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Abstract
We determine the border ranks of tensors that could potentially advance the known
upper bound for the exponent ω of matrix multiplication. The Kronecker square of the
small q = 2 Coppersmith–Winograd tensor equals the 3 × 3 permanent, and could
potentially be used to show ω = 2. We prove the negative result for complexity theory
that its border rank is 16, resolving a longstanding problem. Regarding its q = 4 skew
cousin in C

5⊗C
5⊗C

5, which could potentially be used to prove ≤ 2.11, we show the
border rank of its Kronecker square is at most 42, a remarkable sub-multiplicativity
result, as the square of its border rank is 64. We also determine moduli spaces VSP
for the small Coppersmith–Winograd tensors.
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1 Introduction

This paper advances both upper and lower bound techniques in the study of the com-
plexity of tensors and applies these advances to tensors that may be used to upper
bound the exponent ω of matrix multiplication.

The exponent ω of matrix multiplication is defined as

ω := inf{τ | two n × n matrices may be multiplied using O(nτ )

arithmetic operations}.

It is a fundamental constant governing the complexity of the basic operations in linear
algebra. It is generally conjectured that ω = 2. It has been known since 1988 that ≤
2.38 [22]whichwas slightly improved upon 2011–2014 [36, 48, 55], and again in 2021
[3]. All new upper bounds on ω since 1987 have been obtained using Strassen’s laser
method, which bounds ω via auxiliary tensors, see any of [7, 22, 30] for a discussion.
The bounds of 2.38 and below were obtained using the “big Coppersmith–Winograd
tensor” as the auxiliary tensor. In [5] it was shown the big Coppersmith–Winograd
tensor could not be used to prove ω < 2.3 in the usual laser method.

In this paper we examine six tensors that potentially could be used to proveω < 2.3
with the laser method. Our approach is via algebraic geometry and representation the-
ory, building on the recent advances in [11, 20]. We solve the longstanding problem
(e.g., [7, Problem 9.8], [13, Rem. 15.44]) of determining the border rank of the Kro-
necker square of the only Coppersmith–Winograd tensor that could potentially prove
ω = 2 (the q = 2 small Coppersmith–Winograd tensor). The answer is a negative
result for the advance of upper bounds, as it is 16, the maximum possible value. On the
positive side, we show that a tensor that could potentially be used to prove ω < 2.11
has border rank of its Kronecker square significantly smaller than the square of its
border rank. While this result alone does not give a new upper bound on the exponent,
it opens a promising new direction for upper bounds. We also develop new lower and
upper bound techniques, and present directions for future research.

The tensors we study are the small Coppersmith–Winograd tensor [21] Tcw,q for
q = 2 and its skew cousin [19] Tskewcw,q for even q ≤ 10 (five such). (These tensors
are defined for even q > 10 but they are only useful for the lasermethodwhen q ≤ 10.)
The tensors Tcw,2 and Tskewcw,2 potentially could be used to prove ω = 2. Explicitly,
the small Coppersmith–Winograd tensors [22] are

Tcw,q =
q∑

j=1

a0⊗b j⊗c j + a j⊗b0⊗c j + a j⊗b j⊗c0

and, for q = 2p even, its skew cousins [19] are

Tskewcw,q =
p∑

ξ=1

a0⊗bξ⊗cξ+p − a0⊗bξ+p⊗cξ − aξ⊗b0⊗cξ+p

+aξ+p⊗b0⊗cξ + aξ⊗bξ+p⊗c0 − aξ+p⊗bξ⊗c0.
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The small Coppersmith–Winograd tensors are symmetric tensors and their skew
cousins are skew-symmetric tensors. When q = 2, after a change of basis Tcw,2
is just a monomial written as a tensor, Tcw,2 = ∑

σ∈S3
aσ(1)⊗bσ(2)⊗cσ(3) and

Tskewcw,2 = ∑
σ∈S3

sgn(σ )aσ(1)⊗bσ(2)⊗cσ(3). Here S3 denotes the permutation
group on three elements.

We need the following definitions to state our results:
A tensor T ∈ A⊗B⊗C = C

m⊗C
m⊗C

m has rank one if T = a⊗b⊗c for some
a ∈ A, b ∈ B, c ∈ C , and the rank of T , denoted R(T ), is the smallest r such that T
may be written as a sum of r rank one tensors. The border rank of T , denoted R(T ),
is the smallest r such that T may be written as a limit of rank r tensors. In geometric
language, the border rank is smallest r such that [T ] ∈ σr (Seg(PA × PB × PC)),
where σr (Seg(PA × PB × PC)) denotes the r -th secant variety of the Segre variety
of rank one tensors.

For symmetric tensors T ∈ S3A ⊂ A⊗A⊗A we may also consider the Waring
or symmetric rank of T , RS(T ), the smallest r such that T = ∑r

s=1 vs⊗vs⊗vs for
some vs ∈ A, and the Waring border rank RS(T ), the smallest r such that T may be
written as a limit of Waring rank r symmetric tensors. Note that R(T ) ≤ RS(T ) and
R(T ) ≤ RS(T ).

For tensors T ∈ A⊗B⊗C and T ′ ∈ A′⊗B ′⊗C ′, the Kronecker product of T
and T ′ is the tensor T � T ′ := T⊗T ′ ∈ (A⊗A′)⊗(B⊗B ′)⊗(C⊗C ′), regarded
as 3-way tensor. Given T ∈ A ⊗ B ⊗ C , the Kronecker powers of T are T�N ∈
A⊗N ⊗ B⊗N ⊗C⊗N , defined iteratively. Rank and border rank are submultiplicative
under Kronecker product: R(T � T ′) ≤ R(T )R(T ′), R(T � T ′) ≤ R(T )R(T ′), and
both inequalities may be strict.

Strassen’s laser method [21, 50] obtains upper bounds on ω by showing an explicit
degeneration of a largeKronecker power of a “simple” tensor admits a further degener-
ation to a sum of disjoint matrix multiplication tensors, and then applies Schönhage’s
asymptotic sum inequality [42]. The relevant results for this paper are:

For all k and q, [22]

ω ≤ logq(
4

27
(R(T�k

cw,q))
3
k ). (1)

For all k and even q, [19]

ω ≤ logq(
4

27
(R(T�k

skewcw,q))
3
k ). (2)

Coppersmith–Winograd [22] showedR(Tcw,q) = q + 2. Applied to (1) with k = 1
and q = 8 gives ω ≤ 2.41, which was the previous record before 2.38.

The most natural way to upper bound the exponent of matrix multiplication would
be to upper bound the border rank of the matrix multiplication tensor directly. There
are very few results in this direction: work of Strassen [52], Bini [6], Pan (see, e.g.,
[40]), Smirnov (see, e.g., [46]) and Sedoglavic (see, e.g., [43]) are what we are aware
of. In order to lower the exponent further with the matrix multiplication tensor the first
opportunity to do sowould be to show the border rank of the 6×6matrixmultiplication
tensor equaled its known lower bound of 69 from [34].

123



2052 Foundations of Computational Mathematics (2023) 23:2049–2087

The only still viable proposed path to prove ω < 2.3 using known tensors that we
are aware of would be to obtain border rank upper bounds for a Kronecker power of
a small (q ≤ 10) Coppersmith–Winograd tensor (this path has been proposed since
1989) or its skew cousin (more recently proposed in [19]). The results in this paper
take a few steps further on these two paths. There is no proposed path that we are
aware of to prove ω > 2.3 other than by proving border rank lower bounds for the
matrix multiplication tensor (or its symmetrized or skew-symmetrized versions [14])
for all n.

1.1 Main Results

After the barriers of [5], the auxiliary tensor viewed as most promising for upper
bounding the exponent, or even proving it is two, is the small Coppersmith–Winograd
tensor, or more precisely its Kronecker powers. In [19] bad news in this direction
was shown for the square of most of these tensors and even the cube. Left open
was the square of Tcw,2 as it was unaccessible by the technology available at the
time (Koszul flattenings and the border substitution method), although it was shown
that 15 ≤ R(T�2

cw,2) ≤ 16. With the advent of border apolarity [11, 20] and the
Flag Condition for border apolarity introduced in this paper (Proposition 2.5) that
strengthens it, we are able to resolve this last open case. See Remark 5.4 for an
explanation why this result was previously unaccessible, even with the techniques of
[11, 20]. The result for the exponent is negative:

Theorem 1.1 R(T�2
cw,2) = 16.

For a detailed discussion of the relation of border rank bounds to the exponent for
Kronecker powers of the small Coppersmith–Winograd tensor and its skew cousin,
see Section 1 of [19].

In [19] it was observed that T�2
cw,2 = perm3, the 3 × 3 permanent considered as a

tensor. Previously Y. Shitov [45] showed that the Waring rank of perm3 is at least 16,
which matches the N. Ilten–Z. Teitler upper bound of [27].

Remark 1.2 P. Comon [9] had conjectured that for symmetric tensors their Waring
rank equals their tensor rank and it has similarly been conjectured that their Waring
border rank equals their tensor border rank. While Comon’s conjecture was shown to
be false in general by Shitov [44], we see both versions hold for perm3.

Theorem 1.1 is proved in Sect. 5.
We determine the border rank of Tskewcw,q in the range relevant for the lasermethod:

Theorem 1.3 R(Tskewcw,q) ≤ 3
2q + 2 and equality holds for q ≤ 10.

While this is less promising than the equalityR(Tcw,q) = q+2, in [19] a significant
drop in the border rank of T�2

skewcw,2 = det3 was shown, namely that it is 17 rather
than 25 = R(Tskewcw,2)

2. (The upper bound was shown in [19] and the lower bound in
[20].) Theorem 1.3 implies R(Tskewcw,4)

2 ≤ 64. The following theorem is the largest
drop in border rank under a Kronecker square that we are aware of:
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Theorem 1.4 (∗) R(T�2
skewcw,4) ≤ RS(T

�2
skewcw,4) ≤ 42.

The Theorem is marked with a (∗) because the result is only shown to hold numer-
ically. The expression we give has largest error 4.4× 10−15. We could have presented
a solution to higher accuracy, but we were unable to find an algebraic expression. The
new numerical techniques used to obtain this decomposition are described in Sect. 9.
We also give a much simpler Waring border rank 17 expression for det3 = T�2

skewcw,2
than the one in [19], see Sect. 8.

Using Koszul flattenings (see Sect. 4) we showR(T�2
skewcw,4) ≥ 39. For the cube we

show R(T�3
skewcw,4) ≥ 219 whereas for its cousin we have 180 ≤ R(T�3

cw,4) ≤ 216. We

also prove, using Koszul flattenings, lower bounds for R(T�2
skewcw,q) and R(T�3

skewcw,q)

for q ≤ 10. These results are all part of Theorem 4.1.

Remark 1.5 Starting with the fourth Kronecker power it is possible the border rank of
T�4
skewcw,q is less than that of T

�4
cw,q , for q ∈ {2, 6, 8}. The best possible upper bound on

ω obtained from some T�4
skewcw,q would beω ≤ 2.39001322which could potentially be

attained with q = 6. Starting with the fifth Kronecker power it is potentially possible
to beat the current world record forωwith Tskewcw,q and for Tcw,q it is already possible
with the fourth power.

Strassen’s asymptotic rank conjecture [51] posits that for all concise tensors T ∈
C
m⊗C

m⊗C
m (see Definition 1.8) with regular positive dimensional symmetry group

(called tight tensors), limk→∞[R(T�k)] 1k = m. As a first step towards this conjecture
it is an important problem to determine which tensors T satisfy R(T�2) < R(T )2.
We discuss what we understand about this problem in Sect. 3.2.

A variety that parametrizes all possible border rank decompositions of a given
tensor T , denoted VSP(T ), is defined in [11]. This variety naturally sits in a product
of Grassmannians, see Sect. 3.1 for the definition. We observe that in many examples
VSP(T ) often has a large dimension when R(T�2) < R(T )2 (although not always),
and in all examples we know of, when VSP(T ) is zero-dimensional one also has
R(T�2) = R(T )2. This is reflected in the following results:

Theorem 1.6 For q > 2, VSP(Tcw,q) is a single point.

Theorem 1.7 VSP(Tcw,2) consists of three points.

More precise versions of these results and their proofs are given in Sect. 6.
In contrast VSP(Tskewcw,q) is positive dimensional, at least for all q relevant for

complexity theory (q ≤ 10). Explicitly, VSP(Tskewcw,2) is at least 8-dimensional, see
Corollary 3.2, and for 4 ≤ q ≤ 10, dim VSP(Tskewcw,q) ≥ (q/2

2

)
, see Corollary 7.1.

Border apolarity is just in its infancy. In Sect. 2.1 we give a history leading up to it.
In Sect. 2.2 we explain results from border apolarity needed in this paper. In Sect. 2.3
we discuss challenges to getting better results with the method and take first steps to
overcome them in Sect. 2.4. In particular, Proposition 2.5 was critical to the proof of
Theorem 1.1 as it enables one to substantially reduce the border apolarity search space
in certain situations (weights occurring with multiplicities).
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1.2 Previous Border Rank Bounds on T�k
cw,q and T

�k
skewcw,q

• R(T�2
cw,q) = (q + 2)2 for q > 2 and 15 ≤ R(T�2

cw,2) ≤ 16. [19]

• R(T�3
cw,q) = (q + 2)3 for q > 4. [19]

• R(T�2
skewcw,2) = 17. [20]

• R(Tskewcw,q) ≥ q + 3. [19]
• For all q > 4 and all k,R(T�k

cw,q) ≥ (q +2)3(q +1)k−3 andR(T�k
cw,4) ≥ 36 ·5k−2.

[19]
• R(T�k

cw,2) ≥ 15 · 3k−2. [19]

With the exception of the proof R(T�2
skewcw,2) ≥ 17, which was obtained via border

apolarity, these lower bounds were obtained using Koszul flattenings.
Previous to these it was shown that R(T�k

cw,q) ≥ (q + 1)k + 2k − 1 using the border
substitution method [8].

