for proving the exponent is two; see the discussion in [15].

Remark 1.3. The computation of the trilinear map associated to det3, which inputs three matrices and
outputs a number, is different than the computation of the associated polynomial, which inputs a single
matrix and outputs a number. The polynomial may be computed using 12 multiplications in the naïve
algorithm and using 10 with the algorithm in [17].

Previous to this paper, 𝑀〈2〉 was the only nontrivial matrix multiplication tensor whose border rank
had been determined, despite 50 years of work on the subject. We add two more cases to this list.

Theorem 1.4. R(𝑀〈223〉) = 10.

The upper bound dates back to Bini et al. in 1980 [7]. Koszul flattenings [36] give R(𝑀〈22n〉) ≥ 3n.
Smirnov [38] showed that R(𝑀〈22n〉) ≤ 3n + 1 for n ≤ 7, and we expect equality to hold for all n.

Theorem 1.5.

1. R(𝑀〈233〉) = 14.
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2. We have the following border rank lower bounds:

n R(𝑀〈2nn〉) ≥ n R(𝑀〈2nn〉) ≥ n R(𝑀〈2nn〉) ≥
4 22 = 42 + 6 11 136 = 112 + 15 18 348 = 182 + 24
5 32 = 52 + 7 12 161 = 122 + 17 19 387 = 192 + 26
6 44 = 62 + 8 13 187 = 132 + 18 20 427 = 202 + 27
7 58 = 72 + 9 14 215 = 142 + 19 21 470 = 212 + 29
8 75 = 82 + 11 15 246 = 152 + 21 22 514 = 222 + 30
9 93 = 92 + 12 16 278 = 162 + 22 23 561 = 232 + 32

10 114 = 102 + 14 17 312 = 172 + 23 24 609 = 242 + 33.

3. For 0 < 𝜖 < 1
4 , and n > 6

𝜖
3
√

6+6−𝜖
6
√

6−𝜖
, R(𝑀〈2nn〉) ≥ n2 + (3

√
6 − 6 − 𝜖)n. In particular, R(𝑀〈2nn〉) ≥

n2 + 1.32n + 1 when n ≥ 25.
Previously, only the near trivial result that R(𝑀〈2nn〉) ≥ n2 + 1 was known by [37, Rem. p175].
The upper bound in (1) is due to Smirnov [38], where he also proved R(𝑀〈244〉) ≤ 24,

and R(𝑀〈255〉) ≤ 38. When n is even, one has the upper bound R(𝑀〈2nn〉) ≤ 7
4n2 by writing

𝑀〈2nn〉 = 𝑀〈222〉 � 𝑀〈1 n
2

n
2 〉 , where � denotes Kronecker product of tensors; see, for example, [15].

Theorem 1.6. For all n ≥ 18, R(𝑀〈3nn〉) ≥ n2 +
√

8
3n > n2 + 1.6n.

Previously, the only bound was the near trivial result that when n ≥ 4, R(𝑀〈3nn〉) ≥ n2 + 2 by [37,
Rem. p175].

Using [37, Rem. p175], one obtains:

Corollary 1.7. For all n ≥ 18 and m ≥ 3, R(𝑀〈mnn〉) ≥ n2 +
√

8
3n + m − 3.

Theorems 1.5 and 1.6 are the first nontrivial border rank lower bounds for any tensor in Ca⊗Cb⊗Cc

when c > 2 max{a, b} other than the above mentioned near trivial result of Lickteig, vastly expanding
the classes of tensors for which lower bound techniques exist.

1.3. What comes next?

1.3.1. Breaking the lower bound barriers
The geometric interpretation of the border rank lower bound barriers of [18, 21] is that all equa-
tions obtained by taking minors, called rank methods, are actually equations for a larger variety than
𝜎𝑟 (Seg(P𝐴 × P𝐵 × P𝐶)), called the r-th cactus variety [11]. This cactus variety agrees with the se-
cant variety for 𝑟 < 13, but it quickly fills the ambient space of tensors in Cm⊗Cm⊗Cm at latest when
𝑟 = 6m − 4. Thus one cannot prove R(𝑇) > 6m − 4 for any tensor T via rank/determinantal methods,
in particular, with border apolarity alone.

In brief, the r-th secant variety consists of points on limits of spans of zero-dimensional smooth
schemes of length r. The r-th cactus variety consists of points on limits of spans of zero-dimensional
schemes of length r.

The border apolarity algorithm produces ideals, and thus to break the barrier, one needs to distinguish
ideals that are limits of smooth schemes from ideals that are limits of nonsmoothable schemes, and ideals
that are not limits of any sequence of saturated ideals. In principle, this can be done using deformation
theory (see, e.g., [25]). This is exciting, as it is the first proposed path to overcoming the lower bound
barriers.
Remark 1.8. After this paper was posted on arXiv, we went on to find an ideal passing all border apolarity
tests for 𝑀〈3〉 with 𝑟 = 17. We are currently working to effectively implement deformation theory to
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determine if such an example comes from an actual border rank 17 decomposition. The obstruction
to doing this is the effective implementation of the theory. The naïve implementation, even on a large
computer cluster, is not feasible, and we are working to develop effective computational techniques.

1.3.2. Upper bounds, especially for tensors relevant for Strassen’s laser method
There is intense interest in tensors not subject to the upper bound barriers for Strassen’s laser method
described in [4, 1, 3, 13]. All tensors used in or proposed for the laser method have positive-dimensional
symmetry groups, so the border apolarity method potentially may be applied. For example, the small
Coppersmith–Winograd tensor 𝑇𝑐𝑤,𝑞 :=

∑𝑞
𝑗=1 𝑎0⊗𝑏 𝑗⊗𝑐 𝑗 + 𝑎 𝑗⊗𝑏0⊗𝑐 𝑗 + 𝑎 𝑗⊗𝑏 𝑗⊗𝑐0 has a very large

symmetry group, namely the orthogonal group 𝑂 (𝑞) [14], which has dimension
(𝑞
2
)
. Since these tensors,

and their Kronecker squares tend to have border rank below the cactus barrier, we expect to be able
to effectively apply the method as is to determine the border rank at least for small Kronecker powers.
After this paper was posted on arXiv, border apolarity was utilized to determine the border rank of 𝑇�2

𝑐𝑤,2
in [16] and the answer ended up being the known upper bound. We are developing techniques to write
down usual border rank decompositions guided by the ideals produced by border apolarity to potentially
determine new upper bounds for higher Kronecker powers of 𝑇𝑐𝑤,2 and det3 (or to show that the known
bounds are sharp). In other words, we are working to use border apolarity to inject some “science” into
the “art” of finding upper bounds.

1.3.3. Geometrization of the (111) test for matrix multiplication
Our results for 𝑀〈2nn〉 , 𝑀〈3nn〉 for general n only use the (210) and (120) tests as defined in §3, and
we expect to be able to prove stronger results for general n in these cases once we develop a proper
geometric understanding of the (111) test like we have for the (210) test.

1.4. Overview

In §2, we review terminology regarding border rank decompositions of tensors, Borel subgroups and
Borel fixed subspaces. We then describe a curve of multigraded ideals one may associate to a border
rank decomposition. We also review Borel fixed subspaces and list them in the cases relevant for this
paper. In §3, we describe the border apolarity algorithm and accompanying tests. In §4, we review the
matrix multiplication tensor. In §5, we describe the computation to prove Theorems 1.1 and 1.2, which
are computer assisted calculations, the code for which is available at github.com/adconner/chlbapolar.
In §6, we discuss representation theory relevant for applying the border apolarity algorithm to matrix
multiplication. In §7, we prove our localization and optimization algorithm and use it to prove Theorems
1.4, 1.5 and 1.6.

2. Preliminaries

2.1. Definitions/Notation

Throughout, 𝐴, 𝐵, 𝐶,𝑈,𝑉,𝑊 will denote complex vector spaces, respectively, of dimensions
a, b, c, u, v, w. The dual space to A is denoted 𝐴∗. The space of symmetric degree d tensors is de-
noted 𝑆𝑑𝐴, which may also be viewed as the space of degree d homogeneous polynomials on 𝐴∗.
Set Sym(𝐴) :=

⊕
𝑑 𝑆𝑑𝐴. The identity map is denoted Id𝐴 ∈ 𝐴⊗𝐴∗. For 𝑋 ⊂ 𝐴, 𝑋⊥ := {𝛼 ∈ 𝐴∗ |

𝛼(𝑥) = 0,∀𝑥 ∈ 𝑋} is its annihilator, and 〈𝑋〉 ⊂ 𝐴 denotes the linear span of X. Projective space is
P𝐴 = (𝐴\{0})/C∗, and if 𝑥 ∈ 𝐴\{0}, we let [𝑥] ∈ P𝐴 denote the associated point in projective space
(the line through x). The general linear group of invertible linear maps 𝐴 → 𝐴 is denoted GL(𝐴) and
the special linear group of determinant one linear maps is denoted SL(𝐴). The permutation group on r
elements is denoted 𝔖𝑟 .

For at tensor 𝑇 ∈ 𝐴⊗𝐵⊗𝐶, define its symmetry group

𝐺𝑇 := {(𝑔𝐴, 𝑔𝐵, 𝑔𝐶 ) ∈ GL(𝐴) × GL(𝐵) × GL(𝐶)/(C∗)×2 | (𝑔𝐴, 𝑔𝐵, 𝑔𝐶 ) · 𝑇 = 𝑇}. (1)
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One quotients by (C∗)×2 := {(𝜆 Id𝐴, 𝜇 Id𝐵, 𝜈 Id𝐶 ) | 𝜆𝜇𝜈 = 1} because (𝜈 Id𝐴, 𝜇 Id𝐵, 1
𝜈𝜇 Id𝐶 ) is

the kernel of the map GL(𝐴) × GL(𝐵) × GL(𝐶) → GL(𝐴⊗𝐵⊗𝐶). Lie algebras of Lie groups
are denoted with corresponding symbols in old German script, for example, 𝔤𝑇 is the Lie algebra
corresponding to 𝐺𝑇 .

The Grassmannian of r planes through the origin is denoted 𝐺 (𝑟, 𝐴), which we will view in its
Plücker embedding 𝐺 (𝑟, 𝐴) ⊂ PΛ𝑟 𝐴. That is, given 𝐸 ∈ 𝐺 (𝑟, 𝐴), that is, a linear subspace 𝐸 ⊂ 𝐴 of
dimension r, if 𝑒1, . . . , 𝑒𝑟 is a basis of E, we represent E as a point in P(Λ𝑟 𝐴) by [𝑒1 ∧ · · · ∧ 𝑒𝑟 ]. Here,
the wedge product is defined by 𝑒1 ∧ · · · ∧ 𝑒𝑟 :=

∑
𝜎∈𝔖𝑟

sgn(𝜎)𝑒𝜎 (1) ⊗ · · · ⊗𝑒𝜎 (𝑟 ) .
For a set 𝑍 ⊂ P𝐴, 𝑍 ⊂ P𝐴 denotes its Zariski closure, 𝑍̂ ⊂ 𝐴 denotes the cone over Z union the origin,

𝐼 (𝑍) = 𝐼 (𝑍̂) ⊂ Sym(𝐴∗) denotes the ideal of Z, that is, 𝐼 (𝑍) = {𝑃 ∈ Sym(𝐴∗) | 𝑃(𝑧) = 0∀𝑧 ∈ 𝑍̂},
and C[𝑍̂] = Sym(𝐴∗)/𝐼 (𝑍), denotes the homogeneous coordinate ring of 𝑍̂ . Both 𝐼 (𝑍) and C[𝑍̂] are
Z-graded by degree.

We will be dealing with ideals on products of three projective spaces, that is, we will be dealing with
polynomials that are homogeneous in three sets of variables, so our ideals with be Z3-graded. More
precisely, we will study ideals 𝐼 ⊂ Sym(𝐴∗)⊗ Sym(𝐵∗)⊗ Sym(𝐶∗), and 𝐼𝑖 𝑗𝑘 denotes the component in
𝑆𝑖𝐴∗⊗𝑆 𝑗𝐵∗⊗𝑆𝑘𝐶∗.

Given 𝑇 ∈ 𝐴⊗𝐵⊗𝐶, we may consider it as a linear map 𝑇𝐶 : 𝐶∗ → 𝐴⊗𝐵, and we let 𝑇 (𝐶∗) ⊂ 𝐴⊗𝐵
denote its image and similarly for permuted statements. A tensor T is concise if the maps 𝑇𝐴, 𝑇𝐵, 𝑇𝐶 are
injective, that is, if it requires all basis vectors in each of 𝐴, 𝐵, 𝐶 to write down in any basis.

We remark that the tensor T may be recovered up to isomorphism from any of the spaces
𝑇 (𝐴∗), 𝑇 (𝐵∗), 𝑇 (𝐶∗); see, for example, [33].

Elements 𝑃 ∈ 𝑆𝑖𝐴∗⊗𝑆 𝑗𝐵∗⊗𝑆𝑘𝐶∗ may be viewed as differential operators on elements 𝑋 ∈
𝑆𝑠𝐴⊗𝑆𝑡𝐵⊗𝑆𝑢𝐶. Write 𝑋 𝑃 ∈ 𝑆𝑠−𝑖𝐴⊗𝑆𝑡− 𝑗𝐵⊗𝑆𝑢−𝑘𝐶 for the contraction operation. The annihilator
of X, denoted Ann (𝑋), is defined to be the ideal of all 𝑃 ∈ Sym(𝐴∗)⊗ Sym(𝐵∗)⊗ Sym(𝐶∗) such that
𝑋 𝑃 = 0. In the case that 𝑋 = 𝑇 ∈ 𝐴⊗𝐵⊗𝐶, its annihilator consists of all elements in degree (𝑖, 𝑗 , 𝑘)
with one of 𝑖, 𝑗 , 𝑘 greater than one and the annihilators in low degrees are just the usual linear annihila-
tors defined above. Explicitly, the annihilators in low degree are 𝑇 (𝐶∗)⊥ ⊂ 𝐴∗⊗𝐵∗, 𝑇 (𝐵∗)⊥ ⊂ 𝐴∗⊗𝐶∗

and 𝑇 (𝐴∗)⊥ ⊂ 𝐵∗⊗𝐶∗ and 𝑇⊥ ⊂ 𝐴∗⊗𝐵∗⊗𝐶∗.

2.2. Border rank decompositions as curves in Grassmannians

A border rank r decomposition of a tensor T is normally viewed as a curve 𝑇 (𝑡) =
∑𝑟
𝑗=1 𝑇𝑗 (𝑡), where

each𝑇𝑗 (𝑡) is rank one for all 𝑡 ≠ 0, and lim𝑡 → 0 𝑇 (𝑡) = 𝑇 . It will be useful to change perspective, viewing
a border rank r decomposition of a tensor 𝑇 ∈ 𝐴⊗𝐵⊗𝐶 as a curve 𝐸𝑡 ⊂ 𝐺 (𝑟, 𝐴⊗𝐵⊗𝐶) satisfying

(i) for all 𝑡 ≠ 0, 𝐸𝑡 is spanned by r rank one tensors, and
(ii) 𝑇 ∈ 𝐸0.

Example 2.1. The border rank decomposition

𝑎1⊗𝑏1⊗𝑐2 + 𝑎1⊗𝑏2⊗𝑐1 + 𝑎2⊗𝑏1⊗𝑐1 = lim
𝑡 → 0

1
𝑡
[(𝑎1 + 𝑡𝑎2)⊗(𝑏1 + 𝑡𝑏2)⊗(𝑐1 + 𝑡𝑐2) − 𝑎1⊗𝑏1⊗𝑐1]

may be rephrased as the curve

𝐸𝑡 = [(𝑎1⊗𝑏1⊗𝑐1) ∧ (𝑎1 + 𝑡𝑎2)⊗(𝑏1 + 𝑡𝑏2)⊗(𝑐1 + 𝑡𝑐2)]
= [(𝑎1⊗𝑏1⊗𝑐1) ∧ (𝑎1⊗𝑏1⊗𝑐1 + 𝑡 (𝑎1⊗𝑏1⊗𝑐2 + 𝑎1⊗𝑏2⊗𝑐1 + 𝑎2⊗𝑏1⊗𝑐1)

+ 𝑡2(𝑎1⊗𝑏2⊗𝑐2 + 𝑎2⊗𝑏1⊗𝑐2 + 𝑎2⊗𝑏2⊗𝑐1) + 𝑡3𝑎2⊗𝑏2⊗𝑐2)]

= [(𝑎1⊗𝑏1⊗𝑐1) ∧ (𝑎1⊗𝑏1⊗𝑐2 + 𝑎1⊗𝑏2⊗𝑐1 + 𝑎2⊗𝑏1⊗𝑐1

+ 𝑡 (𝑎1⊗𝑏2⊗𝑐2 + 𝑎2⊗𝑏1⊗𝑐2 + 𝑎2⊗𝑏2⊗𝑐1) + 𝑡2𝑎2⊗𝑏2⊗𝑐2)]

⊂ 𝐺 (2, 𝐴⊗𝐵⊗𝐶).

https://doi.org/10.1017/fmp.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.14


8 Austin Conner et al.

Here,

𝐸0 = [(𝑎1⊗𝑏1⊗𝑐1) ∧ (𝑎1⊗𝑏1⊗𝑐2 + 𝑎1⊗𝑏2⊗𝑐1 + 𝑎2⊗𝑏1⊗𝑐1)] .

