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Abstract

Let My v,wy € C"®C"W®C™ denote the matrix multiplication tensor (and write My = Mg n ny), and let
dets € (C%)®3 denote the determinant polynomial considered as a tensor. For a tensor T, let R(T) denote its
border rank. We (i) give the first hand-checkable algebraic proof that R(M»y) = 7, (ii) prove R(M 273)) = 10 and
R(M (233y) = 14, where previously the only nontrivial matrix multiplication tensor whose border rank had been
determined was M 5y, (iii) prove R(M 3y) > 17, (iv) prove R(det3) = 17, improving the previous lower bound of
12, (v) prove R(M (oqn)) = n? + 1.32n for all n > 25, where previously only R(M (2nn)) = n? + 1 was known, as
well as lower bounds for 4 < n < 25, and (vi) prove R(M (3pp)) > n? + 1.6n for all n > 18, where previously only
R(M@3pny) 2 n® +2 was known. The last two results are significant for two reasons: (i) they are essentially the first
nontrivial lower bounds for tensors in an “unbalanced” ambient space and (ii) they demonstrate that the methods
we use (border apolarity) may be applied to sequences of tensors.

The methods used to obtain the results are new and “nonnatural” in the sense of Razborov and Rudich, in that
the results are obtained via an algorithm that cannot be effectively applied to generic tensors. We utilize a new
technique, called border apolarity developed by Buczyriska and Buczyniski in the general context of toric varieties.
We apply this technique to develop an algorithm that, given a tensor 7 and an integer r, in a finite number of steps,
either outputs that there is no border rank » decomposition for 7" or produces a list of all normalized ideals which
could potentially result from a border rank decomposition. The algorithm is effectively implementable when T has
a large symmetry group, in which case it outputs potential decompositions in a natural normal form. The algorithm
is based on algebraic geometry and representation theory.
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1. Introduction

Over 50 years ago Strassen [40] discovered that the usual row-column method for multiplying n X n
matrices, which uses O(n?) arithmetic operations, is not optimal by exhibiting an explicit algorithm
to multiply matrices using O(n>8!) arithmetic operations. Ever since then, substantial efforts have
been made to determine just how efficiently matrices may be multiplied. See any of [12, 8, 31] for
an overview. Matrix multiplication of n X £ matrices with £ X m matrices is a bilinear map, that is, a
tensor M mn) € CimeCmeC | and since 1980 [6], the primary complexity measure of the matrix
multiplication tensor has been its border rank, which is defined as follows.

A nonzero tensor T € C2QCPRC® =: A®BRC has rank one if T = a®b®c for some a € A, b € B,
¢ € C and the rank of T, denoted R(T), is the smallest r such that 7 may be written as a sum of r
rank one tensors. The border rank of T, denoted R(T), is the smallest r such that 7 may be written as
a limit of a sum of » rank one tensors. In geometric language, the border rank is smallest » such that
[T] € 0 (Seg(PA x PB x PC)). Here, o, (Seg(PA x PB x PC)) denotes the r-th secant variety of the
Segre variety of rank one tensors. For the relations between rank, border rank and other measures of
complexity, see [12, Ch. 14-15].

Despite the vast literature on matrix multiplication, previous to this paper, the precise border rank
of M ¢ m,ny Was known in exactly one nontrivial case, namely My = M2 [29]. We determine the
border rank in two new cases, M 273y and M »33). We prove new border rank lower bounds for M 3 and
two infinite sequences of new cases, M (onny and M (34n). Previous to this paper, there were no nontrivial
lower bounds for these sequences. In fact, there were no nontrivial border rank lower bounds for any
tensor in C*®C?*®CP, where b > 2a other than Lickteig’s near trivial bound [37] R(M(mn.ny) = 0%+ 1
when m < n, (where the bound of n2 is trivial). We also determine the border rank of the 3 x 3
determinant considered as a tensor, which is important for proving upper bounds on the exponent of
matrix multiplication as discussed below. See § 1.2 below for precise statements.

1.1. Methods/History

This paper deals exclusively with lower bounds (“‘complexity theory’s Waterloo” according to [5, Chap.
14]). For a history of upper bounds, see, for example, [8, 31].

Let 0, (Seg(PA x PB x PC)) denote the set of tensors of border rank at most r, which is called
the r-th secant variety of the Segre variety. Previously, border rank lower bounds for tensors were
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primarily obtained by finding a polynomial vanishing on o (Seg(PA x PB x PC)) and then showing
the polynomial is nonzero when evaluated on the tensor in question. These polynomials were found by
reducing multilinear algebra to linear algebra [41], and also exploiting the large symmetry group of
o (Seg(PA X PB x PC)) to help find the polynomials [35, 36]. Such methods are subject to barriers
[18,21]; see [32, §2.2] for an overview. A technique allowing one to go slightly beyond the barriers was
introduced in [34]. The novelty there was, in addition to exploiting the symmetry group of o (Seg(PA x
PB x PC)), to also exploit the symmetry group of the tensor one wanted to prove lower bounds on.
This border substitution method of [34] relied on first using the symmetry of the tensor to study its
degenerations via the Normal Form Lemma 2.3, and then to use polynomials on the degeneration of the
tensor.

The classical apolarity method studies the decompositions of a homogeneous polynomial of degree
d into a sum of d-th powers of linear forms, (these are called Waring rank decompositions); see,for
example, [27]. It was generalized to study ranks of points with respect to toric varieties [22, 23]. To
prove rank lower bounds with it, one takes the ideal of linear differential operators annihilating a given
polynomial P and proves it does not contain an ideal annihilating r distinct points. In [11], Buczyniska
and Buczyniski extend this classical method to the border rank setting. They also extend the Normal
Form Lemma to the entire ideal associated to the border rank decomposition of the tensor, their Fixed
Ideal Theorem (Theorem 2.4). (In the language introduced below, the Normal Form Lemma is the (111)
case of the Fixed Ideal Theorem.) In the present work, we describe an algorithm to enumerate a set of
parameterized families of ideals which together exhaust those which could satisfy the conclusion of the
Fixed Ideal Theorem, and we show this enumeration fails to produce any candidates in important cases of
interest.

The ideals subject to enumeration are homogeneous in three sets of variables, so we have a Z>-
graded ring of polynomials, that is, I = GB{, .« lijk, and we may study a putative ideal / in each
multidegree. Given r, the ideal enumeration algorithm builds a candidate ideal family step by step,
starting in low (multi) degree and building upwards. At each building step, there are tests that restrict
a so-far built family to a subfamily, and after these tests empty families are removed. If at any point
there are no remaining candidates, one concludes there is no border rank r decomposition. For tensors
with large symmetry groups, the dimensions of candidate ideal families one needs to consider during
this enumeration are typically small. All the results of this paper require examining only the first few
multigraded components of candidate ideal families.

The restrictions to subfamilies result from upper bounding the ranks of certain linear maps. The
linear maps are multiplication maps. On one hand, in order for a candidate space of polynomials to be
an ideal, it must be closed under multiplication. On the other hand, our hypothesis that the ideal arises
via a border rank r decomposition upper-bounds its dimension in each nontrivial multidegree; in fact
one may assume it has codimension r in each multidegree.

The fact that the elimination conditions are rank conditions implies that the lower bound barriers [ 18,
21] still hold for the technique as presented in this paper. In §1.3, we explain how we plan to augment
these tests to go beyond the barriers in future work and how our techniques might be used to overcome
upper bound barriers for the laser method as well.

We use representation theory at several levels. For tensors with symmetry, the Fixed Ideal Theorem
significantly restricts the candidate /;;;’s one must consider, namely to those that are fixed by a Borel
subgroup of the symmetry group of the tensor. Without this additional condition, even low degree ideal
enumeration would likely be impossible to carry out except for very small examples.

We also make standard use of representation theory to put the matrices whose ranks we need to
lower-bound in block diagonal format via Schur’s lemma. For example, to prove R(M () > 6, the
border apolarity method produces three size 40 x 40 matrices whose ranks need to be lower bounded.
Decomposing the matrices to maps between isotypic components reduces the calculation to computing
the ranks of several matrices of size 4 X 8 with entries 0, +1, making the proof easily hand-checkable.

Our results for M3y and det3 are obtained by a computer implementation of the ideal enumeration
algorithm.
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For M (2nny and M (3pn), we must handle all n uniformly, and a computer calculation is no longer
possible. To do this, we consider potential /;;y candidates as a certain sum of ‘local’ contributions,
which we analyze separately (Lemmas 7.2 and 7.4). Given this analysis, it is possible to give a purely
combinatorial necessary condition for the suitability of a potential /{19 candidate, and the analysis of
all potential candidates then takes the form of a combinatorial optimization problem over filled Young
diagrams (Lemma 7.7). This technique reduces the problem to checking three cases of local contribution
for M oany and eight cases for M 3nn). This method for proving lower bounds is completely different
from previous techniques.

To enable a casual reader to see the various techniques we employ, we return to the proof that
R(M3y) > 6 multiple times: first using the general algorithm naively in §4, then working dually to
reduce the calculation (Remark 4.1), then using representation theory to block diagonalize the calculation
in §6.2 and finally we observe that the result is an immediate consequence of our localization principle
and Lemma 7.2 (Remark 7.3).

1.2. Results
Theorem 1.1. R(M3)) > 17.

The previous lower bounds were 14 [41] in 1983, 15 [36] in 2015 and 16 [34] in 2018.

Let det; € C°®C?®C° denote the 3 x 3 determinant polynomial considered as a tensor. That is, as a
bilinear map, it inputs two 3 X 3 matrices and returns a third such that if the input is (M, M), the output
is the cofactor matrix of M.

Strassen’s laser method [39] upper bounds the exponent of matrix multiplication using “simple”
tensors. In [2, 3, 1, 13], barriers to proving further upper bounds with the method were found for many
tensors. In [15], we showed that the (unique up to scale) skew-symmetric tensor in C3®C3>®C>, which we
denote Tskewcew 2, is not subject to these upper bound barriers and could potentially be used to prove the
exponent of matrix multiplication is two via its Kronecker powers. Explicitly, if one were to prove that

limy 5 o B(Tfk"ewcw 2)% equals 3, that would imply the exponent is two. One has R(Tsxevew 2) = 5 and
Tsl'zkzewcw,Z = dets; see [15]. Thus, the following result is important for matrix multiplication complexity
upper bounds:

Theorem 1.2. R(det3) = 17.

The upper bound was proved in [15]. In [9], a lower bound of 15 for the Waring rank of det; was
proven. The previous border rank lower bound was 12 as discussed in [19], which follows from the
Koszul flattening equations [36]. Note that had the result here turned out differently, for example, were
the border rank 16 or lower, Tsxewcw,2 Would have immediately been promoted to the most promising
tensor for proving the exponent is two; see the discussion in [15].

Remark 1.3. The computation of the trilinear map associated to dets, which inputs three matrices and
outputs a number, is different than the computation of the associated polynomial, which inputs a single
matrix and outputs a number. The polynomial may be computed using 12 multiplications in the naive
algorithm and using 10 with the algorithm in [17].