1.3 Definitions/Notation

Throughout, A, B,C will denote complex vector spaces of dimension m. We let {ai }
denote a basis of A, with either 0 ≤ i ≤ m − 1 or 1 ≤ i ≤ m and similarly for {b j }
and {ck}. The dual space to A is denoted A∗. Since our vector spaces have names, we
re-order them freely without danger of confusion. The Z-graded algebra of symmetric
tensors is denoted Sym(A) = ⊕d Sd A, it is also the algebra of homogeneous poly-
nomials on A∗. For X ⊂ A, X⊥ := {α ∈ A∗ | α(x) = 0∀x ∈ X} is its annihilator,
and 〈X〉 ⊂ A denotes the span of X . Projective space is PA = (A\{0})/C

∗, and if
x ∈ A\{0}, we let [x] ∈ PA denote the associated point in projective space (the line
through x). The general linear group of invertible linear maps A → A is denoted
GL(A) and the special linear group of determinant one linear maps is denoted SL(A).
The permutation group on r elements is denoted Sr .

The Young diagram associated to a partition (p1, . . . , pd) is an array of left-aligned
boxes with p j boxes in the j-th row.

The Grassmannian of r -planes through the origin is denoted G(r , A), which we
will view in its Plücker embedding G(r , A) ⊂ P�r A. We let Gr(r , A) denote the
Grassmannian of codimension r planes.

For a set Z ⊂ PA, Z ⊂ PA denotes its Zariski closure, Ẑ ⊂ A denotes the
cone over Z union the origin, I (Z) = I (Ẑ) ⊂ Sym(A∗) denotes the ideal of Z , and
C[Ẑ ] = Sym(A∗)/I (Z), denotes the homogeneous coordinate ring of Ẑ . Both I (Z),
C[Ẑ ] are Z-graded by degree.

We will be dealing with ideals on products of three projective spaces, that
is, we will be dealing with polynomials that are homogeneous in three sets of
variables, so our ideals with be Z

⊕3-graded. More precisely, we will study ide-
als I ⊂ Sym(A∗)⊗Sym(B∗)⊗Sym(C∗), and Istu denotes the component in
Ss A∗⊗St B∗⊗SuC∗.

For T ∈ A⊗B⊗C , define the symmetry group of T , GT := {g = (g1, g2, g3) ∈
GL(A) × GL(B) × GL(C) | g · T = T }.
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Given T , T ′ ∈ A ⊗ B ⊗ C , we say that T degenerates to T ′ if T ′ ∈
GL(A) × GL(B) × GL(C) · T , the closure of the orbit of T , the closures are the
same in the Euclidean and Zariski topologies.

Definition 1.8 Given T ∈ A⊗B⊗C , we may consider it as a linear map TC : C∗ →
A⊗B, and we let T (C∗) ⊂ A⊗B denote its image, and similarly for permuted state-
ments. A tensor T is A-concise if the map TA is injective, i.e., if it requires all basis
vectors in A to write down in any basis, and T is concise if it is A, B, and C concise.
A tensor is 1A-generic if T (A∗) ⊂ B⊗C contains an element of maximal rank m.

2 Border Apolarity and the Challenges It Faces

2.1 History

Until very recently, essentially the only way to prove border rank lower bounds for a
tensor T was to find a polynomial P in the ideal of σr (Seg(PA × PB × PC)) such
that P(T ) �= 0. (See [38] for an exception.) The first nontrivial equations for tensors
were found by Strassen in 1983 [49], although the equations essentially date back to
E. Toeplitz [54] in the partially symmetric case. No further equations were found until
2013 [33, 35], and these are the state of the art. The equations (and amuch broader class
of equations) are known to have limits (see, e.g., [24]), essentially one could not prove
border rank lower bounds better than 2m − 3 for tensors in C

m⊗C
m⊗C

m . A small
way to improve upon this was developed in [8, 32]: this border substitution method,
which generalizes the classical substitution method to prove rank lower bounds, is
only applicable in practice to tensors with positive dimensional symmetry groups: Let
T ∈ A⊗B⊗C be A-concise. LetGT be the symmetry group of T and letBT ⊂ GT be
a Borel subgroup. Let Gr(t, A∗) denote the Grassmannian of codimension t-planes
in A∗. Note that BT acts on Gr(t, A∗) so it makes sense to discuss its Borel fixed
elements. Then

R(T ) ≥ minA′∈Gr(t,A∗),Borel fixed R(T |A′⊗B∗⊗C∗) + t . (3)

This enables one to prove border rank lower bounds on T by proving border rank
lower bounds via known equations on the restrictions of T to all Borel fixed elements
of the Grassmannian Gr(t, A∗). In [11] W. Buczyńska and J. Buczyński introduced
Border apolarity, which generalizes the classical apolarity for rank to border rank,
and V SP which generalizes the Variety of Sums of Powers (VSP, see, e.g., [41]) for
rank decompositions to border rank decompositions.

2.2 Border Apolarity

If one has a border rank decomposition T = limε→0
∑r

j=1 Tj (ε), for each ε > 0, one
obtains an ideal of polynomials in the coordinate ring of the Segre Seg(PA×PB×PC)

vanishing on the r points [T1(ε)] � · · · � [Tr (ε)]. These are ideals in three sets of
variables (those of A, B,C), and since border rank decompositions only utilize a
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finite number of terms in the Taylor expansion of the Tj (ε), one may assume that for
all ε > 0, the r points are in general position by modifying the higher order terms in
the series. This has the effect that in each multi-degree Istu,ε ⊂ Ss A∗⊗St B∗⊗SuC∗
has codimension r for all s + t + u > 1. Thus for each s, t, u there is a limiting
Istu ∈ Gr(r , Ss A∗⊗St B∗⊗SuC∗). Moreover, generalizing (3), one may assume that
each of the Istu is Borel fixed. By results from [26] these limiting spaces fit together
to form an ideal. In particular the ideal annihilates T , which in practice means I110 ⊆
T (C∗)⊥, I101 ⊆ T (B∗)⊥, I011 ⊆ T (A∗)⊥ and I111 ⊂ T⊥. Moreover, since ideals are
closed under multiplication, the image of the direct sum of the three multiplication
maps

Is−1,t,u⊗A∗ ⊕ Is,t−1,u⊗B∗ ⊕ Is,t,u−1⊗C∗ → Ss A∗⊗St B∗⊗SuC∗,

must be contained in Istu . In particular the image must have codimension at least r ,
which translates to rank conditions on the map. Call the map the (stu)-map and the
rank condition the (stu)-test.

Write Estu = I⊥
stu . It will be convenient to phrase the codimension tests dually:

Proposition 2.1 [20, Prop. 3.1] The (210)-test is passed if and only if skew-
symmetrization map

A⊗E110 → �2A⊗B (4)

has kernel of dimension at least r . The kernel is (A⊗E110) ∩ (S2A⊗B).
The (stu)-test is passed if and only if the triple intersection

(Es,t,u−1⊗C) ∩ (Es,t−1,u⊗B) ∩ (Es−1,t,u⊗A) (5)

has dimension at least r .

We will make repeated use of the following lemma:

Lemma 2.2 (Fixed ideal Lemma [11]) If T has symmetry group GT and there exists
an ideal as above, then there exists an ideal as above that is fixed under the action of a
Borel subgroup of GT which we will denote BT . In particular, if GT contains a torus
and there exists such an ideal, then there exists one fixed under the action of the torus.

Border apolarity provides both lower bounds and a guide to proving upper bounds.
For example, the (111) space for Tskewcw,q described in the proof of Theorem 1.3 hints
at the formula (57), where the terms linear in t appear in the (111) space.

2.3 Challenges Facing Border Apolarity

In modern algebraic geometry the study of geometric objects (algebraic varieties) is
replaced by the study of the ideal of polynomials that vanish on a variety. The study of a
set of r points {z1, . . . , zr } in affine spaceC

N is replaced by the study of its ideal, more
precisely the quotient C[x1, . . . , xN ]/Iz1�···�zr where C[x1, . . . , xN ] is the ring of all
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polynomials on C
N and Iz1�···�zr is the ideal. Note that ring C[x1, . . . , xN ]/Iz1�···�zr

is a vector space of dimension r , called the coordinate ring of the variety. (In our case
we will be concerned with r points on the Segre variety Seg(PA × PB × PC) but
the issues about to be discussed are local and there is no danger working in affine
space.) The study becomes one of such rings, and one no longer requires them to
correspond to ideals of points, only that the vector space has dimension r and that
the ideal is saturated. Such ideals are called zero dimensional schemes of length r . If
the ideal corresponds to r distinct points one says the scheme is smooth. A central
challenge of border apolarity as a tool in the study of border rank, is that applied
naïvely, it only determines necessary conditions for a not necessarily saturated ideal
to be the limit of a sequence of such ideals. One could split the problem of detecting
non-border rank ideals into two: first, just get rid of the ideals that are not limits of
ideals of zero dimensional schemes, then, given an ideal that is a limit of ideals of
zero dimensional schemes of length r , determine if it is a limit of ideals of smooth
schemes (smoothability conditions). In this paper we address the first problem and the
new additional necessary conditions we obtain (Proposition 2.5) are enough to enable
us to determine R(T�2

cw,2) via border apolarity. In Sect. 2.6 we show that ideals that
fail to deform to saturated ideals occur already for quite low border rank. The second
problem is ongoing work with J. Buczyński and his group in Warsaw.

The second problem is a serious issue: The cactus rank [10, 11] of a tensor T is
the smallest r such that T lies in the span of a zero dimensional scheme of length r
supported on the Segre variety. The cactus border rank of T , CR(T ) is the smallest
r such that T is a limit of tensors of cactus rank r . One has R(T ) ≥ CR(T ) and for
almost all tensors the inequality is strict. The (stu) tests are tests for cactus border rank.
Cactus border rank is not known to be relevant for complexity theory, thus the failure of
current border apolarity technology to distinguish between them is a barrier to future
progress. Moreover, the cactus variety fills the ambient space of P(Cm⊗C

m⊗C
m) at

latest border rank 6m − 4, see [25, Ex. 6.2 case k = 3].

2.4 Viability and the Flag Conditions

We begin in the general context of secant varieties with a preliminary observation:
For a projective variety X ⊂ P

N , define its variety of secant P
r−1’s,

σr (X) :=
⋃

x1,...,xr∈X
〈x1, . . . , xr 〉.

Proposition 2.3 Let X ⊂ PV be a projective variety and let PE ⊂ σr (X) be a P
r−1.

Then there exists a complete flag E1 ⊂ E2 ⊂ · · · ⊂ Er = E such that for all
1 ≤ j ≤ r , PE j ⊂ σ j (X).

Proof We may write E = limt→0〈x1(t), . . . , xr (t)〉 where x j (t) ∈ X and the limit
is taken in the Grassmannian G(r , V ) (in particular, for all t �= 0 we may assume
x1(t), . . . , xr (t) are linearly independent). Then take E j = limt→0〈x1(t), . . . , x j (t)〉
where the limit is taken in the Grassmannian G( j, V ). ��
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Let T ∈ A⊗B⊗C and let Estu be an r -dimensional space that is I⊥
stu for a multi-

graded ideal that passes all border apolarity tests up to total degree s + t + u + 1.

Definition 2.4 A multi-graded ideal, or an Estu , associated to a potential border rank
decomposition of T is viable if it arises from an actual border rank decomposition.

Viability implies PEstu ⊂ σr (Seg(vs(PA)×vt (PB)×vu(PC))). Here vs : PA →
P(Ss A) is the Veronese re-embedding, vs([a]) = [as].

To a c-dimensional subspace E ⊂ A⊗B, one may associate a tensor T ∈
A⊗B⊗C

c, well-defined up to isomorphism, such that T (Cc∗) = E . Much of the
lower bound literature exploits this correspondence to reduce questions about tensors
to questions about linear subspaces of spaces of matrices. (This idea appears already
in [49].) The following proposition exploits this dictionary to obtain new conditions
for viability of candidate Estu’s:

Proposition 2.5 (Flag conditions) If E110 is viable, then there exists a BT -fixed filtra-
tion of E110, F1 ⊂ F2 ⊂ · · · ⊂ Fr = E110, such that Fj ⊂ σ j (Seg(PA × PB)). Let
Tj ∈ A⊗B⊗C

j be a tensor equivalent to the subspace Fj . Then R(Tj ) ≤ j .
Similarly, if Estu is viable, there are complete flags in Estu, A, B,C such that for all

j < m, Estu, j ⊂ Ss A j⊗St B j⊗SuC j and for all j ≤ r , PEstu, j ⊂ σ j (Seg(vs(PA)×
vt (PB) × vu(PC))).

Proof Set Ĉ = C ⊕ C
r−m . Then there exists T̂ ∈ A⊗B⊗Ĉ such that T̂ (Ĉ∗) = E110

and R(T̂ ) ≤ r . In this case the flag condition [31, Cor. 2.3] implies that since T̂ ∈
A⊗B⊗Ĉ = C

m⊗C
m⊗C

r with r ≥ m is concise ofminimal border rank r , there exists
a complete flag C1 ⊂ C2 ⊂ · · · ⊂ Cr = Ĉ∗ such that T̂ (Ck) ⊂ σk(Seg(PA × PB)).
Take Fk = T̂ (Ck). The proof that the flag may be taken to be Borel fixed is the same
as in the Fixed ideal lemma.

The second assertion follows from the preceding discussion. ��
Proposition 2.5 provides additional conditions Estu must satisfy for viability beyond

the border apolarity tests. It allows one to utilize the known conditions for minimal
border rank in a non-minimal border rank setting.

When Tj is concise, Proposition 2.5 is quite useful as there are many known con-
ditions for concise tensors to be of minimal border rank. In particular it must have
symmetry Lie algebra of dimension at least 2 j − 2 and if it is 1C j -generic (for any of
the factors), it must satisfy the End-closed condition (see [31]).

Remark 2.6 Proposition 2.5 also applies to cactus border rank decompositions, so it is
a “non-deformable to saturated” removal condition rather than a smoothability one.