2.3. Multigraded ideal associated to a border rank decomposition

Given a border rank r decomposition 𝑇 = lim𝑡 → 0
∑𝑟
𝑗=1 𝑇𝑗 (𝑡), we have additional information. Let

𝐼𝑡 ⊂ Sym(𝐴∗)⊗ Sym(𝐵∗)⊗ Sym(𝐶∗)

denote the Z3-graded ideal of the set of r distinct points [𝑇1 (𝑡)] ∪ · · · ∪ [𝑇𝑟 (𝑡)], where 𝐼𝑖 𝑗𝑘,𝑡 ⊂
𝑆𝑖𝐴∗⊗𝑆 𝑗𝐵∗⊗𝑆𝑘𝐶∗. Sometimes, it is more convenient to work with 𝐼⊥𝑖 𝑗𝑘,𝑡 which contains equivalent
information.

Example 2.2. Consider the ideal of [𝑎1⊗𝑏1⊗𝑐1]. In degree (𝑖 𝑗 𝑘), we have 𝐼𝑖 𝑗𝑘 = 〈𝛼𝑀⊗𝛽𝑁 ⊗𝛾𝑃〉,
where 𝛼𝑀 = 𝛼𝑚1 · · · 𝛼𝑚𝑖 etc., and 𝑀, 𝑁, 𝑃 ranges over those triples where at least one of the indices
appearing is not equal to 1. Thus, 𝐼⊥𝑖 𝑗𝑘 = 〈𝑎𝑖1⊗𝑏

𝑗
1⊗𝑐𝑘1 〉.

When we take the ideal of the union of two points, the ideal is the intersection of the two ideals, and if
the points are in general position, for example, [𝑎1⊗𝑏1⊗𝑐1] ∪ [𝑎2⊗𝑏2⊗𝑐2], in the notation above one of
the indices appearing in 𝑀, 𝑁, 𝑃 must not be 1 and one must not be 2, so 𝐼⊥𝑖 𝑗𝑘 = 〈𝑎𝑖1⊗𝑏

𝑗
1⊗𝑐𝑘1 , 𝑎

𝑖
2⊗𝑏

𝑗
2⊗𝑐𝑘2 〉.

Thus, in Example 2.1 above, 𝐼⊥𝑖 𝑗𝑘,𝑡 = 〈𝑎𝑖1⊗𝑏
𝑗
1⊗𝑐𝑘1 , (𝑎1 + 𝑡𝑎2)𝑖⊗(𝑏1 + 𝑡𝑏2) 𝑗⊗(𝑐1 + 𝑡𝑐2)𝑘〉, where the

role of 𝑎2 in Example 2.2 is played by (𝑎1 + 𝑡𝑎2) and similarly for 𝑏2, 𝑐2. As 𝑡 → 0, 𝐼⊥𝑖 𝑗𝑘,𝑡 limits to
𝐼⊥𝑖 𝑗𝑘 = 〈𝑎𝑖1⊗𝑏

𝑗
1⊗𝑐𝑘1 , 𝑖𝑎

𝑖−1
1 𝑎2⊗𝑏

𝑗
1⊗𝑐𝑘1 + 𝑗𝑎𝑖1⊗𝑏

𝑗−1
1 𝑏2⊗𝑐𝑘1 + 𝑘𝑎𝑖1⊗𝑏

𝑗
1⊗𝑐𝑘−1

1 𝑐2〉.
If the r points are in general position, then codim(𝐼𝑖 𝑗𝑘,𝑡 ) = 𝑟 as long as 𝑟 ≤ dim 𝑆𝑖𝐴∗⊗𝑆 𝑗𝐵∗⊗𝑆𝑘𝐶∗;

see, for example, [11, Lemma 3.9].
Let a ≤ b ≤ c. If 𝑟 ≤

(a+1
2
)
, then for all (𝑖 𝑗 𝑘) with 𝑖 + 𝑗 + 𝑘 > 1, one has 𝑟 ≤ dim 𝑆𝑖𝐴∗⊗𝑆 𝑗𝐵∗⊗𝑆𝑘𝐶∗.

In all the examples in this paper 𝑟 ≤
(a+1

2
)
. For example, for 𝑀〈2nn〉 ,

(a+1
2
)
= 2n2 + n and we prove

border rank lower bounds like n2 + 1.32n.
Thus, in this paper we may and will assume codim(𝐼𝑖 𝑗𝑘 ) = 𝑟 for all (𝑖 𝑗 𝑘) with 𝑖 + 𝑗 + 𝑘 > 1.
Thus, in addition to 𝐸0 = 𝐼⊥111,0 defined in §2.2, we obtain a limiting ideal I, where we define

𝐼𝑖 𝑗𝑘 := lim𝑡 → 0 𝐼𝑖 𝑗𝑘,𝑡 and the limit is taken in the Grassmannian of codimension r subspaces in
𝑆𝑖𝐴∗⊗𝑆 𝑗𝐵∗⊗𝑆𝑘𝐶∗,

𝐺 (dim(𝑆𝑖𝐴∗⊗𝑆 𝑗𝐵∗⊗𝑆𝑘𝐶∗) − 𝑟, 𝑆𝑖𝐴∗⊗𝑆 𝑗𝐵∗⊗𝑆𝑘𝐶∗).

We remark that there are subtleties here: The limiting ideal may not be saturated. See [11] for a discussion.
Thus, we may assume a multigraded ideal I coming from a border rank r decomposition of a concise

tensor T satisfies the following conditions:

(i) I is contained in the annihilator of T, which by definition says 𝐼110 ⊂ 𝑇 (𝐶∗)⊥, 𝐼101 ⊂ 𝑇 (𝐵∗)⊥,
𝐼011 ⊂ 𝑇 (𝐴∗)⊥ and 𝐼111 ⊂ 𝑇⊥ ⊂ 𝐴∗⊗𝐵∗⊗𝐶∗.

(ii) For all (𝑖 𝑗 𝑘) with 𝑖 + 𝑗 + 𝑘 > 1, codim𝐼𝑖 𝑗𝑘 = 𝑟.
(iii) I is an ideal, so the multiplication maps

𝐼𝑖−1, 𝑗 ,𝑘⊗𝐴∗ ⊕ 𝐼𝑖, 𝑗−1,𝑘⊗𝐵∗ ⊕ 𝐼𝑖, 𝑗 ,𝑘−1⊗𝐶∗ → 𝑆𝑖𝐴∗⊗𝑆 𝑗𝐵∗⊗𝑆𝑘𝐶∗ (2)

have image contained in 𝐼𝑖 𝑗𝑘 .

Here, equation (2) is the sum of three maps, the first of which is the restriction of the symmetrization
map 𝑆𝑖−1𝐴∗⊗𝐴∗⊗𝑆 𝑗𝐵∗⊗𝑆𝑘𝐶∗ → 𝑆𝑖𝐴∗⊗𝑆 𝑗𝐵∗⊗𝑆𝑘𝐶∗ to 𝐼𝑖−1, 𝑗 ,𝑘⊗𝐴∗ and similarly for the others. When
𝑖 − 1 = 0, the first map is just the inclusion 𝐼0 𝑗𝑘⊗𝐴∗ ⊂ 𝐴∗⊗𝑆 𝑗𝐵∗⊗𝑆𝑘𝐶∗.
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One may prove border rank lower bounds for T by showing that for a given r, no such 𝐼 exists. For
arbitrary tensors, we do not see any effective way to prove this, but for tensors with a large symmetry
group, we have a vast simplification of the problem as described in the next subsection.

2.4. Lie’s theorem and consequences

Lie’s theorem may be stated as: Let H be a connected solvable group and W an H-module, then a closed
H-fixed set 𝑋 ⊂ P𝑊 contains an H-fixed point. Applying this fact to appropriately chosen sets X yield
the Normal Form Lemma and its generalization, the Fixed Ideal Theorem.

Theorem 2.3 (Normal form lemma, tensor case [34]). Let𝑇 ∈ 𝐴⊗𝐵⊗𝐶, and let 𝐻 ⊂ 𝐺𝑇 be a connected
solvable group. If R(𝑇) ≤ 𝑟, then there exists 𝐸0 ∈ 𝐺 (𝑟, 𝐴⊗𝐵⊗𝐶) corresponding to a border rank r
decomposition of T as in §2.2 that is H-fixed, that is, 𝑏 · 𝐸0 = 𝐸0 for all 𝑏 ∈ 𝐻.

By the Normal Form Lemma, in order to prove R(𝑇) > 𝑟 , it is sufficient to rule out the existence of
a border rank r decomposition 𝐸𝑡 where 𝐸0 is a H-fixed point of 𝐺 (𝑟, 𝐴⊗𝐵⊗𝐶).

Theorem 2.4 (Fixed Ideal Theorem, tensor case [11]). Let𝑇 ∈ 𝐴⊗𝐵⊗𝐶, and let 𝐻 ⊂ 𝐺𝑇 be a connected
solvable group. If R(𝑇) ≤ 𝑟, then there exists an ideal 𝐼 ∈ Sym(𝐴∗)⊗ Sym(𝐵∗)⊗ Sym(𝐶∗) as in §2.3
corresponding to a border rank r decomposition of a tensor T that is H-fixed, that is, 𝑏 · 𝐼𝑖 𝑗𝑘 = 𝐼𝑖 𝑗𝑘 for
all 𝑏 ∈ 𝐻 and all (𝑖, 𝑗 , 𝑘).

The conclusions of the theorems above are stronger for larger groups of symmetries H, so in this
paper we will always fix a Borel subgroup B𝑇 ⊂ 𝐺𝑇 , that is, a maximal connected solvable subgroup
of 𝐺𝑇 . Thus, we may assume a multigraded ideal I coming from a border rank r decomposition of T
satisfies the additional condition:

(iv) Each 𝐼𝑖 𝑗𝑘 is B𝑇 -fixed.

As we explain in the next subsection, for the instances in considered in this paper, Borel fixed spaces
are easy to list.

2.5. Borel fixed subspaces

All of the B𝑇 -modules for which we would like to study B𝑇 -fixed subspaces are also 𝐺𝑇 -modules,
where 𝐺𝑇 is reductive. This fact simplifies the description of B𝑇 -fixed subspaces, so we will assume
this in what follows.

It will be convenient for us to linearize the problem by considering Lie algebras instead of Lie groups.
Let 𝔤𝑇 be the Lie algebra of 𝐺𝑇 , and let 𝔟𝑇 ⊂ 𝔤𝑇 be the Lie algebra of B𝑇 ⊂ 𝐺𝑇 . A subspace 𝑆 ⊂ 𝑀
is B𝑇 fixed if and only if it is 𝔟𝑇 fixed.

2.5.1. Weights and weight diagrams
For more details on the material in this section, see any of [26, 28, 20, 10].

If one has a diagonalizable matrix, one may choose a basis of eigenvectors each of which has an
associated eigenvalue. If one has a space 𝔱 ⊂ 𝔤𝔩𝑚 of simultaneously diagonalizable matrices, we may
choose a basis of simultaneous eigenvectors, say 𝑒1, . . . , 𝑒𝑚. Instead of considering the eigenvalues of
each individual matrix, it is convenient to think of all the eigenvalues simultaneously as elements of 𝔱∗,
and these generalized eigenvalues are called weights. Write the weights as 𝜇1, . . . , 𝜇v ∈ 𝔱∗. Then, given
𝑋 ∈ 𝔱, one has 𝑋𝑒 𝑗 = 𝜇 𝑗 (𝑋)𝑒 𝑗 , where the number 𝜇 𝑗 (𝑋) is X’s usual eigenvalue for the eigenvector 𝑒 𝑗 .
In this context, the eigenvectors are called weight vectors.

Since 𝔤𝑇 is reductive, there exists a unique up to conjugation maximal torus 𝔱 ⊂ 𝔤𝑇 , and the choice
of 𝔟𝑇 fixes a unique 𝔱 ⊂ 𝔟𝑇 . The maximal torus is an abelian subalgebra such that the adjoint action on
𝔤𝑇 is simultaneously diagonalizable and the weight zero space under this action is exactly 𝔱. That is,
𝔤𝑇 = 𝔱 ⊕

⊕
𝛼≠0 𝔤𝛼, where𝔤𝛼 is the weight space under the adjoint action of 𝔱 corresponding to weight 𝛼.
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The nonzero weights under the adjoint action of 𝔱 are called the roots of 𝔤𝑇 , and the corresponding 𝔤𝛼
root spaces. For a root 𝛼, one has dim𝔤𝛼 = 1. We have 𝔟𝑇 = 𝔱 ⊕

⊕
𝛼∈𝑃 𝔤𝛼, for some subset P of roots

which are called positive. The positive roots define a partial order on the set of all roots, where 𝛼 < 𝛽
when 𝛽−𝛼 ∈ 𝑃. In this language, 𝔟𝑇 = 𝔱 ⊕

⊕
𝛼>0 𝔤𝛼. Call 𝔫 :=

⊕
𝛼>0 𝔤𝛼 the set of raising operators,

which is a nilpotent Lie-subalgebra of 𝔤𝑇 . Inside P are the simple roots, those which cannot be written
as sums of two elements of P.

Any 𝔤𝑇 -module M is also simultaneously diagonalizable under 𝔱, say 𝑀 =
⊕
𝜆 𝑀𝜆, and 𝔤𝛼 .𝑀𝜆 ⊂

𝑀𝜆+𝛼. A weight vector in M is a highest weight vector if it is annihilated by the action of 𝔫. We can
summarize the action of 𝔟𝑇 on M with a weight diagram, a graph with vertices corresponding to 𝑀𝜇
and edges corresponding to the action of the 𝔤𝛼, where 𝛼 is a simple root. Edges remain unlabelled as
their weight is implicitly determined by their source and target. Since each 𝔤𝛼 is one dimensional, edges
may be interpreted as a single linear map up to scale from the source to the target. The partial order on
roots extends naturally to a partial order on weights: 𝜆 ≥ 𝜇 when 𝜆 = 𝜇 +

∑
𝛼>0 𝑘𝛼𝛼, where 𝑘𝛼 ≥ 0 (or

equivalently, where the sum ranges over simple roots). We draw weight diagrams so that when 𝜆 ≥ 𝜇,
then 𝑀𝜆 is placed higher than 𝑀𝜇.

Suppose 𝑆 ⊂ 𝑀 is a 𝔟𝑇 fixed subspace. S is 𝔱-fixed, so it is spanned by weight vectors, that
is, 𝑆 =

⊕
𝜆 𝑆𝜆, 𝑆𝜆 = 𝑆 ∩ 𝑀𝜆. Furthermore, S is closed under raising operators, which means that

𝔤𝛼 .𝑆𝜆 ⊂ 𝑆𝜆+𝛼 for each positive (or each simple) root 𝛼. Thus, 𝔟𝑇 fixed subspaces of M are precisely
those 𝑆 =

⊕
𝜆 𝑆𝜆 where 𝑆𝜆 maps inside 𝑆𝜇 under every arrow 𝑀𝜆 → 𝑀𝜇 in the weight diagram of M.

2.5.2. Parameterizing Borel fixed subspaces
We may parameterize the 𝔟𝑇 fixed subspaces 𝑆 ⊂ 𝑀 of dimension d as follows: Fix an assignment of
dimensions 𝑑𝜆, 0 ≤ 𝑑𝜆 ≤ dim 𝑀𝜆,

∑
𝜆 𝑑𝜆 = 𝑑. Choices of 𝑆𝜆 with dim 𝑆𝜆 = 𝑑𝜆 are parameterized by the

product of Grassmannians 𝑋 =
∏
𝜆𝐺 (𝑑𝜆, 𝑀𝜆). Given a raising operator x corresponding to an arrow

𝑀𝜆 → 𝑀𝜇 in the weight diagram, the condition that 𝑥.𝑆𝜆 ⊂ 𝑆𝜇 is an explicit polynomial condition on X.
Cutting X by all such polynomials gives a description of the set of 𝔟𝑇 fixed subspaces with dim 𝑆𝜆 = 𝑑𝜆
(which can be empty). All Borel fixed subspaces are obtained as 𝑑𝜆 ranges over all such assignments.
In small examples, a complete list of 𝔟𝑇 fixed subspaces may frequently be read off of the weight
diagram.

