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Superconductivity in the uniform electron gas: Irrelevance of the Kohn-Luttinger mechanism
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We study the Cooper instability in jellium model in the controlled regime of small to intermediate values
of the Coulomb parameter r; < 2. We confirm that superconductivity naturally emerges from purely repulsive
interactions described by the Kukkonen-Overhauser vertex function. By employing the implicit renormalization
approach and the discrete Lehmann representation we reveal that even in the small-r; limit, the dominant
mechanism behind Cooper instability is based on dynamic screening of the Coulomb interaction—accurately
captured by the random phase approximation, whereas the Kohn-Luttinger contribution is negligibly small and,

thus, not relevant.
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Introduction. Conventional BCS theory predicts Cooper in-
stability at low temperature in a Fermi liquid with weak short
range attractive coupling between the low-energy electrons,
typically originating from the electron-phonon interaction
(EPI). With the discovery of unconventional superconduct-
ing systems, such as d-wave cuprate superconductors [1-4],
sT~ Fe-based superconductors [5-8], multilayer graphene
systems [9-12], etc., alternative theories of Cooper instability
have been drawing great research interest. In the past decades,
a number of different mechanisms were proposed for the
pairing instability in systems where the EPI alone was not suf-
ficient to explain the data [13—17]. Some of them are based on
purely repulsive bare electron-electron interactions [13—15].
In this work, we revisit superconducting properties of the
uniform electron gas (jellium model) where pairing instability
originates from purely repulsive Coulomb interparticle inter-
actions and Fermi energy is the only relevant energy scale
(all other energy scales are emergent). Our prime focus is the
quantitative study of two canonical scenarios emerging from
renormalized interactions: the Kohn-Luttinger (KL) mecha-
nism based on the 2kr singularity (where kr is the Fermi
momentum) and the dynamic screening mechanism.

In 1965, Kohn and Luttinger argued that for any weak
short-range repulsive interaction, the two-particle effective
interaction induced by many-body effects always becomes
attractive at large enough orbital momenta £ > 1, and could
lead to Cooper instability [13]. They used the same analy-
sis to estimate an effective Cooper channel coupling for the
static screened Coulomb interaction. The KL. mechanism has
motivated a series of theoretical attempts to explain uncon-
ventional superconducting systems [18-21], and is widely
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believed to be the dominant mechanism leading to super-
conductivity in jellium at small r;. However, a thorough
investigation of the dominant mechanism leading to su-
perconductivity in this system is still missing: (i) the KL
approach is based on the static screened potential, which is
an uncontrolled approximation; (ii) we are not aware of any
precise numerical study of the KL mechanism because it only
emerges at large ¢ and leads to extremely small values of T¢;
(ii1) whenever Cooper instability is observed in the simulation,
one needs to differentiate between different scenarios behind
it by revealing and evaluating their contributions separately.
Therefore, whether the KL mechanism ever becomes dom-
inant in the uniform electron gas in the high-density limit
ry — 0 is still an unsolved fundamental question.

It has been known for decades that dynamic screening of
the Coulomb interaction could also induce the pairing instabil-
ity in jellium. Early work by Tolmachev and Bogoliubov [22]
demonstrated that even if the Cooper channel coupling is
repulsive at all frequencies, after its high-frequency part is
renormalized to a smaller value the net result might be an
attractive low-frequency effective potential. Later, Takada and
others calculated the critical temperatures 7 of jellium numer-
ically using various forms of dynamically screened Coulomb
interaction [14,15,23,24]. Subsequent studies also reported
that dynamic screening plays an important role in the super-
conductivity of metallic hydrogen and alkali metals [25,26] as
well as in the dilute electron gas [16]. The superconducting
phase diagram produced by Takada [24] stated that jellium
enters a normal phase at r; < 2.0, in contradiction with the
KL prediction. Apparently, the values of 7, at large £ were too
small to be resolved and, therefore, were ignored for practical
purposes. Because of this limitation, the KL. and dynamic
screening mechanisms have never been quantitatively com-
pared to each other, despite their coexistence in the uniform
electron gas.

