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ABSTRACT
We extend a recently proposed kinetic theory of virus capsid assembly based on Model A kinetics and study the dynamics of the intercon-
version of virus capsids of different sizes triggered by a quench, that is, by sudden changes in the solution conditions. The work is inspired
by in vitro experiments on functionalized coat proteins of the plant virus cowpea chlorotic mottle virus, which undergo a reversible transi-
tion between two different shell sizes (T = 1 and T = 3) upon changing the acidity and salinity of the solution. We find that the relaxation
dynamics are governed by two time scales that, in almost all cases, can be identified as two distinct processes. Initially, the monomers and one
of the two types of capsids respond to the quench. Subsequently, the monomer concentration remains essentially constant, and the conver-
sion between the two capsid species completes. In the intermediate stages, a long-lived metastable steady state may present itself, where the
thermodynamically less stable species predominate. We conclude that a Model A based relaxational model can reasonably describe the early
and intermediate stages of the conversion experiments. However, it fails to provide a good representation of the time evolution of the state
of assembly of the coat proteins in the very late stages of equilibration when one of the two species disappears from the solution. It appears
that explicitly incorporating the nucleation barriers to assembly and disassembly is crucial for an accurate description of the experimental
findings, at least under conditions where these barriers are sufficiently large.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0160822

I. INTRODUCTION

There are two major aspects to how viruses in general,
and more specifically, unenveloped single-stranded RNA (ssRNA)
viruses, infect living cells. The first is the role of the viral genome,
which is responsible for the replication of the virus inside the host
cell. The second is that of the capsid, the protein shell that protects
the genome of the virus until it enters the cell in order to release
its genome and produce large numbers of virus particles from the
replicated genome and protein components. Therefore, virus cap-
sids must be able to function as a protective transporter as well
as a deliverer of genomes. These two functions must be executed
via controlled shell disassembly and reassembly, depending on the
environment and stage in the reproduction cycle.1–5

Experimentally, in order to study the physical aspects of the dis-
assembly and reassembly of viruses, use is often made of a simple,

icosahedral plant virus known as Cowpea Chlorotic Mottle Virus
(CCMV). In vitro studies have shown that CCMV disassembles
spontaneously under appropriate solution conditions. This occurs
when the buffer solution containing the virus particles is suddenly
changed from neutral to basic pH at high ionic strength.6–8 Con-
versely, solutions containing the coat proteins of CCMV or those
of other viruses such as Brome Mosaic Virus (BMV) and Hepatitis
B Virus (HBV) can be made to spontaneously encapsulate nega-
tively charged cargo, which does not need to be the native genome
but may include heterologous ssRNAs, synthetic polyanions, or even
nanocolloids.9–12

The self-assembled particles often have the same size or struc-
ture as the native virus, but this is not always the case.13–17 In
some cases, mixtures of differently sized or structured particles self-
assemble, as is the case for HBV even in vivo.18,19 In vitro, such size
competition is often observed too, where the predominance of a

J. Chem. Phys. 159, 084904 (2023); doi: 10.1063/5.0160822 159, 084904-1

Published under an exclusive license by AIP Publishing

 22 January 2024 20:53:13

https://pubs.aip.org/aip/jcp
https://doi.org/10.1063/5.0160822
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0160822
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0160822&domain=pdf&date_stamp=2023-August-23
https://doi.org/10.1063/5.0160822
https://orcid.org/0009-0003-0924-6277
https://orcid.org/0009-0007-7920-1022
https://orcid.org/0000-0001-6715-1856
https://orcid.org/0000-0001-8769-0419
https://orcid.org/0000-0001-5521-9622
mailto:royaz@ucr.edu
https://doi.org/10.1063/5.0160822


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

certain particle size, or so-called T-number, appears to depend
on the size of the cargo and even on the solution conditions.20–22

We note that under appropriate physico-chemical conditions or by
modifying the coat proteins, e.g., by removing or modifying the RNA
binding domain, empty or filled capsids of different sizes and shapes
may also be produced.23–27

The spontaneous conversion between assembled and disassem-
bled states or that between different sizes of assembled particles,
with or without cargo, is often modeled in terms of a process
akin to a thermodynamic phase transition.7,21,22,28–32 This is possi-
ble because (i) the number of proteins required to form a shell is
sufficiently large, typically many tens to hundreds of proteins, and
(ii) the number of intermediates consisting of incomplete assemblies
is exceedingly small in comparison to the number of free coat pro-
teins and complete particles.33,34 The latter is believed to be caused
by a rim tension associated with proteins at the edge that miss
contact with neighboring proteins in the incomplete shell.35 Scatter-
ing experiments36 and computer simulations seem to support this
view.2,37

While we have a reasonable understanding of the thermody-
namics of viruses and virus-like particles formed by empty capsids
and capsids containing heterologous RNAs, synthetic polyanions,
nanocolloids, etc., our understanding of the kinetics of assembly
and disassembly of such products remains very sketchy indeed.3,38–40

Experimentally, this is in part due to limitations in the spatial and
time resolution of the intermediate structures between fully formed
capsids and the free subunits in the solution.1,36 The situation is even
more complicated in the presence of a polyelectrolyte cargo,41 where
different assembly pathways have been identified that are referred
to as “concerted” or “en mass” vs “sequential,” which may depend
on the solution conditions.9,38,42–44 Both seem to be governed by
nucleation and growth stages.

Clearly, the assembly and disassembly of empty capsids is, in
principle, conceptually the most simple, as it involves only the coat
proteins. Even if we focus on the self-assembly kinetics of empty
capsids, until recently the experimental focus was mainly on assem-
bly, not disassembly. This is probably due to disassembly being a
significantly more sluggish process than assembly, which expresses
itself in a strong hysteresis between the assembly and disassembly
of virus capsids.35,45,46 Available experimental data on a variant of
the HBV coat protein suggests that the disassembly pathway from a
fully formed capsid to free monomers includes a stage where frac-
tal aggregates are formed, although this may well depend on the
solution conditions.45 CCMV capsids seem to involve two types of
intermediate states, one large and one small.40 Again, a lack of spa-
tial and temporal resolution experimentally hampers obtaining a
detailed picture of how precisely a virus capsid disintegrates. Com-
puter simulations suggest that, despite its stochastic character, the
onset of disassembly may involve only a limited number of distinct
contacts between coat proteins.47

In a recent study, Timmermans et al. functionalized the coat
protein of CCMV and studied the reversible conversion between a
T = 3 capsid at low pH and high ionic strength and a T = 1 cap-
sid at high pH and lower ionic strength.48 For non-functionalized
coat proteins of CCMV, empty T = 3 capsids form due to hydropho-
bic interactions overwhelming the electrostatics in a solution with
500 mM NaCl at a pH of 5.0, while no structures form when the pH
is increased and ionic strength decreases.49 By functionalizing the

coat protein with elastin-like polypeptides, the hydrophobic inter-
actions of the polypeptides at a higher pH of 7.5 with a lower ionic
strength of 100 mM NaCl dominate the electrostatic interactions and
form the smaller species of capsid.48 This conversion requires the
disassembly of one species in order to assemble the other, as most
of the coat proteins present in the solution turn out to reside in cap-
sids and not in free proteins. The conversion of the modified CCMV
coat proteins from T = 1 to T = 3 occurs much more slowly than that
from T = 3 to T = 1. To rationalize this finding, Timmermans et al.
extended a classical nucleation theory for virus capsid assembly of a
single capsid size to two capsid sizes, introducing also a disassembly
pathway,35 which allowed them to interpret their results in terms of
free energy barriers between the free monomers and the T = 1 and
T = 3 assembled states, as well as the differences in the binding free
energy gains of assembly.

