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Abstract

We determine the border ranks of tensors that could potentially advance the known
upper bound for the exponent w of matrix multiplication. The Kronecker square of the
small g = 2 Coppersmith-Winograd tensor equals the 3 x 3 permanent, and could
potentially be used to show w = 2. We prove the negative result for complexity theory
that its border rank is 16, resolving a longstanding problem. Regarding its g = 4 skew
cousin in C°®C®C?, which could potentially be used to prove < 2.11, we show the
border rank of its Kronecker square is at most 42, a remarkable sub-multiplicativity
result, as the square of its border rank is 64. We also determine moduli spaces VSP
for the small Coppersmith—Winograd tensors.
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1 Introduction

This paper advances both upper and lower bound techniques in the study of the com-
plexity of tensors and applies these advances to tensors that may be used to upper
bound the exponent w of matrix multiplication.

The exponent w of matrix multiplication is defined as

 := inf{r | two n x n matrices may be multiplied using O (n")

arithmetic operations}.

It is a fundamental constant governing the complexity of the basic operations in linear
algebra. It is generally conjectured that @ = 2. It has been known since 1988 that <
2.38[22] which was slightly improved upon 2011-2014 [36, 48, 55], and again in 2021
[3]. All new upper bounds on w since 1987 have been obtained using Strassen’s laser
method, which bounds o via auxiliary tensors, see any of [7, 22, 30] for a discussion.
The bounds of 2.38 and below were obtained using the “big Coppersmith—Winograd
tensor” as the auxiliary tensor. In [5] it was shown the big Coppersmith—Winograd
tensor could not be used to prove w < 2.3 in the usual laser method.

In this paper we examine six tensors that potentially could be used to prove w < 2.3
with the laser method. Our approach is via algebraic geometry and representation the-
ory, building on the recent advances in [11, 20]. We solve the longstanding problem
(e.g., [7, Problem 9.8], [13, Rem. 15.44]) of determining the border rank of the Kro-
necker square of the only Coppersmith—Winograd tensor that could potentially prove
w = 2 (the ¢ = 2 small Coppersmith—Winograd tensor). The answer is a negative
result for the advance of upper bounds, as it is 16, the maximum possible value. On the
positive side, we show that a tensor that could potentially be used to prove w < 2.11
has border rank of its Kronecker square significantly smaller than the square of its
border rank. While this result alone does not give a new upper bound on the exponent,
it opens a promising new direction for upper bounds. We also develop new lower and
upper bound techniques, and present directions for future research.

The tensors we study are the small Coppersmith—Winograd tensor [21] T¢w 4 for
g = 2 and its skew cousin [19] Tskewcw,q for even g < 10 (five such). (These tensors
are defined foreven g > 10 but they are only useful for the laser method when g < 10.)
The tensors Tty 2 and Tgewcew,2 potentially could be used to prove w = 2. Explicitly,
the small Coppersmith—Winograd tensors [22] are

q
Towq = Za0®bj®cj' +a;j®by®c; + a;j®b;®co
j=I

and, for ¢ = 2p even, its skew cousins [19] are

P
Tskewcw,q = Za0®b§®cé+p - ao®b§+p®Cg - a5®b0®C§+p
£=1
+a§+p®bo®cg + ag®bg+p®co — a§+p®bg Rco.
Elol:;ﬂ
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The small Coppersmith—Winograd tensors are symmetric tensors and their skew
cousins are skew-symmetric tensors. When g = 2, after a change of basis Tew 2
is just a monomial written as a tensor, Tcw 2 = 20663 Ay (1)®bs(2)®cs 3y and
Tokewew,2 = 20663 sgn(o)aqs (1)®bs (2)@cy (3). Here &3 denotes the permutation
group on three elements.

We need the following definitions to state our results:

Atensor T € AQBRC = C"QC"®C™ has rank one if T = a®b®c for some
ae€ A, be B,c e C,and the rank of T, denoted R(T), is the smallest r such that T
may be written as a sum of » rank one tensors. The border rank of T, denoted R(T),
is the smallest » such that 7 may be written as a limit of rank r tensors. In geometric
language, the border rank is smallest r such that [T] € o0,(Seg(PA x PB x P(C)),
where 0, (Seg(PA x PB x PC)) denotes the r-th secant variety of the Segre variety
of rank one tensors.

For symmetric tensors T € S°A C AQA®A we may also consider the Waring
or symmetric rank of T, Rg(T), the smallest r such that T = Zgzl v, QUs vy for
some vg € A, and the Waring border rank R¢(7'), the smallest r such that 7 may be
written as a limit of Waring rank r symmetric tensors. Note that R(7) < Rgs(T') and
R(T) < Rg(T).

For tensors T € AQBQC and T’ € A’QB'®C’, the Kronecker product of T
and T’ is the tensor T X T’ := TQT' € (AQA)QR(BRB)Q(CRC’), regarded
as 3-way tensor. Given T € A ® B ® C, the Kronecker powers of T are TN ¢
A®N @ B®N @ C®N | defined iteratively. Rank and border rank are submultiplicative
under Kronecker product: R(T X T7) < R(T)R(T"), R(T X T") < R(T)R(T’), and
both inequalities may be strict.

Strassen’s laser method [21, 50] obtains upper bounds on @ by showing an explicit
degeneration of a large Kronecker power of a “simple” tensor admits a further degener-
ation to a sum of disjoint matrix multiplication tensors, and then applies Schonhage’s
asymptotic sum inequality [42]. The relevant results for this paper are:

For all k and ¢, [22]

4 Rk |\ 2
w =< logq(ﬁ(B(Tcw,q))k)- (nH
For all k and even ¢, [19]
o < log, (- RITEE ., D) @)
= gq 27 = skewew, g :

Coppersmith-Winograd [22] showed R(Tew,4) = g + 2. Applied to (1) withk =1
and g = 8 gives w < 2.41, which was the previous record before 2.38.

The most natural way to upper bound the exponent of matrix multiplication would
be to upper bound the border rank of the matrix multiplication tensor directly. There
are very few results in this direction: work of Strassen [52], Bini [6], Pan (see, e.g.,
[40]), Smirnov (see, e.g., [46]) and Sedoglavic (see, e.g., [43]) are what we are aware
of. In order to lower the exponent further with the matrix multiplication tensor the first
opportunity to do so would be to show the border rank of the 6 x 6 matrix multiplication
tensor equaled its known lower bound of 69 from [34].
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The only still viable proposed path to prove w < 2.3 using known tensors that we
are aware of would be to obtain border rank upper bounds for a Kronecker power of
a small (¢ < 10) Coppersmith—Winograd tensor (this path has been proposed since
1989) or its skew cousin (more recently proposed in [19]). The results in this paper
take a few steps further on these two paths. There is no proposed path that we are
aware of to prove w > 2.3 other than by proving border rank lower bounds for the
matrix multiplication tensor (or its symmetrized or skew-symmetrized versions [14])
for all n.

1.1 Main Results

After the barriers of [5], the auxiliary tensor viewed as most promising for upper
bounding the exponent, or even proving it is two, is the small Coppersmith—Winograd
tensor, or more precisely its Kronecker powers. In [19] bad news in this direction
was shown for the square of most of these tensors and even the cube. Left open
was the square of T¢y 2 as it was unaccessible by the technology available at the
time (Koszul flattenings and the border substitution method), although it was shown
that 15 < R(ng) < 16. With the advent of border apolarity [11, 20] and the
Flag Condition for border apolarity introduced in this paper (Proposition 2.5) that
strengthens it, we are able to resolve this last open case. See Remark 5.4 for an
explanation why this result was previously unaccessible, even with the techniques of
[11, 20]. The result for the exponent is negative:

Theorem 1.1 R(7X2)) = 16.

cw,2

For a detailed discussion of the relation of border rank bounds to the exponent for
Kronecker powers of the small Coppersmith—Winograd tensor and its skew cousin,
see Section 1 of [19].

In [19] it was observed that T'm2 = perms, the 3 x 3 permanent considered as a
tensor. Previously Y. Shitov [45] showed that the Waring rank of perm; is at least 16,
which matches the N. Ilten—Z. Teitler upper bound of [27].

Remark 1.2 P. Comon [9] had conjectured that for symmetric tensors their Waring
rank equals their tensor rank and it has similarly been conjectured that their Waring
border rank equals their tensor border rank. While Comon’s conjecture was shown to
be false in general by Shitov [44], we see both versions hold for perm;.

Theorem 1.1 is proved in Sect. 5.
We determine the border rank of Tskewcw,q in the range relevant for the laser method:

Theorem 1.3 R(Tskewew,q) < %q + 2 and equality holds for g < 10.

While this is less promising than the equality R(Tcw,¢) = ¢ +2,1in[19] a significant

drop in the border rank of T , = det3 was shown, namely that it is 17 rather

skewcw
than 25 = B(Tskewcw,2) . (The upper bound was shown in [19] and the lower bound in
[20].) Theorem 1.3 implies B(Tskewcw,ét)z < 64. The following theorem is the largest
drop in border rank under a Kronecker square that we are aware of:

FoE'ﬂ
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Theorem 1.4 () R(T2 ) < R((TE2 ) <42,

skewcw, 4 skewcw,4

The Theorem is marked with a () because the result is only shown to hold numer-
ically. The expression we give has largest error 4.4 x 10~13. We could have presented
a solution to higher accuracy, but we were unable to find an algebraic expression. The
new numerical techniques used to obtain this decomposition are described in Sect. 9.
We also give a much simpler Waring border rank 17 expression for detz = TSEZWCW’2
than the one in [19], see Sect. 8.

Using Koszul flattenings (see Sect. 4) we show B(T®2 ) > 39. For the cube we

skewcw,4

show B(TW’ ) > 219 whereas for its cousin we have 180 < B(Tc%i‘) < 216. We

skewcw, 4
also prove, using Koszul flattenings, lower bounds for R( TE&WW) q) and R( TSE:%NCW) q)
for g < 10. These results are all part of Theorem 4.1.

Remark 1.5 Starting with the fourth Kronecker power it is possible the border rank of
T4 is less than that of 724 | for q € {2, 6, 8}. The best possible upper bound on

skewew,q cw,q°
 obtained from some TE;VCW’ q would be w < 2.39001322 which could potentially be
attained with ¢ = 6. Starting with the fifth Kronecker power it is potentially possible
to beat the current world record for @ with Tskewew,q and for Ty, 4 it is already possible

with the fourth power.

Strassen’s asymptotic rank conjecture [51] posits that for all concise tensors T €
C"®C"™®C™ (see Definition 1.8) with regular positive dimensional symmetry group
(called tight tensors), limy_, oo [R( Tk )]% = m. As a first step towards this conjecture
it is an important problem to determine which tensors T satisfy B(T'X’Z) < B(T)z.
We discuss what we understand about this problem in Sect. 3.2.

A variety that parametrizes all possible border rank decompositions of a given
tensor T, denoted VSP(T), is defined in [11]. This variety naturally sits in a product
of Grassmannians, see Sect. 3.1 for the definition. We observe that in many examples
VSP(T) often has a large dimension when B(ng) < B(T)2 (although not always),
and in all examples we know of, when VSP(T) is zero-dimensional one also has
R(T™2) = R(T)2. This is reflected in the following results:

Theorem 1.6 For g > 2, VSP(1eyw,4) is a single point.
Theorem 1.7 VSP(T.y,2) consists of three points.