To determine which mechanism is dominant and under
what conditions, we study the Cooper instability in the con-

©2022 American Physical Society


https://orcid.org/0000-0003-2082-8772
https://orcid.org/0000-0002-8101-6877
https://orcid.org/0000-0002-5832-0889
https://orcid.org/0000-0002-1584-1086
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.L220502&domain=pdf&date_stamp=2022-12-15
https://doi.org/10.1103/PhysRevB.106.L220502

XIANSHENG CAl et al.

PHYSICAL REVIEW B 106, 220502 (2022)

trolled regime of small to intermediate values of r; < 2. The
particle-particle irreducible four-point vertex is approximated
with the Kukkonen-Overhauser (KO) ansatz [27], which be-
comes exact in the high-density limit »; — 0. We compare
contributions from both mechanisms in two different ways. In
the first protocol, we compute the largest eigenvalues, A(T),
of the gap equation down to 7/Er = 107% (below we use
Fermi energy Er as the unit of energy). We then remove the
q = 2kr singularity in the polarization function, on which the
KL mechanism is based, and measure the relative change of
the eigenvalue, (7)) = A /A. Finally, we estimate the mag-
nitude of 7(7.), which represents the relative contribution of
the KLL. mechanism. This perturbative treatment is justified if
n(T) is small, which turns out to be always the case. The
second protocol is based on the implicit renormalization (IR)
approach [28]. By integrating out the high-frequency/energy
degrees of freedom the IR approach solves a new eigenvalue
problem for which the largest eigenvalue, A(T), is also equal
to unity at T = T,. The crucial advantage of looking at A(T")
instead of A(T') is that its temperature dependence is a linear
function of In(7T") for a properly chosen energy separation
scale and, thus, can be accurately extrapolated to 7, from T >
T.. Computational costs are further dramatically reduced by
employing the discrete Lehmann representation (DLR) [29].
This combination of methods is what allows us to determine
the superconducting channel ¢, with the highest value of 7, at
re = 0.33,0.5, 1, 2; otherwise, the problem cannot be solved
using standard techniques. By computing the critical values
of orbital channels, £x; (ry), when the KL mechanism first
induces an attractive Cooper channel coupling, and comparing
the asymptotic behavior of £, and €k, at small r; we determine
what mechanism is dominating in the high-density limit.

Within the first protocol we find the KL mechanism con-
tribution remains extremely small, and therefore irrelevant,
for any value of r; when the transition temperatures exceed
10~'%°. The second protocol reveals that the Cooper instability
in jellium takes place at all values of r, tested. More impor-
tantly, the dominant channel ¢. increases much slower than
the critical channel of the KL mechanism, £k; , as r, decreases,
indicating that in the high-density limit superconductivity is
induced by the dynamic screening effects accurately captured
by the random phase approximation, well before the KL
mechanism could have any impact.

Model. Jellium model is defined by the Hamiltonian

970
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with afm the creation operator of an electron with momentum
k and spin o =1, |, dispersion ¢, = % — 1, and Coulomb

potential V, = 47;—52. The dimensionless coupling parameter

(the Wigner-Seitz radius) is given by ry = %(ﬁ)%, where
n is the number density and ag is the Bohr radius. The gap
function equation reads

dp _,
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FIG. 1. Second-order diagrams contributing to the particle-
particle irreducible four-point vertex I" in the KL analysis. Only the
first bubble diagram is resummed within the RPA approach, while all
three diagrams are resummed in the KO formulation. In the small-r,
limit, the contributions of the diagrams (b) and (c) might prove
appreciable only if the Kohn-Luttinger mechanism is the leading
channel of Cooper instability; otherwise, the leading contribution is
accurately captured by RPA.