By the classification of tensors of border rank at most three [12, Thm. 1.2(iv)] the
possibilities for the first two filtrands of E110 are F1 = 〈a⊗b〉, F2a = 〈a⊗b, a′⊗b′〉
or F2b = 〈a⊗b, a⊗b′ + a′⊗b〉 corresponding to either two distinct rank one points
or a rank one point and a tangent vector, and there are five possibilities for F3:

(1) F3aa = 〈a⊗b, a′⊗b′, a′′⊗b′′〉 (three distinct points)
(2) F3aab = 〈a⊗b, a⊗b′ + a′⊗b, a′′⊗b′′〉 (two points plus a tangent vector to one of

them)
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(3) F3bc = 〈a⊗b, a⊗b′ + a′⊗b, a′′⊗b + a′⊗b′ + a⊗b′′〉 (points of the form
x(0), x ′(0), x ′′(0) for a curve x(t) ⊂ Seg(PA × PB))

(4) F3abb = 〈a⊗b, a⊗b′ + a′⊗b, a⊗b′′ + a′′⊗b〉 (point plus two tangent vectors)
(5) F3bd = 〈a⊗b, a⊗b′, a′⊗b + a′′⊗b′ + a⊗b′′〉 (sum of tangent vectors to two

colinear points x ′+ y′) or its mirror F3bd = 〈a⊗b, a′⊗b, a⊗b′+a′⊗b′′+a′′⊗b〉.
The space E110 contains a distinguished subspace T (C∗). Write E ′

110 for a choice
of a complement to T (C∗) in E110.

Corollary 2.7 If E110 is viable and PT (C∗) ∩ σk(Seg(PA × PB)) = , then there
exists a choice of E ′

110 such that Fk ⊂ E ′
110.

Proof Say otherwise, then there exists M ∈ Fk ∩ T (C∗). This contradicts T (C∗) ∩
σk(Seg(PA × PB)) = . ��

The following Corollary originally appeared in [8, Cor. 4.2]:

Corollary 2.8 If PT (C∗) ∩ σq(Seg(PA × PB)) = , then R(T ) ≥ m + q.

Although we have stronger lower bounds, Corollary 2.8 provides the following “for
free”:

Corollary 2.9 For all k, R(T�k
cw,2) ≥ 3k + 2k − 1 and R(T�k

skewcw,2) ≥ 3k + 2k − 1.

The first assertion originally appeared in [8].

Proof Let iα, jβ ∈ {1, 2, 3}. Then

T�k
cw,2(C

∗) = 〈
∑

σ∈Zk
2

σ · (ai1,...,ik⊗b j1,..., jk ) | iα �= jα∀1 ≤ α ≤ k〉

and the action of σ is by swapping indices. This transparently is of rank bounded
below by 2k . The case of T�k

skewcw,2 is the same except that the coefficients appear with
signs. ��

2.5 Free, Pure andMixed Kernels

Define three types of contribution to the kernel of the (210)-map for a given choice of
E ′
110: the free kernel

k′
f := dim[(T (C∗)⊗A) ∩ (S2A⊗B)],

the pure kernel

k′
p = dim[(A⊗E ′

110) ∩ (S2A⊗B)],

and the mixed kernel

k′
m = dim[(A⊗E110) ∩ (S2A⊗B)] − k′

p − k′
f ,
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corresponding to elements of the kernel arising from linear combinations of elements
of A⊗E ′

110 and A⊗T (C∗). In this language, E ′
110 passes the (210) test if and only if

k′
p + k′

m ≥ r − k′
f . Define corresponding k′′

p, k
′′
m for the (120)-test.

Conjecture 2.10 If r > m and E110 is such that k′
m, k′′

m = 0, then it is not viable.

Intuitively, if E ′
110 never “sees” the tensor, it should not be viable.

2.6 Limitations of the Total Degree 3 Border Apolarity Tests

Proposition 2.11 Let m ≥ 9, but m �= 10, 15. Then for any tensor in C
m⊗C

m⊗C
m,

there are candidate ideals passing all degree three tests for border rank at most r
when r ≥ 2m.

More generally, setting r = m + k2, there are candidate ideals in total degree

two passing all degree three tests once m ≤ k3
2 − k2

2 . In particular, for all ε > 0,

r ≥ m + m
1
3+ε , and m sufficiently large, there are such candidate ideals.

Proof For the first assertion, it suffices to prove the case r = 2m and the tensor T
is concise. Set k = �√m�, t = k + �m−k2

2 �, and t ′ = k + �m−k2
2 �. Take E ′

110 =
〈a1, . . . , ak〉⊗〈b1, . . . , bk〉 + 〈ak+1, . . . , at ′ 〉⊗b1 + a1⊗〈bk+1, . . . , bt 〉 and similarly
for the other spaces. Then

(E110⊗A) ∩ (S2A⊗B) ⊇
S2〈a1, . . . , ak〉⊗〈b1, . . . , bk〉 ⊕ 〈ak+1, . . . , at ′ 〉 · 〈a1, . . . , ak〉⊗b1

⊕ S2〈ak+1, . . . , at ′ 〉⊗b1 + a⊗2
1 ⊗〈bk+1, . . . , bt 〉.

This has dimension
(k+1

2

)
k + (t ′ − k)k + (t ′−k+1

2

) + (t − k) which is at least 2m in
the specified range. (The only value greater than 8 the inequality fails for is m = 10.)
Similarly the (120) test is passed at least as easily. Finally

(E110⊗C) ∩ (E101⊗B) ∩ (E011⊗A) ⊇ 〈a1, . . . , ak〉
⊗〈b1, . . . , bk〉⊗〈c1, . . . , ck〉 ⊕ 〈T 〉

which has dimension k3 + 1 which is at least 2m in the range of the proposition. (The
only value greater than 8 the inequality fails for is m = 15.)

The second assertion follows with the same E ′
110, taking r = m + k2 and t, t ′ = 0.

��

Example 2.12 For T�3
cw,2 it is easy to get E ′

110 of dimension 21 (so for border rank
48 < 63) that pass the (210) and (120) tests. Take E ′

110 spanned by rank one basis
vectors such that the associated Young diagram is a staircase. Then k′

p = k′′
p =

1(6) + 2(5) + 3(4) + 4(3) + 5(2) + 6(1) = 56 > 48.
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3 Moduli and Submultiplicativity

3.1 Moduli Spaces VSP

Following [11], define VSP(T ) to be the set of ideals as in Sect. 2.2 arising from a
border rankR(T ) decomposition of T . (In the notation of [11] this is VSP(T ,R(T )).)
Since for zero dimensional schemes of a fixed length there is a uniform bound on
degrees of generators of their ideals, this is a finite dimensional variety which naturally
embedds in a product of Grassmannians.

A more classical object also of interest is VSPA⊗B⊗C (T ) ⊂ G(R(T ), A⊗B⊗C),
which just records the R(T )-planes giving rise to a border rank decomposition,
i.e., the annihilator of the (111)-component of the ideals in VSP(T ). In particular
dim(VSPA⊗B⊗C (T )) ≤ dim(VSP(T )).

It will be useful to state the following result in a more general context: Let X ⊂
PV be a variety not contained in a hyperplane, assume σr−1(X) �= PV and write
dim σr (X) = r dim(X) + r − 1 − δ. Consider the incidence correspondence

Sr (X) = {((x1, . . . , xr ), y, V ) ∈ X×r × PV × G(r , V ) | y ∈ 〈x1, . . . , xr 〉 ⊆ V },

and its projection maps

Sr (X)

↙ ↘
G(r , V ) σr (X).

Call the projections πG , πσ . We have dim Sr (X) = r dim(X) + r − 1 so for y ∈
σr (X)general , dim(π−1

σ (y)) = δ.
Define VSPX ,PV (y) := πGπ−1

σ (y). When X = Seg(PA× PB × PC), y = T , and
V = A⊗B⊗C , this is VSPA⊗B⊗C (T ).

Proposition 3.1 For all y ∈ σr (X), dim VSPX ,PV (y) ≥ δ.

Proof By [17] dim πG(Sr (X)) = r dim(X), soπG generically has (r−1)-dimensional
fibers, which correspond to the choice of a point in the r -plane. This implies that
πG |πσ

−1(y) is finite to one. Since dim π−1
σ (y) ≥ δ we conclude. ��

Corollary 3.2 A border rank five tensor T ∈ C
3⊗C

3⊗C
3 has dim VSPA⊗B⊗C (T ) ≥

8.

Proof dim σ5(Seg(P2 × P
2 × P

2)) = 26 [49]. ��
Remark 3.3 In this case, by [53] T also has rankfive and thus dim V SPA⊗B⊗C (T ) ≥ 8,
where V SPA⊗B⊗C (T ) is the variety of rank decompositions.

A similar argument shows:

Proposition 3.4 LetOs,t,u bea smallest dimensionalGT -orbit inP(Ss A⊗St B⊗SuC).
Then for all (s, t, u), dim VSP(T ) ≥ dimOs,t,u.
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3.2 How to Find Good Tensors for the Laser Method?

The utility of a tensor T ∈ A⊗B⊗C for the laser method is bounded above by the
ratio of its cost, which is the asymptotic rank R

�
(T ) := limN→∞[R(T�N )]1/N , and

its value, which is its asymptotic subrank Q
�
(T ) := limN→∞[Q(T�N )]1/N . See [16]

for a discussion, where the ratio of their logs is called the irreversibility of T . Here
Q(T ) is the maximum q such that M⊕q

〈1〉 ∈ GL(A) × GL(B) × GL(C) · T , where
M⊕q

〈1〉 is the so-called unit tensor. In bases, M⊕q
〈1〉 = ∑q

j=1 a j⊗b j⊗c j . Unless a tensor
is of minimal border rank, we only can estimate the asymptotic rank of a tensor by
computing its border rank and the border rank of its small Kronecker powers.

There are several papers regarding the search for tensors that give good upper
bounds on ω in the laser method:

Papers on barriers may be interpreted as describing where not to look for good
tensors: [1, 2, 4, 16] discuss limits of the laser method for various types of tensors and
various types of implementations.

A program to utilize algebraic geometry and representation theory to find good
tensors for the laser method was initiated in [18, 31].

Here we describe a more modest goal: determine criteria that indicate (or even
guarantee) that border rank is strictly sub-multiplicative under the Kronecker square.

To our knowledge, the first example of a non-minimal border rank tensor that
satisfiedR(T�2) = R(T )2 was given in [19]: the smallCoppersmith–Winograd tensor
Tcw,q for q > 2 and in this paper we show equality also holds when q = 2. This shows
that tight tensors need not exhibit strict submultiplicativity. Several examples of strict
submultiplicativity were known previous to this paper: the 2×2 matrix multiplication
tensor M〈2〉 ∈ C

4⊗C
4⊗C

4,R(M〈2〉) = 7 [29] whileR(M�2〈2〉 ) ≤ 46 [47]. The tensors

of [15] have a drop of one, a generic tensor T ∈ C
3⊗C

3⊗C
3 satisfiesR(T ) = 5 while

R(T�2) ≤ 22 [19], and R(Tskewcw,2) = 5 while R(T�2
skewcw,2) = 17 [19, 20].

3.3 VSP and Strict Submultiplicativity

All the strict submultiplicativity examples have positive dimensional VSP. This is
attributable to the degeneracy of σ4(Seg(P2 × P

2 × P
2)) for the generic tensors

in C
3⊗C

3⊗C
3, and to the large symmetry groups for the other cases: If a tensor

T ∈ A⊗B⊗C has a positive dimensional symmetry group GT and GT does not
have a one-dimensional submodule in each of A⊗B, A⊗C , B⊗C , A⊗B⊗C , then
dim(VSP(T )) > 0 because any ideal in the GT -orbit closure of an ideal of a border
rank decomposition for T will give another border rank decomposition.

It would be too much to hope that a concise tensor T not of minimal border rank
satisfying dimVSP(T ) > 0 also satisfies R(T�2) < R(T )2. Consider the following
example:LetT = T1⊕T2 with theTj in disjoint spaces,whereT1 has non-minimal bor-
der rank anddim VSP(T1) = 0 andT2 hasminimal border rankwith dim VSP(T2) > 0.
Then there is no reason to believe T�2 should have strict submultiplicativity.

It is possible that the converse holds: that strict submultiplicativity under the Kro-
necker square implies a positive dimensional VSP.
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It might be useful, following [15] to split the submultiplicativity question into
two questions: first to determine if the usual tensor square is submultiplicative and
then if the border rank of the Kronecker square is less than the border rank of the
tensor square. Note that in general, assuming non-defectivity, for a projective vari-
ety X ⊂ PV of dimension N , σR−1(X) has codimension N + 1 in σR(X). In our
case R = r2 and in the tensor square case N = 6m − 6, and in the Kronecker
square case N = 3m2 − 3. A priori, for T ∈ C

m⊗C
m⊗C

m of border rank r ,
T⊗2 ∈ σr2(Seg(P

(m−1)×6)) and submultiplicativity is a codimension 6m − 5 condi-
tion, whereas T�2 ∈ σr2(Seg(P

(m2−1)×3)) and submultiplicativity is a codimension
3m2 − 2 condition. Despite this, the second condition is weaker than the first.

4 Koszul Flattening Lower Bounds

The best general technique available for border rank lower bounds are Koszul flatten-
ings [33, 35].

Fix an integer p. Given a tensor T = ∑
i jk T

i jkai ⊗ b j ⊗ ck ∈ A ⊗ B ⊗ C , the
p-th Koszul flattening of T on the space A is the linear map

T∧p
A : �p A⊗B∗ → �p+1A⊗C

X⊗β �→ ∑
i jkT

i jkβ(b j )(ai ∧ X)⊗ck .

Then [33, Proposition 4.1.1] states

R(T ) ≥ rank(T∧p
A )

(dim(A)−1
p

) . (6)

The best lower bounds for any given p are obtained by restricting T to a generic 2p+1
dimensional subspace of A∗ so the denominator becomes

(2p
p

)
.

Theorem 4.1 The followingborder rank lower bounds are obtained by applyingKoszul
flattenings to a restriction of the tensor to a sufficiently generic C

2p+1⊗B⊗C ⊂
A⊗B⊗C. Values of p that give the bound are in parentheses.

(1) R(T�2
skewcw,4) ≥ 39 (p = 2, 3, 4)

(2) R(T�2
skewcw,6) ≥ 70 (p = 2, 3, 4)

(3) R(T�2
skewcw,8) ≥ 110 (p = 4)

(4) R(T�2
skewcw,10) ≥ 157 (p = 4)

(5) R(T�3
skewcw,2) ≥ 49 (p = 4)

(6) R(T�3
skewcw,4) ≥ 219 (p = 3)

(7) R(T�3
skewcw,6) ≥ 550 (p = 3)

(8) R(T�3
skewcw,8) ≥ 1089 (p = 3)

(9) R(T�3
skewcw,10) ≥ 1886 (p = 3).
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Better lower bounds for the larger cases are potentially possible, if not easily acces-
sible, using larger values of p.