Previous to this paper, M,y was the only nontrivial matrix multiplication tensor whose border rank
had been determined, despite 50 years of work on the subject. We add two more cases to this list.

Theorem 1.4. R(M 2,3)) = 10.

The upper bound dates back to Bini et al. in 1980 [7]. Koszul flattenings [36] give R(M(22q)) > 3n.
Smirnov [38] showed that R(M(225)) < 3n+ 1 for n < 7, and we expect equality to hold for all n.

Theorem 1.5.
1. B(M<233>) = 14.
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2. We have the following border rank lower bounds:

n R(M@uy) 2 n R(Mqom)) 2 n R(Mom)) =

4 2=4+6 11 136=112+15 18 348 =18%+24
5 32=5%+7 12 161 =122 +17 19 387 =192+26
6 44=6"+8 13 187 =13>+18 20 427 =20%+27
7 58=7"+9 14 215=14+19 21 470 =21%+29
8 75=82+11 15 246=152+21 22 514=222+30
9 93=92+12 16 278 =167 +22 23 561 =232+32
10 114=10%+14 17 312=17>+23 24 609 = 24% + 33.

3. ForO0<e< %, and n > %%, R(Mpnmy) = n% + (3V6 — 6 — e)n. In particular, R(Mpnny) =

n’ +1.32n+ 1 whenn > 25.

Previously, only the near trivial result that R(M opn)) > n” + 1 was known by [37, Rem. p175].

The upper bound in (1) is due to Smirnov [38], where he also proved R(M(ua4)) < 24,
and R(Mssy) < 38. When n is even, one has the upper bound R(Monn)) < %nZ by writing

M onmy = M 220y ® My 11y, where R denotes Kronecker product of tensors; see, for example, [15].

Theorem 1.6. For all n > 18, R(M(3pny) > n° + \/gn >n? + 1.6n.

Previously, the only bound was the near trivial result that when n > 4, R(M (3pn)) > n” +2 by [37,
Rem. p175].
Using [37, Rem. p175], one obtains:

Corollary 1.7. For alln > 18 and m > 3, R(M ypn)) = n’ + \/gn +m - 3.

Theorems 1.5 and 1.6 are the first nontrivial border rank lower bounds for any tensor in C2@CP®C¢
when ¢ > 2 max{a, b} other than the above mentioned near trivial result of Lickteig, vastly expanding
the classes of tensors for which lower bound techniques exist.

1.3. What comes next?

1.3.1. Breaking the lower bound barriers

The geometric interpretation of the border rank lower bound barriers of [18, 21] is that all equa-
tions obtained by taking minors, called rank methods, are actually equations for a larger variety than
o (Seg(PA x PB x PC)), called the r-th cactus variety [11]. This cactus variety agrees with the se-
cant variety for r < 13, but it quickly fills the ambient space of tensors in C"@C™®@C™ at latest when
r = 6m — 4. Thus one cannot prove R(7) > 6m — 4 for any tensor T via rank/determinantal methods,
in particular, with border apolarity alone.

In brief, the r-th secant variety consists of points on limits of spans of zero-dimensional smooth
schemes of length r. The r-th cactus variety consists of points on limits of spans of zero-dimensional
schemes of length r.

The border apolarity algorithm produces ideals, and thus to break the barrier, one needs to distinguish
ideals that are limits of smooth schemes from ideals that are limits of nonsmoothable schemes, and ideals
that are not limits of any sequence of saturated ideals. In principle, this can be done using deformation
theory (see, e.g., [25]). This is exciting, as it is the first proposed path to overcoming the lower bound
barriers.

Remark 1.8. After this paper was posted on arXiv, we went on to find an ideal passing all border apolarity
tests for M3y with » = 17. We are currently working to effectively implement deformation theory to
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determine if such an example comes from an actual border rank 17 decomposition. The obstruction
to doing this is the effective implementation of the theory. The naive implementation, even on a large
computer cluster, is not feasible, and we are working to develop effective computational techniques.

1.3.2. Upper bounds, especially for tensors relevant for Strassen’s laser method

There is intense interest in tensors not subject to the upper bound barriers for Strassen’s laser method
described in [4, 1, 3, 13]. All tensors used in or proposed for the laser method have positive-dimensional
symmetry groups, so the border apolarity method potentially may be applied. For example, the small
Coppersmith-Winograd tensor T, 4 = 27:1 ao®b;®cj + a;®by®c; + a;®b;®co has a very large
symmetry group, namely the orthogonal group O(gq) [14], which has dimension (‘21) Since these tensors,
and their Kronecker squares tend to have border rank below the cactus barrier, we expect to be able
to effectively apply the method as is to determine the border rank at least for small Kronecker powers.
After this paper was posted on arXiv, border apolarity was utilized to determine the border rank of T82
in [16] and the answer ended up being the known upper bound. We are developing techniques to wrlte
down usual border rank decompositions guided by the ideals produced by border apolarity to potentially
determine new upper bounds for higher Kronecker powers of 7., » and det3 (or to show that the known
bounds are sharp). In other words, we are working to use border apolarity to inject some “science” into
the “art” of finding upper bounds.

1.3.3. Geometrization of the (111) test for matrix multiplication

Our results for M onn), M 3nny for general n only use the (210) and (120) tests as defined in §3, and
we expect to be able to prove stronger results for general n in these cases once we develop a proper
geometric understanding of the (111) test like we have for the (210) test.

1.4. Overview

In §2, we review terminology regarding border rank decompositions of tensors, Borel subgroups and
Borel fixed subspaces. We then describe a curve of multigraded ideals one may associate to a border
rank decomposition. We also review Borel fixed subspaces and list them in the cases relevant for this
paper. In §3, we describe the border apolarity algorithm and accompanying tests. In §4, we review the
matrix multiplication tensor. In §5, we describe the computation to prove Theorems 1.1 and 1.2, which
are computer assisted calculations, the code for which is available at github.com/adconner/chlbapolar.
In §6, we discuss representation theory relevant for applying the border apolarity algorithm to matrix
multiplication. In §7, we prove our localization and optimization algorithm and use it to prove Theorems
1.4,1.5and 1.6.

2. Preliminaries
2.1. Definitions/Notation

Throughout, A,B,C,U,V,W will denote complex vector spaces, respectively, of dimensions
a,b,c,u,v,w. The dual space to A is denoted A*. The space of symmetric degree d tensors is de-
noted S¢A, which may also be viewed as the space of degree d homogeneous polynomials on A*.
Set Sym(A) = P, S9A. The identity map is denoted Idy € A®A*. For X c A, X* = {a € A* |
a(x) = 0,Vx € X} is its annihilator, and (X) C A denotes the linear span of X. Projective space is
PA = (A\{0})/C*, and if x € A\{0}, we let [x] € PA denote the associated point in projective space
(the line through x). The general linear group of invertible linear maps A — A is denoted GL(A) and
the special linear group of determinant one linear maps is denoted SL(A). The permutation group on r
elements is denoted S,..
For at tensor T € A®B®C, define its symmetry group

Gr = {(ga. 88, 8c) € GL(A) x GL(B) X GL(C)/(C*)** | (g.gB.&c) - T =T}. ()]
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One quotients by (C*)*? := {(AIda, uIdg,vIdc) | duv = 1} because (vIdA,,uIdB,#IdC) is
the kernel of the map GL(A) X GL(B) X GL(C) —» GL(A®B®C). Lie algebras of Lie groups
are denoted with corresponding symbols in old German script, for example, gr is the Lie algebra
corresponding to Gr.

The Grassmannian of r planes through the origin is denoted G (r, A), which we will view in its
Pliicker embedding G (r, A) c PA” A. That is, given E € G(r, A), that is, a linear subspace E C A of
dimension r, if ey, ..., e, is a basis of E, we represent E as a point in P(A"A) by [e; A --- A e,]. Here,
the wedge product is defined by e; A -+ A e, := 3 seq,. SgN(T)er ()@ B (r).

Foraset Z C PA, Z c PA denotes its Zariski closure, Z C A denotes the cone over Z union the origin,
1(Z) = I(Z) c Sym(A*) denotes the ideal of Z, that is, I(Z) = {P € Sym(A ) | P(z) = OVz € Z},
and C[Z] = Sym(A*)/I(Z), denotes the homogeneous coordinate ring of Z. Both 1(Z) and C[Z] are
Z-graded by degree.

We will be dealing with ideals on products of three projective spaces, that is, we will be dealing with
polynomials that are homogeneous in three sets of variables, so our ideals with be Z3-graded. More
precisely, we will study ideals / € Sym(A*)® Sym(B*)® Sym(C*), and /; j denotes the component in
S'A*®S/B*@SkC*.

Given T € AQB®C, we may consider it as a linear map T¢ : C* — A®B, and we let T(C*) C A®B
denote its image and similarly for permuted statements. A tensor T is concise if the maps T4, Tp, T¢c are
injective, that is, if it requires all basis vectors in each of A, B, C to write down in any basis.

We remark that the tensor 7 may be recovered up to isomorphism from any of the spaces
T(A*),T(B*),T(C"); see, for example, [33].

Elements P € S'A*®S/B*®SKC* may be viewed as differential operators on elements X €
SSA®S'BRS“C. Write X P € S A®S'/BaS“*C for the contraction operation. The annihilator
of X, denoted Ann (X), is defined to be the ideal of all P € Sym(A*)® Sym(B*)® Sym(C*) such that
X P =0.In the case that X = T € A®QB®C, its annihilator consists of all elements in degree (i, j, k)
with one of 7, j, k greater than one and the annihilators in low degrees are just the usual linear annihila-
tors defined above. Explicitly, the annihilators in low degree are T(C*)* ¢ A*®B*, T(B*)* c A*®C*
and T(A*)t c B*®C* and T+ C A*®B*®C*.

2.2. Border rank decompositions as curves in Grassmannians

A border rank r decomposition of a tensor 7 is normally viewed as a curve T'(t) = ;:1 T;(t), where
each T;(t) isrank one forall ¢ # 0, and lim; _, o T(¢) = T. It will be useful to change perspective, viewing
a border rank r decomposition of a tensor 7' € A®B®C as a curve E; € G(r, A®B®C) satisfying

(i) forall r # 0, E, is spanned by r rank one tensors, and
(ii) T € Ey.

Example 2.1. The border rank decomposition
1
a1®b1®cr + a1®br®cy + ar2®b1®cy = limo ? [(a] + ta2)®(b1 + tb2)®(6‘1 + tCz) - a1®b1®c1]
t—

may be rephrased as the curve
E; = [(a1®D1®cy) A (a) +taz)®(b) +thy)®(c +tca)]
=[(a1®b1®c1) A (a1®b1Q®c| +t(a1®b1®cy + a1 ®br®c + ar®b®c)
+ tz(a] ®br®Cr + ar®b O + ar®br®¢1) + P ar®br®¢5)]
=[(a1®b1®c1) A (a1®8b1®cs + a1 ®b,®c + ar®b®c
+ Ha1®by®cHr + ar®b1®cHr + ar®br®cy) + t2a2®b2®02)]
c G(2,A®B®C).
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Here,

Ey=[(a1®b1®c1) A (a1®b1®cr + a1®b,@c + ar®b 1 ®c1)].

