t.)

Check for
Updates

The Computational Complexity of Feasibility Analysis for
Conditional DAG Tasks

SANJOY BARUAH, Washington University in Saint Louis
ALBERTO MARCHETTI-SPACCAMELA, Sapienza University of Rome

The Conditional DAG (CDAG) task model is used for modeling multiprocessor real-time systems containing
conditional expressions for which outcomes are not known prior to their evaluation. Feasibility analysis
for CDAG tasks upon multiprocessor platforms is shown to be complete for the complexity class PSPACE;
assuming NP # PSPACE, this result rules out the use of Integer Linear Programming solvers for solving this
problem efficiently. It is further shown that there can be no pseudo-polynomial time algorithm that solves
this problem unless P = PSPACE.

CCS Concepts: « Computer systems organization — Embedded and cyber-physical systems; « Soft-
ware and its engineering — Real-time schedulability; Scheduling;

Additional Key Words and Phrases: Multiprocessor feasibility analysis, global scheduling, pspAcE complete

ACM Reference format:

Sanjoy Baruah and Alberto Marchetti-Spaccamela. 2023. The Computational Complexity of Feasibility Anal-
ysis for Conditional DAG Tasks. ACM Trans. Parallel Comput. 10, 3, Article 14 (September 2023), 22 pages.
https://doi.org/10.1145/3606342

1 INTRODUCTION

This article investigates the feasibility analysis problem for Conditional Directed Acyclic Graph
(CDAG) tasks: the problem of determining whether a given real-time workload, which is specified
in the CDAG model ([7]; briefly described in Section 2.2), can be scheduled to always complete
by a specified deadline upon a specified number of identical processors. It follows from earlier
results [16] that a simpler version of this problem is already Np-hard in the strong sense; hence,
we should not expect to obtain algorithms with polynomial or pseudo-polynomial running times
that solve this problem exactly. In the real-time literature, two kinds of algorithms are considered
for solving such feasibility analysis problems (i.e., those that are provably np-hard in the strong
sense): (i) approximation algorithms that run in polynomial or pseudo-polynomial time; or (ii) ex-
act algorithms that (necessarily, assuming P # NP) run in exponential time. The latter approach
(i-e., exact algorithms) is often based upon transforming the feasibility analysis problem in poly-
nomial time into an integer linear program (ILP), and then leveraging the tremendous recent
improvements that have been obtained in the performance of ILP solvers to achieve running times
that are acceptable in practice for reasonably large problem instances.

Authors’ addresses: S. Baruah, Department of Computer Science & Engineering, Washington University in Saint Louis,
1 Brookings Drive, St. Louis, MO 63130-4899, USA; email: baruah@wustl.edu; A. Marchetti-Spaccamela, Department of
Computer Control and Management Engineering, Sapienza University of Rome, via Ariosto 25, I-00185 Rome, Italy; email:
alberto@diag.uniromal.it.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).
2329-4949/2023/09-ART14 $15.00
https://doi.org/10.1145/3606342

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 14. Publication date: September 2023.

https://orcid.org/0000-0002-4541-3445
https://orcid.org/0000-0002-7991-4416
https://doi.org/10.1145/3606342
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3606342
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3606342&domain=pdf&date_stamp=2023-09-21

14:2 S. Baruah and A. Marchetti-Spaccamela

The main technical result in this article (Theorem 1) establishes that the CDAG feasibility
analysis problem is PSPACE complete—to the best of our knowledge, this is among the first “natural”
scheduling problems shown to be PsPACE complete—see https://en.wikipedia.org/wiki/List_of
PSPACE-complete_problems and Reference [9, Appendix A8].! (In fact, Theorem 1 holds even
when the values of the parameters characterizing the CDAG are polynomial in the size of the
representation of the CDAG, there is no nesting of conditional constructs in the CDAG, and a total
ordering among them can be defined.) While at first glance our psPACE hardness result may appear
to be of theoretical significance only, we emphasize that it has implications to parallel program-
ming and real-time systems design and implementation: under the widely believed assumption
that NP C PSPACE, our result implies that an approach based on transformation to ILPs is not
likely to be helpful for solving the CDAG feasibility-analysis problem. (To our knowledge, this is
among the first feasibility-analysis problems for which such a negative result regarding the use of
ILPs has been obtained in the real-time scheduling literature.) We also show, in Section 4.4, that
the PsPACE hardness result holds even for CDAGs in which all numerical parameters—execution
times and the deadline—are polynomially bounded in the size of the representation of the CDAG;
hence, assuming that P C PspPACE as is widely believed, it also follows that pseudo-polynomial
time algorithms cannot be obtained for solving the CDAG feasibility analysis problem.

Organization. The remainder of this article is organized as follows. In Section 2, we describe
the CDAG workload model and discuss what was previously known regarding CDAG feasibility
analysis; we also briefly summarize (in Section 2.1) some basic facts concerning the computational
complexity classes that are relevant to this article. In Section 3, we state the main result of this
article—that the CDAG feasibility analysis problem is PSPACE complete—and establish member-
ship of this problem in pspAce. The Quantified Boolean Formula (QBF) problem is a canonical
PSPACE-complete problem [15, 17]; in Section 4, we define a reduction from any quantified Boolean
formula F to an instance Gr of the CDAG feasibility analysis problem, and in Section 5, we prove
that the quantified Boolean formula F is true if and only if G is feasible. We close in Section 6
with a brief listing of some open questions (of particular interest: whether our pspace hardness
result can be extended to the CDAG feasibility analysis problem when the number of available
processors is a constant).

2 BACKGROUND AND MODEL

We start out in Section 2.1 with a brief summary of some basic facts concerning the computational
complexity classes that are relevant to this article. Following that, in Section 2.2, we describe the
CDAG workload model, formally define the CDAG feasibility analysis problem, and in Section 2.3,
we summarize the current state of knowledge regarding this problem.

2.1 Some Relevant Complexity Classes

We will make reference to the following three complexity classes in this article:

e P is the set of problems that can be solved by algorithms with running time polynomial in
the size of their inputs.

e NP is the set of problems that can be verified by algorithms with running time polynomial
in the size of their inputs.

e PSPACE is the set of problems that can be solved by algorithms using an amount of space
(memory) that is polynomial in the size of their inputs. (Since this complexity class has not

1A real-time scheduling problem was shown to be pspacE-hard by Geeraerts et al. [10]; however, it is debatable whether
the problem in Reference [10] can be considered to be a naturally occurring one.

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 14. Publication date: September 2023.

https://en.wikipedia.org/wiki/List_of_PSPACE-complete_problems

The Computational Complexity of Feasibility Analysis for Conditional DAG Tasks 14:3

previously been widely used in real-time scheduling theory, we discuss it a bit more below,
and provide some intuition of its relationship to CDAG feasibility analysis.)

It is well known that the satisfiability problem (SAT) is a paradigmatic NP-complete problem. For
the class pspACE the paradigmatic problem is the Quantified Boolean Formula (QBF) Problem,
which has previously [15, 17] been shown to be pspACE complete.

Definition 1 (The QBF). INSTANCE. A Boolean formula in prenex normal form:

m

Elx1 Vy1 HXZ Vyz ...Elxn Vyn /\(fj,l \/fj’z \/fj’3), (1)
j=1

where each x; and each y; is a Boolean variable, and each ¢; i is one of the x; or y; Boolean variables

or its negation.

QuEesTION. Does this formula evaluate to TRUE? O

(Observe that all the variables of a quantified Boolean formula in prenex normal form are quan-
tified: It follows that the formula is either true or false.)

Two players games provide an intuitive way to understand the class psPACE. In fact, PSPACE can be
thought of as representing the existence of a winning strategy for a particular player in bounded-
length perfect-information games that can be played in polynomial time. Namely, consider a two-
player game where players alternate making moves for a total of n moves. Given moves my, . .., m,
by the players, let M(my, ..., m,) = 1if and only if player 1 has won the game. Then player 1 has
a winning strategy in the game if and only if there exists a move m; that player 1 can make such
that for every possible response m; of player 2 there is a move mj for player 1, such that for every
possible response my of player 2 ...and so on, that yields M(my,...,m,) = 1. Formalizations of
many popular two-player games, including checkers, generalized geography, and Sokoban, have
been proven to be PsPACE-complete [11].

If we consider the QBF problem, then, given a QBF formula F, the first player has to decide
values of variables x1, X3, . . . and the second player has to decide values of variables y;, ys, The
two players alternate their decision. Namely, the first player has to decide the value of x; and then
the second player has to decide the value of y;; then the first player has to decide x; after values of
X1, X2, Xi—1 and of yy, y2, y;—; are fixed but before knowing the value of y;, that is set by the second
player after the first one has decided the value of x;. The goal of the first player is to obtain a
satisfying assignment when all truth variables have been decided by both players; therefore, the
QBF F evaluates to true if and only if the first player has a winning strategy.