Compare these with the values for the small Coppersmith–Winograd tensor from
[19]:

(1) R(T�2
cw,4) = 36

(2) R(T�2
cw,6) = 64

(3) R(T�2
cw,8) = 100

(4) R(T�2
cw,10) = 144

(5) R(T�3
cw,4) ≥ 180

(6) R(T�3
cw,6) = 512

(7) R(T�3
cw,8) = 1000

(8) R(T�3
cw,10) = 1728.

Note that R(T�4
cw,q) ≤ (q + 2)4 and that R(T�4

skewcw,q) is at least the estimate in
Proposition 4.1 times q + 1 by [19, Prop. 4.2]. Based on this, it is possible as of this
writing that R(T�4

skewcw,q) ≤ R(T�4
cw,q) for q = 2, 6, 8.

5 Proof of Theorem 1.1 that R(perm3) = 16

The upper bound follows as R(Tcw,2) = 4.
For the lower bound, we prove there is no E110 ⊂ A⊗B of dimension 15 spanned

by weight vectors (i.e., fixed by the torus actionBperm3
) that satisfies the flag condition

and passes the (210) and (120) tests.
Our argument proceeds by first proving general results about linear combinations

of weight vectors from A⊗ perm(C∗) with other weight vectors in A⊗(A⊗B) lying
in the Bperm3

complement of A⊗ perm(C∗). We then list all such combinations that
could potentially arise in some viable E110. We conclude by showing that no choice of
E110 will pass both the (210) and (120) tests. Our argument is facilitated by assuming
some type of element is in the kernel, then observingwhat kind of flagwould be needed
to have such an element. Often the first few steps of the flag give enough information
to eliminate the element from consideration.

5.1 General Results About the Kernel

In what follows, {i, j, k} = {1, 2, 3}, {i ′, j ′, k′} = {1, 2, 3}, and s, t, s′, t ′ ∈ {1, 2, 3}
but we do not require these to be distinct from other indices.

With this notation and the terms on the right hand side running over all possible
indices

perm3(C
∗) = 〈aii ′⊗b j

j ′ + a j
i ′⊗bij ′ + aij ′⊗b j

i ′ + a j
j ′⊗bii ′ 〉.
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Thus perm3(C
∗) ∩ σ3 = . Observe that κ f = 1 as

(perm3(C
∗)⊗A) ∩ (S2A⊗B) = 〈

∑
akk′⊗(aii ′⊗b j

j ′ + a j
i ′⊗bij ′ + aij ′⊗b j

i ′ + a j
j ′⊗bii ′)〉.

Remark 5.1 In general, for any symmetric tensor T , κ f ≥ 1 due to the copy of T in
S3A ⊂ S2A⊗B.

The possible weights of elements in A⊗B are (200)(200), (110)(110), (200)(110)
and their permutations under the action of (S3 × S3) � Z2. We will say an element
has type (xyz)(pqr) if its weight is in the (S3 × S3) � Z2-orbit of (xyz)(pqr).

The flag condition implies any potential E110 must include a flag E1 ⊂ E2 ⊂ E3 ⊂
· · · ⊂ E110 with dim E j = j and E j contained in some A j⊗Bj where dim A j =
dim Bj = j . Moreover E1, E2, E3 must be in (a choice of) E ′

110.
All weight vectors of type (200)(200) have rank one, these are of the form aii ′⊗bii ′ .

Vectors of type (200)(110) have rank one or two, those of rank one are of the form
aii ′⊗bik′ and vectors of type (110)(110) have rank at most four, the rank one vectors

among them are of the form aii ′⊗b j
j ′ .

Given the first step, we could get the second step either by adding another rank one
weight vector, or taking a tangent vector to a rank one weight vector.

The rank two weight vectors tangent to a rank one element of type (200)(200),
which we may write as a j

j ′⊗b j
j ′ , are up to scale a

j
j ′⊗b j

k′ +Ka j
k′⊗b j

j ′ , for some K �= 0,

or its Z2-image, which are of type (200)(110) or a j
j ′⊗bkk′ + Kakk′⊗b j

j ′ , which are of
type (110)(110).

No rank two vector tangent to a rank one element of type (110)(110) is a weight
vector.

The rank two weight vectors tangent to a rank one element of type (200)(110),
e.g., aii ′⊗bik′ , are of the form aii ′⊗bkk′ + Kaki ′⊗bik′ for some K �= 0, and they are of
type (110)(110).

Let 
 = Z2 × Z2 and 
 · a j
j ′⊗bkk′ = a j

j ′⊗bkk′ + a j
k′⊗bkj ′ + akj ′⊗b j

k′ + akk′⊗b j
j ′ . In

what follows underlined terms are elements of E ′
110. The group Gperm3

allows us to
unambiguously define the elements of E ′

110 except those of type (110)(110).
The twoways to add to a monomial a⊗a′⊗b to get an element in S2A⊗B are either

to send it to zero by subtracting a⊗(a′⊗b), which we will refer to as cancellation or
to symmetrize it by adding a′⊗(a⊗b), which we call symmetrization.

Lemma 5.2 Only a type (110)(110) element can be used for a cancellation of an
element of A⊗ perm3(C

∗). No element can be used in more than four symmetrizations
of an element of A⊗ perm3(C

∗). An element of rank greater than one can be used in
at most two symmetrizations of an element of A⊗ perm3(C

∗).

Proof The first assertion is obvious. For the second, if we have some ast ⊗bii ′ , then this

can be used to symmetrize a term in any of ast ⊗(
 ·a j
j ′⊗bii ′), four such, but no others.

An element of rank greater than one such as atj ′⊗bii ′ + ati ′⊗bij ′ can symmetrize a term

in atj ′⊗(
 · a j
k′⊗bii ′) + ati ′⊗(
 · a j

k′⊗bij ′), and one such as a
t
j ′⊗b j

i ′ + ati ′⊗bij ′ can only

symmetrize a term in atj ′⊗(
 · akk′⊗bii ′) + ati ′⊗(
 · akk′⊗bij ′). ��
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We use a basic fact from exterior differential systems (the easy part of Cartan’s test)
[28, Prop. 4.5.3]: Here we work with general A, B = C

m . Let A1 ⊂ A2 ⊂ · · · ⊂ Am

be a generic flag in A (generic in the sense that s1 below is maximized, and having
maximized s1, s2 is maximized etc..). Let s1 be the dimension of the projection of
E ′
110 to A1⊗B. Define s2 by s1 + s2 is dimension of the projection of E ′

110 to A2⊗B,
set s1 + s2 + s3 to be the dimension of E ′

110 projected to A3⊗B etc.. Then

dim(S2A⊗B) ∩ (A⊗E ′
110) ≤ s1 + 2s2 + · · · + msm . (7)

In particular, k′
p ≤ s1 + 2s2 + · · · + msm . If equality holds in (7), we will say E ′

110
is A-involutive.

Define the mixed price of a space E ′
110 to be 15 − k′

p. In particular,

• The mixed price is at least 8 if s1 ≥ 6,
• The mixed price is at least 7 if s1 ≥ 5,
• The mixed price is at least 5 if s1 ≥ 4.

A necessary condition for an E ′
110 to be a candidate is that k′

m must be at least the
mixed price.

Define the flag cost of a weight vector in E ′
110 to be the length of the smallest

admissible flag that contains the weight vector.
The flag cost of a weight vector of type (110)(110) is its rank, but it need not be

realized via rank one (110)(110) elements.

5.2 Elements in the Kernel withWeight of Type (210)(210)

Lemma 5.3 If a weight vector in the kernel of the 210-map is of type (210)(210), then
without loss of generality it involves only one element of A∗⊗ perm(C∗).

Proof Assume we have such an element a j
j ′⊗(
 · aii ′⊗b j

j ′). Then the three terms that
need to be canceled or symmetrized cannot be dispensed with by another element of
A∗⊗ perm3(C

∗), because it would have to have the same weight, namely there would
have to appear superscripts j, j, i and subscripts j ′, j ′, i ′, but this is the only element
of A∗⊗ perm3(C

∗) with that weight. Similarly, any term of E ′
110 that is used to cancel

or symmetrize a term of a j
j ′⊗(
 · aii ′⊗b j

j ′) cannot cancel or symmetrize any other
monomial in any other element of A∗⊗ perm3(C

∗) again by weight considerations. ��
Now we enumerate all such potential elements of the kernel:
To obtain an element of the kernel from a j

j ′⊗(
 · aii ′⊗b j
j ′) we may add any of the

following terms:

− a j
j ′⊗(aii ′⊗b j

j ′ + aij ′⊗b j
i ′ + a j

i ′⊗bij ′ + La j
j ′⊗bii ′), (8)

− a j
j ′⊗(aii ′⊗b j

j ′ + aij ′⊗b j
i ′ + La j

j ′⊗bii ′) + a j
i ′⊗(a j

j ′⊗bij ′), (9)

− a j
j ′⊗(a j

i ′⊗bij ′ + aij ′⊗b j
i ′ + La j

j ′⊗bii ′) + aii ′⊗(a j
j ′⊗b j

j ′), (10)
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+ aii ′⊗(a j
j ′⊗b j

j ′) + aij ′⊗(a j
j ′⊗b j

i ′) − a j
j ′⊗(a j

i ′⊗bij ′ + La j
j ′⊗bii ′), (11)

− a j
j ′⊗(aii ′⊗b j

j ′) + aij ′⊗(a j
j ′⊗b j

i ′ + Ka j
i ′⊗b j

j ′) + a j
i ′⊗(a j

j ′⊗bij ′ + Kaij ′⊗b j
j ′),

(12)

+ aii ′⊗(a j
j ′⊗b j

j ′) + aij ′⊗(a j
j ′⊗b j

i ′ + Ka j
i ′⊗b j

j ′) + a j
i ′⊗(a j

j ′⊗bij ′ + Kaij ′⊗b j
j ′).

(13)

The first term consists of pure cancellations, the second and third have one sym-
metrization, respectively using an element of type (200)(110) and (200)(200) for the
symmetrization, the next two use two symmetrizations. The last symmetrizes all three
terms, two elements of type (200)(110) and one of type (200)(200) appear in the
symmetrizations.

Note that if we use any one of these to obtain an element of the mixed kernel, we
cannot use a second, as the difference of two such terms is an element of the pure
kernel.

5.3 Elements in the Kernel withWeight of Type (210)(111)

If an element of the kernel of the 210-map is of type (210)(111), say it involves aik′⊗(
·
aii ′⊗b j

j ′) ∈ A⊗ perm3(C
∗), then, by weight considerations, there are two additional

elements that could efficiently appear in the same element, namely aij ′⊗(
 · aii ′⊗b j
k′)

and aii ′⊗(
 · aik′⊗b j
j ′).

5.3.1 Case: One Basis Element of A⊗ perm3(C∗) Appears

We obtain four terms to be canceled or symmetrized, and at least one must be sym-
metrized. The possibilities for the kernel element by adding to aik′⊗(
 · aii ′⊗b j

j ′) are
any of the following:

− aik′⊗(aii ′⊗b j
j ′ + aij ′⊗b j

i ′ + a j
i ′⊗bij ′) + a j

j ′⊗aik′⊗bii ′ , (14)

− aik′⊗(aii ′⊗b j
j ′ + a j

j ′⊗bii ′ + a j
i ′⊗bij ′) + aij ′⊗aik′⊗b j

i ′ , (15)

− aik′⊗(aii ′⊗b j
j ′ + aij ′⊗b j

i ′) + a j
i ′⊗aik′⊗bij ′ + a j

j ′⊗aik′⊗bii ′ , (16)

− aik′⊗aii ′⊗b j
j ′ + aij ′⊗aik′⊗b j

i ′ + a j
i ′⊗aik′⊗bij ′ + a j

j ′⊗aik′⊗bii ′ , (17)

+ aii ′⊗aik′⊗b j
j ′ + aij ′⊗aik′⊗b j

i ′ + a j
i ′⊗aik′⊗bij ′ + a j

j ′⊗aik′⊗bii ′ . (18)

5.3.2 Two Elements Appear

Without loss of generality, we take them to be aik′⊗(
 ·aii ′⊗b j
j ′) and a

i
j ′⊗(
 ·aii ′⊗b j

k′).
Then one symmetrization occurs among the 8 basis vectors in the expression, leaving
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six, and to send the element to the kernel we have the following possibilities to add to
aik′⊗(
 · aii ′⊗b j

j ′) + aij ′⊗(
 · aii ′⊗b j
k′):

− aik′⊗(a j
j ′⊗bii ′ + aii ′⊗b j

j ′ + a j
i ′⊗bij ′) − aij ′⊗(a j

k′⊗bii ′ + aii ′⊗b j
k′ + a j

i ′⊗bik′), (19)

− aik′⊗(aii ′⊗b j
j ′ + a j

i ′⊗bij ′) − aij ′⊗(a j
k′⊗bii ′ + aii ′⊗b j

k′ + a j
i ′⊗bik′) + a j

j ′⊗aik′⊗bii ′ , (20)

− aik′⊗a j
i ′⊗bij ′ − aij ′⊗(a j

k′⊗bii ′ + aii ′⊗b j
k′ + a j

i ′⊗bik′) + a j
j ′⊗aik′⊗bii ′ + aii ′⊗aik′⊗b j

j ′ ,

(21)

− aik′⊗(aii ′⊗b j
j ′ + a j

i ′⊗bij ′) − aij ′⊗(aii ′⊗b j
k′ + a j

i ′⊗bik′) + a j
j ′⊗aik′⊗bii ′ + a j

k′⊗aij ′⊗bii ′ ,

(22)

+ aii ′⊗(aik′⊗b j
j ′ + aij ′⊗b j

k′) + a j
i ′⊗(aik′⊗bij ′ + aij ′⊗bik′) − aik′⊗a j

j ′⊗bii ′ − aij ′⊗a j
k′⊗bii ′ ,

(23)

+ aii ′⊗(aik′⊗b j
j ′ + aij ′⊗b j

k′) + a j
i ′⊗(aik′⊗bij ′ + aij ′⊗bik′) + a j

j ′⊗aik′⊗bii ′ − aij ′⊗a j
k′⊗bii ′ ,

(24)

+ aii ′⊗(aik′⊗b j
j ′ + aij ′⊗b j

k′) + a j
i ′⊗(aik′⊗bij ′ + aij ′⊗bik′) − aik′⊗a j

j ′⊗bii ′ + a j
k′⊗aij ′⊗bii ′ ,

(25)

+ aii ′⊗(aik′⊗b j
j ′ + aij ′⊗b j

k′) + a j
i ′⊗(aik′⊗bij ′ + aij ′⊗bik′) + a j

j ′⊗aik′⊗bii ′ + a j
k′⊗aij ′⊗bii ′ .