While classical nucleation theory seems to be able to describe
the final assembly products and match the experimental data quite
well up to a few days after a quench, that is, a sudden change
in solution conditions, the curve fitting procedure turns out to be
numerically demanding due to a large number of adjustable system
parameters and the scatter in the data. Hence, we ask the question
if the experiments of Timmermans et al. can also be described by a
much simpler model based on what in the theoretical phase transi-
tion community is called Model A kinetics.50,51 This kind of kinetics
is purely relaxational and hinges on the concept of generalized forces
in a free energy landscape. It was applied before to describe the
assembly and disassembly kinetics of a single type of empty cap-
sid.51 Here, we extend it to mixtures of monomers and two species of
capsid and focus on the conversion between these two types of cap-
sid following a quench. For deep quenches, nucleation barriers are
small, and such an approach should be appropriate.

The advantage of Model A kinetic theory is that it involves
the deterministic time evolution of the conversions between indi-
vidual coat protein subunits and fully formed assemblies which can
be solved analytically for shallow quenches. Analytical solutions
are also possible for deep quenches at experimentally relevant time
scales, namely for early and late times. This circumstance allows
us to identify driving forces at different stages of the size conver-
sion. Indeed, our calculations show that in the early stages of the
conversion, the translational entropy of the free subunits drives the
assembly of one of the capsid species, while in the later stages, the
impact of differences in the binding free energy of the two species of
capsid predominates.

The remainder of this paper is structured as follows: We first
reiterate the equilibrium theory for capsid competition and analyze
in detail the equation of state describing the amount of proteins
free in T = 1 and T = 3 capsids as a function of the overall con-
centration of coat proteins and two binding free energies. Next, we
write the kinetic equations for the fraction of proteins in the vari-
ous species within the framework of Model A kinetic theory50 and
express these in terms of the equilibrium quantities. We next inves-
tigate analytically the evolution of the distribution of proteins for
shallow quenches when initial and final solution conditions are close
together, producing two elementary time scales. By numerically
solving the equations, we confirm that under most quench condi-
tions, even if the initial and final states of aggregation are very dif-
ferent, the approach to equilibrium involves two time scales that we
are able to interpret. Next, we apply the theory to the experimental
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data of Timmermans et al.,48 where we conclude that for those
experiments, Model A kinetics describes the early and intermedi-
ate stages of the kinetics reasonably well but fails to reproduce the
ratio of assembly products at the final stage of the experiments. It
seems that an explicit description of nucleation processes is essential
to explaining the experimental findings. In the final section, we sum-
marize our results and discuss under what experimental conditions
we expect our theory to work at all times.

II. EQUILIBRIUM THEORY FOR CAPSID COMPETITION
Our first goal is to set up a statistical thermodynamic model

describing the competition between fully formed shells of different
T-numbers as a function of the solution conditions, which acts to
drive the dynamics of the process. Based on the equilibrium theory
of capsid assembly, we need only consider the coat protein sub-
units free in solution and those present in the complete capsids;
incomplete intermediate structures (partially formed capsids) are
statistically highly improbable on account of a line tension asso-
ciated with missing neighbors of coat proteins making up the cap
rim.33–35,51,52

Presuming the solution is dilute, we write the dimensionless
free energy f per coat protein as follows:

f = ηs ln c ηs − ηs +�
T
�ηT

qT
ln

c ηT

qT
− ηT

qT
+ ηTgT� (1)

in terms of the fraction of proteins in free solution ηs and those in the
capsid species ηT with T = 1, 3, 4, 7, ... the triangulation number of
the capsids and associated aggregation number qT . Below, we focus
on the case where we only have two species in competition with
each other, namely T = 1 and T = 3, which are the most prevalent.
(Competition between pseudo−T = 2 and T = 3 has been observed
in the context of the encapsulation of polyanions by virus coat pro-
teins.53) Further, c� 1 is the overall mole fraction of coat proteins
in solution, and gT is the mean dimensionless binding free energy of
a single coat protein in a complete capsid of size T. For stable capsids
to form, the latter must be negative and is typically in the range of−10 to −20 (in units of thermal energy).22,54

The free energy equation (1) is the sum of an ideal mixing
entropy (stemming from the translational entropy of each species)
and the net binding free energy accounting for the subunit–subunit
interactions in a fully assembled capsid.54 The optimal distribution
of the coat proteins over the various states of assembly minimizes
the free energy, requiring that

� @ f
@ηT
�

c,gT ,ηT=ηT,∞
= 0, (2)

where we define ηT,∞ as the value of ηT under conditions of ther-
modynamic equilibrium. Note that we eliminate the fraction of
coat proteins in solution from the free energy by making use of
the conservation of mass by inserting the identity ηs = 1 −∑TηT .
Demanding Eq. (2) to hold, the equations of state become

− ln �c�1 −�
T

ηT,∞�� + 1
qT

ln
cηT,∞

qT
+ gT = 0, (3)

representing the law of mass action for all potentially present capsid
species.

For the case in which we have a competition between two dis-
tinct capsids with triangulation numbers T and T′ > T, mirroring
the experiments of Timmermans et al.,48 Eq. (3) tells us that we need
to solve two equations of state self-consistently, namely

ln �c�1 − ηT,∞ − ηT′ ,∞�� = 1
qT

ln
c ηT,∞

qT
+ gT , (4)

= 1
qT′

ln
c ηT′ ,∞

qT′
+ gT′. (5)

Note that qT′�qT = T′�T, which is larger than unity if, without loss
of generality, we presume that T′ > T. Furthermore, qT = 60T if the
coat proteins are monomers and qT = 30T if they are dimers, as is
the case for CCMV.

In the limit of very small degrees of assembly where most pro-
teins remain in free solution and ηT,∞ � 1, Eqs. (4) and (5) can
be solved to give rise to the solutions ηT ∼ qTc−1(c�c∗,T)qT and ηT′∼ qT′c−1(c�c∗,T′)q

T′ with c∗,T = exp(gT) and c∗,T′ = exp(gT′) critical
concentrations associated with the binding free energies gT and gT′ .
Since typically qT , qT′ � 1, the transition between the capsid-poor
and capsid-rich states is very sharp indeed. In fact, the larger the T
number, the sharper the transition.

Subtracting Eq. (4) from (5) and defining the difference in
dimensionless binding free energies of the two species as �g ≡ gT′− gT , we obtain a simple relation between the fraction of protein
present in the two species of capsid,

ηT,∞ = α�ηT′ ,∞�T�T′ , (6)

where

α ≡ � T
T′ �

T�T′�qT

c
�1−T�T′

exp (qT�g). (7)

We immediately see that if α� 1, which in essence implies �g < 0 as
qT � 1, we must have ηT,∞ � 1. In that case, the T′ species predom-
inates. The two species are equally prevalent if ηT = ηT′ = αT ′/(T ′−T)

provided α < 2−(T ′−T)/T ′ as by definition ηT + ηT′ < 1. Figure 1 illus-
trates the predicted competition between T = 1 and T′ = 3 capsids.
As shown in the figure, for α = 2−2/3 � 0.63 at relatively low degrees
of assembly, most of the proteins in capsids reside in the T = 1 struc-
ture. However, if almost all of the proteins present in the solution
are capsids, they divide equally among both structures for α � 0.63.
Since α∝ c−1+T/T ′ = c−2/3, we conclude that, keeping everything else
constant but increasing the total protein concentration, the frac-
tion of protein in T = 1 capsids decreases relative to that in T′ = 3
capsids. This conclusion extends to any mixture of capsids with
T′ > T.