2.5.3. 𝖌𝖑𝒎 and 𝖘𝖑𝒎 weights
All of the groups appearing as 𝐺𝑇 in this paper are GL𝑚 and SL𝑚 and products of such. In this case, a
Borel subgroup in some choice of basis is just the group of invertible upper triangular matrices (in the
case of SL𝑚, with determinant one) or the product of such.

For B the invertible upper triangular matrices, 𝔟 is just all upper triangular matrices. Here, 𝔟 = 𝔱 ⊕ 𝔫,
where 𝔱 is the diagonal matrices and 𝔫 is the set of upper triangular matrices with zero on the diagonal.

Let 𝜖1, . . . , 𝜖𝑚 ∈ 𝔱∗ be the basis dual to the basis 𝑒11, . . . , 𝑒𝑚𝑚 of 𝔱 ⊂ 𝔤𝔩𝑚, and and write 𝜖 𝑗 =
(0, . . . , 0, 1, 0, . . . , 0), where the 1 is in the j-th slot. Let C𝑚 have standard basis 𝑒1, . . . , 𝑒𝑚, with dual
basis 𝑒1, . . . , 𝑒𝑚. Then 𝑒1, . . . , 𝑒𝑚 are weight vectors of 𝔱, and 𝑒 𝑗 has weight 𝜖 𝑗 .

If 𝑔 ∈ 𝐺 acts on V by 𝑣 ↦→ 𝑔𝑣, then the induced action on 𝑉∗ is 𝛼 ↦→ 𝛼 ◦ 𝑔−1 so that 𝑔 · (𝛼(𝑣)) =
(𝛼◦𝑔−1) (𝑔 ·𝑣) = 𝛼(𝑣). When we differentiate this action, the induced Lie algebra action is 𝑋.𝛼 = −𝛼◦𝑋 .
Thus, considering the action of 𝔱 on (C𝑚)∗, 𝑒1, . . . , 𝑒 𝑗 are the set of weight vectors and 𝑤𝑡 (𝑒 𝑗 ) = −𝜖 𝑗 =
(0, . . . , 0,−1, 0, . . . , 0).

For vectors in (C𝑚)⊗𝑑 , 𝑤𝑡 (𝑒⊗𝑎1
1 ⊗ · · · ⊗𝑒⊗𝑎𝑚𝑚 ) = 𝑎1𝜖1+ · · ·+𝑎𝑚𝜖𝑚 and the weight is unchanged under

permutations of the 𝑑 = 𝑎1 + · · · + 𝑎𝑚 factors. The partial order on weights of §2.5.1 may be written
𝑎1𝜖1 + · · · + 𝑎𝑚𝜖𝑚 ≥ 𝑏1𝜖1 + · · · + 𝑏𝑚𝜖𝑚 if

∑𝑠
𝑖=1 𝑎𝑖 ≥

∑𝑠
𝑖=1 𝑏𝑖 for all s.

The Lie algebra 𝔰𝔩𝑚 corresponding to SL𝑚 consists of the trace free 𝑚×𝑚 matrices. Here, 𝔱 is the set
of diagonal matrices with trace zero, so the set of weights is defined only modulo 𝜖1 + · · · + 𝜖𝑚. We will
write 𝔰𝔩𝑚 weights as 𝑐1𝜔1 + · · · + 𝑐𝑚−1𝜔𝑚−1, where the 𝜔 𝑗 := 𝜖1 + · · · + 𝜖 𝑗 are called the fundamental
weights. Thus, in terms of 𝔰𝔩𝑚 weights, 𝑤𝑡 (𝑒1) = 𝜔1, for 2 ≤ 𝑠 ≤ 𝑚 − 1, 𝑤𝑡 (𝑒𝑠) = 𝜔𝑠 − 𝜔𝑠−1,
𝑤𝑡 (𝑒𝑚) = −𝜔𝑚−1, and for all j, 𝑤𝑡 (𝑒 𝑗 ) = −𝑤𝑡 (𝑒 𝑗 ).
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𝑣2
1 2𝜔1

𝑣1
1 − 𝑣2

2 0

𝑣1
2 −2𝜔1

Figure 1. Weight diagram for adjoint representation of 𝔰𝔩2

𝑣3
1

𝑣3
2 𝑣2

1

2𝑣3
3 − (𝑣1

1 + 𝑣2
2) 𝑣2

2 − 𝑣3
3 𝑣1

1 − 𝑣2
2 2𝑣1

1 − (𝑣2
2 + 𝑣3

3)

𝑣1
2 𝑣2

3

𝑣1
3

𝜔1 + 𝜔2

−𝜔1 + 2𝜔2 2𝜔1 − 𝜔2

0

−2𝜔1 + 𝜔2 𝜔1 − 2𝜔2

−𝜔1 − 𝜔2

Figure 2. Weight diagram for adjoint representation of 𝔰𝔩3

In terms of 𝔰𝔩𝑚 weights, the partial order is thus 𝑎1𝜔1 + · · · + 𝑎𝑚−1𝜔𝑚−1 ≥ 𝑏1𝜔1 + · · · + 𝑏𝑚−1𝜔𝑚−1
when 𝑎𝑖 ≥ 𝑏𝑖 for all i. For every 𝔰𝔩𝑚 weight 𝜆 ≥ 0, there is a unique irreducible module denoted 𝑉𝜆
containing a highest weight vector of weight 𝜆. See, for example, [26, Chap. 6] or [28, Chap. 5, §2] for
details.

Example 2.5 (𝔰𝔩2 as an 𝔰𝔩2-module). This example will be used in the proofs of Theorems 1.4 and 1.5.
Figure 1 gives the weight diagram for 𝔰𝔩2 = 𝔰𝔩(𝑉) as a 𝔰𝔩2-module under the adjoint action, that is, for
𝑋,𝑌 ∈ 𝔰𝔩2, 𝑋.𝑌 = 𝑋𝑌 − 𝑌𝑋 . Here, 𝑣1, 𝑣2 is a basis of V with dual basis 𝑣1, 𝑣2 and 𝑣𝑖𝑗 := 𝑣 𝑗⊗𝑣𝑖 .

The only B-fixed subspaces are 0, 〈𝑣2
1〉, 〈𝑣

2
1, 𝑣

1
1 − 𝑣2

2〉 and 〈𝑣2
1, 𝑣

1
1 − 𝑣2

2, 𝑣
2
1〉.

Example 2.6 (𝔰𝔩3 as an 𝔰𝔩3-module). This example will be used in the proofs of Theorems 1.1
and 1.6. Figure 2 gives the weight diagram for 𝔰𝔩3 as an 𝔰𝔩3-module under the adjoint action. As
above 𝑣𝑖𝑗 = 𝑣 𝑗⊗𝑣𝑖 . The oval is around the two-dimensional weight zero subspace, which has four distin-
guished one-dimensional subspaces: the images of the two raising operators in and the kernels of the two
raising operators out. Additional arrows indicating these relationships have been added to the weight
diagram.

The B-fixed subspaces of dimension three are 〈𝑣3
1, 𝑣

3
2, 𝑣

2
1〉, 〈𝑣

3
1, 𝑣

3
2, 2𝑣

3
3 − (𝑣1

1 + 𝑣2
2)〉 and 〈𝑣3

1, 𝑣
2
1, 2𝑣

1
1 −

(𝑣2
2 + 𝑣3

3)〉.
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(𝑢1)2

𝑢1𝑢2

𝑢1𝑢3

(𝑢2)2

𝑢2𝑢3

(𝑢3)2

𝑢1 ∧ 𝑢2

𝑢1 ∧ 𝑢3

𝑢2 ∧ 𝑢3

2𝜔1

𝜔2

𝜔1 − 𝜔2

−2𝜔1 + 2𝜔2

−𝜔1

−2𝜔2

Figure 3. Weight diagram for 𝑈⊗𝑈 when 𝑈 = C3. There are six distinct weights appearing, indicated
on the right. On the far left are the weight vectors in 𝑆2𝑈, and in the middle are the weight vectors inΛ2𝑈

The B-fixed subspaces of dimension four are a family parametrized by [𝑠, 𝑡] ∈ P1: 〈𝑣3
1, 𝑣

3
2, 𝑣

2
1, 𝑠(𝑣

2
2 −

𝑣3
3) + 𝑡 (𝑣1

1 − 𝑣2
2)〉. There are no others: We cannot include the entire weight zero space, as then we

must also include all the positive weight vectors for a total dimension of five, exceeding our limit. If we
include a negative weight vector, we must include its image in the weight zero space, which again raises
to all positive weight vectors, exceeding our limit.

The B-fixed subspaces of dimension five are 〈𝑣3
1, 𝑣

3
2, 𝑣

2
1, 𝑣

2
2 − 𝑣3

3, 𝑣
2
3〉, 〈𝑣

3
1, 𝑣

3
2, 𝑣

2
1, 𝑣

1
1 − 𝑣2

2, 𝑣
1
2〉 and the

span of the weight ≥ 0 space 〈𝑣3
1, 𝑣

3
2, 𝑣

2
1, 𝑣

2
2 − 𝑣3

3, 𝑣
1
1 − 𝑣2

2〉. This is easy to see as were 𝑣1
2, 𝑣

2
3 both present

we would need the full weight zero space making the dimension six, and 𝑣1
3 can be included only if the

whole Lie algebra is included.

Example 2.7 (Bilinear forms on 𝑈∗). This example will be used in the proof of Theorem 1.2. Let
dim𝑈 = 3 with basis 𝑢1, 𝑢2, 𝑢3. Figure 3 gives the weight diagram for 𝑈⊗𝑈 = 𝑆2𝑈 ⊕Λ2𝑈 as an 𝔰𝔩(𝑈)-
module. The action of 𝑋 ∈ 𝔰𝔩(𝑈) on a matrix 𝑍 ∈ 𝑈⊗𝑈 is 𝑍 ↦→ 𝑋𝑍 + 𝑍𝑋 t. There are two B-fixed
lines 〈(𝑢1)2〉 and 〈𝑢1 ∧ 𝑢2〉, there is a 1-(projective) parameter [𝑠, 𝑡] ∈ P1 space of B-fixed 2-planes,
〈(𝑢1)2, 𝑠𝑢1𝑢2 + 𝑡𝑢1 ∧ 𝑢2〉 plus an isolated one 〈𝑢1 ∧ 𝑢2, 𝑢1 ∧ 𝑢3〉.

Example 2.8 (Tensor products of modules for different groups). Suppose M and N are modules for
groups G and H, respectively. Then 𝑀⊗𝑁 is a 𝐺 × 𝐻 module with weight spaces 𝑀𝜆⊗𝑁𝜇, as 𝜆 and
𝜇 range over all pairs of weights of M and N. For each arrow 𝑀𝜆 → 𝑀𝜈 in the weight diagram of
M corresponding to the raising operator x, there is an edge 𝑀𝜆⊗𝑁𝜇 → 𝑀𝜈⊗𝑁𝜇 corresponding to
the raising operator 𝑥 ⊕ 0 ∈ 𝔤 ⊕ 𝔥. Similarly, for each arrow 𝑁𝜇 → 𝑁𝜈 in the weight diagram of N
corresponding to the raising operator y, there is an edge 𝑀𝜆⊗𝑁𝜇 → 𝑀𝜆⊗𝑁𝜈 corresponding to the
raising operator 0 ⊕ 𝑦 ∈ 𝔤 ⊕ 𝔥. Example 2.9 is a special case of this applied twice to obtain the diagram
of a triple tensor product 𝑈∗⊗𝔰𝔩(𝑉)⊗𝑊 with u = v = w = 2. This example with u = w = n and v = 2
(resp. v = 3) is used in the proof of Theorem 1.5 (resp. 1.6).

Example 2.9 (𝑈∗⊗𝔰𝔩(𝑉)⊗𝑊 as an 𝔰𝔩(𝑈) × 𝔰𝔩(𝑉) × 𝔰𝔩(𝑊)-module). This example is crucial for
the case of 𝑀〈u,v,w〉 as then 𝐴⊗𝐵 = (𝑈∗⊗𝑉)⊗(𝑉∗⊗𝑊) = 𝑈∗⊗𝔰𝔩(𝑉)⊗𝑊 ⊕ 𝑀〈u,v,w〉 (𝐶∗). When
𝑈,𝑉,𝑊 each have dimension two, Figure 4 gives the 𝔰𝔩(𝑈) × 𝔰𝔩(𝑉) × 𝔰𝔩(𝑊)-weight diagram for
𝑈∗⊗𝔰𝔩(𝑉)⊗𝑊 . Set 𝑥𝑖𝑗 = 𝑢𝑖⊗𝑣 𝑗 and 𝑦𝑖𝑗 = 𝑣𝑖⊗𝑤 𝑗 . There is a unique B-fixed line, 〈𝑥2

1⊗𝑦2
1〉, three B-

fixed 2-planes, 〈𝑥2
1⊗𝑦2

1, 𝑥
1
1⊗𝑦2

1〉, 〈𝑥
2
1⊗𝑦2

1, 𝑥
2
1⊗𝑦2

2〉, and 〈𝑥2
1⊗𝑦2

1, 𝑥
2
1⊗𝑦1

1 − 𝑥2
2⊗𝑦2

1〉, and four B-fixed 3-
planes, 〈𝑥2

1⊗𝑦2
1, 𝑥

1
1⊗𝑦2

1, 𝑥
2
1⊗𝑦1

1 − 𝑥2
2⊗𝑦2

1〉, 〈𝑥
2
1⊗𝑦2

1, 𝑥
2
1⊗𝑦1

1 − 𝑥2
2⊗𝑦2

1, 𝑥
2
1⊗𝑦2

2〉, 〈𝑥
2
1⊗𝑦2

1, 𝑥
1
1⊗𝑦2

1, 𝑥
2
1⊗𝑦2

2〉, and
〈𝑥2

1⊗𝑦2
1, 𝑥

2
1⊗𝑦1

1 − 𝑥2
2⊗𝑦2

1, 𝑥
2
2⊗𝑦1

1〉.
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𝑥2
1 ⊗ 𝑦2

1

𝑥2
1 ⊗ 𝑦2

2 𝑥1
1 ⊗ 𝑦2

1

𝑥1
1 ⊗ 𝑦2

2

𝑥2
1 ⊗ 𝑦1

1 − 𝑥2
2 ⊗ 𝑦2

1

𝑥2
1 ⊗ 𝑦1

2 − 𝑥2
2 ⊗ 𝑦2

2 𝑥1
1 ⊗ 𝑦1

1 − 𝑥1
2 ⊗ 𝑦2

1

𝑥1
1 ⊗ 𝑦1

2 − 𝑥1
2 ⊗ 𝑦2

2

𝑥2
2 ⊗ 𝑦1

1

𝑥2
2 ⊗ 𝑦1

2 𝑥1
2 ⊗ 𝑦1

1

𝑥1
2 ⊗ 𝑦1

2

(1 | 2 | 1)

(1 | 2 | −1) (−1 | 2 | 1)

(−1 | 2 | −1)

(1 | 0 | 1)

(1 | 0 | −1) (−1 | 0 | 1)

(−1 | 0 | −1)

(1 | −2 | 1)

(1 | −2 | −1) (−1 | −2 | 1)

(−1 | −2 | −1)

Figure 4. Weight diagram for 𝑈∗⊗𝔰𝔩(𝑉)⊗𝑊 when 𝑈 = 𝑉 = 𝑊 = C2. Left are the weight vec-
tors and right the weights: Since 𝔰𝔩2 weights are just 𝑗𝜔1, we have just written (𝑖 | 𝑗 | 𝑘) for the
𝔰𝔩(𝑈) ⊕ 𝔰𝔩(𝑉) ⊕ 𝔰𝔩(𝑊) weight. Raisings in 𝑈∗ correspond to NW (northwest) arrows, those in W to NE
(northeast) arrows and those in 𝔰𝔩(𝑉) to upward arrows

3. The ideal enumeration algorithm

Input: An integer r, a concise tensor 𝑇 ∈ 𝐴⊗𝐵⊗𝐶, and a (possibly trivial) Borel subgroup B𝑇 ⊂ 𝐺𝑇 .
Output: A list of parameterized families of ideals which together exhaust those satisfying conditions

(i)-(iv) in §2.3 and §2.4.