(26)

5.3.3 All Three Terms Appear

aik′⊗(
 · aii ′⊗b j
j ′) + aij ′⊗(
 · aii ′⊗b j

k′) + aii ′⊗(
 · aik′⊗b j
j ′) may be sent to the kernel

by adding one of:

− aik′⊗(a j
i ′⊗bij ′ + a j

j ′⊗bii ′) − aii ′⊗(a j
k′⊗bij ′ + a j

j ′⊗bik′) − aij ′⊗(a j
k′⊗bii ′ + a j

i ′⊗bik′),

(27)

+ a j
j ′⊗(aik′⊗bii ′ + aii ′⊗bik′) + a j

k′⊗(aii ′⊗bij ′ + aij ′⊗bii ′) + a j
i ′⊗(aik′⊗bij ′ + aij ′⊗bik′).

(28)

If we use rank one elements we get larger expressions which are easily dispensed with.

5.4 Elements in the Kernel withWeight of Type (111)(111)

5.4.1 Cases with One Element

The possible terms to add to akk′⊗(
aii ′⊗b j
j ′) to send it to the kernel are:

+ aii ′⊗(akk′⊗b j
j ′) + a j

i ′⊗(akk′⊗bij ′) + aij ′⊗(akk′⊗b j
i ′) + a j

j ′⊗(akk′⊗bii ′), (29)
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− akk′⊗(aii ′⊗b j
j ′) + a j

i ′⊗(akk′⊗bij ′) + aij ′⊗(akk′⊗b j
i ′) + a j

j ′⊗(akk′⊗bii ′), (30)

− akk′⊗(aii ′⊗b j
j ′ + a j

j ′⊗bii ′) + a j
i ′⊗(akk′⊗bij ′) + aij ′⊗(akk′⊗b j

i ′), (31)

− akk′⊗(aii ′⊗b j
j ′ + a j

i ′⊗bij ′) + aij ′⊗(akk′⊗b j
i ′) + a j

j ′⊗(akk′⊗bii ′), (32)

− akk′⊗(aii ′⊗b j
j ′ + a j

i ′⊗bij ′ + aij ′⊗b j
i ′) + a j

j ′⊗(akk′⊗bii ′). (33)

5.4.2 Cases with Two Elements

One possible term to add to akk′⊗(
 · aii ′⊗b j
j ′) + aki ′⊗(
 · aik′⊗b j

j ′) to send it to the
kernel is:

aij ′⊗(akk′⊗b j
i ′ + aki ′⊗b j

k′) + a j
j ′⊗(akk′⊗bii ′ + aki ′⊗bkk′)

− akk′⊗(aii ′⊗b j
j ′ + a j

i ′⊗bij ′) − aki ′⊗(a j
k′⊗bij ′ + akk′⊗b j

j ′) (34)

All other possible terms arise by exchanging symmetrizations and cancellations, but
we will see such cannot be used.

Similarly, akk′⊗(
 ·aii ′⊗b j
j ′)+aii ′⊗(
 ·akk′⊗b j

j ′)may be sent to the kernel by adding
one of

− akk′⊗(aij ′⊗b j
i ′ + a j

i ′⊗bij ′ + a j
j ′⊗bii ′) − aii ′⊗(akj ′⊗b j

k′ + a j
k′⊗bkj ′ + a j

j ′⊗bkk′),

(35)

− akk′⊗(aij ′⊗b j
i ′ + a j

i ′⊗bij ′) − aii ′⊗(akj ′⊗b j
k′ + a j

k′⊗bkj ′) + a j
j ′⊗(akk′⊗bii ′ + aii ′⊗bkk′).

(36)

We will see in Sect. 5.5 that elements with more symmetrizations cannot be used.

5.4.3 Cases with Three Elements

The term aii ′⊗(
 · a j
j ′⊗bkk′) + a j

j ′⊗(
 · aii ′⊗bkk′) + akk′⊗(
 · aii ′⊗b j
j ′) may be sent to

the kernel by adding

− aii ′⊗(a j
k′⊗bkj ′ + akj ′⊗b j

k′) − a j
j ′⊗(aik′⊗bki ′ + aki ′⊗bik′) − akk′⊗(aij ′⊗b j

i ′ + a j
i ′⊗bij ′),

(37)

where all have type (110)(110). One can also have symmetrizations, suchwill have the
same mixed price but a larger flag cost so it is sufficient to eliminate (37) to eliminate
all cases.

Using aii ′⊗(
 · a j
k′⊗bkj ′)+ aij ′⊗(
 · a j

k′⊗bki ′)+ a j
k′⊗(
 · aii ′⊗bkj ′), a kernel element

can be created by adding the following terms:

− aii ′⊗(a j
j ′⊗bkk′ + akk′⊗b j

j ′ + akj ′⊗b j
k′) − a j

k′⊗akj ′⊗bii ′ + aki ′⊗(aij ′⊗b j
k′ + a j

k′⊗bij ′)
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− aij ′⊗(a j
i ′⊗bkk′ + akk′⊗b j

i ′), (38)

− aii ′⊗(a j
j ′⊗bkk′ + akk′⊗b j

j ′) + akj ′⊗(aii ′⊗b j
k′ + a j

k′⊗bii ′) + aki ′⊗(aij ′⊗b j
k′ + a j

k′⊗bij ′)

− aij ′⊗(a j
i ′⊗bkk′ + akk′⊗b j

i ′), (39)

− aii ′⊗(a j
j ′⊗bkk′ + akk′⊗b j

j ′) + akj ′⊗(aii ′⊗b j
k′ + a j

k′⊗bii ′) + aki ′⊗(aij ′⊗b j
k′ + a j

k′⊗bij ′)

+ a j
i ′⊗aij ′⊗bkk′ + akk′⊗aij ′⊗b j

i ′ , (40)

akk′⊗(aii ′⊗b j
j ′ + aij ′⊗b j

i ′) + akj ′⊗(aii ′⊗b j
k′ + a j

k′⊗bii ′) + aki ′⊗(aij ′⊗b j
k′ + a j

k′⊗bij ′)

+ a j
j ′⊗aii ′⊗bkk′ + a j

i ′⊗aij ′⊗bkk′ , (41)

− aii ′⊗(a j
j ′⊗bkk′ + akk′⊗b j

j ′) + akj ′⊗(aii ′⊗b j
k′ + a j

k′⊗bii ′) − aij ′⊗(a j
i ′⊗bkk′ + aki ′⊗b j

k′)

+ akk′⊗aij ′⊗b j
i ′ + aki ′⊗a j

k′⊗bij ′, (42)

− aii ′⊗(a j
j ′⊗bkk′ + akk′⊗b j

j ′ + akj ′⊗b j
k′) − aij ′⊗(a j

i ′⊗bkk′ + aki ′⊗b j
k′ + akk′⊗b j

i ′)

− a j
k′⊗(aki ′⊗bij ′ + akj ′⊗bii ′). (43)

There are more since we can swap symmetrization and cancellation for the rank
one elements. But none of them provides a larger mixed kernel.

Any other termwith three basis vectors of A∗⊗ perm3(C
∗)will have less automatic

symmetrization and thus flag cost > 6 so they need not be considered.

5.4.4 Cases with Four Elements

There are up to symmetry two types of caseswithflag cost atmost six: in each case there
is exactly one repeated index appearing above and one below. They are distinguished
by whether or not a pair of repeated indices overlap.

First akk′⊗(
 ·aii ′⊗b j
j ′)+aki ′⊗(
 ·aik′⊗b j

j ′)+aij ′⊗(
 ·akk′⊗b j
i ′)+a j

j ′⊗(
 ·aii ′⊗bkk′)
may be sent to the kernel with:

aii ′⊗(akk′⊗b j
j ′ + a j

j ′⊗bkk′) + a j
i ′⊗(akk′⊗bij ′ + aij ′⊗bkk′) + aik′⊗(aki ′⊗b j

j ′ + a j
j ′⊗bki ′)

+ a j
k′⊗(aki ′⊗bij ′ + aij ′⊗bki ′), (44)

aii ′⊗(akk′⊗b j
j ′ + a j

j ′⊗bkk′) + a j
i ′⊗(akk′⊗b j

j ′ + aij ′⊗bkk′) + aik′⊗(aki ′⊗b j
j ′ + a j

j ′⊗bki ′)

− aki ′⊗a j
k′⊗bij ′ − aij ′⊗a j

k′⊗bki ′ , (45)

− aij ′⊗(a j
k′⊗bki ′ + a j

i ′⊗bkk′) + aii ′⊗(akk′⊗b j
j ′ + a j

j ′⊗bkk′) − aki ′⊗(aik′⊗b j
j ′ + a j

k′⊗bij ′)

− a j
j ′⊗aik′⊗bki ′ − akk′⊗a j

i ′⊗bij ′, (46)

− aij ′⊗(a j
k′⊗bki ′ + a j

i ′⊗bkk′) − a j
j ′⊗(aik′⊗bki ′ + aii ′⊗bkk′) − akk′⊗aii ′⊗b j

j ′
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− akk′⊗a j
i ′⊗bij ′ − aki ′⊗aik′⊗b j

j ′ − aki ′⊗a j
k′⊗bij ′, (47)

− aij ′⊗(a j
k′⊗bki ′ + a j

i ′⊗bkk′) − a j
j ′⊗(aik′⊗bki ′ + aii ′⊗bkk′) + aii ′⊗akk′⊗b j

j ′ + a j
i ′⊗akk′⊗bij ′

+ aik′⊗aki ′⊗b j
j ′ + a j

k′⊗aki ′⊗bij ′, (48)

− aij ′⊗(a j
k′⊗bki ′ + a j

i ′⊗bkk′) + aii ′⊗(akk′⊗b j
j ′ + a j

j ′⊗bkk′) − aki ′⊗aik′⊗b j
j ′

− a j
j ′⊗aik′⊗bki ′ + a j

i ′⊗akk′⊗bij ′ + a j
k′⊗aki ′⊗bij ′, (49)

aii ′⊗(akk′⊗b j
j ′ + a j

j ′⊗bkk′) + a j
i ′⊗(akk′⊗b j

j ′ + aij ′⊗bkk′) + aik′⊗aki ′⊗b j
j ′

− a j
j ′⊗aik′⊗bki ′ + a j

k′⊗aki ′⊗bij ′ − aij ′⊗a j
k′⊗bki ′ . (50)

Using aii ′⊗(
 ·a j
j ′⊗bkk′)+a j

j ′⊗(
 ·aii ′⊗bkk′)+akk′⊗(
 ·aii ′⊗b j
j ′)+akj ′⊗(
 ·aii ′⊗b j

k′),
may be sent to the kernel using any of:

a j
k′⊗aii ′⊗bkj ′ + aki ′⊗a j

j ′⊗bik′ + aik′⊗a j
j ′⊗bki ′ + a j

i ′⊗akk′⊗bij ′ + aij ′⊗akk′⊗b j
i ′

− akj ′⊗(a j
i ′⊗bik′ + aik′⊗b j

i ′ + a j
k′⊗bii ′), (51)

− aii ′⊗a j
k′⊗bkj ′ + aki ′⊗a j

j ′⊗bik′ + aik′⊗a j
j ′⊗bki ′ + a j

i ′⊗akk′⊗bij ′ + aij ′⊗akk′⊗b j
i ′

− akj ′⊗(a j
i ′⊗bik′ + aik′⊗b j

i ′ + a j
k′⊗bii ′), (52)

a j
k′⊗(aii ′⊗bkj ′ + akj ′⊗bii ′) − a j

j ′⊗(aki ′⊗bik′ + aik′⊗bki ′) − akk′⊗(a j
i ′⊗bij ′ + aij ′⊗b j

i ′)

+ a j
i ′⊗akj ′⊗bik′ + aik′⊗akj ′⊗b j

i ′ , (53)

− aii ′⊗a j
k′⊗bkj ′ + a j

k′⊗akj ′⊗bii ′ − a j
j ′⊗(aki ′⊗bik′ + aik′⊗bki ′)

− akk′⊗(a j
i ′⊗bij ′ + aij ′⊗b j

i ′) + a j
i ′⊗akj ′⊗bik′ + aik′⊗akj ′⊗b j

i ′ , (54)

a j
k′⊗(aii ′⊗bkj ′ + akj ′⊗bii ′) + aki ′⊗a j

j ′⊗bik′ + aik′⊗a j
j ′⊗bki ′

− akk′⊗(a j
i ′⊗bij ′ + aij ′⊗b j

i ′) − akj ′⊗(a j
i ′⊗bik′ + aik′⊗b j

i ′), (55)

− aii ′⊗a j
k′⊗bkj ′ + a j

k′⊗akj ′⊗bii ′ + aki ′⊗a j
j ′⊗bik′ + aik′⊗a j

j ′⊗bki ′

− akk′⊗(a j
i ′⊗bij ′ + aij ′⊗b j

i ′) − akj ′⊗(a j
i ′⊗bik′ + aik′⊗b j

i ′). (56)

5.5 Elimination of Kernel Elements Containing an Element of Type (111)(111)

We may assume that at most four elements of A∗⊗ perm(C∗) appear in an element of
the kernel of the 210-map of type (111)(111), because, assuming all the coefficients
are +1, by adding a multiple of the 9-term element in the free kernel, which is of type
(111)(111), we can reduce any using k > 4 terms to one using 9 − k terms, and the
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reader may verify that having coefficients other than +1 will only make the situation
worse.

5.5.1 Case Four Basis Elements of A⊗ perm3(C∗) are Used

Cases that alreadyuse six elements are easily eliminated. In thefirst set that leaves (44)–
(46). These all have flag cost five and have s1 ≥ 4. But now examining the appearance
of (110)(110) terms in relations of (210)(111), those with only one element not of
type (110)(110) are paired with rank three (110)(110) elements. At most one term of
type (210)(210)may be used, so k′

m ≤ 2 for any choice and we eliminate these cases.
Cases (51)–(56) are all easily eliminated either immediately or by a similar argument

to cases (44)–(46).