2.2 The Conditional DAG (CDAG) Model

Task models based upon Directed Acyclic Graphs (DAGs) have been proposed for the purposes
of exposing parallelism in real-time workloads: the sporadic DAG model [3] is an early example. A
task in this model is specified as a 3-tuple (G, D, T), where G is a DAG, D a positive integer repre-
senting the relative deadline of the task, and T a positive integer representing the period parameter
of the task. The task repeatedly releases dag-jobs, each of which is a collection of sequential jobs.
Successive dag-jobs are released a duration of at least T time units apart. The DAG G is specified
as G = (V,E), where V is a set of vertices and E a set of directed edges between these vertices.
Each v € V represents a job, which corresponds to the execution of a sequential piece of code and
is characterized by a worst-case execution time (WCET). These jobs are to be executed upon a
given multiprocessor platform comprising a specified number of identical processors. We assume
global scheduling —a job may execute upon any processor. We will consider both preemptive sched-
uling (where preempting an executing job and resuming its execution upon any processor at a

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 14. Publication date: September 2023.

14:4 S. Baruah and A. Marchetti-Spaccamela

24 G =(ViE) . .
Vertices s; and #; (vertices s, and #;, resp.) are the sole source
vertex and sink vertex of G| (of G, resp.).

G} = (v}, Ey)

S2 ty

Fig. 1. A canonical conditional construct.

later point in time incurs no penalty) and non-preemptive scheduling (where such preemption is
forbidden). The edges represent precedence constraints between pairs of jobs: if (vq, v;) € E, then
job v; must complete execution before job v, can begin execution. A release of a dag-job of the
task at time-instant ¢t means that all |V| jobs v € V are released at ¢. If a dag-job is released at time
t, then all |V| jobs that were released at t must complete execution by time t + D.

Conditional DAG tasks. The CDAG task model was introduced [2, 14] to model the execution of
conditional (e.g., if-then-else) constructs in parallel real-time code. A CDAG task, too, is specified
as a 3-tuple (G, D, T), where G = (V,E) is a DAG, and D and T are positive integers denoting the
relative deadline and period parameters of the task. They differ from regular sporadic DAGs in that
certain vertices € V are designated as conditional vertices that are defined in matched pairs, each
such pair defining a conditional construct. Let (cy, ¢;) be such a pair in the DAG G = (V, E)—see
Figure 1. Informally speaking, vertex c; represents a point in the code where a conditional expres-
sion is evaluated and, depending upon the outcome of this evaluation, control will subsequently
flow along one of two different possible branches. It is required that these two different branches
meet again at a common point in the code, represented by the vertex c;. More formally,

(1) There are two outgoing edges from c; in E (say, to the vertices s; and s;), and two incoming
edges to ¢, (say, from the vertices t; and t,), in E—see Figure 1.

(2) For each ¢ € {1,2}, let Vf’ C V and Eé, C E denote all the vertices and edges on paths
reachable from s, that do not include vertex c¢y. Vertex s, must be the sole source vertex of
the DAG Gé o (V[f, E;), and vertex t, must be the sole sink vertex of G;.

(3) It must hold that V/ NV, = 0. Additionally for each £ € {1,2}, (i) with the exception of
(c1, s¢) there should be no edges in E into vertices in Vt,’ from vertices that are not in Vg’ ;and
(ii) with the exception of (i, cz) there should be no edges in E from vertices in V; to vertices
that are not in V.

Edges (v1,v2) between pairs of vertices neither of which are conditional nodes represent prece-
dence constraints exactly as in traditional sporadic DAGs, while edges involving conditional nodes
represent conditional execution of code. More specifically, let (c;, cz) denote a defined pair of con-
ditional vertices that together define a conditional construct. The semantics of conditional DAG
execution mandate that

e After the job ¢; completes execution, exactly one of its two successor jobs becomes eligible
to execute; it is not known beforehand which successor job this may be.
e Job c; begins to execute upon the completion of exactly one of its two predecessor jobs.

In the remainder of this article, without loss of generality, we make the simplifying assumption
that each of the conditional vertices ¢, and c; demarcating a conditional construct has zero execution
time.

We are now ready to formally define the problem that is the focus of this paper.

Definition 2 (The CDAG Feasibility Analysis Problem). Given a CDAG G, a number p € N of
processors upon which G is to execute, and a relative deadline parameter D, determine whether

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 14. Publication date: September 2023.

The Computational Complexity of Feasibility Analysis for Conditional DAG Tasks 14:5

it is feasible to schedule G on the p processors such that it always completes execution within an
interval of duration D, regardless of which conditional constructs in G evaluate to true and which
evaluate to false.

(We reiterate that our results for this problem apply to both variants of this problem where
preemption is permitted and where it is forbidden.)
Why this is a difficult problem. It has been widely recognized [2, 8, 14, 18] that combinatorial
explosion is a major reason why CDAG feasibility analysis is such a difficult problem: exponen-
tially many different combinations of outcomes are possible of the evaluation of the conditional
constructs in a single task, each of which may require a very different collection of jobs to be
scheduled for execution. There is, however, an additional aspect to the difficulty of this problem
that has received somewhat less attention: its inherently on line nature. Consider the following
simple illustrative example for a restricted/ typed CDAG [12] (i.e., where vertices are pre-assigned
to individual processors):

Each vertex has WCET equal to one (except the conditional vertices — recall they have
WCET zero). Processor assignments are color-coded: A, Hy, & H; share a processor, as
doB,C, J,&K;D & F;andE & G.

If the conditional construct executes D, then C should execute during [0, 1] —otherwise

the “blue” processor will idle over [2, 3]. Else (i.e., the conditional construct executes E),
Py
E (K<) E B should execute during [0, 1].

There are two possible outcomes of the execution of the sole conditional construct, and it may be

verified that upon either outcome the set of vertices that must be executed is individually schedu-
lable. However, which of vertices B or C, both assigned to the same processor, should execute
over time-interval [0, 1] necessarily differs in these two schedules and hence depends upon the
outcome of the conditional construct’s evaluation. But the conditional construct is only executed
after time-instant 1, and hence this information is revealed too late. Thus, this CDAG is infeasible
despite the sets of vertices needing to be executed upon either outcome being feasible.
CDAG feasibility as a two-player game. We can cast CDAG feasibility in the two-player game
framework discussed in Section 2.1. Given a CDAG and a deadline D, the first move of player 1 (the
scheduler) is to decide the set of jobs to be scheduled until the first branch is executed; then player
2 (the environment) decides the outcome of the branch. The game continues until the scheduling
is completed, and the scheduler wins the game if and only if its strategy is able to complete the
schedule in D time units for all outcomes of branches (i.e., all decisions of the environment).

2.3 Summarizing Prior Complexity Results

Ullman showed [16] that it is NP-complete in the strong sense to determine whether a given DAG
can be scheduled to meet a specified deadline under global or partitioned scheduling upon an
identical multiprocessor platform, regardless of whether preemption is permitted or forbidden.
Jansen subsequently showed [12] that feasibility analysis of DAGs is NP-hard in the strong sense
for restricted/ typed DAGs (where each vertex is pre-assigned to a particular processor), again
under both preemptive and non-preemptive scheduling. Since these basic problems are already
NP-hard in the strong sense, so are the corresponding problems for the more general CDAG model.
It is also known that all these problems are also in NP for (regular) DAGs.

As for the complexity of the feasibility problem for CDAGs, it has been shown [1] that scheduling
conditional DAGs is co-NPNF hard; it is also known [13] that computing the worst case makespan

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 14. Publication date: September 2023.

14:6 S. Baruah and A. Marchetti-Spaccamela

for a conditional DAG under list scheduling with an arbitrary but fixed ordering is co-NP complete.
Finally, the problem was shown to be pspace complete [4] for restricted/ typed CDAGsS; in this
article, we generalize the techniques used in Reference [4] to show that this is also true for global
scheduling.

In Reference [10] the authors studied the complexity of checking whether a sporadic task sys-
tem is schedulable under a given scheduler on an identical multiprocessor platform. They show
that the problem is PSPACE hard with a reduction from the universality problem for (finite state
labeled) automata, that, given a labeled automaton A asks whether A accepts all strings. Namely,
given a labeled automaton A, Reference [10] defines a set of sporadic tasks 7~ and an algorithm R
and proves that 7~ is schedulable using algorithm R if and only if automaton A verifies the univer-
sality property. Note that the definition of the scheduler depends on the input automaton: For two
different labeled automata A; and A, the reduction defines two different task sets S;, S, and two
different algorithms R; and R;. Therefore, the result does not imply that the feasibility problem of
scheduling a sporadic task system is PSPACE-hard.

3 THE COMPLEXITY OF CDAG FEASIBILITY ANALYSIS
The main technical result of this article is a proof of the following theorem.
THEOREM 1. The CDAG feasibility analysis problem is PSPACE complete.

In this section, we will establish that this problem is in PSPACE; PSPACE hardness is shown in the
subsequent two sections. As discussed in Section 2.2 above (and illustrated on an example), the dif-
ficulty in scheduling CDAGs appears to arise from two primary sources: combinatorial explosion,
and the on-line nature of the problem. While combinatorial explosion is not really an issue when
designing PSPACE algorithms, dealing with the on-line nature of CDAG scheduling merits some
careful handling. Consider any algorithm for testing feasibility of CDAGs. The schedule starts ex-
ecution with no knowledge of the outcomes of the execution of conditional vertices; hence, at the
beginning it chooses for execution a set of vertices that execute prior to knowing the outcome of
the execution of any conditional vertex. This observation motivates the definition of sets of initial
vertices—Definition 3 below. Let us assume for simplicity that each (non-conditional) vertex has
worst-case execution time equal to one (later in this section, we will generalize the definition in a
straightforward manner to the case where WCETs may exceed one).