Remark 3.1. This algorithm may find that there are no such ideals, in which case R(𝑇) > 𝑟. If the
output is a nonempty set of Borel-fixed ideals, without any further work one cannot conclude anything.
As mentioned above, techniques exist that in principle will determine if an ideal deforms to an ideal of
r distinct points (in which case the border rank is at most r) or does not (if one proves that all ideals on
the list fail to deform to an ideal of r distinct points, then one concludes the border rank is greater than
r), but these techniques are not implementable in the examples of interest such as 𝑀〈3〉 at this writing.
However, since there is no theoretical obstruction to the computation, we have a potential path forward
for further lower bounds, and even in principle superlinear lower bounds. To our knowledge, no other
path to further lower bounds has been proposed.

In what follows, we take for granted that a suitable description of the variety of B𝑇 -fixed subspaces
of given dimension of any 𝐺𝑇 -module M may always be computed. When 𝐺𝑇 is reductive, a convenient
such description is described in §2.5.2.

In fact, such a description is always available in general. For instance, we may represent subspaces
in Plücker coordinates and observe that a subspace 𝑆 ⊂ 𝑀 of dimension s is B𝑇 -fixed if and only if
[Λs𝑆] ⊂ P(Λs𝑀) is B𝑇 -fixed. Equivalently, [Λs𝑆] is fixed under the Lie algebra of B𝑇 . The condition
of being fixed under one element of the Lie algebra is a quadratic condition in the Plücker coordinates
of S and being fixed under the whole Lie algebra is the same as being fixed under a basis.

Here is the algorithm to build an ideal I in each multidegree. We initially have 𝐼100 = 𝐼010 = 𝐼001 = 0
(by conciseness), so the first spaces to build are in total degree two.

(i) For each B𝑇 -fixed family of subspaces 𝐹110 of codimension 𝑟 − c in 𝑇 (𝐶∗)⊥ ⊂ 𝐴∗⊗𝐵∗ (and
codimension r in 𝐴∗⊗𝐵∗), restrict the family to the closed set on which the following symmetrization
maps have images of codimension at least r.

𝐹110⊗𝐴∗ → 𝑆2𝐴∗⊗𝐵∗, and (3)

𝐹110⊗𝐵∗ → 𝐴∗⊗𝑆2𝐵∗. (4)
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After this restriction, we have a (possibly empty) candidate family of components 𝐼110. Call these
maps the (210) and (120) maps and the rank conditions the (210) and (120) tests.

(ii) Perform the analogous tests for spaces 𝐹101 ⊂ 𝑇 (𝐵∗)⊥ and 𝐹011 ⊂ 𝑇 (𝐴∗)⊥ to obtain candidate
families 𝐼101, 𝐼011.

(iii) For each triple 𝐹110, 𝐹101, 𝐹011 of families passing the above tests, restrict the product of these
families to the closed set on which the following addition map has image of codimension at least r.

𝐹110⊗𝐶∗ ⊕ 𝐹101⊗𝐵∗ ⊕ 𝐹011⊗𝐴∗ → 𝐴∗⊗𝐵∗⊗𝐶∗. (5)

After this restriction, we have a (possibly empty) candidate family of compatible triples. Call this
map the (111) map and the rank condition the (111) test.

(iv) In the language of [24, §3], let D be a set of multidegrees which is very supportive for the Hilbert
function corresponding to our codimension r condition. Such a set D may be effectively constructed
by following the proof of [24, Proposition 3.2]. By [24, Theorem 3.6], an ideal generated in
multidegrees D satisfying the codimension condition in D satisfies it in every multidegree. For
simplicity, assume further D is closed under taking smaller multidegrees in the partial order. Fix
an ordered list (𝛼𝑠)𝑠 of the remaining undetermined multidegrees in D which respects the partial
order in Z3.

For each t, write (𝑖 𝑗 𝑘) = 𝛼𝑡 , and do the following to determine the families of candidate sets
{𝐹𝛼𝑠 }𝑠≤𝑡 . For all pairs of (i) a family of candidate sets {𝐹𝛼𝑠 }𝑠≤𝑡−1 and (ii) an B𝑇 -fixed family of
subspaces 𝐹𝑖, 𝑗 ,𝑘 ⊂ 𝑆𝑖𝐴∗⊗𝑆 𝑗𝐵∗⊗𝑆𝑘𝐶∗ of codimension r, restrict the product of these families to
the closed set on which the symmetrization and addition map

𝐹𝑖−1, 𝑗 ,𝑘⊗𝐴∗ ⊕ 𝐹𝑖, 𝑗−1,𝑘⊗𝐵∗ ⊕ 𝐹𝑖, 𝑗 ,𝑘−1⊗𝐶∗ → 𝑆𝑖𝐴∗⊗𝑆 𝑗𝐵∗⊗𝑆𝑘𝐶∗ (6)

has image contained in 𝐹𝑖, 𝑗 ,𝑘 . The output of the algorithm consists of the family of candidate sets
{𝐹𝛼𝑠 }𝛼𝑠 ∈𝐷 . The conditions on D ensure that this output is correct and exhaustive.

Remark 3.2. All the results of this paper with the exception of Theorems 1.1 and 1.2 require only step
(i) of this algorithm. Theorems 1.1 and 1.2 require steps (i), (ii) and (iii) only, and are carried out via
computer implementation.

Remark 3.3. Only step (iv) is needed for the algorithm to be complete and correct. Applying the tests
of steps (i)–(iii) is an attempt to rule out bad candidates early and avoid costly redundant work. This
heuristic in practice greatly simplifies the initial steps of the search (e.g., the previous remark).

Proposition 3.4. The algorithm terminates in a finite number of steps.

Proof. All of the steps of the above algorithm which manipulate infinite families of candidates may
be accomplished in finite time using the standard technology of computational algebraic geometry,
for example, Gröbner bases. As only the finitely many components with multidegree in D must be
determined, and each has only finitely many parameterized families of B𝑇 -fixed subspaces, complete
enumeration requires only finitely many steps. �

Sometimes, it is more convenient to perform the tests dually.

Proposition 3.5. The codimension of the image of the (210)-map is the dimension of the kernel of the
skew-symmetrization map

𝐹⊥
110⊗𝐴 → Λ2𝐴⊗𝐵. (7)

The kernel of the transpose of the (𝑖 𝑗 𝑘)-map (6) is

(𝐹⊥
𝑖, 𝑗 ,𝑘−1⊗𝐶) ∩ (𝐹⊥

𝑖, 𝑗−1,𝑘⊗𝐵) ∩ (𝐹⊥
𝑖−1, 𝑗 ,𝑘⊗𝐴). (8)
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Remark 3.6. The expression (8) should be interpreted in view of the canonical embedding
𝑆𝑖𝐴 ⊂ 𝑆𝑖−1𝐴⊗𝐴 and its analogues for B and C, with the intersection taking place in

(𝑆𝑖−1𝐴⊗𝐴)⊗(𝑆 𝑗−1𝐵⊗𝐵)⊗(𝑆𝑘−1𝐶⊗𝐶).

That this intersection lies in 𝑆𝑖𝐴⊗𝑆 𝑗𝐵⊗𝑆𝑘𝐶 is part of the assertion.

Proof. The transpose of the (210) map (3) is

𝑆2𝐴⊗𝐵 → 𝐹∗
110⊗𝐴 = [(𝐴⊗𝐵)/𝐹⊥

110]⊗𝐴

= 𝐴⊗𝐴⊗𝐵/(𝐹⊥
110⊗𝐴)

= (Λ2𝐴⊗𝐵 ⊕ 𝑆2𝐴⊗𝐵)/(𝐹⊥
110⊗𝐴).

Since the source maps to 𝑆2𝐴⊗𝐵, the kernel equals (𝑆2𝐴⊗𝐵) ∩ (𝐹⊥
110⊗𝐴), which in turn is the kernel

of equation (7).
We now prove the assertion regarding equation (8). Let 𝑋 ∈ 𝑆𝑖𝐴⊗𝑆 𝑗𝐵⊗𝑆𝑘𝐶. Write Proj𝑖, 𝑗 ,𝑘−1(𝑋) =

𝑋 + 𝐹⊥
𝑖, 𝑗 ,𝑘−1⊗𝐶, Proj𝑖, 𝑗−1,𝑘 (𝑋) = 𝑋 + 𝐹⊥

𝑖, 𝑗−1,𝑘⊗𝐵, and Proj𝑖−1, 𝑗 ,𝑘 (𝑋) = 𝑋 + 𝐹⊥
𝑖−1, 𝑗 ,𝑘⊗𝐴. The transpose

of equation (8) is the map

𝑆𝑖𝐴⊗𝑆 𝑗𝐵⊗𝑆𝑘𝐶 → 𝐹∗
𝑖, 𝑗 ,𝑘−1⊗𝐶 ⊕ 𝐹∗

𝑖, 𝑗−1,𝑘⊗𝐵 ⊕ 𝐹∗
𝑖−1, 𝑗 ,𝑘⊗𝐴

𝑋 ↦→ Proj𝑖, 𝑗 ,𝑘−1 (𝑋) ⊕ Proj𝑖, 𝑗−1,𝑘 (𝑋) ⊕ Proj𝑖−1, 𝑗 ,𝑘 (𝑋)

so X is in the kernel if and only if all three projections are zero. The kernels of the three projections,
respectively, are 𝐹⊥

𝑖, 𝑗 ,𝑘−1⊗𝐶, 𝐹⊥
𝑖, 𝑗−1,𝑘⊗𝐵, and 𝐹⊥

𝑖−1, 𝑗 ,𝑘⊗𝐴, each intersected with 𝑆𝑖𝐴⊗𝑆 𝑗𝐵⊗𝑆𝑘𝐶. Take
intersections term by term in the tensor product to get (𝐹⊥

𝑖, 𝑗 ,𝑘−1⊗𝐶) ∩ (𝐹⊥
𝑖, 𝑗−1,𝑘⊗𝐵) ∩ (𝐹⊥

𝑖−1, 𝑗 ,𝑘⊗𝐴) ⊂
𝑆𝑖𝐴⊗𝑆 𝑗𝐵⊗𝑆𝑘𝐶, and we conclude. �

4. Matrix multiplication

Let 𝐴 = 𝑈∗⊗𝑉 , 𝐵 = 𝑉∗⊗𝑊 , 𝐶 = 𝑊∗⊗𝑈. The matrix multiplication tensor 𝑀〈u,v,w〉 ∈
𝐴⊗𝐵⊗𝐶 is the re-ordering of Id𝑈 ⊗ Id𝑉 ⊗ Id𝑊 ∈ (𝑈∗⊗𝑈)⊗(𝑉∗⊗𝑉)⊗(𝑊∗⊗𝑊). Thus, 𝐺𝑀〈u,v,w〉 ⊇
PGL(𝑈) × PGL(𝑉) × PGL(𝑊) =: 𝐺, where here PGL(𝑉) = GL(𝑉)/C∗. As a G-module 𝐴∗⊗𝐵∗ =
𝑈⊗𝔰𝔩(𝑉)⊗𝑊∗ ⊕𝑈⊗ Id𝑉 ⊗𝑊∗. We have 𝑀〈u,v,w〉 (𝐶∗) = 𝑈∗⊗ Id𝑉 ⊗𝑊 . We fix bases and let B denote
the induced Borel subgroup of G of triples of upper-triangular, u × u, v × v, and w × w matrices.

For dimension reasons, it will be easier to describe 𝐸𝑖 𝑗𝑘 := 𝐹⊥
𝑖 𝑗𝑘 ⊂ 𝑆𝑖𝐴⊗𝑆 𝑗𝐵⊗𝑆𝑘𝐶 than 𝐹𝑖 𝑗𝑘 .

Note that 𝐸𝑖 𝑗𝑘 is B-fixed if and only if 𝐹𝑖 𝑗𝑘 is. Any B-fixed candidate 𝐸110 is an enlargement of
𝑈∗⊗ Id𝑉 ⊗𝑊 obtained from choosing a B-fixed (𝑟 − wu)-plane inside 𝑈∗⊗𝔰𝔩(𝑉)⊗𝑊 . This is because
𝐹110 ⊆ 𝑇 (𝐶∗)⊥ says that 𝐸110 := 𝐹⊥

110 ⊇ 𝑇 (𝐶∗) = 𝑈∗⊗ Id𝑉 ⊗𝑊 . Write 𝐸110 = (𝑈∗⊗ Id𝑉 ⊗𝑊) ⊕ 𝐸 ′
110,

where 𝐸 ′
110 ⊂ 𝑈∗⊗𝔰𝔩(𝑉)⊗𝑊 and dim 𝐸 ′

110 = 𝑟 − wu.

First proof that R(𝑀〈2〉) = 7. Here, u = v = w = 2. We show R(𝑀〈2〉) > 6 by checking that no B-fixed
10-dimensional 𝐹110 (i.e., six-dimensional 𝐸110 or two-dimensional 𝐸 ′

110) passes both the (210) and
(120) tests. The weight diagram for 𝑈∗⊗𝔰𝔩(𝑉)⊗𝑊 appears in Figure 4.

By Figure 4, there are three B-fixed 2-planes 𝐸 ′
110 in 𝑈∗⊗𝔰𝔩(𝑉)⊗𝑊 . For each, we compute the ranks

of the corresponding maps 𝑚1 : 𝐹110⊗𝐴∗ → 𝑆2𝐴∗⊗𝐵∗ and 𝑚2 : 𝐹110⊗𝐵∗ → 𝐴∗⊗𝑆2𝐵∗, which are
given by 40 × 40 matrices:

𝐸′
110 𝑚1 rank 𝑚2 rank

〈𝑥2
1 ⊗𝑦

2
1 , 𝑥

2
1 ⊗𝑦

2
2 〉 36 34

〈𝑥2
1 ⊗𝑦

2
1 , 𝑥

2
1 ⊗𝑦

1
1 − 𝑥2

2 ⊗𝑦
2
1 〉 35 35

〈𝑥2
1 ⊗𝑦

2
1 , 𝑥

1
1 ⊗𝑦

2
1 〉 34 36
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We see that for each candidate 𝐸 ′
110, at least one of the maps has rank strictly greater than 34 = 40 − 6,

and we conclude.
For readers unhappy with computing the rank of a sparse 40 × 40 matrix whose entries are all 0,±1,

Remark 4.1 below reduces to 24×24 matrices, and in §6.2, using more representation theory, we reduce
to 4 × 8 matrices whose entries are all 0,±1. Finally, we give a calculation free proof in Remark 7.3.
Remark 4.1. We may also proceed according to Proposition 3.5 and instead compute the ranks of the
maps 𝐸110⊗𝐴 → Λ2𝐴⊗𝐵 and 𝐸110⊗𝐵 → 𝐴⊗Λ2𝐵. The images of the basis vectors of 𝐸110⊗𝐴 in the
case 𝐸 ′

110 = 〈𝑥2
1⊗𝑦2

1, 𝑥
1
1⊗𝑦2

1〉 are

𝑥1
1 ∧ 𝑥2

1⊗𝑦2
1, 𝑥

1
2 ∧ 𝑥2

1⊗𝑦2
1, 𝑥

2
2 ∧ 𝑥2

1⊗𝑦2
1,

𝑥1
2 ∧ 𝑥1

1⊗𝑦2
1, 𝑥

2
2 ∧ 𝑥1

1⊗𝑦2
1,

𝑥1
1 ∧ (𝑥1

1⊗𝑦1
1 + 𝑥1

2⊗𝑦2
1), 𝑥

1
2 ∧ (𝑥1

1⊗𝑦1
1 + 𝑥1

2⊗𝑦2
1), 𝑥

2
1 ∧ (𝑥1

1⊗𝑦1
1 + 𝑥1

2⊗𝑦2
1), 𝑥

2
2 ∧ (𝑥1

1⊗𝑦1
1 + 𝑥1

2⊗𝑦2
1),

𝑥1
1 ∧ (𝑥2

1⊗𝑦1
1 + 𝑥2

1⊗𝑦2
1), 𝑥

1
2 ∧ (𝑥2

1⊗𝑦1
1 + 𝑥2

1⊗𝑦2
1), 𝑥

2
1 ∧ (𝑥2

1⊗𝑦1
1 + 𝑥2

2⊗𝑦2
1), 𝑥

2
2 ∧ (𝑥2

1⊗𝑦1
1 + 𝑥2

2⊗𝑦2
1),

𝑥1
1 ∧ (𝑥2

1⊗𝑦1
2 + 𝑥2

2⊗𝑦2
2), 𝑥

1
2 ∧ (𝑥2

1⊗𝑦1
2 + 𝑥2

2⊗𝑦2
2), 𝑥

2
1 ∧ (𝑥2

1⊗𝑦1
2 + 𝑥2

2⊗𝑦2
2), 𝑥

2
2 ∧ (𝑥2

1⊗𝑦1
2 + 𝑥2

2⊗𝑦2
2)

𝑥1
1 ∧ (𝑥2

1⊗𝑦1
2 + 𝑥2

2⊗𝑦2
2), 𝑥

1
2 ∧ (𝑥2

1⊗𝑦1
2 + 𝑥2

2⊗𝑦2
2), 𝑥

2
1 ∧ (𝑥2

1⊗𝑦1
2 + 𝑥2

2⊗𝑦2
2), 𝑥

2
2 ∧ (𝑥2

1⊗𝑦1
2 + 𝑥2

2⊗𝑦2
2)

and if we remove one of the two 𝑥2
1 ∧ (𝑥2

1⊗𝑦1
1 + 𝑥2

2⊗𝑦2
1)’s we obtain a set of 20 independent vectors.