Since we have ηT,∞ as a function of ηT′ ,∞, we can insert it in
Eq. (5) to obtain

ln �1 − α �ηT′ ,∞�T�T′ − ηT′ ,∞� = 1
qT′

ln � c ηT′ ,∞
qT′

� + ln � c∗,T′
c
�,

(8)
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FIG. 1. Relation between the fraction of protein in T = 1 capsids, η1,∞, and that
in T = 3 capsids, η3,∞ (6), for different values of the parameter α, according to
Eq. (7). From top to bottom: α = 0.01 (red), α = 0.63 (purple), and α = 1.19 (blue).
The dashed lines demarcate the maximum value of η3,∞ for every value of η1,∞
for different maximum fractions of subunits present in capsids: η1 + η3 = 1, 2�3,
and 1�3 from top to bottom. The solid black line describes the special case η3,∞= η1,∞.

for which we have not been able to find an exact analytical solution.
However, if ηT′ ,∞ is not exceedingly small, the first term on the right-
hand side of the equation is much smaller than the second, and we
can write

1 − α�ηT′ ,∞�T�T′ − ηT′ ,∞ = � c∗,T′
c
�. (9)

This equation can be solved analytically for some values of the ratio
T′�T. For instance, for the competition between T = 1 and T = 3
capsids, we can write Eq. (9) as a cubic equation for the quantity
η3

3,∞. Instead of presenting lengthy expressions, we here focus on
the limiting behavior of Eq. (9) to extract useful information.

Equation (9) reveals that if η3,∞ � α3/2, we have η3,∞ ∼ 1− (c∗,3�c) provided that c � c∗,3, and if c � c∗,3, we must have
η3,∞ ≈ 0. Interestingly, for the case in which η3,∞ � α2/3, we find
that η3,∞ once more becomes very small. In that case, we again
retrieve Eq. (9) from Eq. (8), except that c∗,3 will be replaced by
c∗,1, leading to the asymptotic relationship η1,∞ ∼ 1 − (c∗,1�c) for
c � c∗,1, while for c � c∗,1 we obtain η1,∞ ≈ 0.

In conclusion, if c∗,3 � c∗,1 and c � c∗,3, almost no capsids
form. However, for c � c∗,3 capsids do form, but they are mostly
T = 3 structures, even if c � c∗,1. If the coat protein concentration
is sufficiently large and c∗,1 ≈ c∗,3, both species form in apprecia-
ble quantities. Notice that for c∗,1 ≈ c∗,3 to hold, the difference in
binding free energies of the two species must be much smaller than
unity, ��g� = �g3 − g1�� 1. As the binding free energies tend to be
in the range of 10 to 20 in units of thermal energy, very small dif-
ferences in binding free energy are required to see the co-existence
between different T numbers under conditions of thermodynamic
equilibrium.

Figures 2 and 3 illustrate the competition between the two cap-
sid sizes as a function of the binding free energies g1, g3, and �g at a
coat protein concentration (mole fraction) of c = 2 × 10−5. The coat
proteins are presumed to be dimeric, mimicking the experiments
of Timmermans et al. performed with the modified CCMV coat
proteins.48 To this end, we set q1 = 30 and q3 = 90. For the given con-
centration of coat protein, we expect capsids to disappear from the

FIG. 2. Equilibrium fraction of proteins in T = 1 capsids, η1, and in T = 3 capsids,
η3, as a function of the binding free energies of the two structures, g1 and g3
[see Eqs. (6) and (8)]. The orange surface shows η3, and the blue surface shows
η1. The dimensionless overall protein concentration was set at c = 2 × 10−5, and
the aggregation numbers for the two species were set to values of q1 = 30 and
q3 = 90, implying that the protein subunits are dimers of the coat protein. See also
the main text.

FIG. 3. Equilibrium fraction of protein in T = 3 capsids, η3 = η3,∞ (solid lines),
and T = 1 capsids, η1 = η1,∞ (dashed lines), as a function of the difference in the
dimensionless binding free energies �g ≡ g3 − g1. Shown are results for different
values of g1, indicated by different colors, with purple for g1 = −14, green for
g1 = −11, blue for g1 = −10.4, and red for g1 = −9. The dimensionless overall
protein concentration was set at c = 2 × 10−5, and the aggregation numbers were
set equal to q1 = 30 and q3 = 90, implying that the subunits are dimers of the coat
proteins. Note that the transition does not occur at �g = 0. See also the main text.

solution if g1 and g3 are greater than ∼ln 2 × 10−5 � −11, as is con-
firmed in Fig. 2. According to Eq. (6), the crossover from the T = 1
to T = 3 dominated regimes occurs for η1∞ = η3,∞ = 1�2 = α3/2.
This translates to a difference between the binding free energies of
�g = g3 − g1 � −0.3. The lack of crossover for �g = 0 is due to the
impact of entropy, which favors smaller capsids. Figure 3 confirms
this fact and shows η1,∞ and η3,∞ as a function of �g for differ-
ent values of g1 = −14,−11,−10.4,−9. We expect little assembly for
g1 � −10 because the concentration then drops below the corre-
sponding critical concentration. The figure confirms this trend for
both T numbers.

III. KINETICS OF T -NUMBER CONVERSION
Having obtained a clear understanding of the thermodynam-

ics of mixtures of differently sized capsids, we now have a theory
that aims to describe the time evolution of the solution composi-
tion following a quench. Since we are interested in the deterministic
time evolution of the conversion between capsid species, we write
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the corresponding kinetic equations in terms of what is known as
Model A relaxational kinetics, following our earlier work on single
capsid species assembly and disassembly.51 The governing equations
are for the most general case, involving multiple species of capsids,
given by

@ηT

@t
= −ΓT

@ f
@ηT

, (10)

where ΓT are phenomenological rate constants associated with the
various T-numbers. As the quench experiments are done at fixed
concentrations,48 we need not consider their dependence on the total
concentration of coat proteins c. The possibility that the rate con-
stants depend on the concentration of free monomers cannot be
excluded, in particular the one for the species that assembles. We
choose to ignore this and view the rate constants as adjustable para-
meters, as is usually done in this kind of dynamical model. Notice
that because of the mass conservation ηs = 1 −∑TηT , the time evo-
lution of the free monomers in solutions @ηs�@t = −∑T@ηT�@t can
be easily obtained.

Investigating the conversion between two capsid species, we
focus specifically on the conversion between T = 1 and T = 3
capsids. By inserting our free energy, Eq. (1), into the kinetic
equation (10) for T = 1 and T = 3, and making use of the equations
of state for the two species of capsid, Eqs. (4) and (5), we obtain

@η1

@τ
= ln� 1 − η1 − η3

1 − η1,∞ − η3,∞ � −
1
q1

ln
η1

η1,∞ , (11)

@η3

@τ
= Γ�ln� 1 − η1 − η3

1 − η1,∞ − η3,∞ � −
1
q3

ln
η3

η3,∞ �. (12)

Here, we have made the time t dimensionless by defining τ ≡ Γ1t and
introduced the kinetic parameter Γ ≡ Γ3�Γ1 that depends on the rela-
tive rates of assembly and disassembly of the T = 3 and T = 1 capsids.
As before, ηT,∞ denotes the fraction of coat proteins in each species
under conditions of thermodynamic equilibrium after the quench,
as time goes to τ →∞ (hence the subscript∞).

While we have not been able to solve these coupled differen-
tial equations exactly, approximate analytical solutions can be found
within certain experimentally relevant limits. For instance, for shal-
low quenches or the late stages of the conversion for deep quenches,
we can set ηT(τ) = ηT,∞(1 + δT(τ)) where �δT(τ)�� 1. Inserting
this into Eqs. (11) and (12), Taylor expands these in terms of �δT(τ)�
giving rise to a set of linear equations that can be diagonalized. We
refer to Appendix A for details. The two fundamental relaxation
rates λ± obtained through solving the coupled equations are com-
plicated functions of the aggregation numbers and the equilibrium
values of the fraction of proteins in the two species. We here only
quote their approximate values,

λ+ ∼ 1 + Γ
ηs,∞ + ⋅ ⋅ ⋅ , (13)

where ηs,∞ = 1 − η1,∞ − η3,∞ is the fraction of coat proteins in free
solution, and

λ− ∼ Γ
1 + Γ

� 1
η1,∞q1

+ 1
η3,∞q3

� + ⋅ ⋅ ⋅ (14)

to leading order in powers of 1�η1,∞q1 � 1 and 1�η3,∞q3 � 1.
Notice that in the limits Γ→ 0 and Γ→∞, one relaxation becomes
infinitely faster than the other, as one would expect. Figure 4,
showing the numerically obtained values for the case q3 = 3q1 � 1,
confirms this.