5.5.2 Case Three Basis Elements of A⊗ perm3(C∗) are Used

In case (37) the flag cost is at least five as the three rank two elements are in disjoint
spaces. In the first step of the flagwe could have a rank one element appearing in one of
the two terms, or a rank one element such that one of the rank two elements is tangent,
e.g. a j

k′⊗bkj ′ or a
j
k′⊗b j

k′ . At step three we need to add another, so up to symmetry there
are three cases. Again since the rank two elements are in disjoint spaces, we need a
third such at step five, for a total of four cases up to symmetry. This forces s1 ≥ 5
or s′

1 ≥ 5 (where s′
1 is the s1 for the (120)-test) so one of the mixed prices is at least

7. The only choice that adds to the mixed kernel is when one takes three elements
of type (200)(200), i.e., taking the second type in each choice. Then one can add up
to three terms of type (210)(210) to the mixed kernel but there is no way to have an
7-dimensional mixed kernel.

Cases (38)–(43) have flag cost 5 and mixed price at least seven, so are easily
eliminated.

Case (43) also has flag cost 5 but it needs more attention as the two rank three
elements may be used in (8) with no additional cost. To obtain a flag, either one will
have s1 ≥ 5 or s′

1 ≥ 5, so for one of the two the mixed price is at least 7 and one
concludes as there is no way to enlarge the mixed kernel by four just adding in a single
rank one element.

5.5.3 Case Two Basis Elements of A⊗ perm3(C∗) are Used

Case (34) has a flag cost of 5 and after adding in a rank one element one has s1 ≥ 5,
so the mixed price is at least 7 and one concludes as above.

Case (35): here we get two elements of type (8) for free, but the flag cost is 5 and
any choice will either make s1 ≥ 5 or s′

1 ≥ 5, and there is no way to expand it to have
a 7 dimensional mixed kernel. (In fact if s′

1 ≥ 5 the situation is even worse as this
space does not give rise to a B-analog of (35).)

Case (36) has flag cost 5 as the three terms are in disjoint spaces and once the
needed two rank one terms are added, one obtains s1 ≥ 5, so the mixed price is at
least 7 and one concludes as above.

123



Foundations of Computational Mathematics (2023) 23:2049–2087 2073

5.5.4 One Basis Element of A⊗ perm3(C∗) is Used

In all cases, there is a flag cost of four.
In cases (29), (30) all elements appearing lie in different weight spaces and cannot

be used together in a kernel element of type (210)(110) or (210)(210).
In cases (31) and (32), rank two elements may only be used effectively in (9), (10),

and (16). Each of these requires adding in a different rank one element filling E ′
110.

Moreover, once the flag is filled in, we will have s1 ≥ 4 so mixed price at least five.
We conclude the (210)-test cannot be passed in this case.

Consider case (33): the first step of the flag is just akk′⊗bii ′ . For the second step, we
could add another rank one element or a tangent vector to akk′⊗bii ′ . Since eventually
we need to account for the rank three element, the second choice turns out not to
be as useful. For the rank one element, the naïve choice would be one of the three
summands in the rank three term, but this turns out not to be as good as choosing the
next three steps to be aij ′⊗bii ′ , a

j
i ′⊗bii ′ , a

i
i ′⊗bii ′ so one gets the rank three element via

the tangent to line construction. The resulting five dimensional space already passes
the (210)-test. We get (8) for free using a j

j ′⊗(
aii ′⊗b j
j ′), then (9) two times, using

aij ′⊗(
aii ′⊗b j
j ′) and a

j
i ′⊗(
aii ′⊗b j

j ′) and (10) one time, using aii ′⊗(
aii ′⊗b j
j ′). On the

other hand when one considers the (120) test, we only get a term analogous to (8) and
moreover s′

1 ≥ 4 so the mixed price is at least five. If we just add two of the three
elements so the flag condition is satisfied, and then their reflections, the reflections are
not useful for producing elements of type (210)(111) in the kernel and both tests are
failed by one. If we add a term like aik′⊗bii ′ to enable an element of the kernel of type
(14), the situation is the same. We conclude case (33) is not viable.

5.6 Kernels Consisting of Elements of Type (210)(111) and (210)(210)

5.6.1 Three Element Cases

(27) and (28) have flag cost five and are easily dispensed with using arguments similar
to above.

5.6.2 Two Element Terms

All have flag cost at least 4, satisfy s1 ≥ 4 so the mixed price is at least 5. All cases
without a rank three element are easily eliminated. Those with single a rank three
element get an element of type (8) in the kernel for no extra cost, and for a cost of one
each, get an element of types (9), (10), and potentially (14) and (15), but there is no
way to reach five with just two more elements so these cases are eliminated.

Term (19) has flag cost four, as the first two terms in each parenthesis are tangent
vectors to aii ′⊗bii ′ . These two terms may be used in two terms of type (8), but no others
alone, and even though we may add two more vectors and utilize aii ′⊗bii ′ to gain an
addition term of type (13), here one of the mixed prices (once one satisfies the flag
condition) is at least eight as s1 ≥ 5 or s′

1 ≥ 5, so this case is also eliminated.
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5.6.3 One Element Terms

Cases (16), (17), (18) are easily eliminated.
Cases (14), (15) can be made to pass the (210)-test with similar E ′

110 to case (33),
but one has the identical problem with the (120)-test, and the argument to eliminate
these cases is the same as that for (33).

5.7 Kernels Consisting Only of Elements of Type (210)(210)

Consider case (13). Note that even if K �= 0 the flag cost of such an element is 3, and
if we take one, e.g.. (13), we may obtain three more for an additional flag cost of two
by considering a j

j ′⊗(
 · aki ′⊗b j
j ′), a

j
j ′⊗(
 · aik′⊗b j

j ′), a
j
j ′⊗(
 · akk′⊗b j

j ′). We still may
add an additional element to E ′

110, but no addition will increase k′
m to be larger than

four. On the other hand we see the mixed price if 5, so such a case is not viable.
The other cases here are similar and easier. ��

5.8 Remarks

Remark 5.4 The reason perm3 was previously unaccessible was that already to choose
E ′
110, without the flag condition one needed to introduce numerous parameters due to

the high weight multiplicities that made the calculation infeasible. The flag condition
guaranteed the presence of low rank elements in E ′

110 which significantly reduced the
search space.

Remark 5.5 It is interesting to see what happens when dim E ′
110 = 7, to obtain a

border rank 16 ideal fixed by the torus in Gperm3
. One may take for example

E ′
110 = 〈a11⊗b11, a

1
2⊗b11 + a11⊗b12, a

1
3⊗b11 + a11⊗b13, a

2
1⊗b11

+a11⊗b21, a
3
1⊗b11 + a11⊗b31, a

1
2⊗b12, a

1
3⊗b12 + a12⊗b13〉.

Then we obtain the four (200)(200) contributions to k′
m from expressions of type

(18) as well as three additional contributions from expressions of type (28). Here
s1 = s′

1 = 4, s2 = s′
2 = 3 and

(A⊗E ′
110) ∩ (S2A⊗B)

= 〈a11⊗a11⊗b11, a
1
2⊗a11⊗b11 + a11⊗(a12⊗b11 + a11⊗b12), a

1
3⊗a11⊗b11 + a11⊗(a13⊗b11 + a11⊗b13),

a21⊗a11⊗b11 + a11⊗(a21⊗b11 + a11⊗b21), a
3
1⊗a11⊗b11 + a11⊗(a31⊗b11 + a11⊗b31),

a12⊗a12⊗b12, a
1
1⊗a12⊗b12 + a12⊗(a12⊗b11 + a11⊗b12), a

1
3⊗a12⊗b12 + a12⊗(a13⊗b12 + a12⊗b13)〉

so k′
p = k′′

p = 8 and both the (210) and (120) tests are passed.
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6 Descriptions of VSP(Tcw,q)

In this section we adopt the index range 1 ≤ α, β ≤ q. The small Coppersmith–
Winograd tensor has a well-known border rank decomposition, which is also aWaring
border rank decomposition.

Tcw,q = lim
t→0

1

t2
∑

α

[(a0 + taα)⊗(b0 + tbα)⊗(c0 + tcα)]

− 1

t3

[
(a0 + t2

∑

α

aα)⊗(b0 + t2
∑

α

bα)⊗(c0 + t2
∑

α

cα)

]

− (q
1

t2
− 1

t3
)a0⊗b0⊗c0.

Let q > 2. Write A = B = C = L ⊕ M , where L = 〈a0〉 and M = 〈aα〉. Set
Q = ∑

α aα⊗aα . A straight-forward Lie algebra calculation (see, e.g., [18]) shows
GTcw,q⊇SO(M, Q) × GL(L) = SO(q) × C

∗. Then

A⊗B = L⊗2 ⊕ L ∧ M ⊕ S20M ⊕ �2M ⊕ (L · M ⊕ Q),

where the term in parenthesis is Tcw,q(C∗). Here S20M = M21 is the complement
to the trivial SO(M, Q)-representation in S2M . In what follows we write Lk for
L⊗k = Sk L .

Theorem 6.1 For q > 2, VSP(Tcw,q) is a point. The unique ideal is as follows: for all
s, t, u with s + t + u = d, the annihilator of the ideal in degree (s, t, u) is

Ld ⊕ Ld−1 · M ⊕ Ld−2 · Q.

Here

Ld−1 · M = 〈as−1
0 · aα⊗bt0⊗cu0 + as0⊗bt−1

0 · bα⊗cu0 + as0⊗bt0⊗cu−1
0

·cα | α = 1, . . . , q〉

and

Ld−2 · Q =
〈
∑

α

as−1
0 · aα⊗bt−1

0 · bα⊗cu0 + as−1
0 · aα⊗bt0⊗cu−1

0 · cα + as0⊗bt−1
0

· bα⊗cu−1
0 · cα + as−2

0 · a2α⊗bt0⊗cu0 + as0⊗bt−2
0 · b2α⊗cu−1

0 · cα

+as0⊗bt0⊗cu−2
0 · c2α

〉
.
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Proof We must have PE110 ∩ Seg(PA × PB) �= . This may be achieved by adding
some

(u0a0 +
∑

α

uαaα)⊗(v0b0 +
∑

β

vβbβ)

for u0, uα, v0, vβ ∈ C.We alsomust have a flag as inObservation 2.5. Taking anything
other than a0⊗b0, (u0a0 + a)⊗b0 with u0 ∈ C, a ∈ M , or xa0⊗bα + yaα⊗b0 (i.e.,
some a0⊗bα or aα⊗b0 since we are working modulo T (C∗)) makes the flag condition
PF2 ⊂ σ2(Seg(PA × PB)) fail. (Here we use that q > 2.) Taking anything other
than a0⊗b0 makes the flag condition PF3 ⊂ σ3(Seg(PA × PB)) fail. Thus there is
a unique E110, and by symmetry unique E101 and E011. This triple exactly passes all
degree three tests.

To see E200 must be as asserted, it must be such that (E200⊗B) ⊇ E210. In order
to have L⊗3 in this intersection, we need L⊗2 ⊂ E200. In order to have L2 · M =
〈a0⊗a0⊗bα+a0⊗aα⊗b0+aα⊗a0⊗b0〉 in the intersection, we see it must also contain
〈a0⊗aα +aα⊗a0〉 = L ·M . In order to have L ·Q = 〈∑α(a0⊗aα⊗bα +aα⊗a0⊗bα +
aα⊗aα⊗b0)〉 in the intersection, we see it must also contain 〈∑α aα⊗aα〉 = 〈Q〉.

For the general case, assume by induction Es−1,t,u, Es,t−1,u, Es,t,u−1 are as
asserted and isomorphic as a module to L⊗d−1 ⊕ Ld−2 · M ⊕ Ld−3 · Q. Arguing
as we did for E200, first obtaining L⊗d , then Ld−1 · M , then Ld−2 · Q we conclude.

��
Note that the ideal is GTcw,q -fixed as indeed it has to be if VSP is a point.
Now let q = 2, in this case it is more convenient to write Tcw,2 as

Tcw,2 =
∑

σ∈S3

aσ(1)⊗bσ(2)⊗cσ(3).

Write A = B = C = L1 ⊕ L2 ⊕ L3 where, e.g., for A, L j = 〈a j 〉. A straight-forward
Lie algebra calculation shows GTcw,2 ⊇ (C∗)×3.

Theorem 6.2 VSP(Tcw,2) and VSPv3(P2),PS3C3(Tcw,2) each consists of three points.
One choice has for all s, t, u with s + t + u = d, the annihilator in degree (s, t, u)

equal to

Ls
1⊗Lt

1⊗Lu
1 ⊕ φ(Ld−1

1 ⊗L2) ⊕ φ(Ld−1
1 ⊗L3) ⊕ φ(Ls−2

1 ⊗L2⊗L3)

where φ : (Ld−1
1 ⊗Lx ) → Ss A⊗St B⊗SuC is the symmetric embedding. The other

two choices arise from exchanging the role of L1 with L2, L3.

Proof We have Tcw,2(C∗) = 〈ai⊗b j +b j⊗ai | i �= j〉. The only possibilities for E110
for r = 4 that pass the (210)-test arise by adding ak⊗bk to this for some k ∈ {1, 2, 3}.
Take k = 1. Then
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(E110⊗A) ∩ (S2A⊗B) =
〈
a21⊗b1, a1a2⊗b1 + a21⊗b2, a1a3⊗b1 + a21⊗b3,

∑

σ∈S3

aσ(1)⊗aσ(2)⊗bσ(e)

〉

The only compatible choice of E200 is 〈a21, a1a2, a1a3, a2a3〉. The situation for higher
multi-degrees is similar. ��
Remark 6.3 In contrast to Tcw,2, by Corollary 3.2, dim VSP(Tskewcw,2) ≥ 8. From [23]
(slightly changing notation) we have the rank five decomposition:

Tskewcw,2 = 1

2
[2a1⊗(b2 − b3)⊗(c2 + c3)

− (a1 + a2)⊗(b1 − b3)⊗(c1 + c3) − (a1 − a2)⊗(b1 + b3)⊗(c1 − c3)

+ (a1 + a3)⊗(b1 − b2)⊗(c1 + c2) − (a1 − a3)⊗(b1 + b2)⊗(c1 − c2)]

and the orbit of this decomposition already has dimension 8. (This can be seen by
noting that more than four distinct vectors in C

3 appear in the decomposition.)