After choosing isomorphisms 𝑈 � 𝑉 � 𝑊 , the square matrix multiplication tensor 𝑀〈n〉 has
Z3-symmetry via cyclic permutation of factors. If the isomorphisms𝑈 � 𝑉 � 𝑊 are chosen (uniquely) to
identify B-fixed subspaces with B-fixed subspaces, cyclic permutation gives a correspondence between
the candidate 𝐹110, 𝐹101 and 𝐹011 sets. This fact is used in §5 to simplify the calculation, as there it is
necessary to carry out the ideal enumeration algorithm up to the (111) test.

Similarly, when u = w, given a choice of isomorphism 𝑈 � 𝑊 there is a corresponding transpose
symmetry 𝐴⊗𝐵⊗𝐶 ↔ 𝐵∗⊗𝐴∗⊗𝐶∗ of 𝑀〈u,v,u〉 . If the (unique) isomorphism 𝑈 � 𝑉 identifying B-
fixed subspaces with B-fixed subspaces is chosen, the corresponding transpose symmetry gives an
isomorphism between the list of candidate 𝐹101’s the list of candidate 𝐹011’s. Furthermore, such a
transposition gives an involution of the set of B𝑇 -fixed 𝐹110’s so that the application of the (210) test to
𝐹110 is equivalent to the application of the (120) test to its transpose. This symmetry may be observed
in the three pair of equal numbers in the table above and will play a critical role in §7.

5. Explanation of the proofs of Theorems 1.1 and 1.2

The proofs of the theorems are achieved by a computer implementation of the ideal enumeration
algorithm up to the (111) test to rule out any candidate ideals when 𝑟 = 16 for each of 𝑀〈3〉 and det3
(see §3). Each of det3 and 𝑀〈3〉 has a reductive symmetry group, so candidate 𝐹110 families can be
enumerated from the weight diagram of 𝑇 (𝐶∗)⊥ as described in §2.5.2. In order to carry out these steps
as described tractably, two additional ideas are needed.

The first is in the combinatorial part of the enumeration of the (110)-components. In §2.5.2, the
B𝑇 -fixed subspaces of a 𝐺𝑇 -module are first parameterized by an integer function on weights 𝑑𝜆 and
then by a subproduct 𝑌𝑑𝜆 of Grassmannians. In our case, we wish to enumerate B𝑇 -fixed 65 = 81 − 16
dimensional subspaces of the 72-dimensional space 𝑀 = 𝑇 (𝐶∗)⊥. When 𝑇 = 𝑀〈3〉 , there are 54 weight
spaces of dimension one and nine weight spaces of dimension two, and for𝑇 = det3, there are nine weight
spaces of dimension one, 18 weight spaces of dimension two, and nine weight spaces of dimension
three. In either case, it is intractable to enumerate on a computer all assignments 𝑑𝜆 summing to 65 and
consistent with these data.

Fortunately, there are additional linear inequalities one can derive from the weight diagram between
the values 𝑑𝜆 which are necessary for 𝑌𝑑𝜆 ≠ ∅. For example, if in the weight diagram 𝑥 : 𝑀𝜆 →
𝑀𝜇 corresponds to a linear inclusion since any B-fixed subspace S satisfies 𝑥.𝑆𝜆 ⊂ 𝑆𝜇 we have
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𝑑𝜆 = dim 𝑆𝜆 ≤ dim 𝑆𝜇 = 𝑑𝜇. This reasoning can be generalized to any x, not necessarily an inclusion,
by applying the rank nullity theorem. An arrow 𝑥 : 𝑀𝜆 → 𝑀𝜇 in the weight diagram restricts to an arrow
𝑆𝜆 → 𝑆𝜇, and the rank nullity theorem implies 𝑑𝜆 + dim ker 𝑥 ≤ 𝑑𝜇. More generally, consider the map⊕
𝑖 𝑥𝑖 : 𝑀𝜆 →

⊕
𝑖 𝑀𝜇𝑖 , where 𝜇𝑖 ranges over any set of weights with arrows out of 𝑀𝜆. For anyB-fixed

S, this map restricts to 𝑆𝜆 →
⊕
𝑖 𝑆𝜇𝑖 , and the rank nullity theorem implies 𝑑𝜆+dim ker(

⊕
𝑖 𝑥𝑖) ≤

∑
𝑖 𝑑𝜆𝑖 .

Dually, we can consider the sum of transpose maps
⊕
𝑖 𝑥

t
𝑖 : 𝑀∗

𝜇 →
⊕
𝑖 𝑀

∗
𝜆𝑖

, where 𝜆𝑖 ranges over any
set of weights with arrows into 𝑀𝜇. For any B-fixed S this map restricts to 𝑆⊥𝜇 →

⊕
𝑖 𝑆

⊥
𝜆𝑖

, and we obtain
dim 𝑀𝜇 − 𝑑𝜇 + dim ker(

⊕
𝑥t
𝑖) ≤

∑
𝑖 dim 𝑀𝜆𝑖 − 𝑑𝜆𝑖 .

The assignments 𝑑𝜆 can thus be restricted to lie in a particular explicit and computable rational
polytope P determined by the weight diagram, integer points of which are sufficiently small in number to
completely enumerate. One can efficiently enumerate the integer points of such a polytope by recursively
fixing one coordinate at a time, stopping early when the corresponding cut of P is empty (checked by
solving the corresponding linear program).

The second idea needed is in how to efficiently apply the (210) and (120) tests to parameterized
families 𝐹110. Concretely, this corresponds to finding the variety on which a 405 × 585 matrix has rank
at most 389. Doing this by explicitly enumerating minors is intractable due to the combinatorially huge
number. Since we only care about the variety set theoretically cut out by minors, we may arrange the
computation in a manner more analogously with how one would find the rank of a constant matrix:
using row reduction.

Given an 𝑚 × 𝑛 matrix M with entries in some polynomial ring, we wish to find the equations
describing the set where M has rank at most r. First, generalize to matrix coefficients in some quotient
of some ring of fractions of the polynomial ring, say R. If there is any matrix coefficient which is a
unit in R, row reduce using it and pass to the problem of finding equations of an 𝑚 − 1 × 𝑛 − 1 matrix
having rank at most 𝑟 − 1. Otherwise, heuristically pick a matrix coefficient f, for example, the most
common nonzero entry, and recursively continue the computation in two cases which geometrically
correspond to the terms in the decomposition of the target variety X as (𝑋 ∩ 𝑉 ( 𝑓 )) ∪ (𝑋 \ 𝑉 ( 𝑓 )). The
case analyzing 𝑋 ∩ 𝑉 ( 𝑓 ) algebraically corresponds to recursively continuing the computation with R
replaced by 𝑅/( 𝑓 ), and the case analyzing 𝑋 \𝑉 ( 𝑓 ) algebraically corresponds to recursively continuing
the computation with R replaced by 𝑅 𝑓 . In both cases, progress is made, since in the first at least one
entry is zeroed, and in the second at least one entry is made into a unit. Given the resulting ideals 𝐽1
and 𝐽2 from these cases, report our result as 𝐽1 ∩ 𝐽2.

Carrying out the algorithm, one finds that the B𝑇 -fixed subspaces of dimension 65 in 𝑇 (𝐶∗)⊥
sometimes occur in positive-dimensional families. The following table records the number of irreducible
families of each dimension, those which pass the (210) test only, and those which pass both the (210)
and (120) tests.

T Dimension B𝑇 -fixed (210) test (210) and (120) tests

𝑀〈3〉 0 132 53 8
1 13 6 0

det3 0 342 54 4
1 187 18 0
2 44 0 0
3 6 0 0

Remark 5.1. In the case of 𝑀〈3〉 , all families either entirely passed or entirely failed each of the (210)
and (120) tests. In the case of det3, some families split into a number of smaller-dimensional families
upon application of the tests. Two of the four final candidates for det3 started as isolated B𝑇 -fixed
subspaces, and two are from one-dimensional families of B𝑇 -fixed subspaces.

To avoid redundant work we make use of the observation that both 𝑀〈3〉 and det3 are invariant under
cyclic permutation of the factors, so once we have the 𝐹110 candidates we automatically obtain the 𝐹101
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and 𝐹011 candidates. For each triple of candidates, in these cases with no remaining parameters, one
checks that the (111) test is not passed, proving the theorems.

The module structure for matrix multiplication was discussed in §4. We now describe the relevant
module structure for the determinant: Write 𝑈,𝑉 = C𝑚 and 𝐴1 = · · · = 𝐴𝑚 = 𝑈⊗𝑉 . The determinant
det𝑚, considered as a tensor, spans the line Λ𝑚𝑈⊗Λ𝑚𝑉 ⊂ 𝐴1⊗ · · · ⊗𝐴𝑚. Explicitly, letting 𝐴𝛼 have
basis 𝑥𝛼𝑖 𝑗 ,

det𝑚 =
∑

𝜎,𝜏∈𝔖𝑚

sgn(𝜎𝜏)𝑥1
𝜎 (1)𝜏 (1) ⊗ · · · ⊗𝑥𝑚𝜎 (𝑚)𝜏 (𝑚) .

We will be concerned with the case 𝑚 = 3, and we write 𝐴1⊗𝐴2⊗𝐴3 = 𝐴⊗𝐵⊗𝐶. As a tensor, det3 is
invariant under (SL(𝑈)×SL(𝑉))�Z2 as well as𝔖3. As an SL(𝑈)×SL(𝑉)-module, 𝐴⊗𝐵 is𝑈⊗2⊗𝑉 ⊗2 =
𝑆2𝑈⊗𝑆2𝑉 ⊕ 𝑆2𝑈⊗Λ2𝑉 ⊕Λ2𝑈⊗𝑆2𝑉 ⊕Λ2𝑈⊗Λ2𝑉 , and det3(𝐶∗) = Λ2𝑈⊗Λ2𝑉 . As SL(𝑈) × SL(𝑉)-
modules, det3 (𝐶∗)⊥ is the dual of the complement to det3(𝐶∗) in 𝐴⊗𝐵, and the weight diagram of
𝐴⊗𝐵 is the tensor product of the diagram in Example 2.7 with the same diagram for 𝑉⊗𝑉 . Each of
the three modules in the complement to det3(𝐶∗) in 𝐴⊗𝐵 are multiplicity free, but there are weight
multiplicities up to three, for example, 𝑢1𝑢2⊗𝑣1𝑣2, 𝑢1𝑢2⊗𝑣1 ∧ 𝑣2, and 𝑢1 ∧ 𝑢2⊗𝑣1𝑣2 each have weight
(𝜔𝑈2 |𝜔𝑉2 ). Consequently, there are more and larger-dimensional B𝑇 -fixed subspaces, as observed in the
table above.

For the code and further discussion of the implementation details, see the supplemental materials at
github.com/adconner/chlbapolar.

6. Representation theory relevant for matrix multiplication

Theorems 1.4 and 1.5(1),(2) may also be proved using computer calculations, but we present hand-
checkable proofs to both illustrate the power of the method and lay groundwork for future results. This
section establishes the representation theory needed for those proofs.

6.1. Refinement of the (210) test for matrix multiplication

Recall 𝐴 = 𝑈∗⊗𝑉 , 𝐵 = 𝑉∗⊗𝑊 , 𝐶 = 𝑊∗⊗𝑈 and 𝑀〈u,v,w〉 = Id𝑈 ⊗ Id𝑉 ⊗ Id𝑊 and the notation 𝜔 𝑗 for
the fundamental 𝔰𝔩-weights from §2.5. Let 𝑉𝜇 denote the irreducible 𝔰𝔩(𝑉)-module with highest weight
𝜇. We have the following decompositions as SL(𝑈) × SL(𝑉)-modules: (note 𝑉𝜔2+𝜔v−1 does not appear
when v = 2, and when v = 3, 𝑉𝜔2+𝜔v−1 = 𝑉2𝜔2 ):

Λ2(𝑈∗⊗𝑉)⊗𝑉∗ = (𝑆2𝑈∗⊗𝑉𝜔1) ⊕ (Λ2𝑈∗⊗𝑉𝜔1)
⊕ (𝑆2𝑈∗⊗𝑉𝜔2+𝜔v−1) ⊕ (Λ2𝑈∗⊗𝑉2𝜔1+𝜔v−1),

(9)

𝑆2(𝑈∗⊗𝑉)⊗𝑉∗ = (𝑆2𝑈∗⊗𝑉2𝜔1+𝜔v−1) ⊕ (Λ2𝑈∗⊗𝑉𝜔2+𝜔v−1)
⊕ (𝑆2𝑈∗⊗𝑉𝜔1) ⊕ (Λ2𝑈∗⊗𝑉𝜔1),

(10)

𝐴⊗𝑀〈u,v,w〉 (𝐶∗) = (𝑈∗⊗𝑉)⊗(𝑈∗⊗ Id𝑉 ⊗𝑊)
= (𝑆2𝑈∗⊗𝑉𝜔1⊗𝑊) ⊕ (Λ2𝑈∗⊗𝑉𝜔1⊗𝑊),

(11)

𝑉⊗𝔰𝔩(𝑉) = 𝑉𝜔1 ⊕𝑉2𝜔1+𝜔v−1 ⊕𝑉𝜔2+𝜔v−1 , (12)
(𝑈∗⊗𝑉)⊗(𝑈∗⊗𝔰𝔩(𝑉)) = (𝑆2𝑈∗⊗𝑉2𝜔1+𝜔v−1) ⊕ (Λ2𝑈∗⊗𝑉2𝜔1+𝜔v−1)

⊕ (𝑆2𝑈∗⊗𝑉𝜔1) ⊕ (Λ2𝑈∗⊗𝑉𝜔1)
⊕ (𝑆2𝑈∗⊗𝑉𝜔2+𝜔v−1) ⊕ (Λ2𝑈∗⊗𝑉𝜔2+𝜔v−1).

(13)

These formulas follow from the following basic formulas: for any vector spaces 𝑈,𝑉 , one has the
GL(𝑈) × GL(𝑉) decompositions 𝑆2(𝑈⊗𝑉) = 𝑆2𝑈⊗𝑆2𝑉 ⊕Λ2𝑈⊗Λ2𝑉 ; see, for example, [30, §2.7.1]
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and the decomposition Λ2 (𝑈⊗𝑉) = 𝑆2𝑈⊗Λ2𝑉 ⊕ 𝑆2𝑈⊗Λ2𝑉 is derived similarly, and one has the GL(𝑈)
decomposition 𝑈⊗𝑈 = 𝑆2𝑈 ⊕Λ2𝑈. Finally, the Pieri formula (see, e.g., [20, §6.1, eqns 6.8,6.9]) gives
𝑆2𝑉⊗𝑉∗ = 𝑉2𝜔1⊗𝑉𝜔v−1 = 𝑉2𝜔1+𝜔v−1 ⊕𝑉𝜔1 and Λ2𝑉⊗𝑉∗ = 𝑉𝜔2⊗𝑉𝜔v−1 = 𝑉𝜔2+𝜔v−1 ⊕𝑉𝜔1 .

Note that 𝑉𝜔1 is isomorphic to V and

dim(𝑉2𝜔1+𝜔v−1) = 1
2v3 + 1

2v2 − v, dim(𝑉𝜔2+𝜔v−1) = 1
2v3 − 1

2v2 − v.