It appears that one of the relaxation rates, λ+, depends only on
the final total amount of assembled material, or, equivalently, on the
fraction of free monomers, not on how the material is distributed
over the two competing capsid species. This suggests that this rate
describes the response of the free monomers. The other rate, λ−≤ λ+, does depend on the final distribution over the two capsid
species and is not symmetrical with respect to their fractions. It is
tempting to assign this rate to the late-stage equilibration involving
mainly the two types of capsid and less so that of the free protein
subunits.

We believe that this explains most of our numerical results dis-
cussed in more detail in Sec. IV, namely that the fraction of proteins
in monomers relaxes relatively fast to its final value, after which the
assembly of one type of capsid becomes enslaved by the disassem-
bly of the other. Obviously, this would suggest that in that case, we
can ignore the first term on the right-hand side of Eqs. (11) and
(12), making the kinetic equations amenable to an analytical solu-
tion.51 However, these solutions cannot be correct because then η1
and η3 would evolve independently from each other. Indeed, these
solutions violate the equality @η1�@τ = −@η3�@τ that holds if the
concentration of free subunits ηs = 1 − η1 − η3 was constant.

For initial conditions where ηT(0)�ηT,∞ are not very large or
very small and for sufficiently short times τ � τ− ≡ λ−1− , we are
however able to find an analytical solution for the fraction of pro-
teins in free solution ηs = 1 − η1 − η3. For this, we first ignore the
last terms in Eqs. (11) and (12) and obtain @η1�@τ = Γ−1@η3�@τ= ln(ηs(τ)�ηs,∞). Subsequently, combining these two equations
gives a dynamical equation for ηs that can be solved exactly to give

�1 + Γ
ηs,∞ �τ = λ+τ = li�ηs(0)

ηs,∞ � − li�ηs(τ)
ηs,∞ �, (15)

where li[x] = ∫ x
0 dy(1� ln y) is the logarithmic integral. For the first

equality, we used the identity given in Eq. (13). This confirms that

FIG. 4. Dimensionless fundamental relaxation rates λ± of the linearized kinetic
equations (11) and (12) describe the conversion between T = 1 and T = 3 capsids
as a function of the fraction of T = 3 capsids η3 and kinetic coefficient Γ = 1. The
blue surface shows λ−, and the orange one λ+. We set q3 = 3q1 = 90 to model
CCMV capsid coat proteins that are present in the solution as dimers.
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λ+ must indeed be the relaxation rate associated with the early-stage
kinetics dominated by the free monomers and one of the capsid
species, in particular if Γ� 1 or Γ� 1.

Consequently, the initial response to the quench must be driven
primarily by the translational entropy of the free subunits and the
binding free energy of the capsid species. In contrast, the late-stage
relaxation, in which there are protein exchanges between the two
types of capsids, is basically driven by differences in the binding
free energies of the proteins in these two species. Our numerical
results, discussed in Sec. IV, confirm this picture, albeit with notable
exceptions.

IV. NUMERICAL RESULTS
We solved the coupled differential equations (11) and (12)

numerically using the SciPy library scipy.integrate,55 investigating
the interconversion of T = 1 and T = 3 capsids. We systematically
varied all input parameters, that is, (i) the starting compositions
η1(0) and η3(0), (ii) the final compositions η1,∞ and η3,∞, and (iii)
the ratio of assembly rates Γ, taking as representative values 0.1, 1,
and 10. To select the appropriate time interval dτ for our numer-
ical studies, we demand that the concentration changes after each
time step be less than 1%. If the concentration change exceeds 1%,
we decrease the time interval. Our results turn out to be invariant of
the time interval step for dτ < 10−3 for all cases investigated. For our
discussion below, we set its value at dτ = 10−4.

We focus in this section on three interesting types of numer-
ical experiments: (i) one starting with a large fraction of proteins
equally distributed in both capsids and ending with a large fraction
of proteins only in one of the capsids (see Fig. 5); (ii) one where the
initial state is one with almost no capsids present in solution but
where most proteins are in capsids in the final (equilibrium) state
(Fig. 6); and (iii) one starting with a large fraction of proteins only
in one of the capsids and ending with a large fraction of proteins in
the other capsid (Fig. 7). We discuss these three general classes using
representative examples.

Figure 5 shows the time evolution of the various species present
in the solution from the initial conditions η1(0) = η3(0) = 0.40 to
the final states η1,∞ = 0.80 and η3,∞ = 0.18. So, we start off with
equal amounts of 40% coat proteins in T = 1 and T = 3 capsids and
20% in free solution, ending up with much more protein in T = 1
than in T = 3, that is, 80% vs 18%, and almost no free protein.
Independent of the rate Γ that defines how swiftly the material in
T = 3 capsids responds to changes in the thermodynamic conditions
relative to that in T = 1 capsids, the fraction of free monomers indi-
cated by the green curves in Fig. 5 decreases monotonically to reach
its final steady-state value well before the proteins in capsids have
reached a steady state at longer times. We observed this behavior in
over 100 cases that we investigated. This also seems to be consistent
with the outcome of the experiments of Timmermans et al., who also
observed a nearly constant monomer fraction from the earliest time
they were able to do the measurements.48 See also Sec. V.

If Γ = 0.1, the response of the fraction of proteins in T = 3 cap-
sids is relatively slow, while for Γ = 10, it is fast. This means that if
Γ = 0.1, the T = 1 capsids, which are thermodynamically more stable
than the T = 3 capsids, quickly absorb monomers from the solution
to increase their number, whereas the T = 3 capsids do not disassem-
ble yet on account of their slow dynamics. This is what the dotted

FIG. 5. Time evolution of the fraction of coat proteins ηT in capsids with triangu-
lation numbers T = 1 (red) and T = 3 (blue), as well as the fraction in monomers
1 − η1 − η3 (green), as a function of dimensionless time τ. Indicated are results
for different values of the ratio of assembly rates: Γ = 10 (solid), Γ = 1 (dashed),
and Γ = 0.1 (dotted). The initial conditions are η1(0) = η3(0) = 0.40, and the
final states are η1,∞ = 0.80 and η3,∞ = 0.18. We set q3 = 3q1 = 90, assuming
the coat proteins form dimers. See also the main text.

FIG. 6. Time evolution of the fraction of coat proteins ηT in capsids with triangu-
lation numbers T = 1 (red) and T = 3 (blue), as well as the fraction in monomers
1 − η1 − η3 (green), as a function of dimensionless time τ. Indicated are results
for different values of the ratio of assembly rates: Γ = 10 (solid), Γ = 1 (dashed),
and Γ = 0.1 (dotted). The initial conditions are η1(0) = η3(0) = 0.001, and the
final states are η1,∞ = 0.001 and η3,∞ = 0.80. We set q3 = 3q1 = 90, assuming
the coat proteins form dimers. See also the main text.

red and blue curves in Fig. 5 indicate. The figure also reveals that
at a much later time, after η1 has reached a pseudo-plateau, T = 3
shells start to disassemble in order to form additional T = 1 shells at
a more or less constant fraction of free coat proteins in solution. So,
for this small value of Γ, the conversion of T = 3 into T = 1 capsids
happens in two steps, first involving the formation of T = 1 capsids
using free monomers, and subsequently T = 1 capsids form upon the
disassembly of T = 3 capsids.