2.3. Multigraded ideal associated to a border rank decomposition

Given a border rank » decomposition 7' = lim, _, ¢ Z;zl T;(t), we have additional information. Let
I, ¢ Sym(A*)® Sym(B*)® Sym(C™)

denote the Z3-graded ideal of the set of r distinct points [T;(f)] U --- U [T}(r)], where Lijky C
SIA*®S/ B*®S*C*. Sometimes, it is more convenient to work with [ [t .t which contains equivalent
information.

Example 2.2. Consider the ideal of [a;®b;®c1]. In degree (ijk), we have I;;; = (@M epN eyr),
where o™ = @™ ... o™ etc., and M, N, P ranges over those triples where at least one of the indices
appearing is not equal to 1. Thus, Il.t.k = (a} ®b{ ®c]1‘>.

When we take the ideal of the union of two points, the ideal is the intersection of the two ideals, and if
the points are in general position, for example, [a1®b1®c1] U [a,®b>®c>], in the notation above one of
the indices appearing in M, N, P must not be 1 and one must not be 2, so Il.ljk = (a®b] ®c’l‘, a’2®bé®c§).

Thus, in Example 2.1 above, I*j.k .= (aﬁ@b{@c’f, (ay +tar)'®(by +th)®(c1 + tcr)*), where the
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role of ap in Example 2.2 is played by (a; + tay) and similarly for b;, cp. As t — 0, IiJ_jk , limits to
Iiij = (a’i ®b{®c’l‘, ia’i’la2®b{®cll‘ + ja’i®b{71b2®clf + kaﬁ@b{@c’l"lcz).

If the r points are in general position, then codim(/;;x ;) = r as long as r < dim STA*®STB*®SkC*;
see, for example, [1 1, Lemma 3.9].

Leta<b<eclIfr < (an'l), then for all (ijk) withi+ j+k > 1, one has r < dim S'A*®S/B*®S*C*.

In all the examples in this paper 7 < (*}'). For example, for M (ann), (*3') = 2n? +n and we prove
border rank lower bounds like n + 1.32n.

Thus, in this paper we may and will assume codim(/;;x) = r for all (ijk) withi + j +k > 1.

Thus, in addition to Ey = IIL” 0 defined in §2.2, we obtain a limiting ideal /, where we define
Lijk = lim; _, o l;jk, and the limit is taken in the Grassmannian of codimension r subspaces in
S'A*®S/B*@SkC*,

G (dim(S'A*®S/B*®SKC*) — r, S'A*®S' B*05*C*).
We remark that there are subtleties here: The limiting ideal may not be saturated. See [ 1 1] for a discussion.

Thus, we may assume a multigraded ideal / coming from a border rank » decomposition of a concise
tensor 7 satisfies the following conditions:

(i) I is contained in the annihilator of 7, which by definition says I1;9 € T(C*)*, Loy € T(B*)*,
Ioin CT(A%Y and I, Cc T+ C A*®@B*®C*.
(ii) Forall (ijk) withi+ j+k > 1, codim/;x = r.
(iii) [ is an ideal, so the multiplication maps

L1, jx®A @1 1 1 ®B @1, j 1 1®C* — S'A*®S' B*®s*C” 2)

have image contained in /; ;.

Here, equation (2) is the sum of three maps, the first of which is the restriction of the symmetrization
map S"TA*®A*®S/B*®SKC* — S'A*®S/B*®S*C* to I;_1,; x®A* and similarly for the others. When
i — 1 =0, the first map is just the inclusion /o ®A* C A*®S/B*®SkC*.
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One may prove border rank lower bounds for T by showing that for a given r, no such I exists. For
arbitrary tensors, we do not see any effective way to prove this, but for tensors with a large symmetry
group, we have a vast simplification of the problem as described in the next subsection.

2.4. Lie’s theorem and consequences

Lie’s theorem may be stated as: Let H be a connected solvable group and W an H-module, then a closed
H-fixed set X ¢ PW contains an H-fixed point. Applying this fact to appropriately chosen sets X yield
the Normal Form Lemma and its generalization, the Fixed Ideal Theorem.

Theorem 2.3 (Normal form lemma, tensor case [34]). LetT € AQBQC, and let H C Gt be a connected
solvable group. If R(T) < r, then there exists Ey € G(r, AQB®C) corresponding to a border rank r
decomposition of T as in §2.2 that is H-fixed, that is, b - Ey = Eq for all b € H.

By the Normal Form Lemma, in order to prove R(T') > r, it is sufficient to rule out the existence of
a border rank r decomposition E; where Ey is a H-fixed point of G(r, A BQC).

Theorem 2.4 (Fixed Ideal Theorem, tensor case [11]). LetT € AQB®C, and let H C G be a connected
solvable group. If R(T) < r, then there exists an ideal I € Sym(A™)® Sym(B*)® Sym(C*) as in §2.3
corresponding to a border rank r decomposition of a tensor T that is H-fixed, that is, b - I; ;i = ;i for
allb € Hand all (i, ], k).

The conclusions of the theorems above are stronger for larger groups of symmetries H, so in this
paper we will always fix a Borel subgroup By C Gr, that is, a maximal connected solvable subgroup
of Gr. Thus, we may assume a multigraded ideal / coming from a border rank r decomposition of T
satisfies the additional condition:

(iv) Each I;; is By -fixed.

As we explain in the next subsection, for the instances in considered in this paper, Borel fixed spaces
are easy to list.

2.5. Borel fixed subspaces

All of the By-modules for which we would like to study Br-fixed subspaces are also Gr-modules,
where G is reductive. This fact simplifies the description of Br-fixed subspaces, so we will assume
this in what follows.

It will be convenient for us to linearize the problem by considering Lie algebras instead of Lie groups.
Let g7 be the Lie algebra of G, and let by C gr be the Lie algebra of By ¢ Gr. A subspace S ¢ M
is By fixed if and only if it is by fixed.

2.5.1. Weights and weight diagrams
For more details on the material in this section, see any of [26, 28, 20, 10].

If one has a diagonalizable matrix, one may choose a basis of eigenvectors each of which has an
associated eigenvalue. If one has a space t C gl,,, of simultaneously diagonalizable matrices, we may
choose a basis of simultaneous eigenvectors, say ey, . .., e,,. Instead of considering the eigenvalues of
each individual matrix, it is convenient to think of all the eigenvalues simultaneously as elements of t*,
and these generalized eigenvalues are called weights. Write the weights as uy, ..., uy € t*. Then, given
X et,onehas Xe; = tj(X)e;, where the number u;(X) is X’s usual eigenvalue for the eigenvector ;.
In this context, the eigenvectors are called weight vectors.

Since gr is reductive, there exists a unique up to conjugation maximal torus t C gr, and the choice
of by fixes a unique t C by. The maximal torus is an abelian subalgebra such that the adjoint action on
gr is simultaneously diagonalizable and the weight zero space under this action is exactly t. That is,
or =te P, +0 8> Where g, is the weight space under the adjoint action of t corresponding to weight a.
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The nonzero weights under the adjoint action of t are called the roots of gr, and the corresponding g,
root spaces. For aroot @, one has dimg, = 1. We have by =t & EBQEP §a, for some subset P of roots
which are called positive. The positive roots define a partial order on the set of all roots, where @ < 8
when 8-« € P.In this language, by =t® @B . 8e- Calln := P . 8. the set of raising operators,
which is a nilpotent Lie-subalgebra of gr. Inside P are the simple roots, those which cannot be written
as sums of two elements of P.

Any gr-module M is also simultaneously diagonalizable under t, say M = P, My, and g,.Ma C
Mpq. A weight vector in M is a highest weight vector if it is annihilated by the action of n. We can
summarize the action of by on M with a weight diagram, a graph with vertices corresponding to M,
and edges corresponding to the action of the g,, where a is a simple root. Edges remain unlabelled as
their weight is implicitly determined by their source and target. Since each g,, is one dimensional, edges
may be interpreted as a single linear map up to scale from the source to the target. The partial order on
roots extends naturally to a partial order on weights: 1 > u when A = u+ 2,0 ko, where ko, > 0 (or
equivalently, where the sum ranges over simple roots). We draw weight diagrams so that when 1 > p,
then M, is placed higher than M,,.

Suppose S C M is a br fixed subspace. S is t-fixed, so it is spanned by weight vectors, that
is, § = EB 154, Sa = SN M,. Furthermore, § is closed under raising operators, which means that
Ga-S1 C Satq for each positive (or each simple) root . Thus, by fixed subspaces of M are precisely
those S = P , Sa where S, maps inside S,, under every arrow M, — M, in the weight diagram of M.

2.5.2. Parameterizing Borel fixed subspaces

We may parameterize the br fixed subspaces S C M of dimension d as follows: Fix an assignment of
dimensions d;,0 < d, < dim M,, ), d, = d. Choices of Sy with dim S, = d, are parameterized by the
product of Grassmannians X = [[; G(da, M,). Given a raising operator x corresponding to an arrow
M, — M, in the weight diagram, the condition thatx.S, C S, is an explicit polynomial condition on X.
Cutting X by all such polynomials gives a description of the set of by fixed subspaces with dim S, = d,
(which can be empty). All Borel fixed subspaces are obtained as d, ranges over all such assignments.
In small examples, a complete list of by fixed subspaces may frequently be read off of the weight
diagram.

2.5.3. ¢l,, and sl,, weights
All of the groups appearing as Gr in this paper are GL,, and SL,, and products of such. In this case, a
Borel subgroup in some choice of basis is just the group of invertible upper triangular matrices (in the
case of SL,,,, with determinant one) or the product of such.

For B the invertible upper triangular matrices, b is just all upper triangular matrices. Here, b =t &mn,
where t is the diagonal matrices and 1 is the set of upper triangular matrices with zero on the diagonal.

Let €,...,€e, € t* be the basis dual to the basis eqy,...,emun of t C gl,,, and and write €; =
0,...,0,1,0,...,0), where the 1 is in the j-th slot. Let C"™ have standard basis ey, . . ., e,,, with dual
basis e!,...,e™. Thene,...,e, are weight vectors of t, and e; has weight €;.

If g € G acts on V by v — gv, then the induced action on V* is a + a o g~! so that g - (a(v)) =
(wog™")(g-v) = a(v). When we differentiate this action, the induced Lie algebra action is X.a» = —a0X.
Thus, considering the action of t on (C")*, el, ..., e’ are the set of weight vectors and wt(e/) = —€j =
,...,0,-1,0,...,0).

For vectors in (C™)®9, wt(e?a‘ ® - ®ep™™) = aj€e; +- - -+amen and the weight is unchanged under
permutations of the d = a; + - - - + a,, factors. The partial order on weights of §2.5.1 may be written
ay€)+- -+ am€y 2 bieg + -+ by, if 37 a; > 37 b; forall s.