Proposition 6.1. Write 𝐸110 := 𝑀〈u,v,w〉 (𝐶∗) ⊕ 𝐸 ′
110, where 𝐸 ′

110 ⊂ 𝑈∗⊗𝔰𝔩(𝑉)⊗𝑊 . The dimension of the
kernel of the map (7) 𝐸110⊗𝐴 → Λ2𝐴⊗𝐵 equals the dimension of the kernel of the skew symmetrization
followed by projection map

𝐸 ′
110⊗𝐴 → 𝑆2𝑈∗⊗𝑉𝜔2+𝜔v−1⊗𝑊 ⊕Λ2𝑈∗⊗𝑉2𝜔1+𝜔v−1⊗𝑊, (14)

and the kernel of equation (14) is

(𝐸 ′
110⊗𝐴) ∩ [𝑈∗⊗2⊗𝑉𝜔1⊗𝑊 ⊕ 𝑆2𝑈∗⊗𝑉2𝜔1+𝜔v−1⊗𝑊 ⊕Λ2𝑈∗⊗𝑉𝜔2+𝜔v−1⊗𝑊] . (15)

Proof. Write M for the target of equation (14). We have the following commutative diagram, where
horizontal arrows form exact sequences:

0 (𝑈∗⊗ Id𝑉 ⊗𝑊)⊗𝐴 𝐸110⊗𝐴 𝐸 ′
110⊗𝐴 0

0 (𝑈∗)⊗2⊗𝑉𝜔1⊗𝑊 Λ2 (𝑈∗⊗𝑉)⊗𝑉∗⊗𝑊 𝑀 0.

The bottom row reflects the decomposition (9) tensored with W. The middle vertical arrow is the skew
symmetrization map (7), and since it is the restriction of a GL(𝑈) × GL(𝑉) × GL(𝑊) equivariant
map, by Schur’s lemma, its submodule (𝑈∗⊗ Id𝑉 ⊗𝑊)⊗𝐴 = (𝑈∗⊗𝑉)⊗(𝑈∗⊗ Id𝑉 ⊗𝑊) must have image
contained in (𝑈∗)⊗2⊗𝑉𝜔1⊗𝑊 . The induced right vertical arrow is the map (14).

We show the left vertical arrow is an isomorphism, from which the claim on the kernel dimension of
equation (14) will follow by, for example, the snake lemma. We have the decomposition into irreducible
modules

(𝑈∗⊗𝑉)⊗(𝑈∗⊗ Id𝑉 ⊗𝑊) = 𝑆2𝑈∗⊗𝑉⊗ Id𝑉 ⊗𝑊 ⊕Λ2𝑈∗⊗𝑉⊗ Id𝑉 ⊗𝑊.

The vertical left arrow is an equivariant map, so by Schur’s lemma, it is sufficient to see that a single
vector in each of the modules on the right has nonzero image. We check the highest weight vectors:

(𝑢u⊗𝑣1)⊗𝑢u⊗(
∑
𝑗

𝑣 𝑗⊗𝑣 𝑗 )⊗𝑤1 ↦→
∑
𝜌>1

(𝑢u⊗𝑣1) ∧ (𝑢u⊗𝑣𝜌)⊗𝑣𝜌⊗𝑤1, and

[
(𝑢u⊗𝑣1)⊗𝑢u−1 − (𝑢u−1⊗𝑣1)⊗𝑢u]⊗(∑

𝑗

𝑣 𝑗⊗𝑣 𝑗 )⊗𝑤1 ↦→

∑
𝑗

[
(𝑢u⊗𝑣1) ∧ (𝑢u−1⊗𝑣 𝑗 ) − (𝑢u−1⊗𝑣1) ∧ (𝑢u⊗𝑣 𝑗 )

]
⊗𝑣 𝑗⊗𝑤1

Now, equation (14) is a restriction of the surjective equivariant map𝑈∗⊗𝔰𝔩(𝑉)⊗𝑊⊗𝐴 → 𝑀 . Comparing
modules in the irreducible decompositions of the source and target in view of equation (13), we obtain
that equation (15) is the kernel of equation (14). �
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6.2. R(𝑴〈2〉) > 6 revisited

In this case, the map (14) takes image in Λ2𝑈∗⊗𝑆2𝑉⊗𝑉∗⊗𝑊 . We have the following images.
For the highest weight vector 𝑥2

1⊗𝑦2
1 times the four basis vectors of A (with their 𝔰𝔩(𝑉)-weights in

the second column), the image of equation (14) is spanned by

𝑥1
1 ∧ 𝑥2

1⊗𝑦2
1 3𝜔1

𝑥1
2 ∧ 𝑥2

1⊗𝑦2
1 𝜔1.

(Note, e.g., 𝑥2
2⊗𝑥2

1⊗𝑦2
1 maps to zero under the skew-symmetrization map as 𝑢2⊗𝑢2 projects to zero in

Λ2𝑈∗.) For 𝐴⊗(𝑥2
1⊗𝑦1

1 − 𝑥2
2⊗𝑦2

1) (the lowering of 𝑥2
1⊗𝑦2

1 under 𝔰𝔩(𝑉)), the image is spanned by

𝑥1
1 ∧ (𝑥2

1⊗𝑦1
1 − 𝑥2

2⊗𝑦2
1) 𝜔1

𝑥1
2 ∧ (𝑥2

1⊗𝑦1
1 − 𝑥2

2⊗𝑦2
1) −𝜔1.

Since W has nothing to do with the map, we don’t need to compute the image of, for example, 𝐴⊗𝑥2
1⊗𝑦2

2
to know its contribution to the kernel, as it must be the same dimension as that of 𝐴⊗𝑥2

1⊗𝑦2
1, just with a

different W-weight.
Were R(𝑀〈2〉) = 6, 𝐸 ′

110 would have dimension two, spanned by the highest weight vector and one
lowering of it, and in order to be a candidate, its image in Λ2𝑈∗⊗𝑆3𝑉⊗𝑊 would have to have dimension
at most two. Taking 𝐸 ′

110 = 〈𝑥2
1⊗𝑦2

1, 𝑥
2
1⊗𝑦1

1 − 𝑥2
2⊗𝑦2

1〉, the image of equation (14) has dimension
three. Taking 𝐸 ′

110 = 〈𝑥2
1⊗𝑦2

1, 𝑥
2
1⊗𝑦2

2〉, the image of equation (14) has dimension four. Finally, taking
𝐸 ′

110 = 〈𝑥1
1⊗𝑦2

1, 𝑥
2
1⊗𝑦2

1〉, by transpose symmetry (see §4), the image of the (120)-version of equation
(14) must have dimension four and we conclude.

7. Proofs of Theorems 1.5 and 1.6

7.1. Overview

To prove border rank lower bounds for a fixed tensor using border apolarity, one checks a list of
candidates for components of a multigraded ideal. It is not immediate how to extend the technique to
sequences of tensors in n. Even in good situations such as in Theorems 1.5 and 1.6 where there are large
Borel subgroups, candidate components can still occur in positive-dimensional families, and there is an
exponential growth in n in the number of families to check. We overcome this problem by introducing
several new ideas.

We restrict attention to only the (110)-graded ideal component and the application of the dual form of
the (120) and (210) tests of §3. For each given candidate component, we forget everything about it except
for the dimensions of certain internal weight spaces. We then analyze the kernels of Proposition 3.5
as sums of “local” contributions from each internal weight space. As we consider only dimension
information, we determine upper bounds on the contributions. At this point, there are still many discrete
cases of possible choices of these internal dimensions to consider. We use techniques from convex
optimization to show that the relevant kernel contributions for any choice is no better than a constant
more than that of a small fixed number of choices. We call this step the “globalization”. These choices
can then be completely analyzed as functions of n.

7.2. Preliminaries

Recall that in these proofs u = w = n and v is 2 or 3. Let 𝐸 ′
110 ⊂ 𝑈∗⊗𝔰𝔩(𝑉)⊗𝑊 be a B-fixed

subspace. In particular, 𝐸 ′
110 is fixed under the torus of GL(𝑈) × GL(𝑊), so we may write 𝐸 ′

110 =⊕
𝑠,𝑡 𝑢

n−𝑠+1⊗𝑋𝑠,𝑡⊗𝑤𝑡 , where 𝑋𝑠,𝑡 ⊂ 𝔰𝔩(𝑉). Since 𝐸 ′
110 is fixed under the Borel subgroups of GL(𝑈),

GL(𝑉) and GL(𝑊), for each s and t we have
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1. 𝑋𝑠,𝑡 ⊂ 𝔰𝔩(𝑉) is B𝑉 ⊂ GL(𝑉) fixed,
2. 𝑋𝑠,𝑡 ⊃ 𝑋𝑠+1,𝑡 and
3. 𝑋𝑠,𝑡 ⊃ 𝑋𝑠,𝑡+1.

Define the outer structure of 𝐸 ′
110 to be the data

(𝑠, 𝑡, dim 𝑋𝑠,𝑡 ), 0 ≤ 𝑠, 𝑡 ≤ n.

Define the inner structure at site (𝑠, 𝑡) to be 𝑋𝑠,𝑡 .
We may consider the outer structure of 𝐸 ′

110 as an n × n grid, with each grid point (𝑠, 𝑡) labelled
by the dimension of the corresponding 𝑋𝑠,𝑡 . We will represent such filled grids by the corresponding
Young diagrams on the nonzero labels so that the upper left box corresponds with the highest weight.
Here, labels weakly decrease going to the right and down. It is reasonable to imagine such a filled Young
diagram rotated 45◦ clockwise to put the highest weight at the top, as in the corresponding weight
diagram (see Example 2.9, where n = v = 2).

In the case of 𝔰𝔩2, each 𝑋𝑠,𝑡 is determined by its dimension, so an outer structure completely specifies
a corresponding 𝐸 ′

110. In the case of 𝔰𝔩3, information about the particular inner structures is lost passing
from 𝐸 ′

110 to its outer structure.
Example 7.1. Here are three examples with v = 2 and 𝜌 = 4.

The diagram 1 1 1
1 corresponds to

𝐸 ′
110 = 〈𝑢n⊗𝑣2⊗𝑣1⊗𝑤1, 𝑢

n⊗𝑣2⊗𝑣1⊗𝑤2, 𝑢
n⊗𝑣2⊗𝑣1⊗𝑤3, 𝑢

n−1⊗𝑣2⊗𝑣1⊗𝑤1〉.

The diagram 2 1
1 corresponds to

𝐸 ′
110 = 〈𝑢n⊗𝑣2⊗𝑣1⊗𝑤1, 𝑢

n⊗(𝑣1⊗𝑣1 − 𝑣2⊗𝑣2)⊗𝑤1, 𝑢
n⊗𝑣2⊗𝑣1⊗𝑤2, 𝑢

n−1⊗𝑣2⊗𝑣1⊗𝑤1〉.

The diagram 3 1 corresponds to

𝐸 ′
110 = 〈𝑢n⊗𝑣2⊗𝑣1⊗𝑤1, 𝑢

n⊗(𝑣1⊗𝑣1 − 𝑣2⊗𝑣2)⊗𝑤1, 𝑢
n⊗𝑣1⊗𝑣2⊗𝑤1, 𝑢

n⊗𝑣2⊗𝑣1⊗𝑤2〉.

The transpose symmetry discussed in §4 maps 𝐸 ′
110 =

⊕
𝑠,𝑡 𝑢

n−𝑠+1⊗𝑋𝑠,𝑡⊗𝑤𝑡 to⊕
𝑠,𝑡 𝑢

n−𝑡+1⊗𝑋 t
𝑠,𝑡⊗𝑤𝑠 , that is, the inner structure at site (𝑠, 𝑡) becomes the transpose of the inner struc-

ture at site (𝑡, 𝑠). In particular, transpose symmetry conjugates the diagram corresponding to the outer
structure. In view of this symmetry, it is sufficient to study the (210) test only, for then everything we
can say is also a statement about the (120) test under this transpose.

As mentioned above, we split the calculation of the kernel into a local and global computation. We
bound the local contribution to the kernel at site (𝑠, 𝑡) by a function of 𝑠, 𝑡 and dim 𝑋𝑠,𝑡 . Once this is
done, the theorems are proved by solving the resulting combinatorial optimization problem over outer
structures.

Recall the expression (15) and let K denote the term in brackets, that is,

𝐾 = (𝑈∗)⊗2⊗𝑉𝜔1⊗𝑊 ⊕ 𝑆2𝑈∗⊗𝑉2𝜔1+𝜔v−1⊗𝑊 ⊕Λ2𝑈∗⊗𝑉𝜔2+𝜔v−1⊗𝑊

⊂ (𝑈∗)⊗2⊗𝑉⊗𝔰𝔩(𝑉)⊗𝑊.
(16)

We may filter 𝐸 ′
110 by B-fixed subspaces such that each quotient corresponds to the inner structure

contribution over some site (𝑠, 𝑡). Call such a filtration admissible. Let Σ1 ⊂ Σ2 ⊂ · · · ⊂ Σ 𝑓 = 𝐸 ′
110 be

an admissible filtration, and put

𝐾𝑔 = (Σ𝑔⊗𝐴) ∩ 𝐾. (17)

Then the dimension of equation (15) may be written as the sum over g of dim (𝐾𝑔/𝐾𝑔−1), and we may
upper bound the dimension of equation (15) by upper bounding each dim (𝐾𝑔/𝐾𝑔−1). We obtain bounds
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on dim (𝐾𝑔/𝐾𝑔−1) which depend only on s and 𝑗 = 𝑗𝑔 := dim (Σ𝑔/Σ𝑔−1). For 𝔰𝔩2, this is Lemma 7.2,
and for 𝔰𝔩3, this is Lemma 7.4. As discussed above, bounds on the kernel of the (120) map are obtained
by symmetry; specifically, the bound is the same with s replaced by t.

Once these lemmas are established, the claims on fixed finite values of n may be immediately settled
by enumerating the finitely many possible outer structures and checking that none gives a large enough
kernel for both the (210) and (120) maps. The claims on infinite sequences of n require us to work
more carefully, and we prove the required bounds on the solution to such problems parameterized by n
in Lemma 7.7.

7.3. The local argument

Lemma 7.2. Let dim𝑉 = 2, dim𝑈 = n. Fix an admissible filtration such that Σ𝑔 ⊂ 𝐸 ′
110 contains the

𝔰𝔩(𝑉)-subspace at site (𝑠, 𝑡) and Σ𝑔−1 does not. Write j for the dimension of the 𝔰𝔩(𝑉)-subspace at site
(𝑠, 𝑡). Then

dim(𝐾𝑔/𝐾𝑔−1) = 𝑎 𝑗 𝑠 + 𝑏 𝑗 ,

where 𝑎 𝑗 , 𝑏 𝑗 are the following functions of j:

j 𝑎 𝑗 𝑏 𝑗

1 2 0
2 3 n
3 4 2n.

Lemma 7.2 is proved later this section.

Remark 7.3. Revisiting the proof that R(𝑀〈2〉) > 6 in this language, the possible outer structures of
B-fixed two planes are 2 , 1

1 , 1 1 , which, according to Lemma 7.2, have (210) map kernel dimensions
5 = 3(1) + 2, 6 = (1(2) + 0) + (2(2) + 0), and 4 = (1(2) + 0) + (1(2) + 0), respectively. The first and
third are smaller than 6 and the choice of 1

1 fails the (120) test by transpose symmetry. This gives our
shortest proof that R(𝑀〈2〉) > 6.

Proof of Theorem 1.4. Here, we take u = 2, w = 3, v = 2. We show that there is no 𝐸 ′
110 of dimension

3 = 9−6 passing the (210) and (120) tests. The possible outer structures are 3 , 2 1 , 1 1 1 and 2
1 . Applying

Lemma 7.2 with n = 2, the corresponding (210) map kernel dimensions are eight, seven, six and nine,
respectively, so only 2

1 passes. However, 2
1 has (120) kernel dimension eight and fails this test. �

Proof of Theorem 1.5(1),(2). For Theorem 1.5(1), u = w = 3, v = 2. The outer structures corresponding
to 13 − 9 = 4 dimensional subpaces of 𝑈∗⊗𝔰𝔩(𝑉)⊗𝑊 are 1 1 1

1 , 1 1
1 1 , 1 1

1
1

, 2 1 1 , 2 2 , 2
1
1
, 2 1

1 , 2
2 , 3 1 , 3

1 . Of

these, 1 1
1
1

, 2
1
1
, 2

2 , and 3
1 pass the (210) test with kernel dimensions of size 14, 16, 15, and 14, respectively.

However, none of these pass the (120) test as none appear in this list whose conjugate tableau also appear.
For Theorem 1.5(2), the result follows by similar complete enumeration of outer structures on a

computer. �

Lemma 7.4. Let dim𝑉 = 3, dim𝑈 = n. Fix an admissible filtration such that Σ𝑔 ⊂ 𝐸 ′
110 contains the

𝔰𝔩(𝑉)-subspace at site (𝑠, 𝑡) and Σ𝑔−1 does not. Write j for the dimension of the 𝔰𝔩(𝑉)-subspace at site
(𝑠, 𝑡). Then

dim(𝐾𝑔/𝐾𝑔−1) ≤ 𝑎 𝑗 𝑠 + 𝑏 𝑗 ,

where 𝑎 𝑗 , 𝑏 𝑗 are the following functions of j:
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𝑗 𝑎 𝑗 𝑏 𝑗

1 3 −2
2 6 0
3 8 n
4 11 n

𝑗 𝑎 𝑗 𝑏 𝑗

5 14 n
6 17 n
7 21 2n − 6
8 21 3n − 6.