More precise versions of these results and their proofs are given in Sect. 6.

In contrast VSP(Tskewcw,q) 18 positive dimensional, at least for all g relevant for
complexity theory (¢ < 10). Explicitly, VSP(Tewcw,2) is at least 8-dimensional, see
Corollary 3.2, and for 4 < g < 10, dim VSP(Tkewcw,q) > (qf), see Corollary 7.1.

Border apolarity is just in its infancy. In Sect. 2.1 we give a history leading up to it.
In Sect. 2.2 we explain results from border apolarity needed in this paper. In Sect. 2.3
we discuss challenges to getting better results with the method and take first steps to
overcome them in Sect. 2.4. In particular, Proposition 2.5 was critical to the proof of
Theorem 1.1 as it enables one to substantially reduce the border apolarity search space
in certain situations (weights occurring with multiplicities).

Elol:';”
@ Springer Lﬁjog



2054 Foundations of Computational Mathematics (2023) 23:2049-2087

1.2 Previous Border Rank Bounds on TXk _ and 72k

w,q skewcw, q

o R(TE2) = (¢ +2)* forq > 2and 15 < R(TX%) < 16.[19]

CcW,q
o R(TZB ) = (q +2) forq > 4.[19]
o R(11Z,.,,) = 17.120]

d B(Tskewcw,q) >q +3.[19]

o Forallg > 4andall k, R(TZ ) > (¢ +2)°(g + 1)** and R(TZ,) = 36.5+2,
[19]

o R(TZ) > 15342, (19]

With the exception of the proof B(TEC%WWJ) > 17, which was obtained via border
apolarity, these lower bounds were obtained using Koszul flattenings.
Previous to these it was shown that K(Tgk ) > (g + l)k 421 using the border

cw,q
substitution method [8].

1.3 Definitions/Notation

Throughout, A, B, C will denote complex vector spaces of dimension m. We let {a; }
denote a basis of A, with either 0 <i <m — 1l or 1 <i < m and similarly for {b;}
and {cx}. The dual space to A is denoted A*. Since our vector spaces have names, we
re-order them freely without danger of confusion. The Z-graded algebra of symmetric
tensors is denoted Sym(A) = ®4S?A, it is also the algebra of homogeneous poly-
nomials on A*. For X C A, X' := {¢ € A* | a(x) = OVx € X} is its annihilator,
and (X) C A denotes the span of X. Projective space is PA = (A\{0})/C*, and if
x € A\{0}, we let [x] € PA denote the associated point in projective space (the line
through x). The general linear group of invertible linear maps A — A is denoted
G L(A) and the special linear group of determinant one linear maps is denoted SL(A).
The permutation group on r elements is denoted &,..

The Young diagram associated to a partition (py, ..., pg) is an array of left-aligned
boxes with p; boxes in the j-th row.

The Grassmannian of r-planes through the origin is denoted G (r, A), which we
will view in its Pliicker embedding G(r, A) C PA"A. We let Gr(r, A) denote the
Grassmannian of codimension r planes.

For a set Z C PA, Z C PA denotes its Zariski closure, 7z C A denotes the
cone over Z union the origin, I(Z) = I (2) C Sym(A*) denotes the ideal of Z, and
(C[Z] = Sym(A*)/1(Z), denotes the homogeneous coordinate ring of Z.Both 1(2),
C[Z] are Z-graded by degree.

We will be dealing with ideals on products of three projective spaces, that
is, we will be dealing with polynomials that are homogeneous in three sets of
variables, so our ideals with be Z®3-graded. More precisely, we will study ide-
als I C Sym(A*)®Sym(B*)®Sym(C*), and I, denotes the component in
S*A*®S'B*Q®S5"C*.

For T € AQB®C, define the symmetry group of T, Gt := {g = (g1, &2, 83) €
GL(A) x GL(B) xGL(C) |g-T =T}.

Elol:;ﬂ
@ Springer Lﬁjog



Foundations of Computational Mathematics (2023) 23:2049-2087 2055

Given T, T" € A ® B ® C, we say that T degenerates to T' if T' €
GL(A) x GL(B) x GL(C) - T, the closure of the orbit of T, the closures are the
same in the Euclidean and Zariski topologies.

Definition 1.8 Given 7T € AQ BQC, we may consider it as a linear map T¢ : C* —
A®B, and we let T (C*) C A®B denote its image, and similarly for permuted state-
ments. A tensor T is A-concise if the map T4 is injective, i.e., if it requires all basis
vectors in A to write down in any basis, and T is concise if itis A, B, and C concise.
A tensor is 1 4-generic if T(A*) C BQC contains an element of maximal rank m.

2 Border Apolarity and the Challenges It Faces
2.1 History

Until very recently, essentially the only way to prove border rank lower bounds for a
tensor 7 was to find a polynomial P in the ideal of o, (Seg(PA x PB x IPC)) such
that P(T) # 0. (See [38] for an exception.) The first nontrivial equations for tensors
were found by Strassen in 1983 [49], although the equations essentially date back to
E. Toeplitz [54] in the partially symmetric case. No further equations were found until
2013 [33, 35], and these are the state of the art. The equations (and a much broader class
of equations) are known to have limits (see, e.g., [24]), essentially one could not prove
border rank lower bounds better than 2m — 3 for tensors in C"@C"@C™. A small
way to improve upon this was developed in [8, 32]: this border substitution method,
which generalizes the classical substitution method to prove rank lower bounds, is
only applicable in practice to tensors with positive dimensional symmetry groups: Let
T € AQB®C be A-concise. Let Gt be the symmetry group of 7 and let By C G be
a Borel subgroup. Let Gr(z, A*) denote the Grassmannian of codimension t-planes
in A*. Note that By acts on Gr(¢, A*) so it makes sense to discuss its Borel fixed
elements. Then

R(T) > mingregr(r,a%),Borel fixed R(T |a@B*c*) + 1. 3)

This enables one to prove border rank lower bounds on 7" by proving border rank
lower bounds via known equations on the restrictions of T to all Borel fixed elements
of the Grassmannian Gr (¢, A*). In [11] W. Buczyiiska and J. Buczyiiski introduced
Border apolarity, which generalizes the classical apolarity for rank to border rank,
and VSP which generalizes the Variety of Sums of Powers (VSP, see, e.g., [41]) for
rank decompositions to border rank decompositions.

2.2 Border Apolarity

If one has a border rank decomposition 7 = lim¢_,¢ Z;:l T;(e),foreache > 0, one
obtains an ideal of polynomials in the coordinate ring of the Segre Seg (PA x PB xIPC)
vanishing on the r points [T7(e)] U --- U [T, (¢€)]. These are ideals in three sets of
variables (those of A, B, C), and since border rank decompositions only utilize a
Elol:';”
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finite number of terms in the Taylor expansion of the T (¢), one may assume that for
all € > 0, the r points are in general position by modifying the higher order terms in
the series. This has the effect that in each multi-degree Iy, . C S*A*®S' B*®S"C*
has codimension r for all s + ¢ + u > 1. Thus for each s, ¢, u there is a limiting
Ly € Gr(r, S*A*®S' B*®S"C*). Moreover, generalizing (3), one may assume that
each of the I, is Borel fixed. By results from [26] these limiting spaces fit together
to form an ideal. In particular the ideal annihilates 7', which in practice means I119 €
T(CHL, Loy € T(BHL, Ipy; € T(A*)* and I;1; C T+. Moreover, since ideals are
closed under multiplication, the image of the direct sum of the three multiplication
maps

L1 u®A* D I 1 y®B* @ L5 ;.- 10C* — S*A*®S'B*®S5"C*,

must be contained in Iy,,. In particular the image must have codimension at least r,
which translates to rank conditions on the map. Call the map the (stu)-map and the
rank condition the (stu)-test.

Write Eyyy, = I, It will be convenient to phrase the codimension tests dually:

Proposition 2.1 [20, Prop. 3.1] The (210)-test is passed if and only if skew-
symmetrization map

AQEj1g — A*A®B )

has kernel of dimension at least r. The kernel is (A®E110) N (S?AQB).
The (stu)-test is passed if and only if the triple intersection

(Es,t,u—l®c) N (Es,t—l,u®B) N (Es—l,t,u®A) (5)

has dimension at least r.
We will make repeated use of the following lemma:

Lemma 2.2 (Fixed ideal Lemma [11]) If T has symmetry group Gt and there exists
an ideal as above, then there exists an ideal as above that is fixed under the action of a
Borel subgroup of Gt which we will denote Br. In particular, if Gt contains a torus
and there exists such an ideal, then there exists one fixed under the action of the torus.

Border apolarity provides both lower bounds and a guide to proving upper bounds.
For example, the (111) space for Tskewcw,q described in the proof of Theorem 1.3 hints
at the formula (57), where the terms linear in ¢ appear in the (111) space.

2.3 Challenges Facing Border Apolarity

In modern algebraic geometry the study of geometric objects (algebraic varieties) is
replaced by the study of the ideal of polynomials that vanish on a variety. The study of a

set of  points {z1, . .., z,} in affine space CV is replaced by the study of its ideal, more
precisely the quotient C[x1, ..., xy1/I;,u....;, Where C[x1, ..., xy]is the ring of all
Elol:;ﬂ
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polynomials on CV and I 1.1z, is the ideal. Note that ring Clxy, ..., xy]1/1;u.Lz,
is a vector space of dimension r, called the coordinate ring of the variety. (In our case
we will be concerned with » points on the Segre variety Seg(PA x PB x PC) but
the issues about to be discussed are local and there is no danger working in affine
space.) The study becomes one of such rings, and one no longer requires them to
correspond to ideals of points, only that the vector space has dimension r and that
the ideal is saturated. Such ideals are called zero dimensional schemes of length r. If
the ideal corresponds to r distinct points one says the scheme is smooth. A central
challenge of border apolarity as a tool in the study of border rank, is that applied
naively, it only determines necessary conditions for a not necessarily saturated ideal
to be the limit of a sequence of such ideals. One could split the problem of detecting
non-border rank ideals into two: first, just get rid of the ideals that are not limits of
ideals of zero dimensional schemes, then, given an ideal that is a limit of ideals of
zero dimensional schemes of length r, determine if it is a limit of ideals of smooth
schemes (smoothability conditions). In this paper we address the first problem and the
new additional necessary conditions we obtain (Proposition 2.5) are enough to enable
us to determine B(TC%?Z) via border apolarity. In Sect. 2.6 we show that ideals that
fail to deform to saturated ideals occur already for quite low border rank. The second
problem is ongoing work with J. Buczyniski and his group in Warsaw.

The second problem is a serious issue: The cactus rank [10, 11] of a tensor T is
the smallest r such that T lies in the span of a zero dimensional scheme of length r
supported on the Segre variety. The cactus border rank of 7', CR(T) is the smallest
r such that T is a limit of tensors of cactus rank ». One has R(7T) > CR(T) and for
almost all tensors the inequality is strict. The (stu) tests are tests for cactus border rank.
Cactus border rank is not known to be relevant for complexity theory, thus the failure of
current border apolarity technology to distinguish between them is a barrier to future
progress. Moreover, the cactus variety fills the ambient space of P(C"®@C"®C™) at
latest border rank 6m — 4, see [25, Ex. 6.2 case k = 3].