Definition 3 (Set of Initial Vertices). A set S of the vertices in CDAG G that is to be scheduled
upon p processors is an initial set of vertices if

e S contains at least one, and no more than p, conditional vertices that begin conditional
constructs;

e all predecessor vertices of all vertices in S are also in S; and

o the vertices in S can be scheduled starting at time 0 such that the conditional vertices in S
all execute at the last time instant in the schedule.

Algorithm 1 determines the smallest possible makespan that can be guaranteed for a CDAG by
any non-clairvoyant scheduler. For each set of initial vertices S it computes the optimal schedule
in which the conditional vertices are processed all together at the end. The execution of these ver-
tices provides the information of the outcomes of all conditional executions in S. Let G’ denote
the subgraph of G obtained by removing the vertices in S (since they have already executed) and
vertices that need not execute as a consequence of the outcomes of the conditional executions
in S. Algorithm 1 proceeds recursively on G’, repeatedly calling itself recursively until all condi-
tional vertices have been processed; at this point the algorithm optimally schedules the remaining
(unconditional) DAG.

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 14. Publication date: September 2023.

The Computational Complexity of Feasibility Analysis for Conditional DAG Tasks 14:7

ALGORITHM 1: Algorithm Compute(G)

Input: CDAG G
Output: The smallest f for which G is guaranteed to be schedulable with makespan < f by an optimal non-clairvoyant
algorithm, for all combinations of outcomes of the execution of the conditional vertices

1 f=o00

2 if G contains conditional vertices then

3 for each set S of initial vertices in G do (See Definition 3)

4 (initial vertices of S are executed such that conditional vertices are executed at the end)

5 d= minimum duration of any schedule for S in which the conditional vertices are scheduled concurrently at
the end

6 let G’ be the subgraph obtained from G by removing the vertices in S

7 let Cs be the set of conditional vertices in S

8 e =0 (e will denote the largest possible makespan of G’)

9 for each truth assignment T of conditions in Cs do

10 let G be the subgraph obtained from G” assuming T

11 L e = max(e, Compute(G’.))

12 | f=min(f,d +e)

13 else

14 L f= the minimum duration of a schedule of G upon p processors

15 return f

To establish that Algorithm 1 requires space that is polynomial in the size of the input CDAG G,
we observe that the enumeration of the set of initial vertices of G and of outcomes of conditional
executions for the considered set of initial vertices can be done using space O(nc), where ¢ denotes
the number of conditional vertices. This is therefore the space requirement of the procedure exclud-
ing the space requirements of recursive calls. Note that recursive calls of Algorithm Compute(G)
take as input sub-graphs G’ of G that have at least one conditional vertex fewer than G does; it
follows that the depth of the recursive calls is bounded by c. It follows that the space requirement
of Algorithm 1 is O(nc?).

Algorithm 1 is easily extended to the case when WCETs are arbitrary positive integers and pre-
emption is allowed. Namely, the definition of initial set of vertices (Definition 3) should be modified
to include the integer WCET of each vertex. Therefore, if p;,,x denotes the maximum WCET, then
the memory requirement to encode an initial set is O(nlog pmax) and the procedure can be im-
plemented with space O(cnlogpmax). It follows that the space requirement of the procedure is

O(nc?10g pmax)-

4 A POLYNOMIAL-TIME REDUCTION

In Section 3, we showed that the CDAG feasibility analysis problem is in PSPACE; this section and
the next one are devoted to proving that this problem is also pspack-hard. In this section, we will
define a polynomial time reduction from QBF (see Definition 1) to the CDAG feasibility analysis
problem: given a quantified Boolean formula F, we will describe how to construct a CDAG Gp and
compute a deadline D, and provide some intuition of the motivation for this construction. Then, in
Section 5, we will rigorously prove that G can be feasibly scheduled under both preemptive and
non-preemptive scheduling for all outcomes to the conditional branches if and only if F is true,
thereby completing the proof of Theorem 1.

Rather than working directly with the version of QBF defined in Definition 1, we find it conve-
nient to reduce from a variant in which the outermost quantifier is universally quantified. (The
two are easily shown to be equivalent, since either can be converted to the other by simply adding
a dummy Boolean variable.) Hence, let x1, x5, . .., x, and y1, 42, . . ., Yy, denote Boolean variables;

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 14. Publication date: September 2023.

14:8 S. Baruah and A. Marchetti-Spaccamela

we will define a reduction from a quantified Boolean formula,

m

F¥ Vy; dxy Yy, Ixy Yys ... Ax; Yy; ... Yy, Ix, /\(fk,l VgV fk,g), (2)
k=1

where each {j ; is one of the x; or y; Boolean variables or its negation (ie., {x; € Ji {xi,
—-xi,Y;, 7y;} for each (k,j) € [1,...,m] X [1,2,3]), to an instance of the CDAG feasibility anal-
ysis problem.

Specifically, we will define how a CDAG G is constructed that is feasible with a deadline

D=6n+1 3)

upon p processors, where p is as defined below—see Equation (7)—if and only if F as defined in
Equation (2) is TRUE.
Let @, B, and y denote any integers satisfying the following constraints?:

a = 60m, (4)
B = 6a, (5)
y = 6p. (6)

With these values defined, we choose the number of processors as follows:

p = (6my +2). (7)

In the remainder of this section, we describe in detail how Gr may be constructed from F, and
provide some intuitive justification for the manner of construction; a formal proof that G is always
schedulable to complete with makespan D upon p processors if any only if F is TRUE is provided
in Section 5.

We now introduce some notation and terminology. In our diagrams of the graph we will con-
struct, we will continue to represent conditional vertices as diamonds, and continue with our sim-
plifying assumption that these vertices have zero execution duration.” We additionally introduce
“join nodes” that we represent as small black filled circles; these exist solely for notational conve-
nience, and we hence assume that they, too, have execution duration equal to zero.

A final notational convenience: for any integer a > 1, in our graph diagrams @ denotes a parallel
nodes each of WCET 1, all preceded and succeeded by a single join node:

®

In the remainder of this article, we may refer to scheduling of such subgraphs as scheduling
of a single node; namely, scheduling of @ at time ¢ means that all a vertices of the subgraph are
scheduled at time ¢.

2The choice of the constants 6, 60 in these definitions is somewhat arbitrary; informally, the intent is to ensure that (a
constant X m) < a < ff K y.
SHowever, we will assume that the result of the test performed at time ¢ cannot be used at time ¢ by the scheduler.

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 14. Publication date: September 2023.

The Computational Complexity of Feasibility Analysis for Conditional DAG Tasks 14:9

Xi

O H 0
O

Wi

Fig. 2. Subgraphs Xj, ;, and ‘W;.

4.1 Representing the Variables

For each i, 1 < i < n, we define two subgraphs X; and Y;. There is a pair of vertices in subgraph
Xi (Y, respectively) labeled X; and =X; (Y; and —Y;, respectively)—see the top row of Figure 2. In-
formally speaking, the intended interpretation is that assigning TRUE (FALSE, respectively) to the
Boolean variable x; in the quantified Boolean formula F of Equation (2) “corresponds” to having
completed the scheduling of the vertex labeled X; (—X, respectively) by a particular point in time
that we will specify later in this section; a similar correspondence is intended between the assign-
ment of a truth value to y; and the scheduling of the vertices labeled Y; and —Y; in subgraph ;.

Notice that the subgraphs X; and Y; do not contain conditional vertices; these are instead to be
found in the subgraphs W}, also defined for each i, 1 < i < n, that are as depicted in the bottom row
in Figure 2. For these “W; subgraphs let us assume without loss of generality that the upper branch
is taken if the conditional expression evaluates to TRUE, and the bottom branch if it evaluates to
FALSE.

We now describe the manner in which the 3n subgraphs constructed as above are connected
with each other (see Figure 3):

(1) Foreachi,1 <i<n,
o There is an edge from the last vertex in “W; to the first vertices of ‘W11, Xit1, and Yii1.
e There is an edge from the last vertex in X; to the first vertex of Wj.4.
e There is an edge from the last vertex in Y; to the first vertex of ‘Wj,.
(2) There is an edge from the last vertex in ‘W,,, X, and Y, to a single vertex V that has WCET 1.

Intuition. We now provide some insights into our motivation for constructing the Xj, Y;, and
“‘W; subgraphs in the manner described above.
Since

e cach ‘W, has a makespan of 6,

o there is an edge from the last vertex of “W; to the first vertex of ‘W;,; for each i < n,
o there is an edge from the last vertex of ‘W, to a single vertex V of WCET 1, and

o the deadline is 6n + 1 (see Equation (3)),

it immediately follows that in any correct schedule the entire subgraph W;, i = 1,2,...,n must
execute over the interval [6(i — 1), 6i] for each i, 1 < i < n; moreover at each time step all nodes

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 14. Publication date: September 2023.