J. Chem. Phys. 159, 084904 (2023); doi: 10.1063/5.0160822 159, 084904-6

Published under an exclusive license by AIP Publishing

 22 January 2024 20:53:13

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 7. Time evolution of the fraction of coat proteins ηT in capsids with triangu-
lation numbers T = 1 (red) and T = 3 (blue), as well as the fraction in monomers
1 − η1 − η3 (green), as a function of dimensionless time τ. Indicated are results
for different values of the ratio of assembly rates: Γ = 10 (solid), Γ = 1 (dashed),
and Γ = 0.1 (dotted). The initial conditions are η1(0) = 0.2 and η3(0) = 0.6, and
the final states are η1,∞ = 0.6 and η3,∞ = 0.2. We set q3 = 3q1 = 90, assuming
the coat proteins form dimers. See also the main text.

Something similar happens for Γ = 10, shown in Fig. 5 by the
solid curves, but now reversed. In this case, even though the T = 3
shell is less stable than the T = 1 shell, both capsids are more sta-
ble than free monomers. Thus, in the beginning, T = 3 shells start
to assemble, thereby depleting the free monomers in the solution.
Next, η3 reaches a pseudo-plateau, where it remains constant for
quite some time, after which the T = 3 shells disassemble in favor
of the T = 1 shells, which in the end are more thermodynamically
stable. This happens at a more or less constant free monomer con-
centration. In this case, the fraction of T = 3 capsids first increases
from its initial value and then decreases to a value lower than the ini-
tial value. Our results for Γ = 1 are similar to those for Γ = 10, except
that the overshoot of η3 is much smaller and happens much later.

A careful analysis in Fig. 5 thus reveals that there must be
two time scales involved, not just in the linear response discussed
in Sec. III; see Eqs. (13) and (14), but also in the full, non-linear
response of the system of coat proteins and capsid shells to a quench.
If we translate the relaxation rates λ± of Eqs. (13) and (14), obtained
from a linear response analysis, to relaxation times τ± ≡ λ−1± , then
we find τ+ � 0.018 and τ− � 110 for Γ = 0.1, and τ+ � 0.0018 and
τ− � 11 for Γ = 10. This roughly matches the time scales of the two
processes, as may be verified in Fig. 5.

The picture that emerges remains valid even if we start off with
mostly free monomers, as illustrated in Fig. 6. Here, we monitor
the time evolution of the various species present in the solution
from the initial conditions η1(0) = η3(0) = 0.001 to the final states
η1,∞ = 0.001 and η3,∞ = 0.80. So, we initiate the assembly with equal
amounts of 0.1% coat protein in T = 1 and T = 3 capsids and 99.8%
in free solution, ending in much more protein in T = 3 than in T = 1
with 80% vs 0.1% and 19.9% free protein.

We note that if Γ = 0.1, the response of the fraction of proteins
in T = 3 shells is relatively slow, while for Γ = 10, it is fast. Hence, if
Γ = 0.1, T = 1 capsids swiftly assemble by absorbing free monomers

from the solution, even though the T = 3 shells are the more stable
of the two. The thermodynamic stability of the T = 1 capsids exceeds
that of the free monomers, driving the assembly of the metastable
species. As the dotted line in Fig. 6 shows, after some time, these par-
ticles disassemble again in favor of the T = 3 shells. This happens at
a more or less constant concentration of free monomers. Again, we
see that the competition in time involves only two species: first, the
proteins in T = 1 capsids and free solution respond to the quench,
and after that, the protein subunits in T = 1 and T = 3 shells readjust
to reach a state of thermodynamic equilibrium.

It transpires that for the given conditions, T = 1 shells appear
only temporarily. The larger the value of Γ, the less pronounced this
effect is. The appearance and disappearance of the smaller species
produce a shoulder and a pseudo-plateau in the fraction of pro-
tein in the larger species, not dissimilar to what we saw in Fig. 5.
Again, two time scales appear that we associate with the elementary
rates λ±. Translated to relaxation times, we obtain τ+ � 0.026 and τ−� 12 for Γ = 0.1 and τ+ � 0.012 and τ− � 0.25 for Γ = 10. This
roughly matches the time scales of the two processes, as revealed in
Fig. 6. Note that to obtain these numbers, we used the full expres-
sion given in Eq. (A2) in Appendix A rather than the asymptotic
Eqs. (13) and (14) as η1,∞q1 is not large enough for these asymptotic
expressions to hold.

The final case that we discuss is that where η1(0) = 0.2 and
η3(0) = 0.6, and η1,∞ = 0.6 and η3,∞ = 0.2. So, we are deeply in
the polymerized regime, with 80% of monomers in capsids: 60% in
T = 3 shells and 20% in T = 1 shells at time zero. In thermal equilib-
rium, these numbers are reversed, but their total fraction remains the
same. This turns out to be a special case. Figure 7 reveals that, even
though the starting and ending fractions of free monomers are the
same, the conversion of T = 3 into T = 1 capsids occurs at an approx-
imately constant free monomer fraction. For Γ = 10, there is a slight
overshoot (solid line), while for Γ = 1 and Γ = 0.1, there is a slight
undershoot (dashed and dotted lines). The over- and undershoots
are very small indeed, at most a few percent.

Again, there are two time scales, one of which signifies the onset
of the very small overshoot or undershoot of the free monomers.
This happens well before the fraction of protein in capsids responds
significantly. The second (much larger) time scale is associated with
the conversion between the large and smaller species of capsid and
with the relaxation of the monomer concentration back to its equi-
librium value. The corresponding relaxation times we obtain from
the rates of Eqs. (13) and (14) are τ+ � 0.18 and τ− � 100 for Γ = 0.1
and τ+ � 0.018 and τ− � 10 for Γ = 10. These numbers agree again
approximately with what is shown in Figs. 7 and 8, where we zoom
in on the time evolution of the fraction of free monomers. The latter
figure also points to the existence of relatively long-lived pseudo-
plateaus characterized by out-of-equilibrium concentrations of free
monomers.

The question arises: what happens if we swap the initial and
final fractions for the case shown in Fig. 7. We expect from the
fundamental relaxation times τ± that this situation will be quite dif-
ferent: τ+ does not change since the fraction of free protein does not
change, but the second time scale changes considerably to τ− = 60
for Γ = 0.1 and τ− = 6.0 for Γ = 10 compared to τ− � 100 and τ−� 10, respectively. So, the dynamics do change and cannot be com-
pensated for by simply taking the reciprocal value of Γ. See also
Fig. 8, showing the time evolution of the fraction of monomer units
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FIG. 8. Time evolution of the fraction of monomers 1 − η1 − η3, as a function
of dimensionless time τ. Indicated are results for different values of the ratio of
assembly rates: Γ = 10 (solid), Γ = 1 (dashed), and Γ = 0.1 (dotted). The initial
conditions for T = 3→ T = 1 (black) are η1(0) = 0.2 and η3(0) = 0.6, with final
states η1,∞ = 0.6 and η3,∞ = 0.2. For T = 1→ T = 3 (green), we swap the initial
and final conditions of T = 3→ T = 1. We set q3 = 3q1 = 90, assuming the coat
proteins form dimers. See also the main text.

in free solution for the T = 1→ T = 3 (green lines) and T = 3→
T = 1 (black lines) conversions. This makes the assembly and disas-
sembly dynamics fundamentally asymmetric, which is also the case
for a single species.51 The effect is not very pronounced, although,
as already mentioned and as a comparison of the different curves
in Fig. 8 shows. The most remarkable difference between the cases
T = 1→ T = 3 (green lines) and T = 3→ T = 1 (black lines) is in the
over- and undershoots, which are reversed for corresponding values
of Γ.