The Lie algebra s1,,, corresponding to SL,, consists of the trace free m X m matrices. Here, t is the set
of diagonal matrices with trace zero, so the set of weights is defined only modulo €| + - - - + €,,. We will
write s1,, weights as ciwy + -+ + ¢j-1Wm-1, where the w; := €| + - - - + ¢; are called the fundamental
weights. Thus, in terms of sl,, weights, wt(e;) = wy, for 2 < s < m — 1, wi(es) = Wy — Ws-1,
wt(em) = —wm-1, and for all j, wt(e/) = —wit(e;).

https://doi.org/10.1017/fmp.2023.14 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.14

Forum of Mathematics, Pi 11

vi 2wq
1 2
vy —v; 0
v} 2w
2 1

Figure 1. Weight diagram for adjoint representation of sl

w1+ wy
\/ —w1 + 2wy 2w1 —
vi- v+ vi-v) vi—vy o 2v = (
—2w1 + w) 2&)2

4 \_/

Figure 2. Weight diagram for adjoint representation of sl3

In terms of sl,,, weights, the partial order is thus ajw; + - -+ + Gp-1Wm-1 = b1w1 + -+ + byy—1Wm-1
when a; > b; for all i. For every sl,, weight 4 > 0, there is a unique irreducible module denoted V,
containing a highest weight vector of weight A. See, for example, [26, Chap. 6] or [28, Chap. 5, §2] for
details.

Example 2.5 (s], as an sl,-module). This example will be used in the proofs of Theorems 1.4 and 1.5.
Figure 1 gives the weight diagram for sl; = sI(V) as a sl;-module under the ad]omt action, that is, for
X,Y € sly, X.Y = XY — YX. Here, vi, v is a basis of V with dual basis v!, v and v = vj®v

The only B-fixed subspaces are 0, (v2>, (vl, v1 - ) and (v v1 - v2, 2)

Example 2.6 (sl;3 as an sl3-module). This example will be used in the proofs of Theorems 1.1
and 1.6. Figure 2 gives the weight diagram for sl3 as an sl3-module under the adjoint action. As
above Vi, = vA,~®v". The oval is around the two-dimensional weight zero subspace, which has four distin-
guished one-dimensional subspaces: the images of the two raising operators in and the kernels of the two
raising operators out. Additional arrows indicating these relationships have been added to the weight
diagram.

The B-fixed subspaces of dimension three are (v, v3,v1), (v3,v3,2v] — (v +v3)) and (v}, v{,2v] -

(v%+v§)).
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(ur)? 2wy
T
[ uiuy up N up w?
A X A

T
[ uius Uy A\ us } w] — w7

2
(u2)? 2w +2w>
? Usus Uz A\ uj } —W]

T
(u3)? —2w;

Figure 3. Weight diagram for UQU when U = C3. There are six distinct weights appearing, indicated
on the right. On the far left are the weight vectors in S*U, and in the middle are the weight vectors in A>U

The B-fixed subspaces of dimension four are a family parametrized by [s, ] € P': (vf, v;, v%, s(v% -
vg) + t(v% - v%)). There are no others: We cannot include the entire weight zero space, as then we
must also include all the positive weight vectors for a total dimension of five, exceeding our limit. If we
include a negative weight vector, we must include its image in the weight zero space, which again raises
to all positive weight vectors, exceeding our limit.

The B-fixed subspaces of dimension five are (vl, v2, % % - v3, 2) (vl, 5 v%, i - v2, v2) and the
span of the weight > 0 space <V1’ vz, v%, v% — v%, v1 - v2) This is easy to see as were "27 v3 both present
we would need the full weight zero space making the dimension six, and v3 can be included only if the
whole Lie algebra is included.

Example 2.7 (Bilinear forms on U*). This example will be used in the proof of Theorem 1.2. Let
dim U = 3 with basis u1, us, u3. Figure 3 gives the weight diagram for U®U = S>U & AU as an sl(U)-
module. The action of X € sI(U) on a matrix Z € U®U is Z — XZ + ZX". There are two B-fixed
lines ((u1)?) and (u; A u>), there is a 1-(projective) parameter [s,¢] € P' space of B-fixed 2-planes,
((u1)?, suyus + tuy A uz) plus an isolated one (uy A uz, uy A us).

Example 2.8 (Tensor products of modules for different groups). Suppose M and N are modules for
groups G and H, respectively. Then M®N is a G X H module with weight spaces M;®N,,, as A and
u range over all pairs of weights of M and N. For each arrow M, — M, in the weight diagram of
M corresponding to the raising operator x, there is an edge M;®N,, — M, ®N,, corresponding to
the raising operator x ®0 € g ®b. Similarly, for each arrow N, — N, in the weight diagram of N
corresponding to the raising operator y, there is an edge Ma®N,, — M®N, corresponding to the
raising operator 0® y € g @ h. Example 2.9 is a special case of this applied twice to obtain the diagram
of a triple tensor product U*®sl(V)®W with u = v = w = 2. This example withu =w =nand v =2
(resp. v = 3) is used in the proof of Theorem 1.5 (resp. 1.6).

Example 2.9 (U*®sl(V)®W as an sl(U) x sl(V) x sl(W)-module). This example is crucial for
the case of My v.w) as then A®B = (U*eV)®(V'eW) = U'@sl(V)®W & M« v.w)(C*). When
U,V,W each have dimension two, Figure 4 gives the sl(U) x sl(V) x sl(W)-weight diagram for
U*@sl(V)®W. Set xj. =u'®v; and yi = vi@w;. There is a unique B-fixed line, (x2®y2) three B-
fixed 2-planes, (x?®y?,x!®y?), (x ®y1,x ®y2> and (x? ®y1,x ®yl - x2®yf> and four B-fixed 3-
planes, (x%@y%,x}@y%,)ﬁ@yl -X ®y1), (x? ®y1,x1®y1 -X ®y1,x1®y2), (x? ®y1,x ®y1,x1®y2), and
(x%@y%,x%@yi —x%@y%,xi@y}).
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X @y 11211
/ T \ / T \
X ®y -1 8y (110]1)
ey 2T 1 X @y (112]-1) T (-112]1)
3 ®y (1]-211)
J J f 1
ey —x; 8y ey -8y (1]0]-1) (-110]1)
T Hey? T T C2sn T
3@y IT ? Aoyl (1]-2]-1) 1 (-11-2]1)
w)}é_x;V \Hm_/
! 1
X ® ) (-1]-2|-1)

Figure 4. Weight diagram for U*®sl(V)®W when U = V = W = C2. Left are the weight vec-
tors and right the weights: Since sly weights are just jwi, we have just written (i|j|k) for the
sl(U) @ sl(V) @ sl(W) weight. Raisings in U* correspond to NW (northwest) arrows, those in W to NE
(northeast) arrows and those in s\(V) to upward arrows

3. The ideal enumeration algorithm

Input: An integer r, a concise tensor T € A®B®C, and a (possibly trivial) Borel subgroup By c Gr.
Output: A list of parameterized families of ideals which together exhaust those satisfying conditions
(i)-(iv) in §2.3 and §2.4.

Remark 3.1. This algorithm may find that there are no such ideals, in which case R(T) > r. If the
output is a nonempty set of Borel-fixed ideals, without any further work one cannot conclude anything.
As mentioned above, techniques exist that in principle will determine if an ideal deforms to an ideal of
r distinct points (in which case the border rank is at most ) or does not (if one proves that all ideals on
the list fail to deform to an ideal of r distinct points, then one concludes the border rank is greater than
r), but these techniques are not implementable in the examples of interest such as M3y at this writing.
However, since there is no theoretical obstruction to the computation, we have a potential path forward
for further lower bounds, and even in principle superlinear lower bounds. To our knowledge, no other
path to further lower bounds has been proposed.

In what follows, we take for granted that a suitable description of the variety of Br-fixed subspaces
of given dimension of any Gr-module M may always be computed. When G is reductive, a convenient
such description is described in §2.5.2.

In fact, such a description is always available in general. For instance, we may represent subspaces
in Pliicker coordinates and observe that a subspace S C M of dimension s is Br-fixed if and only if
[ASS] c P(ASM) is By -fixed. Equivalently, [A®S] is fixed under the Lie algebra of By . The condition
of being fixed under one element of the Lie algebra is a quadratic condition in the Pliicker coordinates
of S and being fixed under the whole Lie algebra is the same as being fixed under a basis.

Here is the algorithm to build an ideal / in each multidegree. We initially have 1109 = lo10 = loo1 =0
(by conciseness), so the first spaces to build are in total degree two.

(i) For each By-fixed family of subspaces Fjjo of codimension » — ¢ in T(C*)* c A*®B* (and
codimension rin A*®B™), restrict the family to the closed set on which the following symmetrization
maps have images of codimension at least r.

Fli0®A* — S?A*®B*, and (3)

F110®B* — A*®S’B". 4
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After this restriction, we have a (possibly empty) candidate family of components /;1¢. Call these
maps the (210) and (120) maps and the rank conditions the (210) and (120) tests.

(ii) Perform the analogous tests for spaces Fio; € T(B*)* and Fy;; € T(A*)* to obtain candidate
families 101, Io11.

(iii) For each triple Fi19, Fio01, Fo11 of families passing the above tests, restrict the product of these
families to the closed set on which the following addition map has image of codimension at least r.

Fl1109C" @ F101®B" ® Fy119A" — A*®B*®C". 5)

After this restriction, we have a (possibly empty) candidate family of compatible triples. Call this
map the (111) map and the rank condition the (111) test.

(iv) In the language of [24, §3], let D be a set of multidegrees which is very supportive for the Hilbert
function corresponding to our codimension r condition. Such a set D may be effectively constructed
by following the proof of [24, Proposition 3.2]. By [24, Theorem 3.6], an ideal generated in
multidegrees D satisfying the codimension condition in D satisfies it in every multidegree. For
simplicity, assume further D is closed under taking smaller multidegrees in the partial order. Fix
an ordered list (@) of the remaining undetermined multidegrees in D which respects the partial
order in Z°.

For each #, write (ijk) = a;, and do the following to determine the families of candidate sets
{Fq,}s<:- For all pairs of (i) a family of candidate sets {F, }s<—1 and (ii) an Br-fixed family of
subspaces F; ;  C S'A*®S/B*®S kC* of codimension r, restrict the product of these families to
the closed set on which the symmetrization and addition map

Fio1 jx®A @ F; j_1 x®B @ F; j x1®C" — S'A*®S' B*®s*C* (©6)

has image contained in F; ; ;. The output of the algorithm consists of the family of candidate sets
g s p g y
{Fq, }a,ep- The conditions on D ensure that this output is correct and exhaustive.

Remark 3.2. All the results of this paper with the exception of Theorems 1.1 and 1.2 require only step
(i) of this algorithm. Theorems 1.1 and 1.2 require steps (i), (ii) and (iii) only, and are carried out via
computer implementation.