7 Tskewcw,q, q > 2

Proof of Theorem 1.3 For the upper bound, we have

Tskewcw,q

= lim
t→0

1

t3

[ ∑

ξ

[(a0 + t2aξ )⊗(b0 − t2bξ )⊗(c0 − tcξ+p) + (a0 − t2aξ )

⊗(b0 − tbξ+p)⊗(c0 + t2cξ ) + (a0 − taξ+p)⊗(b0 + t2bξ )⊗(c0 − t2cξ )]

+ 1

t5

⎛

⎝a0 + t3
∑

ξ

aξ+p

⎞

⎠ ⊗
⎛

⎝b0 + t3
∑

ξ

bξ+p

⎞

⎠ ⊗
⎛

⎝c0 + t3
∑

ξ

cξ+p

⎞

⎠

−
(
3q

2t2
+ 1

t5

)
a0⊗b0⊗c0

]
. (57)

For the lower bounds, write A = B = C = L⊕M with dim L = 1, dim M = q and
M is equipped with a symplectic form �. A straight-forward Lie algebra calculation
shows GTskewcw,q ⊇ Sp(M) × GL(L) × M∗⊗L . Then

A⊗B = L⊗2 ⊕ L · M ⊕ S2M ⊕ �2M0 ⊕ (L ∧ M ⊕ �)

where the term in parentheses equals Tskewcw,q(C∗). Here �2M0 = M2, the comple-
ment to the Sp(M)-trivial representation in �2M .
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We have the following weight diagram for the GTskewcw,q -complement of T (C∗) in
A⊗B:

L⊗2 L · M S2M �2M

a0⊗b0

a0⊗b1 + a1⊗b0

a0⊗b2 + a2⊗b0

a0⊗b3 + a3⊗b0
...

a1⊗b1

a1⊗b2 + a2⊗b1

a1⊗b3 + a3⊗b1

a2⊗b3 + a3⊗b2 a1⊗b4 + a4⊗b1
...

a1⊗b2 − a2⊗b1

a1⊗b3 − a3⊗b1

a2⊗b3 − a3⊗b2 a1⊗b4 − a4⊗b1
...

We will show that for q ≤ 10, there is no choice of E ′
110 satisfying all degree three

tests when r = 3
2q + 1. We focus on the case q = 10 as that is the most difficult, the

other cases are easier.
Note that elements ofM may be raised to L , so an element of S2M cannot be placed

in E ′
110 unless its raising to L ·M is also there. On the other hand, since L∧M ⊂ E110,

there is no similar restriction on elements of �2M .
We now restrict to q = 10. We split the types of (110) spaces into 10 types of cases

depending on the dimension of E ′
110 intersected with the various irreducible modules:

case L⊗2 L · M S2M �2
0M

1 1 4 0 0
2 1 3 1 0
3 1 2 2 0
4x 1 2 1 + 1

2
1
2

5 0 0 0 5
6 1 0 0 4
7 1 1 0 3
8 1 2 0 2
9 1 1 1 2
10 1 2 1 1

Types 1, 2, 3, 8, 9, 10 are all single cases Types 5, 6, 7 each involve a choice of subset
of weight vectors in �2

0M (so they are each a collection of a finite number of cases)
and case 4 involves a parameter, where we use 1

2 to indicate the parameter, as the
weight vector is a sum of a vector in the two indicated spaces. Explicitly, case 4x may
be written

E ′
110 = 〈a0⊗b0, a0⊗b1 + a1⊗b0, a0⊗b2 + a2⊗b0, a1⊗b1, x(a1⊗b2 + a2⊗b1)

+a1⊗b2 − a2⊗b〉.

Of these cases 1, 2, 3, 4x, 8, 10 pass the (210) and (120) tests. No triple passes the
(111) test. ��

We remark that the decomposition (57) is Z3-invariant.

123



Foundations of Computational Mathematics (2023) 23:2049–2087 2079

Corollary 7.1 For 10 ≥ q > 2, and q = 2p even, VSP(Tskewcw,q) contains the
isotropic Grassmannian G�(

q
2 , M). In particular it has dimension at least

(p
2

)
.

Proof Using Sp(M) ⊂ GTskewcw,q we may replace 〈aξ 〉 in (57) with any isotropic
subspace as long as we replace 〈aξ+p〉 with the corresponding dual subspace and the
same changes in B,C . ��

8 A Simpler Waring Border Rank 17 Expression for det3

In this section and the next, we present explicit decompositions. The method used to
obtain the decompositions is discussed after the second decomposition at the end of
Sect. 9.

Set i = √−1 and ζ = e2π i/12. Then det3 = ∑17
s=1 m

⊗3
s (t) + O(t), where the ms

are the following matrices

⎛

⎜⎝
ζ 6

t5
0 0

0 ζ 6 0
0 0 t5

⎞

⎟⎠

⎛

⎝
1
t5

0 0
0 1 0
0 0 0

⎞

⎠

⎛

⎜⎝
ζ 6

t5
0 0

0 0 tζ 8

0 t4ζ 4 0

⎞

⎟⎠

⎛

⎜⎝
ζ 4

t5
0 0

0 0 tζ 6

0 0 0

⎞

⎟⎠

⎛

⎜⎝
ζ 5

t5
0 0

0 0 0
0 t4 0

⎞

⎟⎠

⎛

⎜⎝
ζ 3

t5
0 0

0 0 0
0 0 t5

⎞

⎟⎠

⎛

⎜⎝
0 ζ 10

t4
ζ 8

t3

0 0 tζ 8

t3ζ 6 0 0

⎞

⎟⎠

⎛

⎜⎝
0 ζ 8

t4
ζ 6

t3

0 0 tζ 6

0 0 0

⎞

⎟⎠

⎛

⎝
0 1

t4
1
t3

0 0 0
t3ζ 6 0 0

⎞

⎠

⎛

⎜⎝
0 ζ 6

t4
0

ζ 6

t 0 0
0 0 t5ζ 6

⎞

⎟⎠

⎛

⎜⎝
0 ζ 11

t4
0

0 0 0
t3 0 0

⎞

⎟⎠

⎛

⎜⎝
0 ζ 9

t4
0

0 0 0
0 0 t5ζ 6

⎞

⎟⎠

⎛

⎜⎝
0 0 1

t3
ζ 6

t 0 0
0 t4ζ 6 0

⎞

⎟⎠

⎛

⎝
0 0 1

t3

0 ζ 4 0
t3ζ 2 t4 0

⎞

⎠

⎛

⎜⎝
0 0 ζ 6

t3

0 ζ 10 0
0 0 0

⎞

⎟⎠

⎛

⎜⎜⎜⎜⎝

0 5
5
6 ζ 2

5t4

(
1+ 2

5

√
5
) 1
3
ζ 2

t3(
1− 2

5

√
5
) 1
3
ζ 8

t 0 0
0 0 0

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

0 5
5
6 ζ 8

5t4

(
1− 2

5

√
5
) 1
3
ζ 2

t3(
1+ 2

5

√
5
) 1
3
ζ 8

t 0 0
0 0 0

⎞

⎟⎟⎟⎟⎠
.

9 A Numerical Border Rank 42 Expression for T�2
skewcw,4

What follows is an expression for T�2
skewcw,4 as

∑42
s=1 ms(t)⊗3 + O(t) that is satisfied

to an error of at most 4.4×10−15 in each entry. It consists of 42 matrices whose entries
are rational expressions in the following 36 complex numbers: Let i = √−1 and let
ζ = e2π i/12. Set
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z0 = −0.8660155098072051 + 0.9452855522785384i z1 = −1.2981710770246242 + 0.0008968724089185688i

z2 = 2.9260271139931078 + 0.1853833642730014i z3 = 0.2542517122150322 + 0.30793819438378284i

z4 = 0.6964375578992822 + 0.2772662627986198i z5 = 0.5507020325318998 − 0.0493931308002328i

z6 = 1.149228383831849 − 1.1683147648642283i z7 = 0.6586404058476252 − 0.16578044112199047i

z8 = 0.7654345273805864 − 0.06877274843008892i z9 = 0.544690883860558 + 0.09720573163212605i

z10 = 0.6932236636741451 + 0.14980159446358277i z11 = 0.5862637032385472 − 0.12844523449559558i

z12 = 2.384363992555291 − 0.08927102369428247i z13 = 0.9664252976479286 + 0.08480470055107503i

z14 = 0.6190926897383283 + 0.15631000400545272i z15 = 0.6283592253932955 − 0.5626050553495663i

z16 = 1.8190778570602204 − 0.22163457440913656i z17 = 1.153187286528645 − 0.07977233251120702i

z18 = 1.4498877801613976 − 0.22515738202335905i z19 = 0.7262464450114047 + 0.7050051641972112i

z20 = 1.1195537528292199 − 0.26381000320340176i z21 = 0.4400325048210471 + 0.6593492930106759i

z22 = 0.3476654993676339 + 0.4095417606798612i z23 = 0.9459769225333798 + 0.24589162882727128i

z24 = 0.7637135867709066 − 0.10529269213820387i z25 = 0.7409392923310902 − 0.10474756303325146i

z26 = 1.0112068238001992 − 0.12695675940574122i z27 = 1.5005677845016696 − 0.24533651960180036i

z28 = 0.6134145054919202 + 0.08121891266185506i z29 = 1.145625294745251 − 0.3813562005184122i

z30 = 1.0607612533915372 − 0.016294891090460426i z31 = 0.941339345482511 + 0.20413704882122435i

z32 = 0.622575977639622 + 0.2555810563389569i z33 = 0.951746321194872 − 0.2894768358835511i

z34 = 1.0532801812660977 − 0.2502246606675517i z35 = 1.0207644184200035 − 0.2106937666100475i .

The 42 matrices are:

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ζ 3z25z26z31z35
t269

ζ 8z28 t61

z23z25z26z31z33z34
ζ 10z24z35 t13

z23z25z26z31z33z34
0 0

z25z26z31z33z35
t104

0 0 0 ζ 9z18z26z32 t148

z21z23z33z235
0 0 0 0 0

0 0 ζ 7z35 t121

z23z25z226z31z33z34
0 ζ 8z23z34 t91

z24z235
0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ζ 10z30
t269

0 ζ 10z24z35 t13

z27z28z30z33
0 0

0 0 ζ 7z24z35 t178

z27z28z30
0 0

0 0 0 0 0

0 0
ζ 6z27z28z235 t

121

z223z25z
2
26z31z33z

2
34

0 0

0 ζ t184

z27z30z34
0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0

0 z18z24z28z32 t211

z21z223z25z
3
33z35

z0t163 0 ζ z34 t133

z25

0 0 0 0 0
ζ z23z25z33
z24z31 t146

ζ 5z31z35 t184

z23z227z28z30z
2
34

0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

ζ 9z30
z27 t269

0 0 ζ 7

t65
0

0 0 0 0 0
0 0 0 0 0

0 ζ 5z27 t169

z30z33
0 0 0

0 ζ 9z27 t184

z30z34
z28 t136

z26z34z35
0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

ζ 4z19z35
z3z12z13z18z32 t269

0 0 0 ζ 4z18z21z34
z2z12z25z31z32z35 t17

ζ z19z33z35
z3z12z13z18z32 t104

0 0 0
ζ 9z19z26z232z33z35 t

148

z3z12z13z18
0 0 0 0 0

ζ 4z2z3z13z31
z12z19z20z21z32z34 t161

0 0 0 0

0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

1
z34 t269

0 0 ζ z24z26z35
z28z34 t65

0

0 0 0 0 0
ζ 5

t119
0 0 z24z26z35 t85

z28
0

0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎠
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⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 ζ 2z15z18z19z28z32 t61

z21z23z25z31z233z34

ζ 11z15z19z35 t13

z34
0 0

0 0 0 0 0
0 0 0 0 0

ζ 11z15z21z23z25z31z35
z18z219z26z32z34 t

161 0 0 0 0

ζ 9z21z23z25z33z34
z215z18z

2
19z26z

2
31z32z

2
35 t

146 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ 5z25z31
z23z34 t269

0 0 0 ζ 4

t17

0 0 0 0 0
ζ 10z25z31
z23 t119

0 ζ 7z23z24z33 t163

z220z31
0 ζ 3z34t133

0
ζ 2z223z28z

2
34 t

169

z225z
2
31z33z35

0 0 0

0 0 ζ 10z23 t136

z25z31
0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

ζ 11z3z19
z12z21z23z25z32 t269

0 0 0 ζ 10z2z18z21z23z24z34
z12z13z19z20z31z32z35 t17

ζ 8z3z19z33
z12z21z23z25z32 t104

0 0 0
ζ 4z3z19z26z232z33 t

148

z12z21z23z25
0 0 0 0 0

ζ 9z13z31z35
z2z3z12z18z24z32z34 t161

0 0 0 0

0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

ζ 9z28
t269

0 0 0 0
0 0 0 0 0

ζ 2z28z34
t119

ζ 10z34 t211

z28z33z35
0 0 0

0 0 0 0 0

0 0 0 ζ 5z33z35 t58

z34
0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ 5z24z26z329z30
z27 t269

0
ζ 11z322z27z33z35 t

13

z20z23z28z30z231

ζ 2

t65
0

0 0 0 0 0
ζ 10z24z26z329z30z34

z27 t119
0 0 ζ z34t85

ζ 10z18z322z26z27z32z34z35 t
133

z20z21z223z25z28z30

0 0 0 0 0
ζ 10z18z322z25z26z27z32z33z35
z20z21z23z24z28z30z31 t146

z27 t184

z24z26z329z30z34
0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ζ 2z25z26z31z32z35
z18z21z34 t269

ζ 11z21z24z232z35 t
61

z25z31
0 0 0

ζ 11z25z26z31z32z33z35
z18z21z34 t104

0 0 0 ζ 11z28 t148

z221z23z24z32z33z34z
3
35

0 0 0 0 0
ζ 11z25z31z32z35
z18z21z24z34 t161

0 0 0 0

0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 ζ 6z18z26z31z32
z20z21z34 t17