This ends our discussion of the numerical evaluation of the
dynamical equations. We next apply the theory in order to describe
the experiments of Timmermans et al.48

V. COMPARISON WITH EXPERIMENT
In the experiments of Timmermans et al., aqueous solutions

containing CCMV coat proteins functionalized with a hydropho-
bic elastin-like polypeptide form T = 3 capsids at a pH equal to 5
and an ionic strength of 0.5M, whereas at a pH of 7.5 and an ionic
strength of 0.1M, they assemble into the smaller T = 1 capsids.48 The
sizes were established using a combination of size exclusion chro-
matography (SEC) and transmission electron microscopy. Changing
(by means of a dialysis step) the acidity and ionic strength from
pH 7.5 and 0.1M to pH 5 and 0.5M leads to the slow conversion
of smaller capsids into larger ones, as is evidenced by SEC. Con-
versely, SEC also shows that changing the acidity from pH 5 to pH
7.5 and the ionic strength from 0.5 to 0.1M leads to the conversion
of the larger species into the smaller species. Since partial capsids are
neither observed in the SEC traces nor in the electron micrographs,
the conclusion is that the unstable species disassembles into protein
subunits (dimers) that reassemble into stable species.

Both types of conversions are exceedingly slow to complete.
Starting off at 100% T = 3 capsids, after 168 h, only 70% of T = 1

capsids are produced, indicating the conversion has not yet been
completed at that time. One final data point at 1608 h shows 92%
T = 1 capsids. The initial response to the change in solution con-
ditions is relatively swift; however, after about 2 h, the rate of
conversion slows down considerably. Something rather similar hap-
pens in the T = 1→ 3 conversion experiments: starting off at 100%
T = 1, the process slows down after about 24 h. After 168 h, the con-
version is only 60% complete. The final data point at 1440 h shows
98% conversion. In the absence of data between 168 and the final
measurements at 1608 and 1440 h for the two types of experiments,
we cannot be certain how long the conversion between species actu-
ally takes, even if we treat the last points (both taken after about two
months) as essentially complete.

While our model does produce a short and a long time scale,
mimicking what Timmermans et al. observe experimentally, we have
not been able to accurately describe the conversion for times below
168 h or to get a complete or near-complete conversion after two
months. In this respect, our model is lacking when compared to clas-
sical nucleation theory,48 which nicely describes the experiments.
However, if we take the data up to 168 h at face value, assuming that
the system has reached the steady state, and ignore the full conver-
sion that happens between 168 h and two months, we can describe
the experimental data rather well.

To fit our model to the experimental data of Timmermans
et al.,48 we minimize the sum of the cost functions, or equiva-
lently, maximize the coefficient of determination r2, between the
numerical solutions to our coupled equations and the experimen-
tal observations for each species. We define the cost function as
Σ(ηtheo − ηexp)2�Σ(ηexp − η exp)2 = 1 − r2, where the sum is over all
data points for each species, ηtheo are the fitted values obtained from
the theory, ηexp are the experimental data, and ηexp = Σηexp�N where
the sum is again over all data points for each species, with N = 20
being the number of experimental data points for each conversion
experiment. Note that we calculate r2

1 for the conversion of T = 1 to
T = 3 and r2

3 for the conversion of T = 3 to T = 1. We then maximize
the average value of (r2

1 + r2
3)�2. The optimization is accomplished

by implementing a hyperparameter optimization method for the
grid search variant.56

The values for Γ1 and Γ follow from the hyperparameter opti-
mization and the subsequent model fitting. In order to do the model
fitting, we took the initial conditions to be the average of the experi-
mental measurements for the T = 1 and T = 3 species. We ran a grid
search for the equilibrium conditions and their corresponding rate
constants.57 The search for η1,∞ and η3,∞ spanned from the small-
est to the largest species fraction measurements. More specifically,
we set one limit of the search to be ηT(0) and the other limit to be
ηT(30 h). We then partitioned this so that the step is 0.01. The value
of ηT,∞ was chosen in the range of experimental data. The rate con-
stants Γ1 and Γ were determined by an extensive search of possible
values. When determining the cost function, we first scaled the time
axis such that tΓ1 = τ and then found Γ in order to numerically solve
Eqs. (11) and (12). To convert back to experimental time, we take
t = τ�Γ1.

In our curve-fitting procedure, we take the initial and final frac-
tions to match the values experimentally observed in the time frame
from 0 to 168 h and optimize the phenomenological rate constant
ratio Γ. It is important to point out that the actual zero time in the
experiments is not known accurately on account of the experimental
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procedure that involves a dialysis step. We refer to the original pub-
lication of Timmermans et al. for experimental details.48 The SEC
data are consistent with the presence of a fraction of small protein
subunits, identified as coat protein dimers, two larger species of par-
ticles associated with the T = 1 and T = 3 capsids, and much larger
particles that could be aggregates of (incomplete) capsids or protein
subunits. The fraction of protein aggregates remains practically con-
stant over the course of time, as does the fraction of free subunits. We
count the material in aggregates as part of the fraction of subunits.
We do not expect this to significantly affect the number of capsids in
view of the long time scales involved in assembly and disassembly.
Hence, we take the SEC’s data at face value.

Figure 9 shows the results of the combined sets of experiments
for the conversion of T = 1 to T = 3 particles. In addition, indi-
cated are our model fits (solid lines) to the indicated experimental
data (symbols). To obtain the curve fits, we set the initial fractions
at η1(0) = 0.86 and η3(0) = 0.02, and the equilibrium fractions at
η1,∞ = 0.42 and η3,∞ = 0.44. From the latter and using Eq. (3), we
conclude that the binding free energies must be equal to g1 ≈ −11.4
and are g3 ≈ −11.7, indicating �g = −0.3. The curve fitting produces
an optimal ratio of rate constants Γ = Γ3�Γ1 = 23.5, where the cor-
responding rate constant for the T = 1 species Γ1 is 1.0 h−1, using
a time step of dt = 0.0001 h. The agreement between theory and
experiment is fair, with an r2 value of 0.884. We observe that the
agreement is less accurate in the later stages compared to the ini-
tial stages. The theory appears to overlook the slight increase in free
protein subunit concentration that occurs in the later stages of the
process. On the other hand, the scatter in the data is quite large, and
the two experimental datasets shown only agree approximately with
each other.

Figure 10 shows the results of the quench experiments, which
began with a solution primarily containing T = 3 particles and pro-
gressed to conditions where the most dominant species are the T = 1

FIG. 9. Fraction of protein in various species ηT as a function of time t in hours.
Symbols: results from two datasets where, following a quench, T = 3 capsids con-
vert into T = 1 capsids. Only the first 168 h of the measurements by Timmermans
et al.48 are shown. The red, blue, and green lines indicate the fractions of T = 1,
T = 3, and free subunits. See also the main text.

ones. Again, the symbols indicate the two sets of experimental data,
and the solid lines indicate the fits of the data. We set the initial frac-
tions at η1(0) = 0.01 and η3(0) = 0.72, and the equilibrium fractions
at η1,∞ = 0.50 and η3,∞ = 0.30. From the latter, we obtain binding
energies g1 ≈ −11.1 and g3 ≈ −11.3, indicating that �g = −0.2. We
extract Γ = 0.60 and Γ1 = 15.2 h−1, using a time step dτ = 0.0001
h. The agreement between theory and experiment has significantly
improved, with an r2 value of 0.909, even though the scatter in the
data remains quite substantial. Notice that we do recover a virtu-
ally constant fraction of protein subunits. Table I shows the rate
constants and binding free energies obtained from our data fitting
analysis of the interconversion of T = 1 and T = 3.

If we compare the binding free energies g1 and g3 that we
obtain with those from the nucleation theory in Ref. 48, we find
that our values are somewhat smaller in magnitude. The slightly less
negative values that we find should not come as a complete sur-
prise, as our analysis aimed to produce a pseudo-plateau for times
approaching 168 h, which we considered to be equilibrium. In con-
trast, Timmermans et al. considered the fractions of the two capsid
species after two months as equilibrium values, by which time the
less stable species had largely disappeared from the solution.