Remark 3.3. Only step (iv) is needed for the algorithm to be complete and correct. Applying the tests
of steps (i)—(iii) is an attempt to rule out bad candidates early and avoid costly redundant work. This
heuristic in practice greatly simplifies the initial steps of the search (e.g., the previous remark).

Proposition 3.4. The algorithm terminates in a finite number of steps.

Proof. All of the steps of the above algorithm which manipulate infinite families of candidates may
be accomplished in finite time using the standard technology of computational algebraic geometry,
for example, Grobner bases. As only the finitely many components with multidegree in D must be
determined, and each has only finitely many parameterized families of By -fixed subspaces, complete
enumeration requires only finitely many steps. O

Sometimes, it is more convenient to perform the tests dually.

Proposition 3.5. The codimension of the image of the (210)-map is the dimension of the kernel of the
skew-symmetrization map

Fi5,®A — A’A®B. (7

The kernel of the transpose of the (ijk)-map (6) is

4

(Fij k1 ®C) 0 (Fiy x®B) N (Fy ;@A) ®)
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Remark 3.6. The expression (8) should be interpreted in view of the canonical embedding
S‘A c S”"'A®A and its analogues for B and C, with the intersection taking place in

(S1A®A)R(S/ ' BeB)o(SF 1 C®0).

That this intersection lies in S A®S/ B®S*C is part of the assertion.

Proof. The transpose of the (210) map (3) is

S?A®B — F,®A = [(A®B)/Fi5,]®A
= A®A®B/(F};,®A)
= (A’A®B @ S*A®B)/(Fi},®A).

Since the source maps to S>A®B, the kernel equals (S>?A®B) N (F 110®A), which in turn is the kernel
of equation (7).

We now prove the assertion regarding equation (8). Let X € S'A®S/B®S*C. Write Proj; ; -1 (X) =
X+F  ®C, Proj; ;14 (X) =X+ F; | ®B, and Proj;_ ; ((X) = X+ F, . ®A. The transpose
of equation (8) is the map

S'A®S/BS C — F}
X — Proj; ; X))o PI‘O_]l-’j_l’k(X) @Proji_l’j’k(X)

(®CeF;

i,j—1 k®B®Fi*—l,j,k®A

so X is in the kernel if and only if all three projections are zero. The kernels of the three projections,
respectively, are F; l w19C, F; J 1.« ®B, and F;- - k®A each intersected with S'A®S/ BoS*C. Take

intersections term by term in the tensor product to get (FL e ®C) N (FL 1 ®B) N ( “1 k®A) -
S'A®S/B®S*C, and we conclude. o

4. Matrix multiplication

Let A = U'®V, B = V'®W, C = W*'®U. The matrix multiplication tensor My v w)
A®B®C is the re-ordering of Idy ® Idy ®Ildw € (U*oU)e(V*'@V)e(W*®W). Thus, Gu,, .,
PGL(U) x PGL(V) x PGL(W) =: G, where here PGL(V) = GL(V)/C*. As a G-module A*®B*
Usl(V)eW* @ U Idy @W*. We have My v,w)(C*) = U*®Idy ®W. We fix bases and let B denote
the induced Borel subgroup of G of triples of upper-triangular, u X u, v X v, and w X w matrices.

For dimension reasons, it will be easier to describe E;ji := Fﬁk c S'’A®S/B®SKC than Fijk.
Note that E;;; is B-fixed if and only if Fjj; is. Any B-fixed candidate Ejjo is an enlargement of
U*®1Idy ®W obtained from choosing a B-fixed (r — wu)-plane inside U*®sI(V)®W. This is because
Fiio € T(C* )J‘ says that Eqjq := FllO 2 T(C ) = U*®Idy @W. Write E119 = (U*®1dy ®W)®E110’

where E{,, C U*®sl(V)®W and dim E{ , = r — wu.

First proof that R(M (5y) = 7. Here, u = v = w = 2. We show R(M,)) > 6 by checking that no B-fixed
10-dimensional Fjjg (i.e., six-dimensional Ej9 or two-dimensional E {10) passes both the (210) and
(120) tests. The weight diagram for U*®s1(V)®W appears in Figure 4.

By Figure 4, there are three B-fixed 2-planes E7,, in U*®sI(V)®W. For each, we compute the ranks
of the corresponding maps m; : F11o®A* — S2A*@B* and my : Fj10®B* — A*®S%B*, which are
given by 40 X 40 matrices:

Ny m

E{IO my rank my rank
(x?®y?, x2®y3) 36 34
(x?®y?, xI®y| — x3®y7) 35 35
(x?®yl, x| ®y?) 34 36
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We see that for each candidate E/

110> &t least one of the maps has rank strictly greater than 34 = 40 — 6,
and we conclude.

For readers unhappy with computing the rank of a sparse 40 x 40 matrix whose entries are all 0, 1,
Remark 4.1 below reduces to 24 x 24 matrices, and in §6.2, using more representation theory, we reduce
to 4 X 8 matrices whose entries are all 0, +1. Finally, we give a calculation free proof in Remark 7.3.

Remark 4.1. We may also proceed according to Proposition 3.5 and instead compute the ranks of the
maps E110®A — A2A®B and E; 10®B — A®AZB. The images of the basis vectors of Ejjo®A in the
case E| |, = (x%@y%,xi@y%) are

x% A x%@y%,xé A x%@y%,x% A x%@y%,

1 1o 2 2 | D)
Xy A X1 @Y1, X5 A X ®Y7,

Ion il lg 28 1 do 1 Do 2y 2 o do 1, 1o 2y 2 Ao 1, 1, 2
XA (X ®y] +X,8Y7), X, A (X®y] +X,8y1),X] A (X;®y] +X,8y7),X5 A (X;®y; +Xx,®y7),

Ty (2000 L 2008 1 20 1 25 0 2 2o 1 252y 2, 2. 1, 2, 2
X A (X7®y; +x7®y71), X, A (X7®y; +X7®y1), X1 A (X]®y| +x58y71), X5 A (X]7®y; +x58y7),

Up (12l 0 2002y 1 (20 1 20 2y 2 2o 1 20 2y 2,2 1, 2, 2
x; A (X]®y;5 +X50¥5), X, A (X]®Y; +X50¥5), X7 A (X]®Y, +X58Y3), x5 A (X]®Y, + x58Y5)
1o (12l 0 2002y 1 (20 1 20 2y 2, 2 1 20 2y 2,2 1, 2, 2
X A (X]®Y, +X580Y5), X, A (X]®Y; +X58Y5), X7 A (X]®Y, +X58Y3), X5 A (X]®y, + X;®Y5)

and if we remove one of the two x% A (x%@yi + x%@y%)’s we obtain a set of 20 independent vectors.

After choosing isomorphisms U = V = W, the square matrix multiplication tensor M) has
Zz-symmetry via cyclic permutation of factors. If the isomorphisms U = V = W are chosen (uniquely) to
identify B-fixed subspaces with B-fixed subspaces, cyclic permutation gives a correspondence between
the candidate Fg, Fio1 and Fy; sets. This fact is used in §5 to simplify the calculation, as there it is
necessary to carry out the ideal enumeration algorithm up to the (111) test.

Similarly, when u = w, given a choice of isomorphism U = W there is a corresponding transpose
symmetry AQB®C < B*®A*®C™ of My yu). If the (unique) isomorphism U = V identifying B-
fixed subspaces with B-fixed subspaces is chosen, the corresponding transpose symmetry gives an
isomorphism between the list of candidate Fjg;’s the list of candidate Fy;’s. Furthermore, such a
transposition gives an involution of the set of By -fixed F}1¢’s so that the application of the (210) test to
F10 is equivalent to the application of the (120) test to its transpose. This symmetry may be observed
in the three pair of equal numbers in the table above and will play a critical role in §7.

5. Explanation of the proofs of Theorems 1.1 and 1.2

The proofs of the theorems are achieved by a computer implementation of the ideal enumeration
algorithm up to the (111) test to rule out any candidate ideals when r = 16 for each of M3y and dets
(see §3). Each of det; and M3, has a reductive symmetry group, so candidate Fijo families can be
enumerated from the weight diagram of 7 (C*)* as described in §2.5.2. In order to carry out these steps
as described tractably, two additional ideas are needed.

The first is in the combinatorial part of the enumeration of the (110)-components. In §2.5.2, the
Br-fixed subspaces of a Gr-module are first parameterized by an integer function on weights d, and
then by a subproduct Y,;, of Grassmannians. In our case, we wish to enumerate Br-fixed 65 = 81 — 16
dimensional subspaces of the 72-dimensional space M = T'(C*)*. When T = M3, there are 54 weight
spaces of dimension one and nine weight spaces of dimension two, and for T = dets, there are nine weight
spaces of dimension one, 18 weight spaces of dimension two, and nine weight spaces of dimension
three. In either case, it is intractable to enumerate on a computer all assignments d,; summing to 65 and
consistent with these data.

Fortunately, there are additional linear inequalities one can derive from the weight diagram between
the values d; which are necessary for Yy, # @. For example, if in the weight diagram x : M; —
M, corresponds to a linear inclusion since any B-fixed subspace § satisfies x.5; C S, we have
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dy =dim S, < dim S, = d,. This reasoning can be generalized to any x, not necessarily an inclusion,
by applying the rank nullity theorem. An arrow x : M; — M|, in the weight diagram restricts to an arrow
Sa — Sy, and the rank nullity theorem implies d, + dimkerx < d,,. More generally, consider the map
P, xi : My — @, M,,,, where ; ranges over any set of weights with arrows out of M. For any B-fixed
S, this map restricts to S, — €P; S, and the rank nullity theorem implies d +dim ker (6D, x;) < X; da,.
Dually, we can consider the sum of transpose maps P, x} i My - P, M/l*,-’ where A; ranges over any
set of weights with arrows into M,. For any B-fixed S this map restricts to § j - P;S i_ , and we obtain
dim M, — d,, +dimker(P x!) < 3, dim M, — d,,.

The assignments d, can thus be restricted to lie in a particular explicit and computable rational
polytope P determined by the weight diagram, integer points of which are sufficiently small in number to
completely enumerate. One can efficiently enumerate the integer points of such a polytope by recursively
fixing one coordinate at a time, stopping early when the corresponding cut of P is empty (checked by
solving the corresponding linear program).

The second idea needed is in how to efficiently apply the (210) and (120) tests to parameterized
families Fij9. Concretely, this corresponds to finding the variety on which a 405 X 585 matrix has rank
at most 389. Doing this by explicitly enumerating minors is intractable due to the combinatorially huge
number. Since we only care about the variety set theoretically cut out by minors, we may arrange the
computation in a manner more analogously with how one would find the rank of a constant matrix:
using row reduction.