2.4 Viability and the Flag Conditions

We begin in the general context of secant varieties with a preliminary observation:
For a projective variety X C PV, define its variety of secant P’ ~!"s,

o (X) = U (X1, .00y Xr).

X1, Xr€X

Proposition 2.3 Let X C PV be a projective variety and let PE C o,(X) be a P’ 1.
Then there exists a complete flag Ey C E» C --- C E, = E such that for all
1<j=rPE; Coj(X).

Proof We may write E = lim;o(x1(¢), ..., x,(¢)) where x;(¢t) € X and the limit
is taken in the Grassmannian G(r, V) (in particular, for all # # 0 we may assume
x1(t), ..., x,(¢) are linearly independent). Then take E; = lim,o{x1(¢), ..., x;(¥))
where the limit is taken in the Grassmannian G (j, V). m|
FoC T
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Let T € A B®C and let Eyy, be an r-dimensional space that is I;}, for a multi-
graded ideal that passes all border apolarity tests up to total degree s + ¢ + u + 1.

Definition 2.4 A multi-graded ideal, or an Ey;,, associated to a potential border rank
decomposition of T is viable if it arises from an actual border rank decomposition.

Viability implies PEg;, C o,(Seg(vs(PA) x v,(PB) x v, (PC))). Here vy : PA —
P(S* A) is the Veronese re-embedding, vy ([a]) = [a*].

To a c-dimensional subspace E C A®HB, one may associate a tensor 7T &
A®B®CF, well-defined up to isomorphism, such that 7(C®*) = E. Much of the
lower bound literature exploits this correspondence to reduce questions about tensors
to questions about linear subspaces of spaces of matrices. (This idea appears already
in [49].) The following proposition exploits this dictionary to obtain new conditions
for viability of candidate Ey;,’s

Proposition 2.5 (Flag conditions) If E11¢ is viable, then there exists a Br-fixed filtra-
tion of E110, F1 C Fo C --- C F, = Eqy0, such that F; C 0j(Seg(PA x PB)). Let
T; € AQB®C/ be a tensor equivalent to the subspace F;. Then R(T;) < j.

Similarly, if Eg;,, is viable, there are complete flagsin Eg;y,, A, B, C such that for all
j<m Egyuj CSAj®S'Bj®S"“Cjandforall j <r,PEg, ; C 0j(Seg(vs(PA) x
v (PB) x v, (PC))).

Proof Set C = C ® C"™. Then there exists 7 € A® B®C such that T(C )= Eo
and R(T) < r. In this case the flag condition [31, Cor. 2.3] implies that since T e
A®B®C C"C"QC”" withr > m is concise of minimal border rank r, there exists
acompleteflagCi c C, C--- C Cr = C* such that f(Ck) C ox(Seg(PA x PB)).
Take Fy = f(Ck). The proof that the flag may be taken to be Borel fixed is the same
as in the Fixed ideal lemma.

The second assertion follows from the preceding discussion. O

Proposition 2.5 provides additional conditions Ej;, must satisfy for viability beyond
the border apolarity tests. It allows one to utilize the known conditions for minimal
border rank in a non-minimal border rank setting.

When Tj is concise, Proposition 2.5 is quite useful as there are many known con-
ditions for concise tensors to be of minimal border rank. In particular it must have
symmetry Lie algebra of dimension at least 2j — 2 and if it is 1;-generic (for any of
the factors), it must satisfy the End-closed condition (see [31]).

Remark 2.6 Proposition 2.5 also applies to cactus border rank decompositions, so it is
a “non-deformable to saturated” removal condition rather than a smoothability one.

By the classification of tensors of border rank at most three [12, Thm. 1.2(iv)] the
possibilities for the first two filtrands of Eq1g are F| = (a®b), Fr, = (a®b, a'®@b')
or Fop, = (a®b, a®b’ + a’®b) corresponding to either two distinct rank one points
or a rank one point and a tangent vector, and there are five possibilities for F3:

(1) F34q = (a®Db, a'®b’, a”’®Db") (three distinct points)
(2) Figap = (a®b, a®b’ +a' @b, a”’ ®b") (two points plus a tangent vector to one of
them)
FoE'ﬂ
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(3) Fape = (a®b,a®b + a'®b,a"®b + a’®b’ + a®b") (points of the form
x(0), x’(0), x”(0) for a curve x(t) C Seg(PA x PB))

4) Faapp = (a®b, a®b’ + a'®b, a®b” + a”’ ®b) (point plus two tangent vectors)

(5) Fapg = (a®b,a®b',a’®b + a”" @b + a®b") (sum of tangent vectors to two
colinear points x” + y’) or its mirror F3pq = (a®b, a'®b, a®b'+a’'®b" +a" Qb).

The space E119 contains a distinguished subspace T'(C*). Write E/, for a choice
of a complement to 7 (C*) in Eqp.

Corollary 2.7 If E|1q is viable and PT (C*) N oy (Seg(PA x PB)) = , then there
exists a choice of E},, such that Fy, C E}y,.

Proof Say otherwise, then there exists M € F; N T(C*). This contradicts T (C*) N
ox(Seg(PA x PB)) = . O

The following Corollary originally appeared in [8, Cor. 4.2]:
Corollary 2.8 IfPT(C*) N0, (Seg(PA x PB)) = , then R(T) > m +q.

Although we have stronger lower bounds, Corollary 2.8 provides the following “for
free™:
Corollary 2.9 For all k, R(T2,) > 3k 428 — 1 and R(TSK ., ») = 3¢ +2F — 1.

The first assertion originally appeared in [8].
Proof Let i, jg € {1,2,3}. Then

TE(CH) = (Y 0 - @i,y ®bjy...jp) i # ja¥1 <@ <)

k
o€l

and the action of o is by swapping indices. This transparently is of rank bounded
below by 2¥. The case of T8k , 1s the same except that the coefficients appear with

skewcw,

signs. O

2.5 Free, Pure and Mixed Kernels

Define three types of contribution to the kernel of the (210)-map for a given choice of
E',: the free kernel

K = dim[(T(C*®A) N (S A®B)],

the pure kernel

K = dim[(AQE],() N (S A®B)],
and the mixed kernel

Ky = dim[(A®E110) N (S’ A®B)] — K, =K',
Elol:';”
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corresponding to elements of the kernel arising from linear combinations of elements
of A®E/,,and AQT (C*). In this language, E',, passes the (210) test if and only if
k', + k' = r — k' r. Define corresponding k', k’:n for the (120)-test.

Conjecture 2.10 Ifr > m and Eyyq is such that k', , k', = 0, then it is not viable.

Intuitively, if E 110 never “sees” the tensor, it should not be viable.

2.6 Limitations of the Total Degree 3 Border Apolarity Tests

Proposition 2.11 Let m > 9, but m # 10, 15. Then for any tensor in C"QC" C™,
there are candidate ideals passing all degree three tests for border rank at most r
when r > 2m.

More generally, setting r = m + k?, there are candidate ideals in total degree

3 2
two passing all degree three tests once m < % - % In particular, for all € > 0,

1
r > m 4+ m37€, and m sufficiently large, there are such candidate ideals.

Proof For the first assertion, it suffices to prove the case r = 2m and the tensor T
is concise. Set k = | /m|, t = k + ('"Ekzl and ¢’ = k + L’”%kzj. Take E{,, =
(at,...,ap)®(b1, ..., bx) + (ak41, - .., ap)Rb1 + a1 Q(b+1, - . ., by) and similarly
for the other spaces. Then

(E110®A4) N (S?A®B) D
S%ay, ..., a)@(b1, ..., by) ® (ars1, ..., an) - (a1, ..., a) Qb
@ SH (a1 - -, an)®by +aP* @ (brr1, ... by).

This has dimension (“3")k + (¢ — k)k + ("5+1) + (+ — k) which is at least 2m in
the specified range. (The only value greater than 8 the inequality fails for is m = 10.)
Similarly the (120) test is passed at least as easily. Finally

(E1109C) N (E101®B) N (Eo11®A) 2 (a1, ..., ak)
®(b1,...,b)R(c1, ..., cx) ®(T)

which has dimension k> + 1 which is at least 2m in the range of the proposition. (The
only value greater than 8 the inequality fails for is m = 15.)

The second assertion follows with the same E ; 10- taking r = m + K andt, v =0.

O

Example 2.12 For TC'\Z& it is easy to get Ef;, of dimension 21 (so for border rank
48 < 63) that pass the (210) and (120) tests. Take E;IO spanned by rank one basis
vectors such that the associated Young diagram is a staircase. Then k'), = k’/p =
1(6) +2(5)+34)+43) +52) +6(1) =56 > 48.
FoC'T
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3 Moduli and Submultiplicativity
3.1 Moduli Spaces VSP

Following [11], define VSP(T') to be the set of ideals as in Sect. 2.2 arising from a
border rank R(7") decomposition of 7. (In the notation of [11] thisis VSP(T, R(T)).)
Since for zero dimensional schemes of a fixed length there is a uniform bound on
degrees of generators of their ideals, this is a finite dimensional variety which naturally
embedds in a product of Grassmannians.

A more classical object also of interest is VSPaogpgc(T) C G(R(T), AQBRC),
which just records the R(7')-planes giving rise to a border rank decomposition,
i.e., the annihilator of the (111)-component of the ideals in VSP(T"). In particular
dim(VSPagpec(T)) < dim(VSP(T)).

It will be useful to state the following result in a more general context: Let X C
PV be a variety not contained in a hyperplane, assume o,_1(X) # PV and write
dim o, (X) = r dim(X) 4+ r — 1 — §. Consider the incidence correspondence

Sr(X) ={((x1,...,%),y, V) e X xPV x G, V) |ye(xg,....x,) SV},
and its projection maps

S (X)

v N
G(r,V) o (X).

Call the projections 7, 7. We have dim S, (X) = rdim(X) +r — 1 sofor y €

Or(X)general, dim(”g_l(}’)) = 4.
Define VSPx py (y) 1= nGna_l(y). When X = Seg(PA xPB xPC),y =T, and
V = AQBQRC, this is VSPsgpgc (T).

Proposition 3.1 Forall y € 0,(X), dim VSPx py (y) > 6.

Proof By [17]dim 7z (S, (X)) = r dim(X), so 7w generically has (r — 1)-dimensional
fibers, which correspond to the choice of a point in the r-plane. This implies that
TG |no_1(y) is finite to one. Since dim n;l(y) > § we conclude. O

Corollary 3.2 A border rank five tensor T € C?@C3®C? has dim VSPagpgc(T) >
8.

Proof dim o5(Seg(P? x P? x P?)) = 26 [49]. o

Remark 3.3 Inthis case, by [53] T also hasrank five and thus dim VS Pogpgc (T) > 8,
where VS Pagpec(T) is the variety of rank decompositions.

A similar argument shows:

Proposition 3.4 Let O; ., be asmallest dimensional Gr-orbitinP(S* A®S' B&S"C).
Then for all (s, t, u), dim VSP(T) > dim Oy ; 4.