In order to prove Lemmas 7.2 and 7.4, we first observe the following.
Proposition 7.5. The included module 𝑉𝜔1 ⊂ 𝑉⊗𝔰𝔩(𝑉) has weight basis

𝑣𝑖 :=
∑
𝑗≠𝑖

[v𝑣 𝑗⊗(𝑣𝑖⊗𝑣 𝑗 ) − 𝑣𝑖⊗(𝑣 𝑗⊗𝑣 𝑗 )] + (v − 1)𝑣𝑖⊗𝑣𝑖⊗𝑣𝑖 , 1 ≤ 𝑖 ≤ v.

Proof. The line [𝑣1] has weight 𝜔1 = 𝜖1 and is B-stable, the lines [𝑣𝑖] are lowerings of the line [𝑣1]
and have weight 𝜖𝑖 . �

Proof of Lemmas 7.2 and 7.4. We begin in somewhat greater generality, not fixing v = dim𝑉 . We must
bound dim 𝐾𝑔 − dim 𝐾𝑔−1, where 𝐾𝑔 is given by equation (17). Write 𝑋 ⊂ 𝔰𝔩(𝑉) for the inner structure
at (𝑠, 𝑡) so that Σ𝑔 = Σ𝑔−1 ⊕ 𝑢n−𝑠+1⊗𝑋⊗𝑤𝑡 . Write

𝑉0 = ∅,

𝑉1 = 𝑉𝜔1 ,

𝑉2 = 𝑉𝜔1 ⊕𝑉2𝜔1+𝜔v−1 ,

𝑉3 = 𝑉𝜔1 ⊕𝑉2𝜔1+𝜔v−1 ⊕𝑉𝜔2+𝜔v−1 = 𝑉⊗𝔰𝔩(𝑉).

Note that 𝑉2 = 𝑉3 when v = 2. Then {𝑉 𝑓 } 𝑓 is a (partial) flag for 𝑉⊗𝔰𝔩(𝑉), and

𝑆 𝑓 := 𝑈∗⊗𝑈∗(𝑠−1) ⊗𝑉3⊗𝑊 +𝑈∗⊗2⊗𝑉 𝑓 ⊗𝑊 +𝑈∗⊗2⊗𝑉3⊗𝑊(𝑡−1)

is a flag for 𝑈∗⊗2⊗𝑉3⊗𝑊 , where we have written 𝑈∗(𝑠) = span{𝑢n, . . . , 𝑢n−𝑠+1} and 𝑊(𝑡) =
span{𝑤1, . . . , 𝑤𝑡 }. Hence, 𝑆 𝑓 ∩ 𝐾𝑔 is a flag for 𝐾𝑔 with 𝑆3 ∩ 𝐾𝑔 = 𝐾𝑔 and 𝑆0 ∩ 𝐾𝑔 ⊆ 𝐾𝑔−1. The
fact that the inclusion 𝑆0 ∩ 𝐾𝑔 ⊆ 𝐾𝑔−1 may be strict is the only place in this argument we prove an
inequality rather than equality. Use the isomorphism of quotient vector spaces

𝐾𝑔 ∩ 𝑆 𝑓

𝐾𝑔 ∩ 𝑆 𝑓 −1
=

(𝐾𝑔 ∩ 𝑆 𝑓 ) + 𝑆 𝑓 −1

𝑆 𝑓 −1
(18)

to obtain the successive quotients of {𝑆 𝑓 ∩ 𝐾𝑔} 𝑓 as subspaces of

𝑈∗⊗2⊗𝑉3⊗𝑊

𝑆 𝑓 −1
=

𝑈∗⊗2

𝑈∗⊗𝑈∗(𝑠−1) ⊗ 𝑉3
𝑉 𝑓 −1

⊗ 𝑊

𝑊(𝑡−1)
. (19)

Write 𝐾 𝑓 for the f -th summand of equation (16) so that 𝐾 ∩ 𝑆 𝑓 = 𝐾 𝑓 + 𝐾 ∩ 𝑆 𝑓 −1. Intersecting with
Σ𝑔⊗𝐴 and adding 𝑆 𝑓 −1, we obtain

𝐾𝑔 ∩ 𝑆 𝑓 + 𝑆 𝑓 −1 = (𝐾 𝑓 + 𝑆 𝑓 −1) ∩ (Σ𝑔⊗𝐴) + 𝑆 𝑓 −1

= (𝐾 𝑓 + 𝑆 𝑓 −1) ∩ (𝑈∗⊗𝑢n−𝑠+1⊗𝑉⊗𝑋⊗𝑤𝑡 + 𝑆 𝑓 −1).

We may now pass in each side of the intersection to the right-hand side of equation (19), after which
the intersection may be computed term by term. To compute the intersection in the 𝑈∗⊗2/(𝑈∗⊗𝑈∗(𝑠−1) )
term, momentarily write 𝑍 = 𝑍 +𝑈∗⊗𝑈∗(𝑠−1) for 𝑍 ∈ 𝑈∗⊗2 and observe that

𝑆2𝑈∗ ∩𝑈∗⊗𝑢n−𝑠+1 = 𝑈∗𝑠⊗𝑢n−𝑠+1, and Λ2𝑈∗ ∩𝑈∗⊗𝑢n−𝑠+1 = 𝑈∗(𝑠−1) ⊗𝑢n−𝑠+1.

https://doi.org/10.1017/fmp.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.14


24 Austin Conner et al.

Therefore, the right-hand side of equation (18) may be written, for 𝑓 = 1, 2 and 3 respectively,

𝑈∗ ⊗ (𝑢n−𝑠+1 +𝑈∗(𝑠−1) ) ⊗ [(𝑉 ⊗ 𝑋) ∩𝑉1] ⊗ (𝑤𝑡 +𝑊(𝑡−1) )
𝑈∗𝑠 ⊗ (𝑢n−𝑠+1 +𝑈∗(𝑠−1) ) ⊗ [(𝑉 ⊗ 𝑋 +𝑉1) ∩𝑉2] ⊗ (𝑤𝑡 +𝑊(𝑡−1) )
𝑈∗(𝑠−1) ⊗ (𝑢n−𝑠+1 +𝑈∗(𝑠−1) ) ⊗ [𝑉 ⊗ 𝑋 +𝑉2] ⊗ (𝑤𝑡 +𝑊(𝑡−1) ).

Write

𝑌 = (𝑉⊗𝑋) ∩𝑉1,

𝑌 ′ = ((𝑉⊗𝑋 +𝑉1) ∩𝑉2)/𝑉1, and
𝑌 ′′ = (𝑉⊗𝑋 +𝑉2)/𝑉2,

and write their dimensions, respectively, as y, y′, y′′. We obtain

dim 𝐾𝑔 = dim (𝑆0 ∩ 𝐾𝑔) + yn + y′𝑠 + y′′(𝑠 − 1) ≤ dim 𝐾𝑔−1 + yn + y′𝑠 + y′′(𝑠 − 1),

the sum of the successive quotient dimensions of {𝑆 𝑓 ∩ 𝐾𝑔} 𝑓 .
Thus, when 𝑗 = v2 − 1, that is, 𝑋 = 𝔰𝔩(𝑉), the desired result follows from y = v, y′ = dim 𝑉2𝜔1+𝜔v−1

and y′′ = dim 𝑉𝜔2+𝜔v−1 .
In all cases, Y has a basis consisting of weight vectors and is closed under raising operators. Hence,

by Proposition 7.5, 𝑌 = span{𝑣𝑖 | 𝑖 ≤ y}.
Consider the case 𝑗 = v2 − 2, that is X is the span of all weight vectors of 𝔰𝔩(𝑉) except 𝑣v⊗𝑣1. Then

𝑣v is not an element of Y because in the monomial basis, the monomial 𝑣1⊗(𝑣v⊗𝑣1) fails to have a
nonzero coefficient in any element of Y. Hence, y ≤ v − 1, and the trivial y′ ≤ dim 𝑉2𝜔1+𝜔v−1 , and
y′′ ≤ dim 𝑉𝜔2+𝜔v−1 give the asserted upper bounds.

By similar reasoning, when v = 3, considering Example 2.6, we obtain the bounds y = 0 when
𝑗 = 1, 2 and y ≤ 1 when 𝑗 = 3, 4, 5, 6. For all values of j except 1, the result then follows from

dim 𝐾𝑔 − dim 𝐾𝑔−1 ≤ ( 𝑗v − y)𝑠 + yn − y′′ (20)
≤ ( 𝑗v − y)𝑠 + yn,

as y + y′ + y′′ = 𝑗v. The upper bound for v = 2, 𝑗 = 1, is settled similarly.
We must argue more for the 𝑗 = 1 upper bound for v = 3, namely that y′′ ≥ 2. For this, consider

𝑉⊗𝔰𝔩(𝑉) ⊕𝑉𝜔1 = 𝑉⊗𝑉⊗𝑉∗ = 𝑆2𝑉⊗𝑉∗ ⊕Λ2𝑉⊗𝑉∗ and Λ2𝑉⊗𝑉∗ = 𝑉𝜔2+𝜔v−1 ⊕𝑉𝜔1 .

Because we have y = 0, the dimension y′′ of the projection of 𝑉⊗𝑋 onto 𝑉𝜔2+𝜔v−1 is the same as that
ontoΛ2𝑉⊗𝑉∗. We have the images 𝑣2∧𝑣1⊗𝑣3 and 𝑣3∧𝑣1⊗𝑣3 of 𝑣2⊗𝑣1⊗𝑣3 and 𝑣3⊗𝑣1⊗𝑣3, respectively,
whence y′′ ≥ 2 as required.

To see the upper bounds in the v = 2 cases are sharp, note that in this case 𝑉𝜔2+𝜔v−1 = ∅, so y′′ = 0.
The 𝑗 = 1 case is thus automatic from equation (20), and for 𝑗 = 2, we must show y ≥ 1. In this case,
however, we have 𝑣1 = 2𝑣2⊗(𝑣1⊗𝑣2) + 𝑣1⊗(𝑣1⊗𝑣1 − 𝑣2⊗𝑣2) ∈ 𝑉⊗𝑋 , as required. �

Remark 7.6. Although the bounds are essentially sharp when one assumes nothing about previous sites
(𝜎, 𝑡) for 𝜎 < 𝑠, with knowledge of them one can get a much sharper estimate, although it is more
complicated to implement the local/global principle. For example, if we are at a site (𝑠, 𝑡) with v = 3,
𝑗 = 1 and for (𝜎, 𝑡) with 𝜎 < 𝑡 one also has 𝑗 = 1, then the new contribution at site (𝑠, 𝑡) is just s, not
3𝑠 − 2.

In Lemma 7.7 below, the linear functions of s in Lemmas 7.2 and 7.4 appear as 𝑎𝜇𝑠,𝑡 𝑠 + 𝑏𝜇𝑠,𝑡 .
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7.4. The globalization

Write 𝜇 for a Young diagram filled with nonnegative integer labels. The label in position (𝑠, 𝑡) is denoted
𝜇𝑠,𝑡 , and sums over 𝑠, 𝑡 are to be taken over the boxes of 𝜇. As before, each 𝜇 will correspond to a
possible outer structure.

We remark that the lemmas in this section and the next may be used for 𝑀〈mnn〉 for any n ≥ m.
The following lemma allows us to reduce from considering all possible outer structures and the

corresponding bounds on the dimension of the kernels of the (210) and (120) tests to considering three
(resp. eight) possible kernel dimensions in the case of v = 2 (resp. v = 3).

Lemma 7.7. Fix 𝑘 ∈ N, 0 ≤ 𝑎1 ≤ · · · ≤ 𝑎𝑘 , and 𝑏𝑖 ∈ R, 1 ≤ 𝑖 ≤ 𝑘 . Let 𝜇 be a Young diagram filled
with labels in the set {1, . . . , 𝑘}, nonincreasing in rows and columns. Write 𝜌 =

∑
𝑠,𝑡 𝜇𝑠,𝑡 . Then

min
{∑
𝑠,𝑡

𝑎𝜇𝑠,𝑡 𝑠 + 𝑏𝜇𝑠,𝑡 ,
∑
𝑠,𝑡

𝑎𝜇𝑠,𝑡 𝑡 + 𝑏𝜇𝑠,𝑡

}
≤ max

1≤ 𝑗≤𝑘

{
𝑎 𝑗 𝜌

2

8 𝑗2 + (𝑎 𝑗 + 𝑏 𝑗 )
𝜌

𝑗

}
. (21)

Remark 7.8. The bound in the lemma is nearly tight. Taking 𝜇 to be a balanced hook filled with j makes
the left-hand side equal 𝑎 𝑗8 ( 𝜌

2

𝑗2
− 1) + (𝑎 𝑗 + 𝑏 𝑗 ) 𝜌𝑗 . Hence, for any fixed 𝜌, 𝑎𝑖 , 𝑏𝑖 , the maximum of the

left-hand side is within 1
8 max 𝑗 𝑎 𝑗 of the right hand side.

Lemma 7.7 is proved in §7.5.

Proof of Theorem 1.5(3). Let 𝐸 ′
110 ⊂ 𝑈∗⊗𝔰𝔩(𝑉)⊗𝑊 be aB-fixed subspace, and let 𝜇 be the correspond-

ing outer structure. We apply Lemma 7.7 with 𝑘 = 3 and 𝑎𝑖 and 𝑏𝑖 from Lemma 7.2 to obtain an upper
bound on the smaller of the kernel dimensions of the (120) and (210) maps. The resulting upper bound
is max{ 1

4 𝜌2 + 2𝜌, 3
32 𝜌

2 + 3+n
2 𝜌, 1

18 𝜌2 + 4+2n
3 𝜌}.

Fix 𝜖 > 0. We must show that if 𝜌 = (3
√

6 − 6 − 𝜖)n, then each of 1
4 𝜌2 + 2𝜌, 3

32 𝜌2 + 3+n
2 𝜌, and

1
18 𝜌2 + 4+2n

3 𝜌 is strictly smaller than n2 + 𝜌. Substituting and solving for n, we obtain that this holds for
the last expression when

n >
6
𝜖

3
√

6 + 6 − 𝜖

6
√

6 − 𝜖
,

and when 𝜖 < 1
4 , this condition implies the other two inequalities. �

Proof of Theorem 1.6. Proceeding in the same way as in the proof of Theorem 1.5(3), we ap-
ply Lemma 7.7 with 𝜇 the outer structure corresponding to an arbitrary B-fixed subspace 𝐸 ′

110 ⊂
𝑈∗⊗𝔰𝔩(𝑉)⊗𝑊 , 𝑘 = 8, and 𝑎𝑖 and 𝑏𝑖 corresponding to the inner structure contribution upper bounds
obtained in Lemma 7.4. We obtain the smaller of the kernel dimensions of the (120) and (210) maps is
at most the largest of the following,

𝑗 Lemma 7.7

1 3
8 𝜌

2 + 𝜌

2 3
16 𝜌2 + 6

2 𝜌

3 1
9 𝜌2 + 8+n

3 𝜌

4 11
128 𝜌2 + 11+n

4 𝜌

𝑗 Lemma 7.7

5 7
100 𝜌2 + 14+n

5 𝜌

6 17
288 𝜌2 + 17+n

6 𝜌

7 3
56 𝜌2 + 15+2n

7 𝜌

8 21
512 𝜌2 + 15+3n

8 𝜌.
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Now, if one takes 𝜌 = �
√

8
3n�, the kernel upper bound for each j is strictly less than n2 + 𝜌. This

follows for 𝑗 = 1 because
√

8
3n is irrational. This follows for 2 ≤ 𝑗 ≤ 8 because n ≥ 18. Hence, at least

one of the kernels of the (120) and (210) maps is too small, and R(𝑀〈3nn〉) > n2 + 𝜌, as required. �

7.5. Proof of Lemma 7.7

We will reduce Lemma 7.7 to the following, which may be viewed as a continuous reformulation. Its
proof depends on a delicate perturbation argument.