14:10 S. Baruah and A. Marchetti-Spaccamela

Xi-1 X Xi+1 atore Xn
Wi-1 W; Wit oee Wn
Yi-1 Yi Yin ee Yn

Fig. 3. Connecting the subgraphs: the connections between the subgraphs indexed by (i — 1), i, and (i + 1)
are depicted, as well as edges from subgraphs calX,, W), Y, to a single vertex V with WCET 1.

of W; that are ready for execution must be scheduled to execute. Additionally, since for each i
(1 < i < n) there is an edge from the last vertex of ‘W; to the first vertex of X;;; and the first
vertex of Y;;; and an edge from the last vertex of X; and the last vertex of Y; to the first vertex of
‘W41, in any correct schedule the entire subgraphs X; and Y; must also execute over the interval
[6(i—1),6i] foreachi,1 <i<n.

We will ensure (see Section 4.2 below) that the availability of processors is such that the W}, Xj,
and Y; subgraphs can be scheduled in such a manner that

(1) If the conditional expression in subgraph W; evaluates to TRUE (thereby taking the upper
branch), then vertex Y; of the subgraph Y; may complete by time-instant 6(i — 1) + 3; both
vertices {Y;, -Y;} complete by time-instant 6i.

(2) If, however, the conditional expression in subgraph W; evaluates to FALSE and takes the
lower branch, then it is the vertex —Y; that may complete by time-instant 6(i — 1) + 3; both
vertices {Y;, ~Y;} complete by time-instant 6i.

(3) At most one of the vertices {X;, =X;} of the subgraph X; may complete by time-instant
6(i — 1) + 3; both complete by time-instant 6i.

4.2 Controlling Processor Availability

Recall (Equation (7)) that we had chosen the number of processors p in our CDAG feasibility prob-
lem instance to be (6my + 2). To achieve the intended schedule discussed in Section 4.1 above over
the interval [6(i — 1), 6i] for each i, 1 < i < n, we must restrict the number of these processors
that are available upon which to execute these sub-graphs. We do so by constructing an additional
sub-graph, U, that is a complete D-partite graph, where D = 6n + 1 (see Equation (3)) denotes
the deadline of our CDAG feasibility problem instance. That is, the vertices of subgraph U may
be partitioned into D disjoint subsets Uy, Us, . . ., Up such that there is an edge from each vertex in
U, to each vertex in Uy, for each t,1 < t < D. Each vertex has WCET 1, and the number of ver-
tices in each U; is chosen to ensure the processor availability depicted in Figure 4. This is achieved
by choosing |U;|, the number of vertices in Uy, to be equal to p minus the number of processors
that we intend to have available during the time-interval [t — 1, ¢]. (Hence, for example, Up would
contain a single vertex, since (p — (6my + 1)) = (6my +2 —6my — 1) = 1.)

The number of processors left unconsumed by U in any correct schedule for the instance is
depicted visually in Figure 4.

4.3 Representing the Clauses

Note that a clause (£x,1 V €k 2 V {k 3) may be satisfied by having either one, two, or all three of the
literals {€k 1, €k 2, Ck,3} evaluate to true. Ullman [16] observed that this is equivalent to asserting

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 14. Publication date: September 2023.

The Computational Complexity of Feasibility Analysis for Conditional DAG Tasks 14:11

a. Processor availability over [6 X (i — 1),6 X i], for all i < n:

(a+7m+3)) (@ +7m+3) X B+7Tm+3) X (a+7m+3) , (7m +3) X (B+7Tm+3)
0 1 2 3 4 5 6

b. Processor availability over [6 X (n — 1),6n + 1]:
(a+7m+3)) (e +7m+3) , (B+Tm+3) \ (a+7m+3) \ (Tm +3) , (B+Tm+3)

I T T T T T T T
0 1 2 3 +my 4 5 6 6my +1 7

c. Diagrammatic representation of processor availability (y axis not to scale). The gray polygon depicts processor
availability over the interval [6(i — 1), 6i] for each i, 1 < i < n. The red rectangles denote additional processor
availability over the interval [6(n — 1), D].

(Tm +3)

B-a)

6my +1

Fig. 4. Controlling the availability of processors—see Section 4.2.

Fig. 5. The subgraph Zj ;. It comprises a chain of D — 3 vertices, the last labeled y and the rest, 1. Three of
the vertices in the chain each have an additional incoming edge.

that in any satisfying assignment exactly one of the following seven conjuncts evaluates to true:
(@) (€1 A=l o A=y 3), (i) (k1 A bk o A=l 3), (iid) (=€, 1 A=k 2 Ak 3), (V) (Ck1 Al 2 A=y 3),
(V) (Ce,s Al Ak s), (Vi) (2 A L2 A lr3), and (Vi) (€1 A L2 A Lk 3). (Here, the negation
operation is interpreted in the usual manner: for any Boolean variable v, we have =—v = v.) This
observation motivates the definition for each clause C; of seven subgraphs, Z; 1, Z;2,...,Zj 7
one to “represent” each of the seven conjuncts. These seven subgraphs can each be depicted as
a chain of (D — 3) vertices, the first (D — 4) of which have WCET 1 and the last is labeled y
thereby denoting that it represents y parallel vertices each with WCET 1 (here y is as defined
in Equation (6)), with three additional incoming edges—see Figure 5. For each of the seven chains,
these three additional incoming edges are from the vertices corresponding to* the literals in the
conjunct that the chain represents. Specifically,

o if the literal is x; (—x;, respectively) then there is an edge from the vertex X; (the vertex —X;,
respectively) of subdag X; to the (6(i — 1) + 4)th vertex in the chain

o if the literal is y; (—y;, respectively) then there is an edge from the vertex Y; (the vertex —Y;,
respectively) of subdag Y; to the (6(i — 1) + 4)th vertex in the chain.

We illustrate via an example.

“This notion of correspondence is described in Section 4.1: literal x; (—x;, respectively) corresponds to vertex X; (=X,
respectively) of subgraph X;, and literal y; (—y;, respectively) corresponds to vertex Y; (=Y, respectively) of subgraph JY;.

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 14. Publication date: September 2023.

14:12 S. Baruah and A. Marchetti-Spaccamela

Example 1. Suppose the kth clause in the QBF F is (x5 V y3 V —y7). By Ullman’s observation [16],
in any truth assignment for which this clause evaluates to TRUE, exactly one of the seven conjuncts
(i) (x5 A =ys A y7), (i) (=xs A ys A y7), (iii) (=xs A =ys A =y7), (iv) (xs A ys Ayr), (v) (Xs A =ys A
—y7), (Vi) (0xs A ys A —y7), (vii) (x5 A ys A —y;) evaluates to true. Let us consider the sixth of
these conjuncts: (—x5 A y3 A =y7). In our construction of the CDAG Gp, this clause is represented
by the subdag Zk . The three additional incoming edges into the chain Zj 4 are therefore as
follows:

(1) From the vertex labeled —Xs in the sub-DAG Xj into the (6 X 4 + 4) = 28th vertex in the
chain;

(2) From the vertex labeled Y3 in the sub-DAG J; to the (6 X 2 + 4) = 16th vertex in the chain;
and

(3) From the vertex labeled —Y7 in the sub-DAG Y; to the (6 X 6 + 4) = 40th vertex in the chain.

We point out that this chain has makespan (D — 3); hence, if it is to complete execution by time-
instant (D—3), then it must execute without interruption. For this to happen it is necessary that the
vertices in X5, Y3, and Y; that are labeled —Xs, Y3, and —Y7, respectively, each complete execution
by time-instants 27, 15, and 39, respectively. O

Intuition. We now provide some insights into our motivation for constructing the Zj ; sub-
graphs in the manner described above. In Section 5, we will formally show that the availability
of processors (discussed in Section 4.2 above) is such that in any correct schedule, at least one of
the seven subdags Z; 1, Zj, 2, . . ., ;7 must complete execution by time-instant (D — 3). Since the
makespan of each is D — 3, this immediately implies that at least one of these seven subgraphs
must execute without interruption over the interval [0, (D — 3)]. We will show, in Section 5, a cor-
respondence between this happening and a truth assignment to the Boolean variables that causes
the kth clause to be satisfied—i.e., evaluate to TRUE.

4.4 Putting the Pieces Together

The graph G constructed from QBF F in the manner described above comprises two (weakly) con-
nected components: the 3n “W;, X;, and Y; subgraphs (1 < i < n), vertex V, and the 7m subgraphs
Zi1:Lk2s - - - L7 (1 < k < m) form one component; the subgraph U forms the other. Since the
values of @, , and y (as defined in Equations (4)-(6)) are all polynomial in m, it follows that both
the size of this DAG Gr that we construct, and the value of the deadline parameter D, are both
polynomial in the size of the QBF F.

We also point out that there are n conditional expressions—one per ‘W;—in Gy, that there is no
nesting of conditional expressions, and that there is a total ordering among them.

Based on these observations above, it directly follows from Theorem 1 (which we will formally
prove in the next section) that

CoROLLARY 1. The CDAG feasibility analysis problem is PSPACE hard even when

(1) the values of the parameters (WCETs, D) characterizing the CDAG are polynomial in the size
of the representation of the CDAG; and

(2) there is no nesting of conditional constructs in the CDAG, and a total ordering among them can
be defined (such that the exact order in which they will execute is a priori known).