Given an m X n matrix M with entries in some polynomial ring, we wish to find the equations
describing the set where M has rank at most r. First, generalize to matrix coefficients in some quotient
of some ring of fractions of the polynomial ring, say R. If there is any matrix coefficient which is a
unit in R, row reduce using it and pass to the problem of finding equations of an m — 1 X n — 1 matrix
having rank at most » — 1. Otherwise, heuristically pick a matrix coefficient f, for example, the most
common nonzero entry, and recursively continue the computation in two cases which geometrically
correspond to the terms in the decomposition of the target variety X as (X NV (f)) U (X \ V(f)). The
case analyzing X N V(f) algebraically corresponds to recursively continuing the computation with R
replaced by R/( f), and the case analyzing X \ V(f) algebraically corresponds to recursively continuing
the computation with R replaced by R¢. In both cases, progress is made, since in the first at least one
entry is zeroed, and in the second at least one entry is made into a unit. Given the resulting ideals J;
and J, from these cases, report our result as J; N J5.

Carrying out the algorithm, one finds that the Br-fixed subspaces of dimension 65 in T(C*)*
sometimes occur in positive-dimensional families. The following table records the number of irreducible
families of each dimension, those which pass the (210) test only, and those which pass both the (210)
and (120) tests.

T Dimension  Br-fixed (210) test  (210) and (120) tests

Mg, 0 132 53 8
1 13 6 0
dets 0 342 54 4
1 187 18 0
2 44 0
3 6 0 0

Remark 5.1. In the case of M 3y, all families either entirely passed or entirely failed each of the (210)
and (120) tests. In the case of dets, some families split into a number of smaller-dimensional families
upon application of the tests. Two of the four final candidates for det; started as isolated By -fixed
subspaces, and two are from one-dimensional families of By -fixed subspaces.

To avoid redundant work we make use of the observation that both M 3y and dets are invariant under
cyclic permutation of the factors, so once we have the F;¢ candidates we automatically obtain the Fio;
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and Fy;; candidates. For each triple of candidates, in these cases with no remaining parameters, one
checks that the (111) test is not passed, proving the theorems.
The module structure for matrix multiplication was discussed in §4. We now describe the relevant

module structure for the determinant: Write U,V = C"™ and A{ = --- = A,, = UQV. The determinant
det,,, considered as a tensor, spans the line A"U®A™V C A|®---®A,,. Explicitly, letting A, have
basis x&

ij’

_ 1
det,, = Z sgn(o-r)x(r(l)T(l)®~~~®x(";(m)7(m).

o,7€C,,

We will be concerned with the case m = 3, and we write A|®A,®A3 = AQBQC. As a tensor, dets is
invariant under (SL(U) xSL(V))=Z; as well as 3. As an SL(U) x SL(V)-module, A®B is U®>®V &> =
S2URS?V & SPURA?V & A’URS?V @ A2URA?V, and det3(C*) = A*UA?V. As SL(U) x SL(V)-
modules, det3(C*)* is the dual of the complement to det3(C*) in A®B, and the weight diagram of
A®B is the tensor product of the diagram in Example 2.7 with the same diagram for V®V. Each of
the three modules in the complement to det;(C*) in A®B are multiplicity free, but there are weight
multiplicities up to three, for example, u u,®v vy, ujus®vy A vy, and u; A u,®vv, each have weight
(wéj |w¥ ). Consequently, there are more and larger-dimensional By -fixed subspaces, as observed in the
table above.

For the code and further discussion of the implementation details, see the supplemental materials at
github.com/adconner/chlbapolar.

6. Representation theory relevant for matrix multiplication

Theorems 1.4 and 1.5(1),(2) may also be proved using computer calculations, but we present hand-
checkable proofs to both illustrate the power of the method and lay groundwork for future results. This
section establishes the representation theory needed for those proofs.

6.1. Refinement of the (210) test for matrix multiplication

Recall A = U*®V, B = V*®@W, C = W*®U and My v w) = Idy ® Idy ® Idw and the notation w; for
the fundamental sl-weights from §2.5. Let V,, denote the irreducible sI(V)-module with highest weight
1. We have the following decompositions as SL(U) x SL(V)-modules: (note V,,,,_, does not appear
when v =2,and when v=3, V40, , = Vaw,):

A (U*RV)®V* = (S2U*®V,,) ® (A*U*sV,,) 9)
& (S2U*®Vuysanyy) ® (MU Vo 400y, )
S2(U* V)RV = (SPU"@Vaw, 1wy.;) & (AU @V ey 40, ,) (10)
® (S2U eV, @ (A*U®V,,,),
A®M (v w)(C*) = (U'QV)Q(U*®1dy ®W) (11)

= (S2U*®V,,, W) & (A*U*®V,, oW),
Vesl(V) = Vi, @ Vawrwyy © Virtwy» (12)
(U*@V)@(U*®sL(V)) = (S2U*@Vawy4ay 1) ® (AU @V 400, 1) (13)
& (S2U*®V,,,) & (A*U®V,,,)
& (S2U 'V pysany,) ® (AU Vi ,)-
These formulas follow from the following basic formulas: for any vector spaces U, V, one has the

GL(U) x GL(V) decompositions S2(U®V) = S2URS*V & A>UA?V; see, for example, [30, §2.7.1]
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and the decomposition A(U®V) = SZUSA?V & SZURA?V is derived similarly, and one has the GL(U)
decomposition UQU = S2U @ A2U. Finally, the Pieri formula (see, e.g., [20, §6.1, eqns 6.8,6.9]) gives
S2VRV* = Vi, @V = Vaw+wyy ® Ve, and A2VRV* =V, @V | = Vipsrawy © Ve, -

Note that V,,, is isomorphic to V and

3,12 12

: _ 1 . _ 1.3
dim(Vaw 4wy ) =5V + 5V =V, dim(Veyiw, ) = 3V = 3V- — V.

Proposition 6.1. Write Ey19 := Mu,v,w)(C*) ® E{,, where E{,, C U*®sl(V)®W. The dimension of the

kernel of the map (7) E110®A — A2A®B equals the dimension of the kernel of the skew symmetrization
followed by projection map

E{;®A = S*U @V iprawy  OW ® AU @Va 400y, OW, (14)
and the kernel of equation (14) is

(E{,y®A4) N [U®2@V,, @W & S*U*@Va oy 40y, OW & A2U* @V 440, OW]. (15)

Proof. Write M for the target of equation (14). We have the following commutative diagram, where
horizontal arrows form exact sequences:

0 — (U'®ldy ®W)®A ———— Ej1g®A ———— E/,;®A — 0

l l |

0 —— (U")®*QV,,, W — AX(U*V)eV*eW > M 5 0.

The bottom row reflects the decomposition (9) tensored with W. The middle vertical arrow is the skew
symmetrization map (7), and since it is the restriction of a GL(U) x GL(V) x GL(W) equivariant
map, by Schur’s lemma, its submodule (U*® Idy W)®A = (U*®V)®(U*® Idy ®W) must have image
contained in (U*)®2®V,, ®W. The induced right vertical arrow is the map (14).

We show the left vertical arrow is an isomorphism, from which the claim on the kernel dimension of
equation (14) will follow by, for example, the snake lemma. We have the decomposition into irreducible
modules

(UreV)e (U 1dy W) = S2U*@Ve Idy oW & A2U*eVe Idy oW.

The vertical left arrow is an equivariant map, so by Schur’s lemma, it is sufficient to see that a single
vector in each of the modules on the right has nonzero image. We check the highest weight vectors:

(u“®v1)®u"®(z v;ev)ew, - Z(u“@vl) A (u'®v,)@v’ew, and
J p>1
[(u“t§3>v1)éz>u“*l - (u“’l®v1)®u“]®(z v,ev)ew -
J

Z [(®vi) A (W '@v)) — W 'ev)) A (o)) |ev/ew

J

Now, equation (14) is a restriction of the surjective equivariant map U*®sl(V)@W®A — M.Comparing
modules in the irreducible decompositions of the source and target in view of equation (13), we obtain
that equation (15) is the kernel of equation (14). ]
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6.2. R(M ) > 6 revisited

In this case, the map (14) takes image in A2U*®S>V®V*®W. We have the following images.
For the highest weight vector x%@y% times the four basis vectors of A (with their sI(V)-weights in
the second column), the image of equation (14) is spanned by

1 2 2
X, Axi®y7 3w

xé A x%®y% w1.
(Note, e.g., x3®x7®y? maps to zero under the skew-symmetrization map as u?®u? projects to zero in
A2U*.) For A®(x%®y{ - x%@y%) (the lowering of x%@y% under sI(V)), the image is spanned by

1 2001 _ 25 2
X A (X®y; — x3®y])  wi

1 2001 _ 252
Xy A (X®y; — x;®y]) —wi.

Since W has nothing to do with the map, we don’t need to compute the image of, for example, A®x%®y§
to know its contribution to the kernel, as it must be the same dimension as that of A®x%®y%, just with a
different W-weight.

Were R(M(y)) = 6, E{,, would have dimension two, spanned by the highest weight vector and one
lowering of it, and in order to be a candidate, its image in A2U*®S*V@W would have to have dimension
at most two. Taking Ef , = (x]®y],x7®y| — x3®y1), the image of equation (14) has dimension
three. Taking E{,, = (x%@y%,x%@y%), the image of equation (14) has dimension four. Finally, taking
E{, = (x{@y%,x%@y%), by transpose symmetry (see §4), the image of the (120)-version of equation
(14) must have dimension four and we conclude.

7. Proofs of Theorems 1.5 and 1.6
7.1. Overview

To prove border rank lower bounds for a fixed tensor using border apolarity, one checks a list of
candidates for components of a multigraded ideal. It is not immediate how to extend the technique to
sequences of tensors in n. Even in good situations such as in Theorems 1.5 and 1.6 where there are large
Borel subgroups, candidate components can still occur in positive-dimensional families, and there is an
exponential growth in n in the number of families to check. We overcome this problem by introducing
several new ideas.

We restrict attention to only the (110)-graded ideal component and the application of the dual form of
the (120) and (210) tests of §3. For each given candidate component, we forget everything about it except
for the dimensions of certain internal weight spaces. We then analyze the kernels of Proposition 3.5
as sums of “local” contributions from each internal weight space. As we consider only dimension
information, we determine upper bounds on the contributions. At this point, there are still many discrete
cases of possible choices of these internal dimensions to consider. We use techniques from convex
optimization to show that the relevant kernel contributions for any choice is no better than a constant
more than that of a small fixed number of choices. We call this step the “globalization”. These choices
can then be completely analyzed as functions of n.

7.2. Preliminaries

Recall that in these proofs u = w = n and v is 2 or 3. Let E{;, € U*®sl(V)®W be a B-fixed
subspace. In particular, E{,, is fixed under the torus of GL(U) X GL(W), so we may write E| , =
EBS . u““”1®XS,,®w,, where X, C sI(V). Since E7,, is fixed under the Borel subgroups of GL(U),

GL(7V) and GL(W), for each s and r we have
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1. X, csl(V)is By c GL(V) fixed,
2. Xs,t 2 Xs+l,t and
3. Xs,t 2 Xs,t+1-

Define the outer structure of E i ne be the data
(s,t,dimX;;), 0<s,t<n.

Define the inner structure at site (s, 1) to be X ;.