0 0 0 0 0
0 0 0 0 0

ζ z221z
2
23z24z25z33

z218z
3
19z20z

2
26z31z

2
32 t

161 0 0 0 0

ζ 11

t146
0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ζ 3z9z10z11z18z19z30z32z34
z5z7z8z16z21z23z25z33 t269

0 0 0 ζ z5z11z16z18z24z26z31z32
z4z20z21z25 t17

0 0 ζ 11z5z11z16z20z33 t178

z4
0 0

0 0 0 0 0
ζ 10z4

z19z20z27z30z33 t161
0 0 0 0

ζ 2z4
z19z20z27z30z34 t146

0 ζ 6z9z10z11z18z19z27z28z32 t136

z5z7z8z16z21z23z25z26z33z35
0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

ζ 5z28z235
t269

0 0 ζ 5

t65
0

ζ 2z28z33z235
t104

0 0 ζ 8z33t100 0
0 0 0 0 0
0 0 0 t43 0

0 0 0 ζ 10z33 t58

z34
0

⎞

⎟⎟⎟⎟⎟⎟⎠
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⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
ζ 9z217z21z24z28z

2
29 t

61

z18z222z25z
2
27z32z33z34z35

ζ 4z22z27 t13

z17z26z29z231

ζ z22z27z31z33z35
z17z28z29 t65

0

0 0 0 0 0

0
ζ 2z217z21z24z28z

2
29 t

211

z18z222z25z
2
27z32z33z35

0 z22z27z31z33z34z35 t85

z17z28z29
ζ 3z18z22z27z32z34 t133

z17z21z23z25z29z33

0 0 0 0 0
ζ 3z18z22z25z27z32
z17z21z24z29z31 t146

ζ 2z217z22 t
184

z20z23z24z29z230z31z34
0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ 11z27z28z230
z26z35 t269

0 0 0 ζ 3

t17

0 0
ζ z220z21z25z33 t

178

z18z24z26z31z32
0 0

0 0 0 0 0

0 0 ζ 7z26z35 t121

z27z28z230z33
0 0

0 0 z25z31 t136

z23z26z234
0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ζ 8z25z26z31z32z35
z18z21z34 t269

0 ζ 4z21z24z35 t13

z25z26z31z32
0 0

ζ 5z25z26z31z32z33z35
z18z21z34 t104

0 0 0 ζ 5z28 t148

z221z23z24z32z33z34z
3
35

0 0 0 0 0
ζ 5z25z31z32z35
z18z21z24z34 t161

0 0 0 0

0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ζ 10z5z18z19z28z30z32
z21z23z25z33z35 t269

0 0 0 z4z11z16z31
z5z19z20 t17

0 0 ζ 10z4z11z16z20z21z25z33 t178

z5z18z19z24z26z32
0 0

0 0 0 0 0
ζ 10z9z10z11z18z24z26z32z34z35

z4z7z8z16z20z21z25z27z28z30z33 t161
0 0 0 0

ζ 2z9z10z11z18z24z26z32z35
z4z7z8z16z20z21z25z27z28z30 t146

0
ζ z5z18z19z27z228z32 t

136

z21z23z25z26z33z34z235
0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ 4z217z22z26z29
z20z23z30z34 t269

0
z22z27z28z29z30z234 t

13

z17z26z31z35

ζ 8z22z24z26z29z33z235
z17z27z228z31z34 t

65 0

0 0 0 0 0
ζ 9z217z22z26z29
z20z23z30 t119

0 0
ζ 7z22z24z26z29z33z235 t

85

z17z27z228z31

ζ 11z18z22z27z28z29z30z31z32z334 t
133

z17z21z23z25z33z35

0 0 0 0 0
ζ 11z18z22z25z27z28z29z30z32z234

z17z21z24z35 t146
0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 ζ 5z19z31t13 0 0
0 0 ζ 8z19z31z33t178 0 0
0 0 0 0 0

ζ 8z21z23z25
z18z219z26z31z32 t

161 0 0 0 0
z21z23z25z33

z18z219z26z31z32z34 t
146 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

ζ 3

t269
ζ 7 t61

z33
0 ζ 10

t65
0

z33
t104

0 0 ζ z33t100 0
0 0 0 0 0
ζ 4

t161
0 0 0 0

0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

0
ζ 10z216z21z23z25z28 t

61

z18z19z32z35
0

ζ 4z18z219z26z31z32z35
z16z21z23z25z28 t65

0

0 0 0 0 0
0 0 0 0 0
ζ

z16z19z26z31z33 t161
0 0 0 0

ζ 5

z16z19z26z31z34 t146
0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

ζ 7z28
t269

ζ 3 t61

z28z33z35
0 0 0

0 0 0 0 0
z28z34
t119

0 0 0 0

0 ζ 4 t169

z28z33z35
0 0 0

0 0 0 ζ 3z33z35 t58

z34
0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

z14
t269

ζ 4z30 t61

z214z27z33
0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 ζ 11z14z27 t43

z30
0

0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

ζ 10z30
t269

ζ 2 t61

z27z30z33
0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 ζ z35 t121

z26z27z28z30z33
0 ζ z27z28 t91

z24z35

0 0 0 0 ζ 5z27z28z33 t106

z24z34z35

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

ζ 4

t269
ζ 3z28 t61

z33z35
0 0 0

0 0 0 0 0
ζ 9z34
t119

ζ 2z28z34 t211

z33z35
0 0 0

0 0 ζ 2 t121

z26z33
0 0

0 0 0 0 ζ 4z33 t106

z24z34

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ζ 2z14
t269

0 0 0 0

0 ζ 9z30 t226

z214z27
0 0 0

0 0 0 0 0

0 ζ z30 t169

z214z27z33
0 ζ z14z27 t43

z30
0

0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠
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⎛

⎜⎜⎜⎜⎜⎜⎝

ζ 4z30
t269

0 ζ 4z24z35 t13

z27z28z30z33
0 0

0 0 ζ z24z35 t178

z27z28z30
0 0

0 0 0 0 0

0 0 0 0 ζ 7z27z28 t91

z24z35

0 0 0 0 ζ 11z27z28z33 t106

z24z34z35

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ζ 8z18z22z24z26z27z32
z20z21z23z31z33 t269

0 ζ 2z20z22z27z34 t13

z33
0 0

0 0 0 0 0
ζ z18z22z24z26z27z32z34
z20z21z23z31z33 t119

0 ζ 3z21z23z24z31 t163

z18z222z26z
2
27z32

0 ζ 10z22z27z31z33 t133

z20z23z25

0 0 0 0 0
ζ 10z22z25z27z233
z20z24z34 t146

ζ 3z20z22z35 t184

z24z27z28z30
0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ζ 10

t269
0 0 0 0

0 0 0 0 0
ζ 3z34
t119

0 0 0 0

0 0 ζ 8 t121

z26z33
0 0

0 z1t184
ζ 6z25z31 t136

z23z234
0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

ζ 5z24z25z33
z220z34 t

269 0 0 0 ζ 8

t17

0 0 0 0 0
ζ 10z24z25z33

z220 t
119 0 ζ 9t163 0 ζ 3z23z24z33z34 t133

z220z31

0 0 0 0 0
ζ

t146
0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

ζ 6

t269
0 ζ z24 t13

z33
0 0

0 0 0 0 0
ζ 11z34
t119

0 z24z34 t163

z33
0 0

0 0 0 0 0

0 0 0 0 ζ 6z33 t106

z24z34

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

ζ 10z9z34
t269

0 0 0 0

0 ζ z7z8z11z18z31z32z35 t226

z10z21z23z25z27z28z30
0 0 0

0 0 0 0 0
ζ 5z9z34
t161

0 0 0 0
ζ 9z9z33
t146

0 ζ z9z27z28 t136

z26z30z35
0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ζ 7z21z24
z18z23z26z32 t269

0 0 0 ζ 5

t17

0 0 0 0 0
z21z24z34

z18z23z26z32 t119
0 0 0

ζ 5z21z24z234 t
133

z18z25z26z31z32
0 0 0 0 0

ζ 8z18z23z25z26z32z33
z220z21z34 t

146 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

ζ 9

t269
0 0 ζ 4

t65
0

ζ 6z33
t104

0 0 ζ 7z33t100 0
0 0 0 0 0

ζ 10

t161
0 0 0 0

0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ζ 11z25z35
z13 t269

0 0 0 ζ 7z23z34
z13z31z235 t

17

ζ 8z25z33z35
z13 t104

0 0 0
ζ 4z25z26z332z33z35 t

148

z13
0 0 0 0 0

0
ζ 11z213z28 t

169

z225z33

ζ 9z213z31z35 t
121

z23z25z33z34
0 0

0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ζ 9z25z26z31z35
t269

0 0 0 0
ζ 6z25z26z31z33z35

t104
0 0 0 ζ 3z18z26z32 t148

z21z23z33z235
0 0 0 0 0

0 0 0 0 ζ 2z23z34 t91

z24z235
0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ζ 9z7z11z16z30z34
z6z27 t269

0 0 ζ 11z6z10z21z23z25z26z30
z9z18z32 t65

0

0
ζ 2z8z10z216z26z28z33z34 t

226

z35
0 0 0

0 0 0 0 0
ζ 8z8z10z18z32z34

z16z21z23z25z31z33 t161
0 0 0 0

z8z10z18z32
z16z21z23z25z31 t146

0 z7z11z16z28 t136

z6z26z35
0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ζ 10z6z8z10z26z30z34
z27 t269

0 0 ζ 2z10z16z28z30
z6z9z31z35 t65

0

0
ζ 4z7z11z216z21z23z25z26z31z33z34 t

226

z18z32
0 0 0

0 0 0 0 0
ζ 10z7z11z34z35
z16z28z33 t161

0 0 0 0
ζ 2z7z11z35
z16z28 t146

0 ζ z6z8z10z28 t136

z35
0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠
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⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ζ 8

z215z18z21z23 t
269

ζ 3z15z18z28 t61

z23z25z26z31z32z233z34z35

ζ 4z15z21z24z32z335 t
13

z34
0 0

ζ 5z33
z215z18z21z23 t

104 0 0 0
ζ z26z332z33 t

148

z215z18z21z23

0 0 0 0 0
ζ 11z15z23z25z31
z18z21z24z34 t161

0 0 0 0

0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ 7z28z235
t269

t61

z28z33z235
0 ζ 7

t65
0

ζ 4z28z33z235
t104

0 0 ζ 10z33t100 0
0 0 0 0 0

0 ζ t169

z28z33z235
0 ζ 2t43 0

0 0 0 z33 t58

z34
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We now give an overview of the method used to obtain the expressions for det3 and
T�2
skewcw,4:
Fix bases ai ∈ A, bi ∈ B, and ci ∈ C . A tensor T ∈ A⊗B⊗C has an expression

T = ∑
i, j,k T

i jkai⊗b j⊗ck and is standard tight in this basis if there exist injective

functions ωA : [m] → Z, ωB : [m] → Z, ωC : [m] → Z so that T i jk �= 0 implies
ωA(i) + ωB( j) + ωC (k) = 0. In this case, we will call a choice of (ωA, ωB, ωC )

satisfying the constraints a set of tight weights. Given a set of tight weights for T , we
consider border rank decompositions of the form:

T = ∑r
s=1As(t)⊗Bs(t)⊗Cs(t) + O(t), (58)

where As(t) = ∑m
i=1Asi tωA(i)ai , Bs(t) = ∑m

j=1 Bs j tωB ( j)b j , and Cs(t) =∑m
k=1 Csk tωC (k)ck . Note that when the tight weights are trivial, this is an ordinary

rank decomposition. In our situation, the equations correspond to a strict subset of
the equations describing a rank decomposition, namely those corresponding to triples
(i, j, k) where ωA(i) + ωB( j) + ωC (k) ≤ 0. In the case of T�2

skewcw,4 this reduces

the number of equations down from
(25+2

3

) = 2925 to 692 and just as with a rank
decomposition, there are 3rm = 3150 unknowns.

We pick a choice of tight weights which minimizes the number of equations to be
solved. The problem of obtaining a border rank decomposition is then split into two
questions: first, to compute a set of tight weights (ωA, ωB , ωC ) so that #{(i, j, k) |
ωA(i)+ωB( j)+ωC (k) ≤ 0} is minimal, and second, to solve the resulting equations
(58) in the Asi , Bs j , Csk .

Consider the first question. Given sets S≤, S> ⊂ [m] × [m] × [m], consider
the problem of deciding if there are tight weights (ωA, ωB, ωC ) satisfying the
additional constraints that ωA(i) + ωB( j) + ωC (k) ≤ 0 for (i, j, k) ∈ S≤ and
ωA(i) + ωB( j) + ωC (k) ≥ 1 for (i, j, k) ∈ S>. These conditions along with the
original equality conditions form a linear program on the images of (ωA, ωB, ωC )

which may be efficiently solved. There is no harm in letting the linear program be
defined over the rationals, as we may clear denominators to obtain a solution in inte-
gers. One can use this fact to prune an exhaustive search of choices of S≤, S> to find
one for which S≤ ∪ S> = [m] × [m] × [m], there exists a corresponding set of tight
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weights, and #S≤ is minimal.While this is an exponential procedure, this optimization
was sufficient to solve the problem for this decomposition.

The second problem, solving the associated system, is solved with the Levenberg–
Marquardt nonlinear least squares algorithm [37, 39]. The sparse structure of the
answer is obtained by speculatively zeroing (or setting to simple values) coefficients
until all freedom with respect to the equations is lost. In other words, we impose
additional simple equations on the solution and solve again until we obtain an isolated
point, which can be verified by checking that the Jacobian has full rank numerically.
This procedure is repeated many times in order to find a simple solution. Ideally, we
would prove the resulting parameters indeed approximate an exact solution to the
equations by searching for additional relations between the parameters and then using
such relations to make symbolic methods tractable. In this case, all such attempts
failed. See [19] for further discussion of these techniques.

The border rank decomposition in this section is also a Waring border rank
decomposition, that is, A = B = C , and As(t) = Bs(t) = Cs(t); in particular,
ωA = ωB = ωC . This condition was imposed to make the nonlinear search more
tractable, and it also has independent interest. The techniques presented are equally
applicable in the symmetric case as well as the asymmetric.

We remark that numerous relaxations of this method are possible. It was inspired
by the improved expression for det3, which had the structure we assume. It remains
to determine how useful it will be for more general types of tensors.
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