FIG. 10. Fraction of protein in various species ηT as a function of time t in hours.
Symbols: results from two datasets where, following a quench, T = 1 capsids con-
vert into T = 3 capsids. Only the first 168 h of the measurements by Timmermans
et al.48 are shown. The red, blue, and green lines indicate the fractions of T = 1,
T = 3, and free subunits. See also the main text.

TABLE I. Numerical values of the model parameters obtained from fitting the relax-
ational model to the experimental data for the conversions of T = 1→ T = 3 and
T = 3→ T = 1 capsids with dτ = 0.01. Γ1 and Γ3 are the relaxation rates associated
with the assembly and disassembly of the T = 1 and T = 3 capsids, and Γ = Γ3�Γ1
is their ratio. The dimensionless free energies of binding of coat protein subunits are
g1 and g3, and �g = g3 − g1 is their difference. See also the main text.

Conversion Γ1 (h−1) Γ3 (h−1) Γ g1 g3 �g

T = 1→ T = 3 1.0 23.5 23.5 −11.4 −11.7 −0.3
T = 3→ T = 1 15.2 9.1 0.60 −11.1 −11.3 −0.2
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We furthermore conclude that for the T = 1→ 3 conversion
experiments, Γ3 > Γ1, whereas for the T = 3→ 1 conversion, Γ3 < Γ1.
So, for the former type of experiment, the relaxation rate associ-
ated with the T = 3 particle is larger than that associated with the
T = 1 particle, and for the latter, the reverse is the case. Since ΓT is
a phenomenological rate that somehow incorporates forward and
backward rates, this finding is difficult to interpret. The fundamen-
tal relaxation time associated with the free monomers that can be
deduced from Eq. (13) is just below 0.01 h (so under one minute)
for both types of experiments, which explains why the prediction for
the fraction of free monomer subunits remains constant on the time
scale of the experiments.

Having completed our discussion of the comparison between
theory and experiment, we next summarize our findings and discuss
in greater detail the conditions under which our model is likely to be
accurate or inaccurate.

VI. DISCUSSION AND CONCLUSIONS
In this work, we propose a purely relaxational, Model A type

kinetic theory in order to describe how, as a function of time, a
sudden change in the solution conditions modifies the preferred
capsid size in aqueous dispersions containing virus coat proteins
that assemble into capsids of varying sizes under different physico-
chemical conditions. Our aim is to shed light on the underlying
competition between protein subunits and the two types of capsids,
one of which has become thermodynamically unstable following the
quench, while the other has become stable but is not yet present in
appreciable quantities in the solution. Our calculation was inspired
by the results of time-resolved experiments by Timmermans et al.,
who studied the quench-induced interconversion of T = 1 and
T = 3 capsids formed by coat proteins of CCMV functionalized by
attaching elastin-like polypeptides.48

According to our theory, there are essentially two relevant time
scales. In almost all of the situations we investigated, there was a time
scale associated with the response of the coat protein subunits in free
solution to the assembly or disassembly of one of the two types of
capsids. The other, typically much longer time scale, describes the
equilibration of the two types of capsid under conditions of almost
constant free subunit concentration. This implies that, in that case,
protein subunits shed by the unstable species are used up by the pro-
duction of the other species. Consequently, the assembly of the more
stable species becomes enslaved by the disassembly of the less sta-
ble species. Comparison with the experimental findings of Ref. 48
supports the existence of this scenario. We note that the classical
nucleation theory applied to competing capsids also points to a swift
equilibration of the monomer concentration.48

The theory, although simple, predicts the existence of long-
lived metastable states in which the thermodynamically less stable
capsid species can become more prevalent over time and even pre-
dominate over the more stable species. This is reminiscent of the
nucleation of crystals, where metastable crystal phases may nucle-
ate before stable ones do, often explained in terms of the Ostwald
“rule of stages,” which states that the phase that nucleates is (in
some sense) the one closest in free energy to the parent phase.58 The
term “closest” may also be interpreted in the kinetic sense, that is, in
terms of what phase is the most rapidly accessible, which for crys-
tals is thought to be determined by a trade-off between the strength

of the thermodynamic driving force and the height of the nucle-
ation barrier separating the unstable phase and the more stable solid
phase.59

In the context of our Model A kinetic theory of the size con-
version of polymorphic virus capsids, quasi-stationary states occur
when the free subunits have reached their final concentration but the
concentrations of the two capsid species have not yet equilibrated.
The latter are kinetically controlled not by nucleation barriers, which
are absent in the model, but by the ratio of two fundamental relax-
ation rates. For coat proteins that assemble into T = 1 and T = 3
capsids, these are the rates Γ1 and Γ3. The relaxation rates Γ1 and
Γ3 are phenomenological parameters that somehow capture aspects
of the underlying molecular processes involved in the assembly and
disassembly of both capsid species.

The rate at which the concentration of the thermodynamically
most stable species of capsid can respond following a quench is dic-
tated by the relative magnitude of the two relaxation rates, which
is the parameter Γ = Γ3�Γ1 in the model. If the value of Γ is large,
the fraction of T = 3 capsids may initially grow even if this species is
less stable than the T = 1 species. And, vice versa, if Γ is small, T = 1
capsids may preferentially form even if they are less stable than T = 3
capsids. The transient states that ensue may be very long-lived before
the thermodynamically more stable species, in the end, take over.

Our theory is able to describe the first 168 h of the experi-
ments of Timmermans et al. reasonably well, allowing us to fix all
the model parameters. These include the parameters Γ1 and Γ3 but
also the binding free energies g1 and g3, presented in Table I. For the
latter, we find values that are somewhat smaller than those obtained
from classical nucleation theory.48 The slightly smaller values that we
find here are not surprising and result from our curve-fitting proce-
dure, in which we consider the steady state concentrations of species
after 168 h as the infinite time concentrations (equilibrium) when
both capsid species remain present in appreciable fractions. How-
ever, after two months, near-complete conversion of the dominant
species occurs in the experiments. If we use as input parameters the
fractions of T = 1 and T = 3 capsids after two months, we are not
able to reproduce the experimental data in the time domain from
zero to 168 h, as shown in Appendix B.

Superficially, this may seem somewhat surprising, as our model
does predict the existence of pseudo-plateaus under appropriate
conditions. We have to realize, however, that in order to obtain a
near-complete conversion for a long time, it would require an addi-
tional time scale. Indeed, from the experiments, we have to conclude
that there must be at least three time scales: one involving the pro-
tein subunits, describing the time required for their concentration
to relax; one involving the redistribution of protein among cap-
sids, leading to a quasi steady state and associated pseudo-plateau;
and one leading to the equilibrium state, which essentially elimi-
nates the thermodynamically less stable capsid species from solution.
Arguably, the required additional time scale or time scales can be
provided by nucleation processes not part of our Model A kinetics,
explaining why classical nucleation theory is indeed able to pro-
vide a description for the entire capsid conversion process even
though it is numerically demanding. We surmise that in the clas-
sical nucleation theory put forward in Ref. 48, the additional long
time scale is produced by introducing time-dependent, instanta-
neous concentrations of the various species within a quasi stationary
approximation.22,60
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The nucleation barriers for the T = 1→ T = 3 and T = 3→ T= 1 conversions in solutions of functionalized CCMV coat proteins,
required for the assembly of the more stable species and disassem-
bly of the less stable species, are several tens of times greater than
the thermal energy.48 Clearly, since our model lacks any explicit
nucleation barriers, it should not come as a surprise that it can-
not describe the full time-dependence of the experiments. Despite
this, the model does provide a reasonably accurate description of the
available experimental data up to 168 h and turns out to produce
good estimates for the binding free energies.