That is, the CDAG feasibility analysis problem cannot be solved by a pseudo-polynomial time
algorithm (assuming p # PSPACE), and remains computationally highly intractable even when the
structural relationship among the conditional constructs is very simple—a linear chain.

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 14. Publication date: September 2023.

The Computational Complexity of Feasibility Analysis for Conditional DAG Tasks 14:13

5 PROOF OF PSPACE HARDNESS

In this section, we rigorously establish the correctness of Theorem 1 by showing that the CDAG G,
constructed from the given quantified Boolean formula F of Equation (2) as detailed in the previous
section, is always schedulable to complete with makespan D (Equation (3)) upon p processors
(Equation (7)) if and only if F is TRUE, regardless of whether preemption is permitted or forbidden.
The presentation is divided in two parts—Lemma 1 (Section 5.1) establishes that if F is TRUE then
Gr is always scheduled correctly, while Lemma 2 (Section 5.2) shows that the schedulability of G
implies that F is TRUE.

5.1 If Fis True, then Gg is Schedulable

The CDAG Gr that we constructed in Section 4 above has n conditional constructs, where n is the
number of x; variables (and also the number of y; variables) in the quantified Boolean formula
F defined in Equation (2). On any particular complete execution of the task, the outcome of the
evaluation of each of the n conditionals will be either TRUE or FALSE. We will now establish that
if the quantified Boolean formula F as defined in Equation (2) is TRUE then Gr can be scheduled
upon p processors to complete within its specified deadline D for all 2" possible combinations of
these outcomes.

LEMMA 1. If the quantified Boolean formula F of Equation (2) is TRUE, then the CDAG GF con-
structed as described in Section 4 can be scheduled to always complete within a deadline D = (6n+ 1)
upon p = (6my + 1) processors, where y is as defined in Equation (6).

Assume F is TRUE; we define below a run-time scheduling algorithm for G upon p processors
that completes within the deadline D for any combination of outcomes of its n conditional expres-
sions. Although at any time this algorithm only makes scheduling decisions regarding the jobs
corresponding to all the vertices in Gr that are currently eligible to execute, we will, for ease of
presentation, first describe (and prove properties of) the manner in which it schedules the sub-
graph U; next, how it schedules the X;, Y;, and ‘W; subgraphs; and finally, how it schedules the
Zk,j subgraphs.

The subgraph 9. Our run-time scheduling algorithm assigns greatest priority to the vertices
of the subgraph U, thereby ensuring that the number of processors available for executing the
remainder of Gp is as specified in Section 4.2. The following claim is easily seen to be correct by
construction: our choice, as articulated in Section 4.2, of the number of vertices to have in each
partition U; of the vertices of U, ensures this.

Cramm 1.1. All vertices in subgraph U complete execution by the deadline D.

The X;, Y;, and ‘W, subgraphs. We now address the manner in which our run-time algorithm
schedules the vertices in the subgraphs Xj, Y;, and ‘W; for each i,1 < i < n. Observe that the
conditional expression (the diamond-shaped vertex) in ‘W is eligible to execute at time-instant
0; our run-time scheduler will ensure (see Claim 1.2 below) that for each i > 1 the conditional
expression in ‘W is eligible to execute at time-instant 6(i — 1). It does so in the following manner.
Suppose the conditional expression in ‘W is executed at time-instant ¢. We will see below that
the remaining processor availability (after scheduling vertices of subdag U) that is depicted in
Figure 4 enables our run-time algorithm to construct the following schedules over [t,t + 6].

e Suppose that the conditional expression evaluates to TRUE; intuitively (as discussed in
Section 4.1), we associate this with the Boolean variable y; being assigned value TRUE. Since
F is assumed to be TRUE, it must be the case that x; can subsequently be assigned some truth
value such that F evaluates to TRUE when y; is TRUE and x; gets this value.

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 14. Publication date: September 2023.

14:14

S. Baruah and A. Marchetti-Spaccamela

Recall from Section 4.1 that we have assumed that the upper branch of the conditional con-
struct needs to execute when the conditional expression evaluates to TRUE. In so doing, our
run-time algorithm executes each of the subgraphs W;, Y;, and X; upon the following num-
ber of processors over the interval [¢,¢ + 6):

TiME INTERVALS
Subgraph | [t,t+1) | [t+1,t+2) | [t+2,t+3) | [t+3,t+4) | [t+4,t+5) | [t+51+6)
W; 1 a 1 1 1 1
Y, a 1 2 a 1 0
Xi 0 0 B 0 0)i

in a manner that completes execution of (i) vertex Y; at time-instant (¢ + 3); (ii) vertex —Y;
at time-instant (¢ + 5); (iii) X; (=X, respectively) by time-instant (¢ + 3) if the value TRUE
(FALSE, respectively) is assigned to x; to have F evaluate to TRUE when y; is TRUE; and (iv) the
remaining vertex from among {X;, —X;} by time-instant t + 6. (We will prove in Claim 1.2
that this is possible.)

Suppose that the conditional expression evaluates to FALSE; we informally associate this with
the Boolean variable y; being assigned value FALSE. Since F is assumed to be TRUE, x; can
subsequently be assigned some value in {TRUE, FALSE} such that F evaluates to TRUE when
y; is FALSE and x; gets this value.

Recall that the lower branch of the conditional construct needs to execute when the con-
ditional expression evaluates to FALSE. In this case, our run-time algorithm executes the
subgraphs ‘W;, Y;, and X; upon the following number of processors each:

TiME INTERVALS
Subgraph | [t,t+1) | [t+1,t+2) | [t+2,t+3) | [t+3,t+4) | [t+4,t+5) | [t+51+6)
W, a 1 1 1 1 1
V; 1 a 1 a 1 1
X; 0 0 B 0 0 B

in a manner that completes execution of (i) vertex —Y; at time-instant (¢ + 3); (ii) vertex Y;
at time-instant (¢ + 5); (iii) X; (=X, respectively) by time-instant (¢ + 3) if the value TRUE
(FALSE, respectively) is assigned to x; to have F evaluate to TRUE when y; is FALSE; and
(iv) the remaining vertex from among {X;, —X;} by time-instant ¢ + 6. (We will again prove
in Claim 1.2 that this is possible.)

Note that the above scheduling decisions are only based on the truth values of variables x; and
y; and, therefore, they are compliant with the definition of DAG Gr. The following establishes that
the schedule generated by the run-time scheduling algorithm described above does indeed map
the truth values of the Boolean variables to the scheduling of the X;, =Xj;, Y;, and —Y; vertices.

Cramm 1.2. Foralli,i=1,2,...,n, the following hold

(1)
@)

3)

The graphs W;, X;, Y;, execute entirely within the interval [6(i — 1), 6i).

Ifthe truth value of variable y; is TRUE (FALSE, respectively), then the vertex of Y; that is labeled
Y; (=Y, respectively) will complete by time 6(i — 1) + 3; otherwise it will complete by time 6i.
If the truth value of variable x; is TRUE (FALSE, respectively), then all § jobs of X; corresponding
to the vertex labeled X; (—X;, respectively) will complete by time 6(i — 1) + 3; otherwise, they
will complete by time 6i.

Proor. To prove this claim, we have to show that the processor availability depicted in Figure 4
allows the run-time algorithm to construct the schedules discussed above for both the cases when

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 14. Publication date: September 2023.

The Computational Complexity of Feasibility Analysis for Conditional DAG Tasks 14:15

the conditional expression in the ith conditional construct evaluates to TRUE and when it evaluates
to FALSE. This is proved by induction on i.

Base case (i = 0). The conditional expression in “W; has no predecessors and so executes at
time-instant 6(i — 1) = 6 X 0 = 0. From Figure 4, it is evident that the processor availability over
the interval [0, 6]:

TiME INTERVALS
[0,1) [1,2) [2,3) [3,4) [4,5) [5,6)
(a+7m+3) | (a+Tm+3) | (f+Tm+3) | (a+7m+3) | (Tm+3) | (B+7m+3)

is (more than) adequate to both provide the required number of processors when the conditional
expression evaluates to TRUE (FALSE, respectively), and to ensure that the vertices labeled X; and
—X; complete as stated in the claim. To see that the vertices labeled Y; and —Y; also complete
as stated in the claim, observe that we associate executing the upper (lower, respectively) branch
of W, with the variable y; having truth value TRUE (FALSE, respectively); such execution of the
upper (lower, respectively) branch of ‘W) consumes the a processors available during the time-
interval [0, 1] ([1, 2], respectively), but leaves the « processors available during the time-interval
[1,2] ([0, 1], respectively) for the predecessor vertex of vertex Y; (—Y;, respectively) to execute
and thereby enables vertex Y; (—Y7, respectively) to complete by time-instant 3. Furthermore, it is
evident that all four vertices X7, =X, Y1, and =Y; complete by time-instant 6.

Induction Step. Given, as an induction hypothesis, that X;_;, Y;_1, and “W;_; all complete by
time-instant 6(i — 1), an argument virtually identical to the one in the base case above may be used:
the processor availability over [6(i — 1), 6i] is given by

TIME INTERVALS
[6(i—1),6(i—1)+1) | [6(i—1)+1,6(i—1)+2) | [6(i—1)+2,6(i—1)+3) | [6(i—1)+3,6(i—1)+4) | [6(i—1)+4,6(i—1)+5) | [6(i—1)+5,6i)
a+7m+3 a+7m+3 p+Tm+3 a+7m+3 7m+3 p+Tm+3

which is identical to the availability in the base case, and hence analogous conclusions can be
drawn.