Elol:';”
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3.2 How to Find Good Tensors for the Laser Method?

The utility of a tensor 7 € A®B®C for the laser method is bounded above by the
ratio of its cost, which is the asymptotic rank R(T) := limy _ oo [R(T®N)]'/¥  and

its value, which is its asymptotic subrank Q(T) := 1imN_>oo[g(T&N)]l/N. See [16]

for a discussion, where the ratio of their logs is called the irreversibility of T. Here
Q(T) is the maximum ¢ such that M?;] € GL(A) x GL(B) x GL(C) - T, where

M (ef)q is the so-called unit tensor. In bases, M f?;’ = j‘:l a;j®b;®c;. Unless a tensor

is of minimal border rank, we only can estimate the asymptotic rank of a tensor by
computing its border rank and the border rank of its small Kronecker powers.

There are several papers regarding the search for tensors that give good upper
bounds on w in the laser method:

Papers on barriers may be interpreted as describing where not to look for good
tensors: [1, 2, 4, 16] discuss limits of the laser method for various types of tensors and
various types of implementations.

A program to utilize algebraic geometry and representation theory to find good
tensors for the laser method was initiated in [18, 31].

Here we describe a more modest goal: determine criteria that indicate (or even
guarantee) that border rank is strictly sub-multiplicative under the Kronecker square.

To our knowledge, the first example of a non-minimal border rank tensor that
satisfied B(sz) = R(T')? was given in [19]: the small Coppersmith-Winograd tensor
Tew,q for g > 2 and in this paper we show equality also holds when g = 2. This shows
that tight tensors need not exhibit strict submultiplicativity. Several examples of strict
submultiplicativity were known previous to this paper: the 2 x 2 matrix multiplication
tensor M(3) € C*@C*®C* R(M(z) = 7[29] while R(M3?) < 46 [47]. The tensors
of [15] have a drop of one, a generic tensor 7 € C3QC3®C3 satisfies R(T) = 5 while
R(T®2) < 22 [19], and R(Tykewew.2) = 5 while R(TZ2, ) = 17[19, 20].

skewcw,2

3.3 VSP and Strict Submultiplicativity

All the strict submultiplicativity examples have positive dimensional VSP. This is
attributable to the degeneracy of o4(Seg(P? x P2 x P2)) for the generic tensors
in C3C3®C3, and to the large symmetry groups for the other cases: If a tensor
T € AQBQ®C has a positive dimensional symmetry group Gr and Gr does not
have a one-dimensional submodule in each of AQB, AQC, BRC, AQBRXC, then
dim(VSP(T)) > 0 because any ideal in the G7-orbit closure of an ideal of a border
rank decomposition for 7" will give another border rank decomposition.

It would be too much to hope that a concise tensor 7" not of minimal border rank
satisfying dim VSP(T) > 0 also satisfies B(sz) < R(T)2. Consider the following
example: Let T = T1®T, withthe T in disjoint spaces, where T7 has non-minimal bor-
derrank and dim VSP(T;) = 0and 7> has minimal border rank with dim VSP(7;) > 0.
Then there is no reason to believe 72 should have strict submultiplicativity.

It is possible that the converse holds: that strict submultiplicativity under the Kro-
necker square implies a positive dimensional VSP.

FoC'T
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It might be useful, following [15] to split the submultiplicativity question into
two questions: first to determine if the usual tensor square is submultiplicative and
then if the border rank of the Kronecker square is less than the border rank of the
tensor square. Note that in general, assuming non-defectivity, for a projective vari-
ety X C PV of dimension N, og_1(X) has codimension N + 1 in og(X). In our
case R = r? and in the tensor square case N = 6m — 6, and in the Kronecker
square case N = 3m? — 3. A priori, for T € C"®C"QC"™ of border rank r,
T®2 ¢ 0,2 (Seg (P—1x6y) and submultiplicativity is a codimension 6m — 5 condi-
tion, whereas T%2 ¢ 0,2 (Seg(]ID(’"z_l)X3)) and submultiplicativity is a codimension
3m? — 2 condition. Despite this, the second condition is weaker than the first.

4 Koszul Flattening Lower Bounds

The best general technique available for border rank lower bounds are Koszul flatten-
ings [33, 35].

Fix an integer p. Given a tensor 7 = Zijk Tiika; ® bij®cr € A® B® C, the
p-th Koszul flattening of T on the space A is the linear map

7,7 : APA®B* — AP A®C
X®p ZijkTijk,B(bj)(ai A X)®ck.

Then [33, Proposition 4.1.1] states

rank (7, 7)
(dim(A)A—l) : ©)
p

R(T) >

The best lower bounds for any given p are obtained by restricting 7 to a generic 2p+ 1
. . * : 2p
dimensional subspace of A* so the denominator becomes ( » )

Theorem 4.1 The following border rank lower bounds are obtained by applying Koszul
flattenings to a restriction of the tensor to a sufficiently generic C2PT1QB®C C
AQB®C. Values of p that give the bound are in parentheses.

() R(TE2 ) =39(p=2,3,4)

skewcw,4
Q) R(TE2 ) =70(p=2,3.4)
(3) R(TE2, o) = 110(p=4)
@) R(TE2 1) =157 (p=4)
(5) R(TEE ) =49 (p=4)
6) R(TES, ) =219(p=3)
(1) R(IES, . 6) =550 (p=3)
(®) R(T5S .\ 5) = 1089 (p =3)
) R(TES . 10) = 1886 (p = 3).

FolCT
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Better lower bounds for the larger cases are potentially possible, if not easily acces-
sible, using larger values of p.

Compare these with the values for the small Coppersmith—Winograd tensor from
[19]:

(1) R(T%%) =36

c‘%A
) B<TC§?6) = 64
(3) R(T)%) = 100

X
4) R(TL) = 144
(5) R(T%3,) > 180

(6) R(TS%) =512

W

(7) R(TZ%) = 1000

w

(8) R(TZ3,)) = 1728.

w,

Note that B(Tc%il) < (g +2)* and that B(TE;VCW, ;) 1s at least the estimate in

Proposition 4.1 times g + 1 by [19, Prop. 4.2]. Based on this, it is possible as of this

writing that R(T e, ,) < RIS forg =2,6,8.

5 Proof of Theorem 1.1 that R(perm3) = 16

The upper bound follows as R(T¢w,2) = 4.

For the lower bound, we prove there is no E119 C A®B of dimension 15 spanned
by weight vectors (i.e., fixed by the torus action Bperm, ) that satisfies the flag condition
and passes the (210) and (120) tests.

Our argument proceeds by first proving general results about linear combinations
of weight vectors from A® perm(C*) with other weight vectors in AQ(A®B) lying
in the Bperm3 complement of AQ perm(C*). We then list all such combinations that
could potentially arise in some viable E19. We conclude by showing that no choice of
E 110 will pass both the (210) and (120) tests. Our argument is facilitated by assuming
some type of element is in the kernel, then observing what kind of flag would be needed
to have such an element. Often the first few steps of the flag give enough information
to eliminate the element from consideration.

5.1 General Results About the Kernel

In what follows, {i, j, k} = {1,2,3}, {i’, j/, k'} = {1,2,3},and 5,7, s', ¢’ € {1, 2,3}
but we do not require these to be distinct from other indices.

With this notation and the terms on the right hand side running over all possible
indices

perm;(C*) = <a;‘,®b;, + a{,®bj., + a;./@b{, + a§,®b;’,>.
Elol:;ﬂ
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Thus perm;(C*) No3 = . Observe thatky = 1 as
(perm3(C*)®A) N (S?A®B) = (Y a,’j,@(a},@b;f/ + a{}@b;, + a;,®bij, + ajf/@b;',».

Remark 5.1 In general, for any symmetric tensor T, ks > 1 due to the copy of T in
S3A C S?A®B.

The possible weights of elements in AQ B are (200)(200), (110)(110), (200)(110)
and their permutations under the action of (G3 x G3) x Z;. We will say an element
has type (xyz)(pgr) if its weight is in the (&3 x G3) x Zj-orbit of (xyz)(pgr).

The flag condition implies any potential E119 mustinclude aflag E; C E» C E3 C

- C Eyo withdim E; = j and E; contained in some A;®B; where dimA; =
dim B; = j. Moreover E1, E, E3 must be in (a choice of) EilO'

All weight vectors of type (200)(200) have rank one, these are of the form af,®bf,.
Vectors of type (200)(110) have rank one or two, those of rank one are of the form
af,@b};/ and vectors of type (110)(110) have rank at most four, the rank one vectors

among them are of the form af,@bl,.

Given the first step, we could get the second step either by adding another rank one
weight vector, or taking a tangent vector to a rank one weight vector.

The rank two weight vectors tangent to a rank one element of type (200)(200),

which we may write as a ,®b j1»are up to scale a ,®b’, + Kak,®bj,, for some K # 0,

or its Zp-image, which are of type (200)(110) or aj,®bk, + K ak,®b§,, which are of
type (110)(110).

No rank two vector tangent to a rank one element of type (110)(110) is a weight
vector.

The rank two weight vectors tangent to a rank one element of type (200)(110),
e.g., a /®bk/, are of the form af,®bk, + Kaf,@bi, for some K # 0, and they are of
type (110)(110).

LetI'’' =7, xZoand T -a ,®bk, =a ,®bk, + ak,®b +a ,®bj, + ak,®b
what follows underlined terms are elements of E/ 110- The group Gperm, allows us to
unambiguously define the elements of E} 1 except those of type (110)(110).

The two ways to add to a monomial ®a’®b to get an element in S> A® B are either
to send it to zero by subtracting a®(a’®b), which we will refer to as cancellation or
to symmetrize it by adding a’®(a®b), which we call symmetrization.

Lemma5.2 Only a type (110)(110) element can be used for a cancellation of an
element of A® perm;(C*). No element can be used in more than four symmetrizations
of an element of AQ perm;(C*). An element of rank greater than one can be used in
at most two symmetrizations of an element of AQ perm;(C*).

Proof The first assertion is obvious. For the second, if we have some a} ®bf,, then this
can be used to symmetrize a term in any of a} @(I" - aj,@bf/), four such, but no others.
An element of rank greater than one such as a;.,®b§, + af,®b’j, can symmetrize a term
in a},@(f‘ . a;f,@bf,) +a}, (T - ai,@b;,), and one such as a;/®b‘i", + a;,®b;, can only
symmetrize a term in a;,®([’ -a,’@@bf,) +al, (" ~alk‘,®b§,). O
FoCT
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We use a basic fact from exterior differential systems (the easy part of Cartan’s test)
[28, Prop. 4.5.3]: Here we work with general A, B=C".Let A C Ay C --- C A,
be a generic flag in A (generic in the sense that s; below is maximized, and having
maximized s, 52 is maximized etc..). Let 51 be the dimension of the projection of
EilO to A|®B. Define s, by s1 + 57 is dimension of the projection of EilO to Ao®B,
set s; + 52 + 53 to be the dimension of E i 10 Projected to A3®B etc.. Then

dim(S?A®B) N (ARE] o) < 51+ 252 + - - - + msp,. (7

In particular, k', < s1 + 253 + - - - + ms,,. If equality holds in (7), we will say E’ |,
is A-involutive.
Define the mixed price of a space E{,, to be 15 — k. In particular,

e The mixed price is at least 8 if 57 > 6,
e The mixed price is at least 7 if 51 > 5,
e The mixed price is at least 5 if 51 > 4.