Lemma 7.9. Fix 𝑘 ∈ N, 𝑐𝑖 ≥ 0, 𝑑𝑖 ∈ R, for 1 ≤ 𝑖 ≤ 𝑘 . Write 𝐶 𝑗 =
∑ 𝑗
𝑖=1 𝑐𝑖 and 𝐷 𝑗 =

∑ 𝑗
𝑖=1 𝑑𝑖 . For all

choices of 𝑥𝑖 , 𝑦 𝑗 satisfying the constraints 𝑥1 ≥ · · · ≥ 𝑥𝑘 ≥ 0, 𝑦1 ≥ · · · ≥ 𝑦𝑘 ≥ 0, and
∑
𝑖 𝑥𝑖 + 𝑦𝑖 = 𝜌,

the following inequality holds:

min
{∑
𝑖≤𝑘

𝑐𝑖𝑥
2
𝑖 + 𝑑𝑖 (𝑥𝑖 + 𝑦𝑖),

∑
𝑖≤𝑘

𝑐𝑖𝑦
2
𝑖 + 𝑑𝑖 (𝑥𝑖 + 𝑦𝑖)

}
≤ max

1≤ 𝑗≤𝑘

{
𝜌2

4 𝑗2 𝐶 𝑗 +
𝜌

𝑗
𝐷 𝑗

}
. (22)

Remark 7.10. The inequality is tight. Choose j so that the maximum on the right-hand side is achieved.
Then equality is achieved when 𝑥1 = · · · = 𝑥 𝑗 = 𝑦1 = · · · = 𝑦 𝑗 =

𝜌
2 𝑗 and 𝑥𝑠 , 𝑦𝑠 = 0 for 𝑠 > 𝑗 .

Proof. As both the left- and right-hand sides are continuous in the 𝑐𝑖 , it suffices to prove the result
under the assumption 𝑐𝑖 > 0. The idea of the proof is the following: Any choice of 𝑥𝑖 and 𝑦𝑖 which has
at least two degrees of freedom inside its defining polytope can be perturbed in such a way that the local
linear approximations to the two polynomials on the left -hand side do not decrease; that is, two closed
half planes in R2 containing (0, 0) also intersect aside from (0, 0). Each polynomial on the left strictly
exceeds its linear approximation at any point, and thus one can strictly improve the left-hand side with
a perturbation. The case of at most one degree of freedom is settled directly.

Write 𝑥𝑘+1 = 𝑦𝑘+1 = 0, and define 𝑥′𝑖 = 𝑥𝑖 − 𝑥𝑖+1 and 𝑦′𝑖 = 𝑦𝑖 − 𝑦𝑖+1 so that 𝑥𝑖 =
∑𝑘
𝑗=𝑖 𝑥

′
𝑗 and

𝑦𝑖 =
∑𝑘
𝑗=𝑖 𝑦

′
𝑗 . Then 𝑥 ′𝑖 , 𝑦

′
𝑖 ≥ 0 and

∑𝑘
𝑖=1 𝑖(𝑥 ′𝑖 + 𝑦′𝑖) = 𝜌. Suppose at least three of the 𝑥 ′𝑖 , 𝑦

′
𝑗 are nonzero,

we will show the expression on the left-hand side of equation (22) is not maximal. Write three of the
nonzero 𝑥 ′𝑖 , 𝑦

′
𝑗 as 𝑥, 𝑦, 𝑧. Replace them by 𝑥 + 𝜖1, 𝑦 + 𝜖2, 𝑧 + 𝜖3, with the 𝜖𝑖 to be determined. This will

preserve the equation
∑
𝑖 𝑥𝑖+𝑦𝑖 = 𝜌 only if 𝜖1+𝜖2+𝜖3 = 0, so we require this. Substitute these values into

𝐸𝐿 :=
∑
𝑖≤𝑘

𝑐𝑖𝑥
2
𝑖 + 𝑑𝑖 (𝑥𝑖 + 𝑦𝑖) and 𝐸𝑅 :=

∑
𝑖≤𝑘

𝑐𝑖𝑦
2
𝑖 + 𝑑𝑖 (𝑥𝑖 + 𝑦𝑖).

View 𝐸𝐿 , 𝐸𝑅 as polynomial expressions in the 𝜖 𝑗 . Then

𝐸𝐿 =
∑
𝑖

𝑐𝑖𝑆
2
𝐿,𝑖 + 𝐿𝐿 + 𝑑, 𝐸𝑅 =

∑
𝑖

𝑐𝑖𝑆
2
𝑅,𝑖 + 𝐿𝑅 + 𝑑,

where 𝑆𝐿,𝑖 , 𝑆𝑅,𝑖 and 𝐿𝐿 , 𝐿𝑅 are linear forms in the 𝜖𝑖 , and 𝑑 ∈ R. Each 𝑆𝐿,𝑖 , 𝑆𝑅,𝑖 is a sum of some
subset of the 𝜖𝑖 , and the union of them span the 2-plane 〈𝜖1, 𝜖2, 𝜖3〉/〈

∑
𝜖 𝑗 = 0〉. Consider the linear

map 𝑇 = 𝐿𝐿 ⊕ 𝐿𝑅 : 〈𝜖1, 𝜖2, 𝜖3〉/〈
∑

𝜖 𝑗 = 0〉 → R
2. If T is nonsingular, then for any 𝜖 > 0, there

are constants 𝜖 𝑗 , with
∑

𝜖 𝑗 = 0 so that 𝑇 (𝜖1, 𝜖2, 𝜖3) = (𝜖, 𝜖), and it is possible to choose 𝜖 so that
𝑥 + 𝜖1, 𝑦 + 𝜖2, 𝑧 + 𝜖3 ≥ 0. Then this new assignment strictly improves the old one. Otherwise, if T is
singular, then there is an admissible (𝜖1, 𝜖2, 𝜖3) ≠ 0 in the kernel of T, where again we may assume
the same nonnegativity condition. The corresponding assignment does not change 𝐿𝐿 , 𝐿𝑅, but as the
𝑆𝐿,𝑖 , 𝑆𝑅,𝑖 span the linear forms, at least one them is nonzero. Consequently, at least one of the modified
𝐸𝐿 , 𝐸𝑅 is strictly larger after the perturbation, and neither is smaller. If, say, only 𝐸𝐿 is strictly larger,
and 𝑥 ′𝑖 > 0, we may substitute 𝑥′𝑖 − 𝜖 and 𝑦′𝑖 + 𝜖 for 𝑥 ′𝑖 and 𝑦′𝑖 for some 𝜖 > 0 to make both 𝐸𝐿 and 𝐸𝑅
strictly larger.
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Thus, the left-hand side is maximized at an assignment where at most two of 𝑥′𝑖 and 𝑦′𝑖 are nonzero.
It is clear that at least one of each of 𝑥 ′𝑖 and 𝑦′𝑖 must be nonzero, so there is exactly one of each, say
𝑥 ′𝑠 = 𝛼 and 𝑦′𝑡 = 𝛽. It is clear at the maximum that

∑
𝑖≤𝑘 𝑐𝑖𝑥

2
𝑖 + 𝑑𝑖 (𝑥𝑖 + 𝑦𝑖) =

∑
𝑖≤𝑘 𝑐𝑖𝑦

2
𝑖 + 𝑑𝑖 (𝑥𝑖 + 𝑦𝑖),

from which it follows that 𝛼2𝐶𝑠 =
∑
𝑖≤𝑘 𝑐𝑖𝑥

2
𝑖 =

∑
𝑖≤𝑘 𝑐𝑖𝑦

2
𝑖 = 𝛽2𝐶𝑡 and 𝛼

√
𝐶𝑠 = 𝛽

√
𝐶𝑡 . We also have

𝑠𝛼 + 𝑡𝛽 = 𝜌. Notice that

𝛼 =
𝜌
√
𝐶𝑡

𝑠
√
𝐶𝑡 + 𝑡

√
𝐶𝑠

, 𝛽 =
𝜌
√
𝐶𝑠

𝑠
√
𝐶𝑡 + 𝑡

√
𝐶𝑠

satisfy the equations so that the optimal value obtained is

∑
𝑖≤𝑘

𝑐𝑖𝑥
2
𝑖 + 𝑑𝑖 (𝑥𝑖 + 𝑦𝑖) = 𝛼2𝐶𝑠 + 𝛼𝐷𝑠 + 𝛽𝐷𝑡 =

𝜌

𝑠
√
𝐶𝑡 + 𝑡

√
𝐶𝑠

(
𝜌𝐶𝑠𝐶𝑡

𝑠
√
𝐶𝑡 + 𝑡

√
𝐶𝑠

+
√
𝐶𝑡𝐷𝑠 +

√
𝐶𝑠𝐷𝑡

)
.

By the arithmetic mean-harmonic mean inequality, we have

𝜌𝐶𝑠𝐶𝑡

𝑠
√
𝐶𝑡 + 𝑡

√
𝐶𝑠

=
𝜌

𝑠
𝐶𝑠

√
𝐶𝑡

+ 𝑡
𝐶𝑡

√
𝐶𝑠

≤ 𝜌

4

[
𝐶𝑠

√
𝐶𝑡

𝑠
+ 𝐶𝑡

√
𝐶𝑠

𝑡

]

so that

𝜌𝐶𝑠𝐶𝑡

𝑠
√
𝐶𝑡 + 𝑡

√
𝐶𝑠

+
√
𝐶𝑡𝐷𝑠 +

√
𝐶𝑠𝐷𝑡 ≤

𝜌

4

[
𝐶𝑠

√
𝐶𝑡

𝑠
+ 𝐶𝑡

√
𝐶𝑠

𝑡

]
+
√
𝐶𝑡𝐷𝑠 +

√
𝐶𝑠𝐷𝑡

=
𝑠
√
𝐶𝑡 + 𝑡

√
𝐶𝑠

𝜌

[
𝑠𝛼

𝜌

( 𝜌2

4𝑠2 𝐶𝑠 +
𝜌

𝑠
𝐷𝑠

)
+ 𝑡𝛽

𝜌

( 𝜌2

4𝑡2
𝐶𝑡 +

𝜌

𝑡
𝐷𝑡

)]

≤ 𝑠
√
𝐶𝑡 + 𝑡

√
𝐶𝑠

𝜌
max

{
𝜌2

4𝑠2 𝐶𝑠 +
𝜌

𝑠
𝐷𝑠 ,

𝜌2

4𝑡2
𝐶𝑡 +

𝜌

𝑡
𝐷𝑡

}
,

with the last inequality holding because 𝑠𝛼
𝜌 + 𝑡𝛽

𝜌 = 1. Multiplying both sides by 𝜌

𝑠
√
𝐶𝑡+𝑡

√
𝐶𝑠

, we
conclude. �

We prove one final lemma on partitions that will enable the reduction of Lemma 7.7 to an instance
of Lemma 7.9.

For a partition 𝜆 = (𝜆1, . . . , 𝜆𝑞), write ℓ(𝜆) = 𝑞 and define

𝑛(𝜆) :=
∑
𝑖

(𝑖 − 1)𝜆𝑖 .

Let 𝜆′ denote the conjugate partition.
Lemma 7.11. Let 𝜆 be a partition not of the form (|𝜆 | − 2, 2). Then 𝑛(𝜆) ≤ 1

8 (|𝜆 | + 𝜆′
1 − 𝜆1)2 − 1

8 . In
particular, for all 𝜆, 𝑛(𝜆) ≤ 1

8 (|𝜆 | + 𝜆′
1 − 𝜆1)2.

Proof. We prove the result by induction on 𝜆1 = ℓ(𝜆′). When ℓ(𝜆′) = 1, we have

𝑛(𝜆) =
(𝜆′1

2
)
= 1

2 (𝜆
′
1 −

1
2 )

2 − 1
8 = 1

8 (|𝜆 | + 𝜆′
1 − 𝜆1)2 − 1

8 ,

as required. Now, assume 𝑘 = ℓ(𝜆′) > 1. Write 𝜇 for the partition where ℓ(𝜇′) = 𝑘 − 1 and 𝜇′
𝑖 = 𝜆′

𝑖 ,
𝑖 ≤ 𝑘 − 1. If 𝜆 = (3, 3), we are done by direct calculation; hence, otherwise we may assume the result
holds for 𝜇 by the induction hypothesis.

𝑛(𝜆) = 𝑛(𝜇) +
(𝜆′𝑘

2
)

≤ 1
8 (|𝜇 | + 𝜇′

1 − 𝜇1)2 − 1
8 +

(𝜆′𝑘
2
)
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= 1
8 (|𝜆 | − 𝜆′

𝑘 + 𝜆′
1 − (𝜆1 − 1))2 − 1

8 + 1
2𝜆

′
𝑘 (𝜆

′
𝑘 − 1)

= 1
8 (|𝜆 | + 𝜆′

1 − 𝜆1)2 − 1
8 − 1

4 (|𝜆 | + 𝜆′
1 − 𝜆1 − 5

2𝜆
′
𝑘 +

1
2 ) (𝜆

′
𝑘 − 1)

We must show 1
4 (|𝜆 | +𝜆′

1 −𝜆1 − 5
2𝜆

′
𝑘 +

1
2 ) (𝜆

′
𝑘 − 1) ≥ 0. If 𝜆′

𝑘 = 1, this is immediate; otherwise, we show
the first factor is nonnegative. We have |𝜆 | − 𝜆1 ≥ 𝑘𝜆′

𝑘 − 𝑘 , so

|𝜆 | + 𝜆′
1 − 𝜆1 − 5

2𝜆
′
𝑘 +

1
2 ≥ (𝜆′

1 − 𝜆′
𝑘 ) +

2𝑘−3
2 (𝜆′

𝑘 − 1) − 1.

If 𝑘 = 2, then by assumption 𝜆′
1 ≥ 3, and considering separately the cases 𝜆′

2 = 2 and 𝜆′
2 ≥ 3 yields the

result. Otherwise 𝑘 ≥ 3, and because 𝜆′
𝑘 ≥ 2, we again conclude. �

Proof of Lemma 7.7. For each 1 ≤ 𝑖 ≤ 𝑘 , let 𝜆𝑖 be the partition corresponding to the boxes of 𝜇 labeled
≥ 𝑖. Write 𝑎0 = 𝑏0 = 0. Then

∑
𝑠,𝑡 𝑎𝜇𝑠,𝑡 𝑠 + 𝑏𝜇𝑠,𝑡 =

∑
𝑠,𝑡

∑𝜇𝑠,𝑡
𝑖=1 (𝑎𝑖 − 𝑎𝑖−1)𝑠 + 𝑏𝑖 − 𝑏𝑖−1

=
∑𝑘
𝑖=1

∑
𝑠,𝑡 ∈𝜆𝑖 (𝑎𝑖 − 𝑎𝑖−1)𝑠 + 𝑏𝑖 − 𝑏𝑖−1

=
∑𝑘
𝑖=1 (𝑎𝑖 − 𝑎𝑖−1)𝑛(𝜆𝑖) + (𝑎𝑖 − 𝑎𝑖−1 + 𝑏𝑖 − 𝑏𝑖−1) |𝜆𝑖 |

≤
∑𝑘
𝑖=1

[ 1
2 (𝑎𝑖 − 𝑎𝑖−1)

] ( 1
2 (|𝜆

𝑖 | + (𝜆𝑖)′1 − 𝜆𝑖1)
)2

+ [𝑎𝑖 − 𝑎𝑖−1 + 𝑏𝑖 − 𝑏𝑖−1] |𝜆𝑖 | (23)

where we have used Lemma 7.11 to obtain the last inequality. Set

𝑐𝑖 = 1
2 (𝑎𝑖 − 𝑎𝑖−1)

𝑑𝑖 = 𝑎𝑖 − 𝑎𝑖−1 + 𝑏𝑖 − 𝑏𝑖−1

𝑥𝑖 = 1
2 (|𝜆

𝑖 | + (𝜆𝑖)′1 − 𝜆𝑖1)
𝑦𝑖 = 1

2 (|𝜆
𝑖 | − (𝜆𝑖)′1 + 𝜆𝑖1).

Then equation (23) becomes

𝑘∑
𝑖=1

𝑐𝑖𝑥
2
𝑖 + 𝑑𝑖 (𝑥𝑖 + 𝑦𝑖).

Similarly,
∑
𝑠,𝑡 𝑎𝜇𝑠,𝑡 𝑡 + 𝑏𝜇𝑠,𝑡 ≤

∑𝑘
𝑖=1 𝑐𝑖𝑦

2
𝑖 + 𝑑𝑖 (𝑥𝑖 + 𝑦𝑖). Now,

∑
𝑖 𝑥𝑖 + 𝑦𝑖 =

∑
𝑖 |𝜆𝑖 | = 𝜌 and the 𝑥𝑖 and 𝑦𝑖

are each nonnegative and nonincreasing. Hence, by Lemma 7.9,

min
{∑
𝑠,𝑡

𝑎𝜇𝑠,𝑡 𝑠 + 𝑏𝜇𝑠,𝑡 ,
∑
𝑠,𝑡

𝑎𝜇𝑠,𝑡 𝑡 + 𝑏𝜇𝑠,𝑡

}
= max

1≤ 𝑗≤𝑘

{
𝑎 𝑗 𝜌

2

8 𝑗2 + (𝑎 𝑗 + 𝑏 𝑗 )
𝜌

𝑗

}
,

as required. �
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