And finally, note from Figure 4 that the processor availability for the case i = n is in fact even
greater—there are additional my processors available in the interval [6(n — 1) + 3,6(n — 1) + 4]—
and hence the run-time algorithm is once again able to schedule X},, V,, and ‘W, to possess the
properties expressed in the claim above. O

The following claim immediately follows by observing that all vertices of X,,, Y,,, and ‘W, com-
plete by time 6n and and considering the processor availability in [D, D — 1].

Cramm 1.3. Vertex V completes execution by time D.

The Z; ; subgraphs. We have seen above how our run-time algorithm schedules the subgraph
U as well as the X;, Y;, and ‘W, subgraphs 1 < i < n. It remains to discuss how the Z ; subgraphs
are to be scheduled. The run-time algorithm executes these upon the processors that are left over
after the scheduling of the subgraph U and the X;, Y;, and ‘W; subgraphs as previously described
above, by prioritizing the scheduling of the first (D —4) vertices of any of these Z;; subgraphs over
the scheduling of the last vertex of any Zi ; subgraph. We now establish that all these subgraphs
are successfully scheduled in this manner.

CramM 1.4. Exactly m subgraphs Z j, 1 <k <m,1 < j <7, complete execution by 6(n — 1) + 4.

Proor. It is sufficient to show that, for each k, 1 < k < m, the last y parallel jobs of exactly one
subgraph Z; i are ready for execution at time 6(n — 1) + 3. Therefore, the my processors that are

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 14. Publication date: September 2023.

14:16 S. Baruah and A. Marchetti-Spaccamela

available over [6(n — 1) + 3,6(n — 1) + 4)—see Figure 4—can be used to complete the execution of
these jobs by time 6(n — 1) + 4.

Recall from Section 4.3 that the seven subgraphs Z; ;, j = 1,2,...,7, “represent” the seven
possible satisfying assignments of the kth clause and that at most one of these assignments can be
true. We now observe that if literal x; (—x;, respectively) belongs to subgraph Zy ; for some k and
J, then there is an edge from the vertex labeled X; (=X;, respectively) of X; to the 6(i — 1) + 4th
vertex of the chain Z; ;. Claim 1.2.(3) asserts that if this vertex X; (—X;, respectively) does not
complete by time-instant 6(i — 1) + 3 it will complete at time 6i, thus delaying execution of Zj ;
for up to three time units. Analogously, if literal y; (—y;, respectively) belongs to subgraph Zj ;
for some k and j, then there is an edge from the vertex labeled Y; (—Y;, respectively) of Y; to the
6(i — 1) + 4th vertex of the chain Zj ;. Claim 1.2.(2) asserts that if vertex Y; (=Y;, respectively)
does not complete by time-instant 6(i — 1) + 3 it will complete by time-instant 6i, thus delaying
execution of Zy ; for at at most three time units.

We have shown that, for each k, at most one assignment corresponding to the seven subgraphs

Zk,j»J = 1,2,...,7, can be true; since the considered assignment satisfies the formula it follows
that for each k, 1 < k < m, the last y parallel jobs of exactly 1 subgraph Z; ;,j = 1,2,...,7, is
ready for execution at time 6(n — 1) + 3. O

Proof of Lemma 1. We now complete the proof of Lemma 1. We first observe that the above
defined scheduling decisions are compliant with the order and values of the truth assignment of
F; namely, scheduling of

(1) YU and V is independent on the truth assignment of F;

(2) Wi and Y; only depends on the truth value of variable y;;

(3) X; only depends on the truth value of variable x;;

(4) Zj i only depends on the eligibility of nodes of the subgraph.

We have shown

(1) subgraphs U and vertex V complete by time D (Claims 1.1 and 1.3);
(2) subgraphs W, X,,, Y, complete by time D — 1 (Claim 1.2);
(3) exactly m subgraphs Z; complete by time D — 3 (Claim 1.4).

Note that subgraphs Z; that do not complete by time D — 3 are delayed by at most three time
units; therefore, the last y parallel jobs of all these 6m remaining subgraphs Z; are ready for
execution at time-instant D — 1. By considering vertices Up, V and processor availability, we can
see that there are 6my available processors in [D—1, D]; these processors are sufficient to complete
execution of all remaining subgraphs Z; r. Therefore, the schedule completes by the deadline D
thus completing the proof of Lemma 1.]

5.2 If Gr is Schedulable, then F is True

The CDAG Gr constructed in Section 4 has n conditional constructs, where n is the number of
x; variables (and also the number of y; variables) in the quantified Boolean formula F defined in
Equation (2). On any particular complete execution of the task, the outcome of the evaluation of
each of the n conditionals will be either TRUE or FALSE. We will now establish that if Gr can be
scheduled upon p processors to complete within its specified deadline D for all 2" possible com-
binations of these outcomes, then the quantified Boolean formula F as defined in Equation (2) is
TRUE. Consider any particular combination of outcomes of the n conditional constructs. Based
upon the construction of Gr from F as described in Section 4, the correspondence of this combina-
tion of outcomes to an assignment of truth values to the universally quantified variables (the y;’s)

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 14. Publication date: September 2023.

The Computational Complexity of Feasibility Analysis for Conditional DAG Tasks 14:17

is quite straightforward: Variable y; is assigned value TRUE (FALSE, respectively) if the conditional
construct in subgraph Y; evaluates to TRUE (FALSE, respectively).
We start out establishing some properties that any such correct schedule must possess.

Cramm 1.5. In any correct schedule of G

(1) The sub-graph U executes such that all vertices in U; (i.e., those in the ith-level partition of U ’s
vertex set) execute over the time-interval [t — 1,t).

(2) For eachi,1 < i < n, sub-graph ‘W, begins execution at time-instant 6(i — 1) and completes at
time-instant 6i.

(3) For each i,1 < i < n, sub-graphs X; and Y; begin execution at or after time-instant 6(i — 1)
and complete execution by time-instant 6i.

Proor. Immediately follows from the manner in which the subgraphs were constructed and
connected to each other (see Figures 2 and 3). O

The proof of Lemma 1 above may additionally suggest that the existentially quantified variables
(the x;’s) be assigned truth values based on the completion times of the vertices labeled X; and
—X; in subgraph Xj: x; should be assigned the value TRUE (FALSE, respectively) if all § WCET-1
jobs represented by the vertex labeled X; (—X;, respectively) in subgraph X; complete execution
by time-instant 6(i — 1) + 3.

However this idea does not quite work: it is possible for neither vertex X; nor —X; to have
completed execution by time-instant 6(i—1) +3 in a correct schedule for Gr. Consider, for instance,
the following quantified Boolean formula:

Yy; dx; Yyp Ixy (Y1 V x1 V xe) A (Y1 V x1 V).

Observe that if x; is assigned the value TRUE, then this QBF evaluates to TRUE regardless of the
value assigned to x; (or indeed, the values of the y; variables); this in turn would imply that if we
were to construct a CDAG for the above quantified Boolean formula as described in Section 4, then
correct schedules exist in which neither vertex in {X;, =X, } completes by time-instant 6 X (2—1) +
3 = 9. Similarly the same claim holds for vertices {Y,, =Y} associated to variable y,.

This subtlety makes proving the following lemma somewhat less straightforward than may
appear at first sight. We circumvent it in the following manner: If neither X; nor -X; (Y; nor —Y;)
complete by time 6(i — 1) + 3, then we define (Definition 4) a suitable truth value to variable x; (y;),
and we show that this truth assignment makes F true.

LEmMA 2. If the CDAG Gr constructed as described in Section 4 can always (i.e., for all 2" combi-
nations of outcomes of the evaluations of its n conditional constructs) be scheduled to complete within
a deadline D = 6n + 1 upon p = (6my + 2) processors, where y is as defined in Equation (6), then the
quantified Boolean formula F of Equation (2) is TRUE.

Given a correct schedule for any combination of outcomes for the conditional constructs in Gp,
the following definition determines a truth assignment Ag(F) to the Boolean variables

Definition 4 (Truth Assignment As(F)). Given a correct schedule S of the CDAG Gr, we define
a truth assignment Ag(F) to the x; and y; Boolean variables of the quantified Boolean formula F
of Equation (2) in the following mannner:

(1) x; is assigned truth value TRUE (FALSE) if the vertex X; (—X;) completes by time 6(i — 1) + 3;

(2) Any unassigned x; is assigned the value TRUE or FALSE arbitrarily;

(3) y; is assigned truth value TRUE (FALSE) according to the outcome of the ith branch condition
of S.

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 14. Publication date: September 2023.

14:18 S. Baruah and A. Marchetti-Spaccamela

To prove Lemma 2, we will show that Definition 4 determines a truth assignment Ag(F) to the
Boolean variables such that

(1) each Boolean variable is only assigned one value and, hence, Ag(F) is indeed a well-defined
truth assignment—Claim 2.1.