A necessary condition for an Ej,, to be a candidate is that k’,, must be at least the
mixed price.

Define the flag cost of a weight vector in E,, to be the length of the smallest
admissible flag that contains the weight vector.

The flag cost of a weight vector of type (110)(110) is its rank, but it need not be
realized via rank one (110)(110) elements.

5.2 Elements in the Kernel with Weight of Type (210)(210)

Lemma 5.3 If a weight vector in the kernel of the 210-map is of type (210)(210), then
without loss of generality it involves only one element of A*® perm(C*).

Proof Assume we have such an element a?,@(r‘ . af,@bj,). Then the three terms that
need to be canceled or symmetrized cannot be dispensed with by another element of
A*® perms(C*), because it would have to have the same weight, namely there would
have to appear superscripts j, j, i and subscripts j/, j/, i/, but this is the only element
of A*® perm;(C*) with that weight. Similarly, any term of £/, that is used to cancel
or symmetrize a term of a;,®([’ . al’:,®b§,) cannot cancel or symmetrize any other
monomial in any other element of A*® perms(C*) again by weight considerations. O

Now we enumerate all such potential elements of the kernel:
To obtain an element of the kernel from aj,@(F . af,@b;,) we may add any of the
following terms: '

— al,®(dl,®b!, + a',®b), + aj @b, + La, b)), ®)
— a},®(al,®b), + a',®b], + La’,®b)) + a}®@(a,@b"), ©)
J J bt i op! I @bl i J @b’
- aj,®(a[/®bj/ + aj/®bl~/ + Laj/®bi/) + ai/®(aj/®bj/)’ (10)
FolCT
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i J J i J J J J onpi J i
+ ai/®(aj/®bj/) + aj/®(aj/®bl-/) - aj/®(ai/®bj/ + Laj/®bi/)7 (11)

J i onpd i J okl J iyt J J e pi i J
- aj/®(ai/®bj/) + aj/®(ajl®bl‘/ + Kal/®bj/) + ai/®(aj/®bj/ + Kaj/®bj/),
12)
i J okl i J okl J i) J J i i J
+ ai/®(aj,®bj,) + aj,®(aj,®bl., + Kal.,®bj,) + al.,®(aj,®bj, + Kaj,®bj,).
13)

The first term consists of pure cancellations, the second and third have one sym-
metrization, respectively using an element of type (200)(110) and (200)(200) for the
symmetrization, the next two use two symmetrizations. The last symmetrizes all three
terms, two elements of type (200)(110) and one of type (200)(200) appear in the
symmetrizations.

Note that if we use any one of these to obtain an element of the mixed kernel, we
cannot use a second, as the difference of two such terms is an element of the pure
kernel.

5.3 Elements in the Kernel with Weight of Type (210)(111)

If an element of the kernel of the 210-map is of type (210)(111), say itinvolves a ]i, (T
af,@b;,) € A® perm;(C*), then, by weight considerations, there are two additional
elements that could efficiently appear in the same element, namely aj.,®(r‘ . al’f,®b] )
and a, @ (" - a},®b7).

5.3.1 Case: One Basis Element of A® perm;(C*) Appears
We obtain four terms to be canceled or symmetrized, and at least one must be‘ sym-

metrized. The possibilities for the kernel element by adding to a,i,@(F . af,@bj.,) are
any of the following:

— a, ®(a},®b], + a',®b), + a,®b%,) + al,@aj,®b}, (14)
~ a},®(a},®b], + al,®b}, + a)®b',) + a', ®a}, @}, (15)
— a, ®(a},®b, + !, ®b)) + ¢} Qa},®b', + al,@a}, b, (16)
— a,®al, @b, + o', @aj, b} + a}®a}, @b}, + al,@aL @Y,  (17)
+a},®@aj,®@b7, + a', ®a}, ®b), + 4 @a}, Qb + a’,@aj, @b,. (18)

5.3.2 Two Elements Appear

Without loss of generality, we take them to be a}, ® (T -al’.'/®b§,) and a;.,®(r‘ -al,®bj],).
Then one symmetrization occurs among the 8 basis vectors in the expression, leaving
FoC Tl
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six, and to send the element to the kernel we have the following possibilities to add to
a]i/@(r ° all/®bj/) + a;/®(r ° all:/®b]i/):

— a4, ®(a},®b), + @b, + al®b',) — d',®(a] @b}, + a\®b], + al®b},), (19)

— a4, ®(a}, @b, + ¢} ®b%,) — al,@(a], @b, + al.®b], + &} ®b},) + al,@a, &b}, (20)

- a]l;/ ®alj/ ®blj/ - d;,@(dg,@b;, + a;:/®bj/ + a{,@b}(,) + a;/®a]i/ ®b;/ + Cl;, ®a]i(/ ®bj:/,

2D
— a},®(a}, @b, + @} ®b%,) — al,®(a®b], + &} ®b},) + a,@aj, &b}, + af,®al, @b},
(22)
+a},®(a},®b?, + a',®b],) + al®(al, ®b%, +d',®b},) — al,®a’, @b}, — a',®a] b,
(23)
+ af/ ®(a]i(/ ®bj/ + aj-/ ®bj/) + al-j/®(a]i/ ®blj/ + a;/ ®bl r) + aj:/@a]i(/ ®b;/ - aj/ ®a]{/®b;:/,
(24)
+ le/ ®(a]i€/ ®bj/ + aj-/ ®bj/) + aij/®(a/i/ ®bljr + aj-r ®b;<r) - a/i{r®a;/ ®bf/ + a]{/ ®aj-/ ®b§/,
(25)
+al,®(a),®b), +d’,®b]) + a)@(a}, @', + a',@b},) + a’,®al, @), + a],@a’, ..
(26)

5.3.3 All Three Terms Appear

a,i,@(F . al’:,®b§,) + aj»,®(F . al’:,®bj,) + af,®(F . a,’;,®b§',) may be sent to the kernel
by adding one of:

— a},®(a]®b, +al,®b}) — a,®(a], @', + &', ®b},) — d',@(a] @b}, + al b)),
27

+ d;,@((lb@b; + all/®b;(/) + a/{/@(all:/®b;/ + a;v ®b:/) + a{r@(a;{/®bl]/ + a;/®b;(/)
(28)

If we use rank one elements we get larger expressions which are easily dispensed with.

5.4 Elements in the Kernel with Weight of Type (111)(111)
5.4.1 Cases with One Element
The possible terms to add to aé,@(FaE,@bj:,) to send it to the kernel are:
+ al @@ @b)) + a ®(af®bl) +al®ap®b)) +a) @ ®b).  (29)
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— a},®(d,®b1) + @ (af,®b}) + d’,®(af, ®b)) + al,®(af ®bL),  (30)

— a},®(d,®b?, + a},®b}) + a} @ (a},@b',) + a,@(af b)), (31)
— a},®(d,®b?, + @) ®bl,) + a', @ (a}, ®b}) + al,®(af ®bL), (32)
— a},®(d,®b], + @ ®bl, + ', @b}) + al,®(af ®b)). (33)

5.4.2 Cases with Two Elements

One possible term to add to a,’(‘,@(f‘ . af,®b5,) + a{‘,@(r‘ . a,’;/®b§/) to send it to the
kernel is:

a',®(aj, @b}, + al®b]) + a’, @ (af, @b}, + al @b},

— a},®(d}®b?, + @} ®b}) — al@(a], @b, + af, b)) (34)

All other possible terms arise by exchanging symmetrizations and cancellations, but
we will see such cannot be used. ‘

Sir;lilarly, af,®T -af,®b§,) +al,®(T ~a,’§,®b;,) may be sent to the kernel by adding
one o

— a},®(d’, @b}, + &, @bl + a,®bl) — al,@(ak,@bj, + al, &b, + al,@bf),

(35)
- a,’f@(a;,@bl-j, + al-j,®b3~,) - af,®(a§/®bj/ + a,{,®b§-/) + af/®(a,’(‘/®bf, +a, ®bf)).
(36)

We will see in Sect. 5.5 that elements with more symmetrizations cannot be used.

5.4.3 Cases with Three Elements

The term af,@(F . a?,@b’,ﬁ,) + a;,®(F . al’f,®b,’:/) + a,’(‘,@(f‘ . al’f,®b§/) may be sent to

the kernel by adding

— a},®(a;, @b, + ak,®b]) — al,@(a}, @b} + a} ®bL) — af,@ (), @b + al @b,
(37)

where all have type (110)(110). One can also have symmetrizations, such will have the
same mixed price but a larger flag cost so it is sufficient to eliminate (37) to eliminate
all cases. . , ,

Using af,®(F . a,i/®blj‘.,) + a}@(l" . a,ﬁ@bf,) + a;i/@(r‘ . al’:,®blj‘.,), a kernel element
can be created by adding the following terms:

i J opk k opd k opd J ok onpi k i b 7 @b
— a;,®(a; @by, + ap®b}, + a;,®by) — aj,®a}; @b}, + a;,Q(a} by, + a;,®b')
FoC T
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— d @@ ebl, +akob)), 8

— a},®(a’,®b}, + af,@b’,) + dk,®(a} @b}, + a],®b}) + al @(al, @b}, + a, @)

— a;'.,®(al.j, ®b]1§/ + a]k(/®bij/)’ (39)

— a},®(a],®bf, + af,®b’,) + a,@(al,®b], + a},®b}) + af B, ®b], + aj,@b',)

+al®d),®bf, + af,®d’, @b, (40)

alk‘,®(a?/®b]:, + a”.,®b,f,) + a’?,@(gf,@bj, + a,{,@bf,) + aﬁ@(a;@b", + a,{,®b;,)

+a /®a ’®bk’ +a/®a /®bku (41)

— a},®(a),®b}, + af,@b’,) + dk®(a}, @b}, + a],®b}) — d’,@(a) @b, + al®b])

+ af,@a’, ®b), + af ®a], @b, 2)

— al'f,@(ajf/@b,’; + a,’§,®b§/ + af@b//) — aj-/®(al-j; ®bf, +al®b], + af,@b})

— a},®(a}®b', + ak,®bl). 43)

There are more since we can swap symmetrization and cancellation for the rank
one elements. But none of them provides a larger mixed kernel.

Any other term with three basis vectors of A*® perms (C*) will have less automatic
symmetrization and thus flag cost > 6 so they need not be considered.