Here I is the particle-particle irreducible four-point vertex, G
is the single particle Green’s function, A is the gap function,
and A is its eigenvalue. The key approximation used in this
work is the Kukkonen-Overhauser ansatz [27,30] for I":

K. q) =V, + V() 0(w, q)
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It is defined in terms of the polarization function I1, (based
on the convolution of bare Green’s functions) and local field
factors G+ (q). When G (q) are set to zero, the KO interaction
reduces to the random phase approximation (RPA). The local
field factors encode the many-body exchange and correlation
effects beyond RPA. For direct comparison with previous
work by Takada we adopt the same ansatz for G4 (q) [23,24]
and take the functional form of I to be that at 7 = O:

mkp q mw
My(g, w) ~ —P| —, — |, 6
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1—224+u? (142 +u?
P(z,u) =1+ In
@ 4z (1 -2 +u
tan—! 24 %)
—Uu —_—.
w4z —z

This is justified by the smallness of the critical tempera-
ture. The gap equation is decomposed into different orbital
channels, £, which are solved independently. The critical tem-
perature 7, in each channel corresponds to the point where
the largest eigenvalue A(7') equals unity. For every choice of
the vertex function considered in this work the single particle
self-energy was computed within the GoW, approximation as
in [24].

Kohn-Luttinger mechanism. Cooper instability in the KL
theory is induced by the logarithmic singularity in the static
effective interaction at ¢ = 2kp [13]. Within the second-order
perturbation theory it arises from diagrams shown in Fig. 1.
After projecting static I" to the ¢th orbital channel,

1
We(k, p, © = 0) :/ P()T(k, p, x, 0o =0)dy, (8
-1
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FIG. 2. Static KO vertex function on the Fermi surface
Wi(kr, kp, o = 0) at ry = 1.0. Dotted red line with circles represents
the original W, with clear KL oscillations decaying as ¢~ (dot-dash
green and dashed blue fits). The solid black line with squares repre-
sents the regularized W,.

where x = cos 6, with 6 the angle between momenta k and
p, and Py(x ) are Legendre polynomials, Kohn and Luttinger
found that in the large-¢ limit, Wy(kr, kr, @ = 0) decays as
£~* and oscillates between the odd and even values of £. The
attractive effective coupling at large enough odd £ could then
give rise to Cooper instability.

The KL treatment silently ignores the dynamic nature of
screening despite the fact that at any finite frequency the
Coulomb potential cannot be screened at small momenta g <
w/vr. Moreover, the singular nature of the Coulomb potential
at small ¢ calls for proper resummation of diagrams shown in
Fig. 1 beyond the second-order perturbation theory. Clearly, a
more controlled analysis is necessary to quantitatively eval-
uate the relative importance of KL and dynamic screening
effects in the jellium model.

Resummation of diagrams shown in Fig. 1 is achieved
within the KO vertex function that provides an excellent
framework for thorough investigation of competing mecha-
nisms. To quantify the contribution of the g = 2k singularity,
we introduce regularized I, (g, @) that differs from Il (g, w)
by the replacement (1 —z)> +u?> — (1 —2)*> +u®+ €(2)
with €(z) = 60674(271)2_ This modification is limited to the
vicinity of the 2kp singularity and ensures that changes in A
are attributed to the KL mechanism. The value of €y = 0.001
was chosen by establishing when W, (kr, kr, @ = 0) for the
regularized KO interaction has its odd-even channel oscilla-
tions suppressed; see Fig. 2. Next, we study the effect of €y on
the gap equation eigenvalues A,.

Implicit renormalization approach. It is impossible to solve
the gap equation directly when the critical temperature is
extremely low because the number of required Matsubara
frequency points is too large. Thus reliable extrapolation from
T > T, is essential for determining where A(7") = 1. Such
an extrapolation can hardly be done for frequency-dependent
vertexes because A(7T') turns out to be an unknown nonlinear
function of In T. The implicit renormalization (IR) approach
proposed in Ref. [28] offers a solution to this problem. The
idea is to decompose the gap function into two complementary
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FIG. 3. Temperature dependence of the eigenvalues A(7') for
RPA (red circles) and KO (black triangles) vertex functions at r;, =
2.0 and ¢ = 3. The linear fits of the RPA (red dotted line) and KO
(black dashed line) data are almost identical. The extrapolated value
of T, = 2.71 x 1072°Ep is extremely small.