We may consider the outer structure of E{,, as an n X n grid, with each grid point (s, ) labelled
by the dimension of the corresponding X; ;. We will represent such filled grids by the corresponding
Young diagrams on the nonzero labels so that the upper left box corresponds with the highest weight.
Here, labels weakly decrease going to the right and down. It is reasonable to imagine such a filled Young
diagram rotated 45° clockwise to put the highest weight at the top, as in the corresponding weight
diagram (see Example 2.9, where n = v = 2).

In the case of s1y, each X, is determined by its dimension, so an outer structure completely specifies
a corresponding E{, . In the case of s13, information about the particular inner structures is lost passing

from E 110 to its outer structure.

Example 7.1. Here are three examples with v =2 and p = 4.
The diagram corresponds to

“0 = (u ®v ®v1®w1,u ®v ®v1®wz,u ®v RV1®wW3, U u™ ]®v ®v1®w1)
The diagram - corresponds to
E{o= UV Qv @wi, u"(v v, — v ev)ew:, u"@v ey ®@wa, 1™ @ Qv @w ).
The diagram [31] corresponds to
110 = (u" ®v? ®VI®W1, U ®(v V) —V ®vz)®w1,u ®v! V20w, u"®v ®v1®wz>

The transpose symmetry discussed in §4 maps Ej, = @S’t "t X @w,  to
@S’t uht+l ®X§’t®ws, that is, the inner structure at site (s, r) becomes the transpose of the inner struc-
ture at site (¢, s). In particular, transpose symmetry conjugates the diagram corresponding to the outer
structure. In view of this symmetry, it is sufficient to study the (210) test only, for then everything we
can say is also a statement about the (120) test under this transpose.

As mentioned above, we split the calculation of the kernel into a local and global computation. We
bound the local contribution to the kernel at site (s,#) by a function of s, ¢ and dim X ;. Once this is
done, the theorems are proved by solving the resulting combinatorial optimization problem over outer
structures.

Recall the expression (15) and let K denote the term in brackets, that is,

K = (U)®*QV,,@W & S*U* Va1, , OW & A2 UGV 10, , OW

16
c (UH®2QVesl(V)QW. (10

We may filter £, by B-fixed subspaces such that each quotient corresponds to the inner structure
contribution over some site (s, 7). Call such a filtration admissible. Let ¥y C X C --- C Ly = EJ,, be
an admissible filtration, and put

K, = (Z,0A4) N K. (17)

Then the dimension of equation (15) may be written as the sum over g of dim (Kg/K,-1), and we may
upper bound the dimension of equation (15) by upper bounding each dim (K, /K,_1). We obtain bounds
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on dim (K4/Kg-1) which depend only on s and j = j, := dim (Z4/X4_1). For sl, this is Lemma 7.2,
and for sl3, this is Lemma 7.4. As discussed above, bounds on the kernel of the (120) map are obtained
by symmetry; specifically, the bound is the same with s replaced by ¢.

Once these lemmas are established, the claims on fixed finite values of n may be immediately settled
by enumerating the finitely many possible outer structures and checking that none gives a large enough
kernel for both the (210) and (120) maps. The claims on infinite sequences of n require us to work
more carefully, and we prove the required bounds on the solution to such problems parameterized by n
in Lemma 7.7.

7.3. The local argument

Lemma 7.2. Let dimV = 2, dim U = n. Fix an admissible filtration such that Z, C E 1’1 o contains the

sl(V)-subspace at site (s,t) and Xq_1 does not. Write j for the dimension of the s\(V)-subspace at site
(s,1). Then

dim(Kg/Kg_l) =ajs+ bj,

where a, b are the following functions of j:

J oaj b;j
1 2 0
2 3 n
3 4 2n

Lemma 7.2 is proved later this section.

Remark 7.3. Revisiting the proof that R(M(,y) > 6 in this language, the possible outer structures of
B-fixed two planes are [2, , [, which, according to Lemma 7.2, have (210) map kernel dimensions
5=3(1)+2,6=(1(2)+0) + (2(2) +0), and 4 = (1(2) + 0) + (1(2) + 0), respectively. The first and
third are smaller than 6 and the choice of E fails the (120) test by transpose symmetry. This gives our
shortest proof that R(M ) > 6.

Proof of Theorem 1.4. Here, we take u = 2, w = 3, v = 2. We show that there is no E { 10 of dimension

3 = 9-6 passing the (210) and (120) tests. The possible outer structures are [3], [2[1, and . Applying
Lemma 7.2 with n = 2, the corresponding (210) map kernel dimensions are eight, seven, six and nine,
respectively, so only % passes. However, % has (120) kernel dimension eight and fails this test. O

Proof of Theorem 1.5(1),(2). For Theorem 1.5(1),u = w = 3, v = 2. The outer structures corresponding
. ) . 1] 5
to 13 — 9 = 4 dimensional subpaces of U*®sI(V)@W are {', fH], , (2001, (272, , B, B, om, ) of

these, , , , and (2 pass the (210) test with kernel dimensions of size 14, 16, 15, and 14, respectively.

However, none of these pass the (120) test as none appear in this list whose conjugate tableau also appear.
For Theorem 1.5(2), the result follows by similar complete enumeration of outer structures on a
computer. O

Lemma 7.4. Let dimV = 3, dimU = n. Fix an admissible filtration such that X, C E{,, contains the
sl(V)-subspace at site (s,t) and Z4_1 does not. Write j for the dimension of the s\(V)-subspace at site
(s,1). Then

dim(Kg/Kg_l) < ajs+ bj,

where aj, b are the following functions of j:
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Joaj b Joaj bj
1 3 =2 5 14 n
2 6 0 6 17 n
3 8 n 7 21 2n-6
4 11 n 8 21 3n-6.

In order to prove Lemmas 7.2 and 7.4, we first observe the following.
Proposition 7.5. The included module V,,, C VQsI(V) has weight basis
V= Z[ij®(vi®vj) — vi®(vj®vj)] +(v=-Dv;ev,e', 1<i<v.
j#i
Proof. The line [v] has weight w; = €] and is B-stable, the lines [v;] are lowerings of the line [vi]

and have weight ¢;. )

Proof of Lemmas 7.2 and 7.4. We begin in somewhat greater generality, not fixing v = dim V. We must
bound dim K, —dim Kg_;, where K, is given by equation (17). Write X C sI(V) for the inner structure
at (s,1) so that Z, = Ty & u™ @ X@wW,. Write

Vo =0,

Vl = le ’

V2 =V, @ V2w +wy

V3= le @ V2w1+wv,1 @ sz+wv7| = V®SI(V)'

Note that V, = V3 when v = 2. Then {V } s is a (partial) flag for V®sI(V), and
Sy = UU* S VeV;0W + U®* eV, oW + U*®20V3eW(,_))

is a flag for U*®2@V;®W, where we have written U*) = span{u®,...,u"*'} and W =
span{wri,...,w,}. Hence, Sy N K, is a flag for Kz with S3 N Ky = K, and Sy N K, C K,_. The
fact that the inclusion So N Ky C Kg_; may be strict is the only place in this argument we prove an
inequality rather than equality. Use the isomorphism of quotient vector spaces

K,NnS (KeNSe)+Srq
g oo g f f

= (18)
K,NSpy Sr-1
to obtain the successive quotients of {Sy N K} as subspaces of
U*®2@V;0W U2 % U4
3= - ® —— ® . (19)
Sf-1 UreU*s=b = Vey — Wi

Write K/ for the f-th summand of equation (16) so that K NSy = K/ + K N S;_;. Intersecting with
2,®A and adding Sy _;, we obtain
KenNSp+8Sp1= (Kf +S85-1) N (Zg®A) +Sr
= (K' +Sp1) N (Ureu" ' @VeXew, + S;_1).
We may now pass in each side of the intersection to the right-hand side of equation (19), after which

the intersection may be computed term by term. To compute the intersection in the U*®?/(U*@U*~D)
term, momentarily write Z = Z + U*®U *(s=D for Z € U*®2 and observe that

S2U* N U*@un—s+1 = U*S®Mn_s+1, and A2U* N Ur@un—s+1 = [J*(s—-1) gyn-s+1
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Therefore, the right-hand side of equation (18) may be written, for f = 1, 2 and 3 respectively,

U ® @+ Ut e [(Ve X) NVi]® (w, + W)
U@ " + U @ (VO X + Vi) N V2] ® (w, + W)
UGV @@+ U @ [Ve X +Va] © (w, + Wi_i)).

Write

Y=(VeX)nV,
Y = (VX +V;)NV,)/Vy, and
Y = (VX +V3)/Va,

and write their dimensions, respectively, as y,y’,y”’. We obtain
dim K, =dim (So N Kg) +yn+y's+y” (s —1) <dim Ko_1 +yn+y's+y”’(s - 1),

the sum of the successive quotient dimensions of {Sy N Kg} .

Thus, when j = v? — 1, that is, X = s[(V), the desired result follows from y = v, ¥’ = dim Vs, 10, _,
andy” = dim V40, -

In all cases, Y has a basis consisting of weight vectors and is closed under raising operators. Hence,
by Proposition 7.5, Y = span{v; | i < y}.

Consider the case j = v> — 2, that is X is the span of all weight vectors of sI(V) except vy®v'. Then
vy is not an element of Y because in the monomial basis, the monomial v1®(vv®v') fails to have a
nonzero coefficient in any element of Y. Hence, y < v — 1, and the trivial y’ < dim V24,+¢,_,, and
y’ < dim V4, give the asserted upper bounds.

By similar reasoning, when v = 3, considering Example 2.6, we obtain the bounds y = 0 when
j=1,2andy < 1 when j =3,4,5, 6. For all values of j except 1, the result then follows from

dim Ky —dim Kg_; < (jv—-y)s+yn—-y” (20)
< (Jv-y)s+yn,

asy+y’ +y” = jv. The upper bound for v = 2, j = 1, is settled similarly.
We must argue more for the j = 1 upper bound for v = 3, namely that y”” > 2. For this, consider

Vesl(V) @V, = VeVeV* = S?VeV* @ A’VeV* and A*VeV" = V,iw, , ® Ve, -
Because we have y = 0, the dimension y’’ of the projection of V®X onto V,,, 4+, , is the same as that

onto A2V®V*. We have the images v, Av;®v? and v3 Av;®v? of v,®v®v> and v3®v®v>, respectively,
whence y” > 2 as required.

To see the upper bounds in the v = 2 cases are sharp, note that in this case V,+w, , = @, 50y = 0.
The j = 1 case is thus automatic from equation (20), and for j = 2, we must show y > 1. In this case,
however, we have V] = 2v,®(v{®v?) + v®(vi®v! — v2®v?) € V®X, as required. o

Remark 7.6. Although the bounds are essentially sharp when one assumes nothing about previous sites
(o,1) for o < s, with knowledge of them one can get a much sharper estimate, although it is more
complicated to implement the local/global principle. For example, if we are at a site (s, 1) with v = 3,
j = 1and for (o, t) with o < ¢ one also has j = 1, then the new contribution at site (s, t) is just s, not
3s - 2.