5.4.4 Cases with Four Elements

There are up to symmetry two types of cases with flag cost at most six: in each case there
is exactly one repeated index appearing above and one below. They are distinguished
by whether or not a pair of repeated indices overlap

First af, ®(I"-a},®b’,) +al @ (I -al, @b+, &(I' - af, ®b!) +al,&(I" - a}, @bk
may be sent to the kernel w1th

/®([lk/®b] +a ®b ,)+a,®(ak,®b' +a /®bk/)+ak/®(a ®b] +a ®bk)

+ ak1®(ai/®b‘l]'/ + a;'/ ®bf{/), (44)

a @ (af, @b, + al,®bf) + al @(af, @b, + ai,@b) + a,®(al @b, + al,@bY)

aj ®a,{/®b}/ - a;/®a,{/®b,’-‘,, (45)

aﬂ.,@(a,f/@bf‘, + aij/®b]1§') + af,@(a,’ﬁ,@bf, + a}@b,’@) — afi@(a,@@bf, + a,{/®b§.,)

J i k k J o pi
- aj/®a]l(/®bi/ - ak’®ai/®b;” (46)

aj-,@(a,{,@bl.‘, + al.j,®b],§,) - aj,@(a,’;,@bf‘, + af,@bk,) — aé,@af,@bf,
Fol:rﬂ
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- a,’ﬁ,®al-j,®b3-/ - af/®a,i/®b§, - af‘/®a,f,®bj-/, (47)

- (et + )b - ol @O + a} @) + a} @t @b +alab 8,

+aj,®af®b’, + aj, @} @b, (48)

— d,®(a],®b) + @ ®bf,) + al, ®(af, @b, + a],®bf,) — a ®a}, @b,

— a},®a, @bk + ¢ ®af @b}, + ol @al @b, (49)

a},®(af, @b, + a’,®bf) + a),@(af,®b’, + a',@b) + af, ®al b7,

J i k J ok enpi i J epk
— a3 ®ay ®b; + aj,®a; Qb — aj, Qa;, Qb;. (50)

Using al’:/®(]—‘ -aj:,®b]]§/) +a§,®(l“ ~af,®b,]§/) +Cl,’§/®(r 'all:/ ®b§/) —|—a§./®(1—‘ 'a,l:/ ®b1{/)»
may be sent to the kernel using any of:

al,®a}, @b, + af ®al, @b}, + aj,®al,®bS + ¢} @af, @b}, + a,®af, ),

- af/@(all/@b;(/ + a]l(/®bl// + a}:’/ ®b;/)7 (51)

- al?/@a]{/@blj/ + aﬁ@a?/@bi, + a]i/®a;/®bll'{’ —+ al.j,®a,]f,®b§-/ + [1;/®a]]§/®b{/

— d!,®(a)®b}, + a}, @b, + a],@b},), (52)

al,®(al, @bk, + at,®b!) — al,@(ak @bl + aj ®bY) — af,®(a}®b', + d',@b])

+ al®@dk,@bl, + al,@a", @b, (53)

— a},®a, @, + a,®d", @b}, — a’,@(af @b}, + aj, ®b%)

- al,c‘/®(a{;®b§-/ + a§,®b,-j,) +al ®af/®b};/ + a,’;,®a§/®bij,, (54)

a], ®(al, @bk, + ak, b)) + af ®a’, @b}, + aj,®a’,@bf;

— af ®(a, @b, + a',®b)) — a, (@, @b}, + a},®b)), (55)

— af/@a]{/@blj., + a£/®a§/®b§, + Cllk,®a‘]//®b]l(/ + Cl]lc/®ajl/®bf{/

_ af,@(aif;@b;, + a;,®bij/) — af.,@(aij,@)b", + a,’&@b{,). (56)

5.5 Elimination of Kernel Elements Containing an Element of Type (111)(111)

We may assume that at most four elements of A*® perm(C*) appear in an element of
the kernel of the 210-map of type (111)(111), because, assuming all the coefficients
are +1, by adding a multiple of the 9-term element in the free kernel, which is of type
(111)(111), we can reduce any using k > 4 terms to one using 9 — k terms, and the
EOE';W
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reader may verify that having coefficients other than +1 will only make the situation
worse.

5.5.1 Case Four Basis Elements of A® perm3(C*) are Used

Cases that already use six elements are easily eliminated. In the first set that leaves (44)—
(46). These all have flag cost five and have s; > 4. But now examining the appearance
of (110)(110) terms in relations of (210)(111), those with only one element not of
type (110)(110) are paired with rank three (110)(110) elements. At most one term of
type (210)(210) may be used, so k,, < 2 for any choice and we eliminate these cases.

Cases (51)—(56) are all easily eliminated either immediately or by a similar argument
to cases (44)—(46).

5.5.2 Case Three Basis Elements of A® perm;(C*) are Used

In case (37) the flag cost is at least five as the three rank two elements are in disjoint
spaces. In the first step of the flag we could have a rank one element appearing in one of
the two terms, or a rank one element such that one of the rank two elements is tangent,
e.g. a,f,®b];/ or a,ﬁ,@b’ ,. At step three we need to add another, so up to symmetry there
are three cases. Again since the rank two elements are in disjoint spaces, we need a
third such at step five, for a total of four cases up to symmetry. This forces s; > 5
or s; > 5 (where s{ is the s1 for the (120)-test) so one of the mixed prices is at least
7. The only choice that adds to the mixed kernel is when one takes three elements
of type (200)(200), i.e., taking the second type in each choice. Then one can add up
to three terms of type (210)(210) to the mixed kernel but there is no way to have an
7-dimensional mixed kernel.

Cases (38)—(43) have flag cost 5 and mixed price at least seven, so are easily
eliminated.

Case (43) also has flag cost 5 but it needs more attention as the two rank three
elements may be used in (8) with no additional cost. To obtain a flag, either one will
have s; > 5 or si > 5, so for one of the two the mixed price is at least 7 and one
concludes as there is no way to enlarge the mixed kernel by four just adding in a single
rank one element.

5.5.3 Case Two Basis Elements of AQ perm;(C*) are Used

Case (34) has a flag cost of 5 and after adding in a rank one element one has s; > 5,
so the mixed price is at least 7 and one concludes as above.

Case (35): here we get two elements of type (8) for free, but the flag cost is 5 and
any choice will either make s1 > 5 or s{ > 5, and there is no way to expand it to have
a 7 dimensional mixed kernel. (In fact if s{ > 5 the situation is even worse as this
space does not give rise to a B-analog of (35).)

Case (36) has flag cost 5 as the three terms are in disjoint spaces and once the
needed two rank one terms are added, one obtains s; > 5, so the mixed price is at
least 7 and one concludes as above.

Elol:;ﬂ
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5.5.4 One Basis Element of A® perm;(C*) is Used

In all cases, there is a flag cost of four.

In cases (29), (30) all elements appearing lie in different weight spaces and cannot
be used together in a kernel element of type (210)(110) or (210)(210).

In cases (31) and (32), rank two elements may only be used effectively in (9), (10),
and (16). Each of these requires adding in a different rank one element filling E1,,.
Moreover, once the flag is filled in, we will have 51 > 4 so mixed price at least five.
We conclude the (210)-test cannot be passed in this case.

Consider case (33): the first step of the flag is just a,f,@bf,. For the second step, we
could add another rank one element or a tangent vector to af,@bf,. Since eventually
we need to account for the rank three element, the second choice turns out not to
be as useful. For the rank one element, the naive choice would be one of the three
summands in the rank three term, but this turns out not to be as good as choosing the
next three steps to be a’}@bf,, ai], ®b;.',, al’:,®bf, so one gets the rank three element via
the tangent to line construction. The resulting five dimensional space already passes
the (210)-test. We get (8) for free using aj,@([‘al’:/@)b;/), then (9) two times, using

a?,@(f‘af}@bf,) and ai/,®(l"al’:,®b§,) and (10) one time, using af,@(f’aﬁ@bé,). On the
other hand when one considers the (120) test, we only get a term analogous to (8) and
moreover s; > 4 so the mixed price is at least five. If we just add two of the three
elements so the flag condition is satisfied, and then their reflections, the reflections are
not useful for producing elements of type (210)(111) in the kernel and both tests are
failed by one. If we add a term like a,i,@b;:, to enable an element of the kernel of type
(14), the situation is the same. We conclude case (33) is not viable.

5.6 Kernels Consisting of Elements of Type (210)(111) and (210)(210)
5.6.1 Three Element Cases

(27) and (28) have flag cost five and are easily dispensed with using arguments similar
to above.

5.6.2 Two Element Terms

All have flag cost at least 4, satisfy s; > 4 so the mixed price is at least 5. All cases
without a rank three element are easily eliminated. Those with single a rank three
element get an element of type (8) in the kernel for no extra cost, and for a cost of one
each, get an element of types (9), (10), and potentially (14) and (15), but there is no
way to reach five with just two more elements so these cases are eliminated.

Term (19) has flag cost four, as the first two terms in each parenthesis are tangent
vectors to a f, ®b§ ,. These two terms may be used in two terms of type (8), but no others
alone, and even though we may add two more vectors and utilize a}@bf, to gain an
addition term of type (13), here one of the mixed prices (once one satisfies the flag
condition) is at least eight as s; > 5 or s{ > 5, so this case is also eliminated.

Elol:';”
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5.6.3 One Element Terms

Cases (16), (17), (18) are easily eliminated.

Cases (14), (15) can be made to pass the (210)-test with similar Eilo to case (33),
but one has the identical problem with the (120)-test, and the argument to eliminate
these cases is the same as that for (33).

5.7 Kernels Consisting Only of Elements of Type (210)(210)

Consider case (13). Note that even if K # 0 the flag cost of such an element is 3, and
if we take one, e.g.. (13), we may obtain three more for an additional flag cost of two

by con51der1nga L -a; ,®b],) a ,®(F ak,®b]) a ,®(F ak,®bj) We still may
add an addltlonal element to E i 10 but no addition w111 increase k', to be larger than

four. On the other hand we see the mixed price if 5, so such a case is not viable.
The other cases here are similar and easier. O

5.8 Remarks

Remark 5.4 The reason perms; was previously unaccessible was that already to choose
EY o without the flag condition one needed to introduce numerous parameters due to
the high weight multiplicities that made the calculation infeasible. The flag condition
guaranteed the presence of low rank elements in E},, which significantly reduced the
search space.

Remark 5.5 1t is interesting to see what happens when dim Ej,, = 7, to obtain a
border rank 16 ideal fixed by the torus in Gperm,. One may take for example

110 = (a1®bl,a2®b1 +al®b2’ a3®b1 +al®b37 a1®bl
+al®b3, a3 @b} + al ®b3, al @b}, al@b) + al®bl).

Then we obtain the four (200)(200) contributions to k', from expressions of type
(18) as well as three additional contributions from expressions of type (28). Here
s1=s8;=4,5=s),=3and

(AQE0) N (S?A®B)
= (a]®al @b}, a}®al @b} + al@(ai®b} + al®@b)), al®al @b} + al@(ai®b! + al b)),
a12®a11®b} —+ a}@(a%@b% + a11®b%), a%®a11®bi + a%@(a%@bi + a%@b%),
ay®a;®b}, al ®a3®b) + a}®(ay®b] + a{ ®b}), a3 ®ar®b) + a3 @ (a3 @by + ay®b}))

sok', = k/ ' = 8 and both the (210) and (120) tests are passed.

Fo C 'ﬂ
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6 Descriptions of VSP (T, q)

In this section we adopt the index range 1 < «, 8 < ¢g. The small Coppersmith—
Winograd tensor has a well-known border rank decomposition, which is also a Waring
border rank decomposition.