parts, A = AD + A@ with AD =0 for |w,| > Q. and
A =0 for |w,| < ., and solve an eigenvalue problem for
the low-energy part A'1 only. (The integration of high-energy
degrees of freedom with the IR protocol is achieving the same
goal as the pseudopotential theory.) The new eigenvalue A(T')
is expected to have a nearly perfect linear dependence on In T’
for a properly chosen energy scale separation. The IR ap-
proach allows us to accurately determine 7, as low as 1072°Ey
by extrapolating A(T) from the 107> < T/Er < 1072 inter-
val. Once the Tolmachev-McMillan logarithm [15,22,31] is
accounted for, the linear flow of A(T) illustrated in Fig. 3
provides direct access to the Coulomb pseudopotential * in a
given orbital channel £. Note that the difference between u* of
the KO and RPA vertex functions is smaller than a few percent
for odd ¢ at r; < 2.0 and even £ for r, < 1.0. This indicates
that higher-order vertex corrections for considered values of
ry are negligible.

Discrete Lehmann representation. Even within the IR
protocol, solving the gap equation at exponentially low
temperature faces technical challenges because the vertex
function is a multidimensional object with nontrivial structure
in momentum and frequency. The key step is optimization of
frequency grids to store just enough information for accurate
interpolation of functions. Fortunately, for a given ultravio-
let cutoff wmax and numerical accuracy €, the required grids
are provided by the recently developed discrete Lehmann
representation [29,32], or DLR. The number of grid points
scales as 0(ln(a)max/T)ln(é)) and only 65 frequencies are
required to achieve accuracy € = 107! at wpay /T = 10°. Fast
implementation of all key operations including Fourier trans-
forms, interpolation, and convolution are available within the
DLR [30]. By dramatically reducing memory and computa-
tional costs, the DLR grids allow us to simulate much lower
temperatures and compute extremely small 7,. Specifically,
we were able to determine the dominant superconducting
orbital channel ¢, at r; > 0.33.
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FIG. 4. Amplitudes of the relative eigenvalue oscillations,
[N¢+1 — ne|, induced by regularization of the KO vertex at T =
10~°Er and r, = 0.5 (blue circles), r, = 1 (green squares), and r, =
2 (yellow triangles). Inset: relative eigenvalue changes n,. Data in
the main figure and inset involve scaling factors of 10~7 and 107°,
respectively.

Results. In the Fig. 4 inset we show the relative change of
eigenvalues = 8A/A at T = 107 Ep when the KO function
is regularized. We observe that KL oscillations are superim-
posed on a slowly decaying background originating from the
vertex modification in finite vicinity of the g = 2k point.
The contribution from singularity is best characterized by the
oscillation amplitude or the difference between the 7, and
ne+1 values plotted in the lower panel of Fig. 4. We observe
that (i) the relative contribution of the KL mechanism is ~10~7
and (ii) the oscillation is less pronounced for smaller ;. Both
facts indicate that the KL mechanism is irrelevant for super-
conducting properties of jellium.

Our conclusions do not change with temperature as ev-
idenced by simulation results shown in Fig. 5. The KL
contributions 1y — 71, increase when temperature decreases,
but the rate is tiny and the curves tend to saturate. Even if
Ne+1 — N¢ Were to grow at a constant rate beyond T /Ep =
1079, they would be smaller than a few percent at T/Ep =
1071%°, which is “zero” for all practical purposes.

Academically speaking, i.e., regardless of how small T is
in the r; — 0 limit, the KL mechanism is not ruled out by
results presented above because we cannot determine whether
Ne+1 — Ne ultimately saturate to small values that decrease
with r;. However, recall that the KL mechanism is attrac-
tive only at £ > £k, where £k (ry) is the first channel with
Wi(kp, kg, o = 0) < 0. It has to be compared with the IR
solution for the dominant superconducting channel, £.(7;),
for dynamic KO vertex function (this can be done for 1/3 <
ry < 2). The comparison presented in Fig. 6 demonstrates that
Lgr > €. for all ry; and the difference keeps growing when
r¢ — 0. Thus superconductivity in the €. channel is induced
by the dynamical screening well before the KL mechanism
becomes viable, including the »; — 0 limit.