(2) the truth assignment to variable y;, the ith universally quantified Boolean variable, is com-
pliant with the outcome of the ith conditional construct; i.e., if the ith conditional construct
is true (false), then y; is true (false)—Claim 2.1.

(3) the truth values of x; and y;, the ith existentially and universally quantified Boolean vari-
ables, are compliant with the kind and the order of the quantifiers in F—Claim 2.2.

(4) all clauses of the quantified Boolean formula F are satisfied—Claims 2.3 and 2.4.

The following claim proves that As(F) is a well-defined truth assignment; its proof builds upon
the structural properties of correct schedules that were identified in Claim 1.5 above.

CraM 2.1. In any correct schedule of Gr it is the case for each i, 1 < i < n, that

(1) At most one of the vertices {Y;, -Y;} completes execution by time 6(i — 1) + 3, and which one
this may be is determined by the outcome of evaluating the conditional expression in subgraph
W;. Specifically, only Y; (=Y, respectively) may complete by time 6(i — 1) + 3 if the conditional
expression in ‘W; evaluates to TRUE (FALSE, respectively). The other vertex in{Y;, =Y;} completes
by time 6i but not before time 6(i — 1) + 5.

(2) At most one of the vertices {X;, ~X;} completes execution by time 6(i—1) +3, and both complete
execution by time 6i.

Proor. We first observe that Claim 1.5 implies that in any correct schedule for G (i) the initial
vertices of X; and Y; cannot begin execution before time 6(i — 1), and (ii) subgraphs X; and Y;
must complete execution by time 6i. It follows that nodes X;, —X;, Y;, =Y; all complete by time 6i.

We next observe (see Figure 4) that the processor availability left by subgraph U in the interval
[6(i—1),6(i—1)+2]is2 X (@ + 7m + 3), and that ‘W; consumes (a + 1) units of this availability
regardless of whether it traverses its upper or its lower branch. This leaves (« + 14m + 5) units of
processor capacity over this interval; since @ > 14m+5 (by Equation (4), « > 60m), this implies that
at most one of the two vertices labeled {Y;, =Y/} may have completed execution by time-instant
6(i—1)+2.

Since W; must be executed without any delay it follows that & processing units for processing
nodes {Y/, =Y/} of Y; are available either in [6(i — 1),6(i — 1) + 1] (if the upper branch of the
conditional construct is taken) or in [6(i—1) + 1, 6(i — 1) + 2] (if the lower branch of the conditional
construct is taken). Note also that there are other () units in the interval [6(i — 1) + 3, 6(i — 1) + 4]
that can be used to complete execution of both {Y; and —Y}}.

Namely, if sub-graph ‘W; executes

(1) the upper branch of its conditional construct then the available processor capacity of @ units
in [6(i—1),6(i—1)+1] can only be used to complete the execution of vertex Y/, thus allowing
to complete Y; by time 6(i — 1) + 3 and —Y/ by time 6(i — 1) + 4;

(2) the lower branch of its conditional construct then the available capacity in [6(i —1) + 1, 6(i —
1) +2] can be used to complete execution of either vertex Y; or vertex —Y; =Y/; however, the
completion of Y/ by time 6(i — 1) + 2 does not allow to complete the execution of Y; by time
6(i—1) + 3 and Y/ by time 6(i — 1) + 4.

It follows that the choice of which of the two vertices labeled {Y;, —Y;} may have completed
execution by time-instant 6(i—1) +3 is dictated entirely by the outcome of the conditional construct.
Consequently at most one of the two vertices labeled {Y;, —Y;} may have completed execution by

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 14. Publication date: September 2023.

The Computational Complexity of Feasibility Analysis for Conditional DAG Tasks 14:19

time-instant 6(i — 1) + 3, and which one this may be is determined by whether subgraph W;
executed the upper branch or the lower branch of its conditional construct, as claimed.

Note also that if vertex Y; (—Y;) is not completed by time 6(i — 1) + 3 then vertex Y; (—Y/) is
completed by time 6(i — 1) +4]; this allows to complete Y; (—Y;) by time 6(i — 1) + 6 and to complete
the proof of Claim 2.1.(1).

Finally, we observe that the processor availability left by subgraph U in the interval [6(i —
1),6(i—1)+3]is2X (a+7m+3)+ (f+7m+3) = f+2a+21m+9. But since f > 2a+21m+9 (by
Equation (5), # > 60a while by Equation (4), @ > 60m), at most one of the vertices of X; labeled
{Xi, =X;} may complete execution by time-instant 6(i — 1) + 3, thus completing the proof of the
Claim. O

The next claim establishes that the truth assignment Ag(F) is consistent with the identity and
ordering of quantifiers on the Boolean variables in quantified Boolean formula F of Equation (2).

CramM 2.2. Given a quantified Boolean formula F and a correct schedule S for the CDAG GF con-
structed from F as described in Section 4, the truth assignment As(F) of Definition 4 to the x; and
y; Boolean variables in F is done in a manner that is compliant with the kind and the order of the
quantifiers in F.

Proor. Observe first that Claim 2.1 establishes that the decision on which of the vertices
{Y;, —Y;} may complete by time 6(i — 1) + 3 depends on the outcome of the conditional construct
in “W; and it is not under the control of the scheduler, thus reflecting the universal quantifiers on
the y; variables.

Claim 2.1 also reflects the existential quantifiers on the x; variables in that the scheduler chooses
whether to complete X; or =X by time 6(i—1)+3 before the environment (i.e., run-time conditions)
determines which of Y;;; and —Y;,; will complete 6i + 3.

Finally, observe that the order of quantifiers is maintained: the scheduler must decide to execute
one of {X;, =X;} before one of {Y;,1, =Y;,1} is scheduled; furthermore, the scheduler has to decide
to execute one of {X;, =X;} after one of {Y;, =Y;} is chosen for execution by the environment. O

The next two claims establish properties on the completion time of subgraphs Zj ;.

Cram 2.3. If subgraph Zy ; completes by time-instant (D—3) in some correct schedule S of F, then
the truth assignment As(F) constructed from S as described in Definition 4 satisfies the kth clause of F.

Proor. Consider any k, 1 < k < m. Recall from Section 4.3 that each of the seven subgraphs
Zi1sZk,2s - - - » Lk,7 “represents” a different one of seven distinct conjuncts obtained by negating
or not negating each of the three literals in the kth clause, such that exactly one of these seven
conjuncts is true in any satisfying assignment. Assume that subgraph Z; ; completes by time
(D—3) in the correct schedule S; since its makespan is equal to (D —3), it must have been executed
without interruption during the interval [0, D — 3] in S. Let us denote the three literals in the
conjunct represented by Zy ; as Z’;,Z’; and Z’; (i.e., Zk,; represents the conjunct (Z’; A Zz A 23))
Then (as described in. Section 4.3) subgraph Z ; is a chain with makespan (D — 3), with three
additional incoming edges: for p = 1,2, 3,

o if literal Z’; equals x; (—x;) then there is an edge from vertex X; (vertex —X;) to the (6i + 4)th
vertex of Zj j;

o if literal ZQ equals y; (—y;) then there is an edge from vertex Y; (vertex —Y;) to the (6i + 4)th
vertex of Zy ;.

Since Zj, ; executes with no interruption in the schedule S, it follows that none of these three
edges delay the execution of Zj ;. Hence, if any of these three edges is from one of the vertices

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 14. Publication date: September 2023.

14:20 S. Baruah and A. Marchetti-Spaccamela

Xi, =X, Y;, or =Y;, then that vertex from which this edge is incoming has completed execution by
time-instant (6i + 3) in S, and hence the corresponding literal takes on a truth value TRUE in Ag(F).
From this, we conclude that the truth assignment Ag(F) assigns the truth value TRUE to each of
the three literals Z’;, 22, and {”\3, and therefore Ag(F) is a satisfying assignment for the kth clause, as
claimed. |

CLAIM 2.4. For any k, 1 < k < m, at most one of the seven subgraphs Zi 1, Zk.2, - - ., Lk,7 may
complete by time-instant (D — 3) in any correct schedule S of F.

Proor. Assume that subgraph Zk,j completes by time (D — 3) in the correct schedule S, and
consider any j’ € {1,2,. 7} Jj#* £ J. As in the proof of Claim 2.3 above, let us denote the conjunct
represented by Zkjas (€1 Al A 53) furthermore, let us denote the conjunct represented by Zx j

as (€’ A 5' N ;)- Since exactly one of the seven conjuncts represented by the seven subgraphs
Zk,th,z, .. Zk,7 is TRUE in any truth assignment that causes the kth clause to evaluate to
TRUE (as was described in Section 4.3) and none are TRUE in a truth assignment that causes the
kth clause to evaluate to FALSE, it follows that both these conjuncts cannot be true under the
same truth assignment. This in turn implies that one or more of the three literals ZI, Zz and ?3 is
the negation of one or more of the three literals r s Zg, and Z’; i.e., there is some integer ¢, 1 < ¢ < n,
such that x,, is a literal in one of the two conjuncts and —x, is a literal in the other, and/ or y,
is a literal in one of the two conjuncts and -y, is a literal in the other. We consider four possible
cases:

(1) Let us first consider the case where x,, is one of the literals in the conjunct (51 Ay A 53) and

—x,, is one of the literals in conjunct (f AL N 3)- We saw in the proof of Claim 2.3 that
for Zj ; to complete by time-instant (D — 3) 1t is necessary that the vertex X,, of subgraph
X, complete by time-instant 6(¢ — 1) + 3. It must similarly be the case that for Z ; to
complete by time-instant (D—3) it is necessary that the vertex —X,, complete by time-instant
6(¢—1)+3. But we saw in Claim 2.1 that this is impossible—at most one of these two vertices
may complete by time-instant 6(¢ — 1) + 3. Therefore, in this case, we cannot have both
subgraphs Z ; and Zy j complete execution by time-instant (D — 3).