Tew,q = thn(l)
=

1
5 D (@0 + ta)®(bo + the) ®(co + 160

1
-3 [(ao +12 a)®bo + 12 Y b)®(co+17 Y co,):|

1 1
—(q 2 t—3)ao®bo®co-

Letg > 2. Writte A = B =C =L & M, where L = (ap) and M = (a,). Set
0 = Za ay®ay. A straight-forward Lie algebra calculation (see, e.g., [18]) shows
Gr,,2S0M, Q) x GL(L) = §0(q) x C*. Then

AQB=L*QLAM®SIM S AN’M O (L-M S Q),
where the term in parenthesis is Tew, 4 (C *). Here S(%M = M, is the complement
to the trivial SO(M, Q)-representation in S2M. In what follows we write L¥ for
L&k = skr.

Theorem 6.1 For g > 2, VSP(Tcw,4) is a point. The unique ideal is as follows: for all
s, t,u withs +t + u = d, the annihilator of the ideal in degree (s, t, u) is

LYaL" . MeL?. Q.
Here

LM = (@) - aa®by@ch + ay@by " - ba®cf + ay®@by®cf !
ey la=1,...,q)

and

Li72. 0= <Z a(s)_l -aa®b6_1 - be®cyy + a(s)_l ~aa®b6®cg_1 sy + a5®b6_1
o

~ba{®c3_1 cCq + a(s)_z -a§®b6®cg + a8®b6_2 . b2®c3_1 “ Co

+ai@by@ch? - ci) .

FolCT
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Proof We must have PE |19 N Seg(PA x PB) # . This may be achieved by adding
some

(Moao + Y uaa)®wobo + Y vpbp)
o B

forug, uq, vo, vg € C. We also must have a flag as in Observation 2.5. Taking anything
other than ag®bg, (upag + a)®bg with ug € C,a € M, or xag®by + ya,Qby (i.e.,
some ag®by, or a, ®bg since we are working modulo T (C*)) makes the flag condition
PF, C 02(Seg(PA x PB)) fail. (Here we use that ¢ > 2.) Taking anything other
than ap®bg makes the flag condition PF3 C 03(Seg(PA x PB)) fail. Thus there is
a unique E1jo, and by symmetry unique E19; and Eg;;. This triple exactly passes all
degree three tests.

To see E»po must be as asserted, it must be such that (Ego®B) 2 E»j¢. In order
to have L®3 in this intersection, we need L®% C Eago. In order to have L2 - M =
{ag®ag®by +aoQay, ®by~+a,Rag@bg) in the intersection, we see it must also contain
(ag®ay +ay®ag) = L-M.Inordertohave L-Q = (Za (ap®ag @by, +ay, R®agRby, +
a,®aq®bo)) in the intersection, we see it must also contain (), a,®aq) = (Q).

For the general case, assume by induction Eg_1;y, Est—1,u, Estu—1 are as
asserted and isomorphic as a module to L%~ @ L2 . M @ L4~3 . Q. Arguing
as we did for E;qq, first obtaining L® then LY~ . M, then L9~2. Q we conclude.

O

Note that the ideal is G, ,-fixed as indeed it has to be if VSP is a point.
Now let ¢ = 2, in this case it is more convenient to write T¢y 2 as

Tewp = Z aa(l)®ba(2)®cn(3)-

0eB3

Write A= B =C = L1 ®L,® L3 where, e.g.,for A, L; = (a;). A straight-forward
Lie algebra calculation shows G, , 2 (C*)*.

Theorem 6.2 VSP(T.w 2) and VSPU3(P2)’P53(C3(TCW,2) each consists of three points.
One choice has for all s,t,u with s +t + u = d, the annihilator in degree (s, t, u)
equal to

Li®LI®LY ® ¢ (L '®Ly) ® ¢ (L] '®L3) ® ¢ (L} *@L2®L3)

where ¢ : (L‘f71®Lx) — SSAQRS'BRSUC is the symmetric embedding. The other
two choices arise from exchanging the role of L1 with L, L3.

Proof Wehave Tew 2(C*) = (a;®b;+b;®a; | i # j).The only possibilities for Ey19
for r = 4 that pass the (210)-test arise by adding a; ®by to this for some k € {1, 2, 3}.
Take k = 1. Then

FoC'T
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(E110®A) N (S*A®B) = <a%®b1, a1a,®b + ai®by, ajaz®b; + ai®bs,

Z aa(l)®aa(2)®bo(6)>

0eB3

The only compatible choice of Ezq is (a12, ajaz, ajaz, azaz). The situation for higher
multi-degrees is similar. O

Remark 6.3 In contrast to ¢y 2, by Corollary 3.2, dim VSP(Tskewew.2) = 8. From [23]
(slightly changing notation) we have the rank five decomposition:
1
Tikewew,2 = 5[2al®(b2 — b3)®(c2 +¢3)
— (a1 + a2)®(b1 — b3)®(c1 + ¢3) — (a1 — a2)®(b1 + b3)R(c1 — ¢3)
+ (a1 +a3)®(b1 — b2)®(c1 + ¢2) — (a1 — a3)® (b1 + b2)®(c1 — 2)]

and the orbit of this decomposition already has dimension 8. (This can be seen by
noting that more than four distinct vectors in C> appear in the decomposition.)

7 Tskewew,q: 9 > 2

Proof of Theorem 1.3 For the upper bound, we have

Tskewcw,q

. 1 2 2 2
= th_r)r(l) ﬁ[;[(ao +17ag)Q(bo — t7bg)®(co — teg4p) + (ap — t7ag)

®(bo — the1p)®(co + 17c¢) + (a0 — tag+,)®(bo + 1*bg)®(co — t2ce)]

1 3 3 3
+l_5 ao+t‘2ag+p ® | bo+1t Zbg_h,, & |co+t ZCS"‘P
3 3 3

9 + ! ®by® (57)
—|==+—=)a co |-
22 T 75 ) do®bo®co

For the lower bounds, writte A = B = C = LM withdim L = 1,dim M = g and
M is equipped with a symplectic form 2. A straight-forward Lie algebra calculation
shows Gy yeny 2 SP(M) X GL(L) X M*®L. Then

ARQB=L%*®L-M&®S’M & A’My® (L AM D Q)

where the term in parentheses equals Tgewew,q (C*). Here A*My = My, the comple-
ment to the Sp(M)-trivial representation in A*M.

Elol:';”
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We have the following weight diagram for the G, ,~complement of 7'(C*) in
A®B:

L®? L-M M A’M

ap®by —

|
ap®by + a1 @by
]

ap®by + ax®bo a1®b;
ap®b3 + az®by a1®@bs + a2 ®b; a1®by — a;®b;
a1®b3 + a3 ®b; a1®bz — az®b,

ax®b3 + a3 @by a1®by + as®by ar®b3 — a3®by a1®by — ay®by

We will show that for g < 10, there is no choice of E{, satisfying all degree three
tests when r = %q + 1. We focus on the case g = 10 as that is the most difficult, the
other cases are easier.

Note that elements of M may be raised to L, so an element of $>M cannot be placed
in Ei 10 unless its raising to L - M is also there. On the other hand, since LAM C Ejjo,
there is no similar restriction on elements of A2M.

We now restrict to g = 10. We split the types of (110) spaces into 10 types of cases
depending on the dimension of E1, intersected with the various irreducible modules:

case L2 L-M S*M A}M

1 1 4 0 0
2 1 3 1 0
301 2 2 0
4 1 2 1+4% 4
5 0 0 0 5
6 1 0 0 4
7 1 1 0 3
8§ 1 2 0 2
9 1 1 1 2
0 1 2 1 1

Types 1, 2, 3, 8,9, 10 are all single cases Types 5, 6, 7 each involve a choice of subset
of weight vectors in AgM (so they are each a collection of a finite number of cases)
and case 4 involves a parameter, where we use % to indicate the parameter, as the
weight vector is a sum of a vector in the two indicated spaces. Explicitly, case 4x may

be written

E' 10 = (ao®bo, ap®bi + a1®bg, ap®by + ar®bo, a1®b1, x(a1®by + a,®b1)
+a1®by — ax®b).

Of these cases 1, 2, 3, 4x, 8, 10 pass the (210) and (120) tests. No triple passes the
(111) test. O

We remark that the decomposition (57) is Z3z-invariant.
FolCT
I_I o
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Corollary 7.1 For 10 > g > 2, and q = 2p even, VSP(Tsewew,q) contains the
isotropic Grassmannian GQ(%, M). In particular it has dimension at least (é’)

Proof Using Sp(M) C G1yyey, We may replace (ag) in (57) with any isotropic
subspace as long as we replace {(az 1) with the corresponding dual subspace and the
same changes in B, C. O

8 A Simpler Waring Border Rank 17 Expression for det3

In this section and the next, we present explicit decompositions. The method used to
obtain the decompositions is discussed after the second decomposition at the end of
Sect. 9.

Seti = +/—1 and ¢ = €2™/12_ Then det; = 2317 L m3(t) + O(t), where the m;
are the following matrices

£00 Looy (£ 0 o 200
t t PE
00 010 0 0 18 0 0¢z°
007 000 0 *z* 0 000
5 3 10 8 8 6
ooy (00} (0 s g) (05
000 000 0 0 18 00 r£°
00 0 0:5 B3¢0 0 00 0
11 9
0 &% 0% 0 050\ (0% o
0 00 gj 0 o 000 00 0
260 0 0 15¢6 # 00/ \0oo ¢t
0.0 3 00X\ (o0&
£ 0 0 0 ¢to] fo¢o
0 1426 0 £t 0 00 0
3 3
o ste (B9 o she (13v8)7E
514 13 5t4 13
1 1
1-35)7 ¢ 1+3v3) 7 ¢8
( 5[) 0 0 ( 5[) 0 0
0 0 0 0 0 0
9 A Numerical Border Rank 42 Expression for T?léwcw 4

What follows is an expression for T kcwcw 4 a8 ZY 1 ms()®3 4+ O(¢) that is satisfied

to an error of at most 4.4 x 10~ 13 in each entry. It consists of 42 matrices whose entries

are rational expressions in the following 36 complex numbers: Let i = +/—1 and let
¢ = e2mi/12. Set

FoE'Tl
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zo = —0.8660155098072051 + 0.9452855522785384i z1 = —1.2981710770246242 + 0.0008968724089185688i

zp = 2.9260271139931078 + 0.1853833642730014i z3 = 0.2542517122150322 + 0.30793819438378284i
z4 = 0.6964375578992822 + 0.2772662627986198i z5 = 0.5507020325318998 — 0.0493931308002328i
26 = 1.149228383831849 — 1.1683147648642283i z7 = 0.6586404058476252 — 0.16578044112199047i

zg = 0.7654345273805864 — 0.06877274843008892i 79 = 0.544690883860558 + 0.09720573163212605i
210 = 0.6932236636741451 + 0.14980159446358277i 711 = 0.5862637032385472 — 0.12844523449559558i
Z12 = 2.384363992555291 — 0.08927102369428247i 213 = 0.9664252976479286 4 0.08480470055107503i
214 = 0.6190926897383283 + 0.15631000400545272i 215 = 0.6283592253932955 — 0.5626050553495663i
216 = 1.8190778570602204 — 0.22163457440913656i z17 = 1.153187286528645 — 0.07977233251120702i
718 = 1.4498877801613976 — 0.22515738202335905i z19 = 0.7262464450114047 4+ 0.7050051641972112i
270 = 1.1195537528292199 — 0.26381000320340176i 221 = 0.4400325048210471 + 0.6593492930106759i
222 = 0.3476654993676339 + 0.4095417606798612i 223 = 0.9459769225333798 4- 0.24589162882727128i
224 = 0.7637135867709066 — 0.10529269213820387i 235 = 0.7409392923310902 — 0.10474756303325146i
226 = 1.0112068238001992 — 0.12695675940574122i 227 = 1.5005677845016696 — 0.24533651960180036i
228 = 0.6134145054919202 + 0.08121891266185506i 299 = 1.145625294745251 — 0.3813562005184122i
z30 = 1.0607612533915372 — 0.016294891090460426i  z31 = 0.941339345482511 + 0.20413704882122435i
232 = 0.622575977639622 + 0.2555810563389569i 733 = 0.951746321194872 — 0.2894768358835511i
234 = 1.0532801812660977 — 0.2502246606675517i 235 = 1.0207644184200035 — 0.2106937666100475i .