Conclusions. We studied superconductivity in the jellium
model for r; < 2 by solving the gap equation based on the
Kukkonen-Overhauser vertex function. We find that supercon-
ductivity emerges from repulsive Coulomb interactions due to
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FIG. 5. Oscillation amplitudes as functions of log,,(Er/T) for
r, =0.5 and ¢ =21 (blue squares), £ =23 (green circles), and
£ =25 (yellow triangles). When T /Er is reduced by one order of
magnitude, the amplitudes increase by less than 3 x 1078 for £ > 21
atT ~ lOiGEI:‘

dynamic screening effects. The Kohn-Luttinger mechanism,
often assumed to be the prime reason behind Cooper instabil-
ity in the high-density limit, is not relevant for two reasons:
(i) for ry < 2, it contributes to the Cooper instability only at
orbital momenta ¢ > {g; much larger than the dominant su-
perconducting channel ¢, selected by the dynamic screening
effect; (ii) for £ > fk;, the relative contribution of the KL
mechanism is extremely small numerically and can be safely
ignored. Since at ry; < 1 the physics of Cooper instability
is accurately captured by RPA, one may attempt to find an
analytic solution in the r; — 0 limit.

We solve the fundamental problem of Cooper instability
in jellium in the high-density limit and revise a popular,
yet incorrect, belief that the ¢ = 2kp singularity is the key
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FIG. 6. Dominant superconducting channel ¢. (green squares
connected by the dashed line) as a function of r; along with the
critical channel of the KL mechanism £g; (blue circles connected
by the dotted line).
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reason. Our approach offers a systematic way for stud-
ies of the Cooper instability in other correlated electronic
systems.
The symmetrized discrete Lehmann representation algo-
rithm is a registered Julia package [32,33].
Acknowledgments. The authors thank C. Kukkonen for dis-
cussions on connections between effective interactions and

superconductivity and K. Haule for discussions and support
of exchange visits. K.C. thanks Y. Deng, B. Wang, and P. Hou
for helpful discussions. N.V.P., T.W., and X.C. acknowledge
support by the National Science Foundation under Grant No.
DMR-2032077. B.V.S. and K.C. acknowledge support by the
Simons Collaboration on the Many Electron Problem. The
Flatiron Institute is a division of the Simons Foundation.

[1] J. G. Bednorz and K. A. Miiller, Z. Phys. B 64, 189 (1986).

[2] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L.
Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett.
58, 908 (1987).

[3] C. W. Chu, L. Gao, F. Chen, Z. J. Huang, R. L. Meng, and Y. Y.
Xue, Nature (London) 365, 323 (1993).

[4] C. C. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969
(2000).

[5] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am.
Chem. Soc. 130, 3296 (2008).

[6] I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys.
Rev. Lett. 101, 057003 (2008).

[7] F. Wang, H. Zhai, Y. Ran, A. Vishwanath, and D.-H. Lee, Phys.
Rev. Lett. 102, 047005 (2009).

[8] Q. Si and E. Abrahams, Phys. Rev. Lett. 101, 076401
(2008).

[9] B. Uchoa and A. H. Castro Neto, Phys. Rev. Lett. 98, 146801
(2007).

[10] R. Nandkishore, L. S. Levitov, and A. V. Chubukov, Nat. Phys.
8, 158 (2012).

[11] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi,
E. Kaxiras, and P. Jarillo-Herrero, Nature (London) 556, 43
(2018).

[12] H. Zhou, T. Xie, T. Taniguchi, K. Watanabe, and A. F. Young,
Nature (London) 598, 434 (2021).

[13] W. Kohn and J. M. Luttinger, Phys. Rev. Lett. 15, 524
(1965).