The other three cases:

(2) —x,, aliteral in conjunct (El A Zz A 23) and x,, a literal in conjunct (Z’Z A Zé A Zf}),

(3) yy aliteral in conjunct (€1 A fz A 53) and —y,, a literal in conjunct ({” A Z’; A Z’;); and
(4) —y, a literal in conjunct (fl A 52 A 53) and y, a literal in conjunct (f’ NN L)

may be analyzed analogously to again yield the conclusion that both subgraphs Z ; and Zj j
cannot complete by time-instant (D — 3).]

We now complete the proof of Lemma 2.

Proof of Lemma 2. Consider one possible assignment B of truth values to the universally quan-
tified variables of F; we need to show that there exists a truth assignment to existential variables
that is compliant with the order of quantifies and satisfies F. Since the CDAG GF can be scheduled
to always complete by its deadline, for all possible outcomes of the n conditional constructs, we
consider the correct schedule S for the combinations of outcomes such that the outcome of the ith
conditional construct has the same truth value of the ith universally quantified variable in A.

Claim 2.1 ensures that we can define such a truth assignment Ag(F) of variables of F such that
values of y; variables in A and B coincide. Claim 2.2 shows that such assignment is compliant with

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 14. Publication date: September 2023.

The Computational Complexity of Feasibility Analysis for Conditional DAG Tasks 14:21

the order of alternation of quantifiers. We now show that this assignment of truth values x; and
y; variables is a satisfying assignment.

Observe (see Figure 4) that there are 6my available processors in [D — 1, D] and, therefore, in a
correct schedule at most 6m of the Zj ; subgraphs can complete at time D; processor availability
over the interval [D — 3,D — 1] and the fact that y > 6 > 360« imply that exactly m of the
Zk,j subgraphs must complete by time (D — 3). By Claim 2.4, we know that for each k there is
at most one subgraph Zy ; that completes by time (D — 3). This, in conjunction with the above
observation, implies that for each k, 1 < k < m, exactly one subgraph Z; ; completes at (D—-3); by
applying Claim 2.3, we conclude that Ag(F) is a satisfying assignment for the quantified Boolean
formula F. O

6 SUMMARY AND OPEN PROBLEMS

We have shown that feasibility analysis of CDAG tasks, a problem that occurs naturally in the anal-
ysis of complex multiprocessor real-time systems, is computationally highly intractable—pspace
complete, and not solvable by polynomial or pseudo-polynomial time algorithms under the as-
sumption that P # PSPACE.

Several interesting questions concerning feasibility analysis for CDAG tasks satisfying addi-
tional restrictions remain open. While it can be shown that feasibility analysis for CDAG tasks
in which the number of conditional constructs is a priori bounded from above by a constant is
NP-complete, we do not know the complexity of feasibility analysis if instead it is the number
of processors that is bounded by a constant (notice that our reduction requires the use of poly-
nomially many processors—see Equation (7)). In a similar vein, the complexity is unknown if the
number of conditional constructs in any particular path in the CDAG is bounded by a constant—
again, our reduction results in a CDAG with a path in which the number of conditional constructs
equals the number of universally quantified Boolean variables.

An additional avenue for further research concerns the feasibility analysis of collections of spo-
radic tasks [3]. While an ExpTIME algorithm for solving this problem has been obtained [5, 6], to
our knowledge no lower bound better than Np-hard is known. It would be interesting to determine
whether the techniques we have introduced in this article may be adapted to apply to the feasibil-
ity analysis of collections of sporadic tasks as well, to prove a better (i.e., higher) lower bound of
PSPACE-hardness.

REFERENCES

[1] Sanjoy Baruah. 2020. Feasibility analysis of conditional DAG tasks is co-NPNP-hard (why this matters). In Proceedings
of the 29th International Conference on Real-Time and Network Systems (RTNS’21). ACM, 165-172.

[2] Sanjoy Baruah, Vincenzo Bonifaci, and Alberto Marchetti-Spaccamela. 2015. The global EDF scheduling of systems
of conditional sporadic DAG tasks. In Proceedings of the 26th Euromicro Conference on Real-Time Systems (ECRTS’15).
IEEE Computer Society Press, 222-231.

[3] Sanjoy Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Leem Stougie, and Andreas Wiese. 2012. A gener-
alized parallel task model for recurrent real-time processes. In Proceedings of the IEEE Real-Time Systems Symposium
(RTSS’12). IEEE Computer Society Press, 63-72.

[4] Sanjoy Baruah and Alberto Marchetti-Spaccamela. 2021. Feasibility analysis of conditional DAG tasks. In Proceedings
of the 33rd Euromicro Conference on Real-Time Systems (ECRTS’21) (Leibniz International Proceedings in Informatics
(LIPIcs)), Bjorn B. Brandenburg (Ed.), Vol. 196. Schloss Dagstuhl-Leibniz-Zentrum fir Informatik, Dagstuhl, Germany,
12:1-12:17. https://doi.org/10.4230/LIPIcs. ECRTS.2021.12

[5] Vincenzo Bonifaci and Alberto Marchetti-Spaccamela. 2010. Feasibility analysis of sporadic real-time multiprocessor
task systems. In Proceedings of the 18th Annual European Conference on Algorithms: Part Il (ESA’'10). Springer-Verlag,
Berlin, 230-241.

[6] Vincenzo Bonifaci and Alberto Marchetti-Spaccamela. 2012. Feasibility analysis of sporadic real-time multiprocessor
task systems. Algorithmica 63, 4 (2012), 763-780. https://doi.org/10.1007/s00453-011-9505-6

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 14. Publication date: September 2023.

https://doi.org/10.4230/LIPIcs.ECRTS.2021.12
https://doi.org/10.1007/s00453-011-9505-6

14:22 S. Baruah and A. Marchetti-Spaccamela

(7]

Vincenzo Bonifaci, Andreas Wiese, Sanjoy K. Baruah, Alberto Marchetti-Spaccamela, Sebastian Stiller, and Leen
Stougie. 2019. A generalized parallel task model for recurrent real-time processes. ACM Trans. Parallel Comput. 6,
1, Article 3 (June 2019), 40 pages. https://doi.org/10.1145/3322809

[8] Jose Fonseca, Vincent Nelis, Gurulingesh Raravi, and Luis Miguel Pinho. 2015. A Multi-DAG model for real-time

(9]
(10]
(1]
(12]

[13]

[14]

[15]
[16]
[17]
(18]

parallel applications with conditional execution. In Proceedings of the ACM/ SIGAPP Symposium on Applied Computing
(SAC’15). ACM Press, 1925-1932.

M. Garey and D. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman
and Company, NY.

Gilles Geeraerts, Joél Goossens, and Markus Lindstrom. 2013. Multiprocessor schedulability of arbitrary-deadline
sporadic tasks: Complexity and antichain algorithm. Real Time Syst. 49, 2 (2013), 171-218. https://doi.org/10.1007/
511241-012-9172-y

Robert A. Hearn and Erik D. Demaine. 2009. Games, Puzzles and Computation. A K Peters.

Klaus Jansen. 1994. Analysis of scheduling problems with typed task systems. Discrete Appl. Math. 52, 3 (1994),
223-232.

Alberto Marchetti-Spaccamela, Nicole Megow, Jens Schl6ter, Martin Skutella, and Leen Stougie. 2020. On the com-
plexity of conditional DAG scheduling in multiprocessor systems. In Proceedings of the IEEE International Parallel and
Distributed Processing Symposium (IPDPS’20). 1061-1070.

Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and Giorgio Buttazzo. 2015.
Response-time analysis of conditional DAG tasks in multiprocessor systems. In Proceedings of the 26th Euromicro
Conference on Real-Time Systems (ECRTS’15). IEEE Computer Society Press, 222-231.

L. Stockmeyer. 1976. The polynomial-time hierarchy. Theoret. Comput. Sci. 3 (1976), 1-22.

J. Ullman. 1975. NP-complete scheduling problems. J Comput. Syst. Sci. 10, 3 (1975), 384-393.

C. Wrathall. 1976. Complete sets and the polynomial-time hierarchy. Theoret. Comput. Sci. 3 (1976), 23-33.
Houssam-Eddine Zahaf, Nicola Capodieci, Roberto Cavicchioli, Marko Bertogna, and Giuseppe Lipari. 2020. The HPC-
DAG task model for heterogeneous real-time systems. IEEE Trans. Comput. 70, 10 (2020), 1747-1761.

Received 19 August 2022; accepted 27 June 2023

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 14. Publication date: September 2023.

https://doi.org/10.1145/3322809
https://doi.org/10.1007/s11241-012-9172-y