The 42 matrices are:

Z()l t13

219294235

P os26231235 ¢Bog 0
1269 223225226231233234  223225226231233234 0 a8
225226231233235 0 0 0 &ziszezanl
(104 221223233235
0 0 0 0 0
0 0 ¢’ 35;121 0 82032341%!
223225236731233234 224325
0 0 0 0 0
1023
7269 0 0
0 0 = 00
227228230
0 0 0 00
{622722&%5[121
0 0 2o 2. —=0
- 223%25%26%31233234
!
0o = 0 00
227230234
0 0 0 0 0 Pz 0o o
0 0 0 0 0 an®” ‘0
z|szz4zzsmzt2“ 163 [1147”3 0 0 0 00
0 e 700> 0 0 0 0 00
221223225233235 25 169
0 0 0o 0 0 0 “za7t 0 00
23023
Capzmszy _Czaizst'™ 0 0 0 0 v27t1384 251136 00
242311 25322 20823023, 230234 226234235
000 577?4 1 $224226235
2122252312322351 234129 00 22823419 0
1929622 148 3
235 000§~926~;2%~35[ 0O 00 0 0
Binenzisn 23212213218 ¢S5 2oaz262351%
000 0 . 00 24~2762;35 0
23213231 0 00 0 0
212219220221 2322341101 000 0 0 00 0 0
000 0
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61 13
0 *ais21z mz&mzf ¢Mzisz192ast 00
~2|m~25<31~;g<34 <34
0 0 0 00
0 0 0 00
1, . .
¢ lg 2212232252 3{;]35 0 0 00
ugz]gzzczugsﬂ
$7221223225233234
S 2 2 /146 0 0 00
C15018219226%31 232435
3235231 0 0 o &
2232341790 1l
0 0 0 0
0 ¢’ «23424«33t 0 ¢ Z341133
30331
0 5 0 0 0
25731433435
10,136
0 0 L S
225231
Mz = 000 (102221372142144434]7 Oz 0
2122212232252321 2122132192202, ynzqi’ 1269
S 000 S 0 00
’ 000 S S 0
. t 228233235
213231235 =000 0 0
22232122182242322341
000 0 0 0
£3224226239730 0 M armast? 2 0
22779 202231282301%1 165
0 0 0 0 0
£19224206239230234 0 0 85 ¢'021823, 206207230234 23511
o $z34t P S—
227 220221253225228230
0 0 0 0 0
£1021823) 205226 227232233235 2071134 0 0 0
2202212232242282302311 170 234226239230234
1 2 61
Cosnemizns b 21mapnst” g () 0
" 21822123412 225231 0o s
& 225226 ;|z3%z 3 0 00 & zo8t
2182212347 2 3
0 0 00 0
¢Mzyszaizmaas 0
2182212242341 10
0
0 000
0 000
$25211216218224226231232
" 0 s 0 2422022122511
0 0 $°252112162202331 0 0
2
0 0 0 0 0
10,
R - 0 0 0
2192202272302331 p 136
() 0 $ozz0z11z182102272282300 7 () 0
zlgzzozz7zzozs4tl46 252728216221223225226233235
328235 s
T 00 & O
220823322 100
1104 =0 OC 2331 0
0 00 0 0
0 00 ™M o0
0 00 fm® g
234
FolC T
B f
@Sprmger s E



2082 Foundations of Computational Mathematics (2023) 23:2049-2087

9.2 2 61 3
0 7 217%212242282591 Aapayt!? £222227231233235 0
21822,20523,932233234 035 21722622973 2172282291%°
0 0 0
20 2 211
0 §7217221204208 2017 0 i nest gyt
218259225257 232233235 217228729 217221223225229333
0 0 0 0
2,0 184
3218202520723 £ 2192008 0 0 0
217221 224229231 1190 220723224229Z§U«”31234
3
L. 225226231232235 22122423511
AW 0 Conmna” 0
! 5 2182212341 225226231232 s s
0 00 §£2225226231232233235 () 0 0 2081
0 0 00 218221234110% 231223204232233234 235
0 0 0 0
0 0 T za62351"! 00
227228730333 SR () 0 0 0
N ;? 2182212242341
0 0 aszul 00 0 0 0 0
223226234
10 .
£725218219228230232 0 0 0 2iZi6331
2212232252332351°%° o 25219220117
0 0 24211216220 . 0 0
25218219224226232
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§ 20210211218224226232234235 () 0 0 0
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£220210211218224226232235 0 £2521821922725g 2321 0 0
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2 2
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0 0 0 0 0
m 0 0 ¢ ”27424726429”3%;5f85 £ 218220207228220230231 2322341132
2202232301119 217227234231 217221223225233235
0 0 0 0
1 2
218222225227228 2292302328
¢ w0 0 0 0
2172212242351
0 0 ¢Aziozait® 00
0 0 ¢3210231233t178 0 0
0 0 0 00
8
£°221203225
218220226 2312321 161 0 0 00
279226231232
221223225233
71072 7 2397341146 0 0 00
218219226231232234
0 £1922 20120320 @zstl 0 ¢4218229226231232235 0 T 3% 0 0 0
71821923223 2162212232252281% 1269 728233735
0 0 0 0 0 0 0 0
228234
0 0 0 0 0 = 0 0 0 0
4,160
£ T61 0 0 0 0 0 2o 0 0
ZlﬁZl‘)ZZﬁZg]Z}}f 228233235
76 0 0 0 0 0 0 0
2162192262312341
4, 61 10, 2,61
214 £ 2301 £z Lot 0 0 0
20 22 207233 0 0 0 29 727230233
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0
0 0 0 ., 0 . 0 rorst torrent!
0 0 0 fzaeart 0 0 35 0 t2rs
230 226227228230233 ;e
0 0 0 0 0 0 0 0 0 st
224234235
4 3,461 2
2281 214
PARR 00 0 40 0 0 0
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0 0 0 0 0 0 070 0 0
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3
¢® 2152182081 4215212423023 0 0
521822122317 223205226231 232233234235 34
323 {22623y2331 18
V) o 10F 0 0 (e —
2152182212231 215218221223
0 0 0 0 0
U, rnazncz
¢ 215223005231 0 0 0 0
2182212242341
0 0 0 0
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)
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7104 = 0 0 ¢19233¢1%0 0

0 o0 0 0
o L2 0 2% 0
228233235 58

234

We now give an overview of the method used to obtain the expressions for det3 and
X2 .
Tskewcw,4'

Fix basesa; € A, b; € B,and ¢; € C. Atensor T € AQB®C has an expression
T = Zi,j,k Tijkai®bj Qcy and is standard tight in this basis if there exist injective
functions wy : [m] = Z, wp : [m] — Z, wc : [m] — Z so that T¥¥ # 0 implies
wA(@) + wp(j) + wc(k) = 0. In this case, we will call a choice of (w4, wp, wc)
satisfying the constraints a set of tight weights. Given a set of tight weights for 7', we
consider border rank decompositions of the form:

T=Y"_|A®O®B;(1)®Cs(t) + O(1), (58)

where A (t) = Y, Aut@4aDa;, Bi(t) = Z'/'?:l stt‘”B(-/)bj, and C,(t) =
Y iy Ct® ®)¢r. Note that when the tight weights are trivial, this is an ordinary
rank decomposition. In our situation, the equations correspond to a strict subset of
the equations describing a rank decomposition, namely those corresponding to triples

@, j, k) where wa(i) + wp(j) + wc (k) < 0. In the case of Ts%e%«ch this reduces

the number of equations down from (253+ 2) = 2925 to 692 and just as with a rank

decomposition, there are 3rm = 3150 unknowns.

We pick a choice of tight weights which minimizes the number of equations to be
solved. The problem of obtaining a border rank decomposition is then split into two
questions: first, to compute a set of tight weights (w4, wp, wc) so that #{(i, j, k) |
wA(@) +wp(j)+ wc (k) < 0}is minimal, and second, to solve the resulting equations
(58) in the A,;, st, Csk-

Consider the first question. Given sets S<, S~ C [m] x [m] x [m], consider
the problem of deciding if there are tight weights (w4, wp, wc) satisfying the
additional constraints that wa (i) + wp(j) + wc(k) < 0 for (i, j,k) € S< and
wA(@) + wp(j) + wc(k) > 1 for (i, j,k) € S~. These conditions along with the
original equality conditions form a linear program on the images of (w4, wp, wc)
which may be efficiently solved. There is no harm in letting the linear program be
defined over the rationals, as we may clear denominators to obtain a solution in inte-
gers. One can use this fact to prune an exhaustive search of choices of S<, S~ to find
one for which S< U S. = [m] x [m] x [m], there exists a corresponding set of tight

Elol:;ﬂ
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weights, and #S< is minimal. While this is an exponential procedure, this optimization
was sufficient to solve the problem for this decomposition.

The second problem, solving the associated system, is solved with the Levenberg—
Marquardt nonlinear least squares algorithm [37, 39]. The sparse structure of the
answer is obtained by speculatively zeroing (or setting to simple values) coefficients
until all freedom with respect to the equations is lost. In other words, we impose
additional simple equations on the solution and solve again until we obtain an isolated
point, which can be verified by checking that the Jacobian has full rank numerically.
This procedure is repeated many times in order to find a simple solution. Ideally, we
would prove the resulting parameters indeed approximate an exact solution to the
equations by searching for additional relations between the parameters and then using
such relations to make symbolic methods tractable. In this case, all such attempts
failed. See [19] for further discussion of these techniques.

The border rank decomposition in this section is also a Waring border rank
decomposition, that is, A = B = C, and A;(t) = B(t) = Cs(t); in particular,
wa = wp = wc. This condition was imposed to make the nonlinear search more
tractable, and it also has independent interest. The techniques presented are equally
applicable in the symmetric case as well as the asymmetric.

We remark that numerous relaxations of this method are possible. It was inspired
by the improved expression for dets, which had the structure we assume. It remains
to determine how useful it will be for more general types of tensors.
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