[14] Y. Takada, J. Phys. Soc. Jpn. 45, 786 (1978).

[15] H. Rietschel and L. J. Sham, Phys. Rev. B 28, 5100 (1983).

[16] J. Ruhman and P. A. Lee, Phys. Rev. B 94, 224515 (2016).

[17] P. Monthoux, D. Pines, and G. G. Lonzarich, Nature (London)
450, 1177 (2007).

[18] M. A. Baranov, A. V. Chubukov, and M. Yu. Kagan, Int. J. Mod.
Phys. B 06, 2471 (1992).

[19] A. V. Chubukov, Phys. Rev. B 48, 1097 (1993).

[20] V. M. Galitski and S. Das Sarma, Phys. Rev. B 67, 144520
(2003).

[21] J. Gonzdlez and T. Stauber, Phys. Rev. Lett. 122, 026801
(2019).

[22] N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, A New
Method in the Theory of Superconductivity (Consultants Bureau,
New York, 1959); V. V. Tolmachev, Doki. Akad. Nauk SSSR,
140, 563 (1961).

[23] Y. Takada, Phys. Rev. B 39, 11575 (1989).

[24] Y. Takada, Phys. Rev. B 47, 5202 (1993).

[25] C. F. Richardson and N. W. Ashcroft, Phys. Rev. B 55, 15130
(1997).

[26] C. F. Richardson and N. W. Ashcroft, Phys. Rev. Lett. 78, 118
(1997).

[27] C. A. Kukkonen and A. W. Overhauser, Phys. Rev. B 20, 550
(1979).

[28] A. Chubukov, N. V. Prokof’ev, and B. V. Svistunov, Phys. Rev.
B 100, 064513 (2019).

[29] J. Kaye, K. Chen, and O. Parcollet, Phys. Rev. B 105, 235115
(2022).

[30] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.106..220502  for  the  Kukkonen-
Overhauser theory of homogeneous electron gas and discrete
Lehmann representation for the gap-function equation and
implicit renormalization.

[31] P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).

[32] J. Kaye, K. Chen, and H. U. R. Strand, Computer Physics
Communications 280, 108458 (2022).

[33] https://github.com/numerical EFT/Lehmann.jl.

L220502-5


https://doi.org/10.1007/BF01303701
https://doi.org/10.1103/PhysRevLett.58.908
https://doi.org/10.1038/365323a0
https://doi.org/10.1103/RevModPhys.72.969
https://doi.org/10.1021/ja800073m
https://doi.org/10.1103/PhysRevLett.101.057003
https://doi.org/10.1103/PhysRevLett.102.047005
https://doi.org/10.1103/PhysRevLett.101.076401
https://doi.org/10.1103/PhysRevLett.98.146801
https://doi.org/10.1038/nphys2208
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/s41586-021-03926-0
https://doi.org/10.1103/PhysRevLett.15.524
https://doi.org/10.1143/JPSJ.45.786
https://doi.org/10.1103/PhysRevB.28.5100
https://doi.org/10.1103/PhysRevB.94.224515
https://doi.org/10.1038/nature06480
https://doi.org/10.1142/S0217979292001249
https://doi.org/10.1103/PhysRevB.48.1097
https://doi.org/10.1103/PhysRevB.67.144520
https://doi.org/10.1103/PhysRevLett.122.026801
https://doi.org/10.1103/PhysRevB.39.11575
https://doi.org/10.1103/PhysRevB.47.5202
https://doi.org/10.1103/PhysRevB.55.15130
https://doi.org/10.1103/PhysRevLett.78.118
https://doi.org/10.1103/PhysRevB.20.550
https://doi.org/10.1103/PhysRevB.100.064513
https://doi.org/10.1103/PhysRevB.105.235115
http://link.aps.org/supplemental/10.1103/PhysRevB.106.L220502
https://doi.org/10.1103/PhysRev.125.1263
https://doi.org/10.1016/j.cpc.2022.108458
https://github.com/numericalEFT/Lehmann.jl