Under conditions where the nucleation barriers are sufficiently
small and assembly and disassembly are no longer nucleated, we
expect the model to be able to describe the full time dependence.
Experimentally, this would require a larger separation in the binding
energies of the two capsid species. Practically, this could be achieved,
e.g., by varying the properties of the elastin-like polypeptides used in
the functionalization of the CCMV coat proteins.61 Another method
to experimentally reduce any nucleation barriers would be to intro-
duce packaging signals, allowing stable structures to form when they
would normally be unstable.62
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APPENDIX A: LINEAR ANALYSIS

To investigate the dynamical equations (11) and (12) at the level
of a linear response theory, we insert η1(τ) = η1,∞(1 + δ1(τ)) and
η3(τ) = η3,∞(1 + δ3(τ)) with �δ1(τ)�� 1 and �δ3(τ)�� 1 pertur-
bations to the steady-state (equilibrium) values η1,∞ and η3,∞ and
linearize them. This produces a set of equations that can be put in the
form of the matrix equation dδ�dτ = −M ⋅ δ, where δ ≡ (δ1, δ3)T is
the perturbation vector and the kinetic matrix M becomes

M ≡
���������

1
ηs,∞ +

1
q1η1,∞

η3,∞
η1,∞ηs,∞

Γ
η1,∞

η3,∞ηs,∞ Γ� 1
ηs,∞ +

1
q3η3,∞ �

���������
(A1)

with ηs,∞ = 1 − η1,∞ − η3,∞ the equilibrium fraction of protein sub-
units free in solution. To find the eigenvalues λ± of the matrix M, we
write det (M − λ±I) = 0 with I the identity matrix, and obtain

λ± = 1
2

a ± 1
2

�
a2 − 4b (A2)

with

a ≡ 1
ηs,∞ +

1
q1η1,∞ + Γ� 1

ηs,∞ +
1

q3η3,∞ � (A3)

and

b ≡ Γ
ηs,∞ �

1
q1η1,∞ +

1
q3η3,∞ +

ηs,∞
q1η1,∞q3η3,∞ �. (A4)

In the limit where 4b�a2 � 1, the eigenvalues representing the
fundamental relaxation rates reduce to

λ+ ∼ a × �1 − b
a2 � (A5)

and

λ− ∼ a × b
a2 (A6)

up to linear order in b�a2. Notice that the leading order λ− ∼ λ+b�a2,
implying that λ− � λ+ and there must be a strong separation of time
scales. Under conditions where q1η1,∞ � ηs,∞ and q3η3,∞ � ηs,∞,
these expressions simplify to Eqs. (13) and (14). For these conditions
to hold, we must have q1η1,∞ � 1 and q3η3,∞ � 1: the equilibrium
(final) fraction of proteins in both types of capsids cannot be smaller
than the reciprocal of their aggregation numbers.

Obviously, for the rates to remain real numbers, we must insist
that 4b ≤ a2. For Γ→ 0 and Γ→∞, this is easily verified, but for
arbitrary values, this is not so trivial, noting that η1,∞ and η3,∞ are
not independent [see Eq. (6)]. Figure 4, showing λ± for Γ = 1, sug-
gests this is always the case. Finally, if 4b→ a2, the rates approach
each other and become equal to

λ± ∼ 1
2

a, (A7)

indicating, in this particular case, the presence of a single time scale.
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FIG. 11. Fraction of protein in various species ηT as a function of time t in hours.
Symbols: results from two datasets where, following a quench, T = 1 capsids
convert into T = 3 capsids. For two months, the measurements of Timmermans
et al.48 are shown. The red, blue, and green lines indicate the fractions of T = 1,
T = 3, and free subunits. See the text in Appendix B.

The solution for δ(τ), can be written in terms of a linear com-
bination of the (unnormalized) eigenvectors v± associated with the
eigenvalues λ±,

δ(τ) = c+v+ exp (−λ+τ) + c−v− exp (−λ−τ), (A8)

where

v± =
����

η3,∞η−1
1,∞η−1

s,∞
η−1

s,∞ + q−1
1 η−1

1,∞ − λ±
−1

���� (A9)

and c+ and c− are constants that are fixed by the initial conditions
δ(0) = c+v+ + c−v−, noting that δT(0) = (ηT(0)�ηT,∞) − 1. Notice
also that v± is not orthogonal unless Γ = 1 and η1,∞ = η3,∞, in
which case the matrix M is symmetric. If 4b = a2, there is only one
eigenvector.

APPENDIX B: COMPLETE CAPSID CONVERSIONS

We made an attempt to fit the experimental data precisely
according to our theory, focusing on achieving an exact match
between the concentrations of T = 1 and T = 3 after two months.
To account for the experimental conditions where only one species
is expected to survive at the end, we assigned greater significance
to the end points during the data fitting process. Figures 11 and 12
clearly indicate that obtaining a satisfactory fit for the experimental
data is not feasible under these conditions.

Figure 11 shows the experimental data illustrating the conver-
sion of a solution primarily composed of T = 1 particles to a solution
where the dominant species are the T = 3 particles after t = 1440 h.
In line with the main text, the symbols represent two sets of exper-
imental data, while the solid lines represent the fitted curves. Our
objective is to determine the best-fitting line that passes through the

FIG. 12. Fraction of protein in various species ηT as a function of time t in hours.
Symbols: results from two datasets where, following a quench, T = 3 capsids
convert into T = 1 capsids. For two months, the measurements of Timmermans
et al.48 are shown. The red, blue, and green lines indicate the fractions of T = 1,
T = 3, and free subunits. See also the text in Appendix B.

TABLE II. Numerical values of the model parameters obtained from fitting the relax-
ational model to the experimental data for the complete two month conversions of
T = 1→ T = 3 and T = 3→ T = 1 capsids with dτ = 0.01. Γ1 and Γ3 are the relax-
ation rates associated with the assembly and disassembly of the T = 1 and T = 3
capsids, and Γ = Γ3�Γ1 is their ratio. The dimensionless free energies of binding of
coat protein subunits are g1 and g3, and �g = g3 − g1 is their difference. See also
the main text.

Conversion Γ1 (h−1) Γ3 (h−1) Γ g1 g3 �g

T = 1→ T = 3 39.0 0.04 0.001 −11.4 −11.8 −0.4
T = 3→ T = 1 1.8 7.8 4.4 −10.5 −10.8 −0.3

last final experimental data point. The initial conditions are set to
η1(0) = 0.86 and η3(0) = 0.02, and the equilibrium fractions are set
at η1,∞ = 0.02 and η3,∞ = 0.85. Using these equilibrium fractions,
we derive binding energies of g1 = −11.4 and g3 = −11.8, indicat-
ing a difference of �g = −0.4. The corresponding rate constants are
Γ1 = 39.0 and Γ3 = 0.04 h−1, resulting in Γ = 0.001. The agreement
between theory and experiment is clearly not ideal, with an r2 value
of 0.61. Table II presents the rate constants and binding free ener-
gies obtained from our data fitting analysis of the interconversion
between T = 1 and T = 3.

Figure 12 shows the experimental data illustrating the conver-
sion of a solution primarily composed of T = 3 particles to a solution
where the dominant species are the T = 1 particles after t = 1608
h. The initial conditions are set to η1(0) = 0.01 and η3(0) = 0.72,
and the equilibrium fractions are set at η1,∞ = 0.62 and η3,∞ = 0.04.
Using these equilibrium fractions, we derive binding energies of
g1 = −10.5 and g3 = −10.8, indicating a difference of �g = −0.3. The
corresponding rate constants are Γ1 = 1.8 and Γ3 = 7.8 h−1, result-
ing in Γ = 4.4. The agreement between theory and experiment is
again not ideal, with an r2 value of 0.425. Table II presents the rate
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constants and binding free energies obtained from our data fitting
analysis of the interconversion between T = 3 and T = 1.
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