In Lemma 7.7 below, the linear functions of s in Lemmas 7.2 and 7.4 appear as a, s + by, .

https://doi.org/10.1017/fmp.2023.14 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.14

Forum of Mathematics, Pi 25

7.4. The globalization

Write u for a Young diagram filled with nonnegative integer labels. The label in position (s, ¢) is denoted
Us.r» and sums over s, are to be taken over the boxes of u. As before, each u will correspond to a
possible outer structure.

We remark that the lemmas in this section and the next may be used for M (mpn) for any n > m.

The following lemma allows us to reduce from considering all possible outer structures and the
corresponding bounds on the dimension of the kernels of the (210) and (120) tests to considering three
(resp. eight) possible kernel dimensions in the case of v = 2 (resp. v = 3).

Lemma 7.7. Fixk e N,0 < a; <--- < ay,and b; € R, 1 <i < k. Let u be a Young diagram filled

with labels in the set {1, ..., k}, nonincreasing in rows and columns. Write p = ¥ ; uis 1. Then
: a;p? p
min { > 5+ by Y g 1+ bﬂs,,} < max |+ (4 b) L @1

st s,t

Remark 7.8. The bound in the lemma is nearly tight. Taking i to be a balanced hook filled with j makes
. 2
the left-hand side equal < (& — 1) + (a; + b;)2. Hence, for any fixed p, a;, b;, the maximum of the
8\ J J7j

left-hand side is within é max; a; of the right hand side.

Lemma 7.7 is proved in §7.5.

Proof of Theorem 1.5(3). Let E{,, C U*®sl(V)®W be a B-fixed subspace, and let y be the correspond-
ing outer structure. We apply Lemma 7.7 with k = 3 and a; and b; from Lemma 7.2 to obtain an upper
bound on the smaller of the kernel dimensions of the (120) and (210) maps. The resulting upper bound
is max{%p2 +2p, %pZ + 3+np’ 18:0 + 4+2np}

Fix € > 0. We must show that if p = (3V6 — 6 — €)n, then each of 1p? +2p, $p? + Hp, and
% pr+ 4+2“ 210 ) is strictly smaller than n® + p. Substituting and solving for n, we obtain that this holds for
the last expressmn when

>63\/_+6—e
€ 6\/_—6

and when € < 7, this condition implies the other two inequalities. O

Proof of Theorem 1.6. Proceeding in the same way as in the proof of Theorem 1.5(3), we ap-
ply Lemma 7.7 with u the outer structure corresponding to an arbitrary B-fixed subspace E{,, C
Uresl(V)®W, k = 8, and a; and b; corresponding to the inner structure contribution upper bounds
obtained in Lemma 7.4. We obtain the smaller of the kernel dimensions of the (120) and (210) maps is
at most the largest of the following,

J Lemma 7.7 J Lemma 7.7

1 %p2+p 5 ﬁp2+l4s+np
2 e+ 3p 6 e’ + 15t
3 9p+8;np 7 %p+15-7+2np
4 1zgp + ll+np 8 521129 + 15+3np'
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Now, if one takes p = | %nj, the kernel upper bound for each j is strictly less than n” + p. This

follows for j = 1 because %n is irrational. This follows for 2 < j < 8 because n > 18. Hence, at least

one of the kernels of the (120) and (210) maps is too small, and R(M 3pn)) > n? + p,asrequired. O

7.5. Proof of Lemma 7.7

We will reduce Lemma 7.7 to the following, which may be viewed as a continuous reformulation. Its
proof depends on a delicate perturbation argument.

Lemma 7.9. Fixk € N, ¢; 2 0,d; €R, for 1 <i < k. Write C; Z{zl ciand Dj = Z{:I d;. For all

vV

choices of x;, y satisfying the constraints x1 > --- > xx 2 0, y1 =2 --- >y 20, and 2; x; + y; = p,
the following inequality holds:
2 2 P’ P
min { Z CiX; + di(xi + yi), Z Ciy; + di(xl- + y,)} < lfélj?lé(k {4]—2C] + 7Dl} (22)

i<k i<k

Remark 7.10. The inequality is tight. Choose j so that the maximum on the right-hand side is achieved.
Then equality is achieved when x| =--- =x;=y; =---=y; = 2%. and x5,y =0 for s > j.

Proof. As both the left- and right-hand sides are continuous in the c;, it suffices to prove the result
under the assumption c; > 0. The idea of the proof is the following: Any choice of x; and y; which has
at least two degrees of freedom inside its defining polytope can be perturbed in such a way that the local
linear approximations to the two polynomials on the left -hand side do not decrease; that is, two closed
half planes in R? containing (0, 0) also intersect aside from (0, 0). Each polynomial on the left strictly
exceeds its linear approximation at any point, and thus one can strictly improve the left-hand side with
a perturbation. The case of at most one degree of freedom is settled directly.

Write xx41 = yi41 = 0, and define x; = x; — x;41 and y] = y; — y;41 so that x; = k x" and

J=LTg

yi = 52[ y;.. Then x;,y; > 0 and Zle i(x] +y;) = p. Suppose at least three of the x, y;. are nonzero,
we will show the expression on the left-hand side of equation (22) is not maximal. Write three of the
nonzero x, y;. as x,y, z. Replace them by x + €1, y + €, 7 + €3, with the ¢ to be determined. This will

preserve the equation }; x;+y; = p only if €] + €, + €3 = 0, so we require this. Substitute these values into

E; = ZC[)C? +d[(x,' +y[) and Eg = Zciy% +di(X[ +y,').

i<k i<k

View E;, Eg as polynomial expressions in the €;. Then

EL = ZciSZL,i + LL +d, ER = Zcisi,i +LR +d,

4 1

where Sz ;,Sr,; and Ly, L are linear forms in the ¢, and d € R. Each Sz ;, Sg,; is a sum of some
subset of the ¢;, and the union of them span the 2-plane (€1, €, €3)/(2 €; = 0). Consider the linear
map T = Lp @ Lg : (e1,,6)/{(Xe =0) — R2. If T is nonsingular, then for any € > 0, there
are constants €;, with }, €; = 0 so that T (€1, €2,€3) = (€, €), and it is possible to choose € so that
X + €1,y + €,7+ €3 > 0. Then this new assignment strictly improves the old one. Otherwise, if T is
singular, then there is an admissible (€1, €, €3) # 0 in the kernel of 7, where again we may assume
the same nonnegativity condition. The corresponding assignment does not change Ly, Lg, but as the
Str.i, Sr.i span the linear forms, at least one them is nonzero. Consequently, at least one of the modified
Ep, ER is strictly larger after the perturbation, and neither is smaller. If, say, only E is strictly larger,
and x; > 0, we may substitute x; — € and y; + € for x] and y; for some € > 0 to make both £, and Eg
strictly larger.
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Thus, the left-hand side is maximized at an assignment where at most two of x/ and y; are nonzero.
It is clear that at least one of each of xlf and yl’. must be nonzero, so there is exactly one of each, say
x, = aand y; = B. It is clear at the maximum that 3, ., ¢;x? + d; (x; +¥i) = Xi<x €iy? + di(xi + 1),
from which it follows that ¢2C, = Dli<k cixl? = Dli<k ciy% = ,6’2C, and aVC; = BVC;. We also have
sa +tS = p. Notice that

VG pVCs

CsVG VG T sVG G

satisfy the equations so that the optimal value obtained is

2 2 P pCsC
cixi +di(xi+y;)) =a"Cs+aDs+ D, = ( +VCDg++/CsD; | .
iszkz i( Yi s s +BD; S\/C_,+t\/C_S S\/C+t\/c_s \/_ts st
By the arithmetic mean-harmonic mean inequality, we have
pCsCy _ P < B[Cs\/a + Ct\/C_Y]
sVC; +t\Cy Cf@+ctxtf_4 s t
so that
PC G [C \/@ ]
++4/C, Dy ++/CsD; < = C:Ds+CsD
VG +C;, Tal s Ve '
C+1tV/C t
_ VG +NGs E(P_CS+PD )+£( ¢ +2p))
p p \4s2 s 442 t
C, +1VC; p?
NG NG 2o, ct+’”o,,
P 4r2
. . . . s B i i i P
with the last inequality holding because 7“ + = 1. Multiplying both sides by oo Ve
conclude. O

We prove one final lemma on partitions that will enable the reduction of Lemma 7.7 to an instance
of Lemma 7.9.
For a partition 1 = (11, ..., 4,), write £(1) = g and define

n(d) = Z(i ~1)A;.

Let A’ denote the conjugate partition.
Lemma 7.11. Ler A be a partition not of the form (|| — 2,2). Then n(1) < %(|/l| +A) - 21)% - %. In
particular, for all A, n(1) < %(|/l| +A] - A1)%
Proof. We prove the result by induction on A} = €(2”). When £(2”) = 1, we have
4 ’ ’
n() =(3) =301 - - g =gl + 2] - )’ - §.

as required. Now, assume k = £(A") > 1. Write u for the partition where £(u’) = k — 1 and ] = A
i <k-1.If 2 = (3,3), we are done by direct calculation; hence, otherwise we may assume the result
holds for ¢ by the induction hypothesis.

n(2) = n(u) + (%)
< §ul+p] - = §+ (%)
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A=+ = (A - D) =+ 34,2, - 1)

A+ = A)? =g = A+ -4 =34, + (A, - 1)

We must show %(I/II +A -4 - %/l;c + %)(/l;< —1) 2 0.If 4} = 1, this is immediate; otherwise, we show
the first factor is nonnegative. We have 1| — 41 > k4) — k, so

A+ = =32, + 3> -+ E2 - -1

If k = 2, then by assumption 1] > 3, and considering separately the cases A}, = 2 and A/, > 3 yields the
result. Otherwise k > 3, and because /l; > 2, we again conclude. m]

Proof of Lemma 7.7. Foreach 1 <i < k, let A’ be the partition corresponding to the boxes of u labeled
> i. Write ag = bg = 0. Then

ZSJ Aug, S+ blls,z = Zs,z Zf;lt (a; —aj—1)s +b; — b
= 25'21 ZS,IE/li (ai - ai—l)s + bi — bi—l
= S5 (a; = ar)n(A) + (a; = @iy + bi = biy) |2

. . . \2 .
<35 [$ai —aisy)] (%(|/l’| + ()] - /1’1)) +[ai —ai-1 +b; = bi1] 2] (23)
where we have used Lemma 7.11 to obtain the last inequality. Set

Ci = %(Gi —ai-1)

di=ai—aj-1+bi — b,
xi = (1 + (0] - )
yi = 5147 = ()] + 2.

Then equation (23) becomes

cixl-z + di (x,' + yt)-

k
=1

4

Similarly, 3 ; ay, t+ by, < Z{.‘ZI ciyl? +d;(x; +y;). Now, X, x; +y; = Zi|/li| = p and the x; and y;
are each nonnegative and nonincreasing. Hence, by Lemma 7.9,

2
a:
min{Za”ws+b”s’t,2ays’tt+b#s’t} = max {ng+(af+b1)§}’

<j<
s,t S,t 1<j<k

as required. O
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