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Superconducting Transition Temperature of the Bose One-Component Plasma
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We present results of numerically exact simulations of the Bose one-component plasma, i.e., a Bose
gas with pairwise Coulomb interactions among particles and a uniform neutralizing background. We
compute the superconducting transition temperature for a wide range of densities, in two and three
dimensions, for both continuous and lattice versions of the model. The Coulomb potential causes the
weakly interacting limit to be approached at high density, but gives rise to no qualitatively different
behavior, vis-a-vis the superfluid transition, with respect to short-ranged interactions. Our results
are of direct relevance to quantitative studies of bipolaron mechanisms of (high-temperature)

superconductivity.
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Introduction.—Reliably estimating the critical temper-
ature (T',.) for the superconducting transition in a correlated
Fermi system—even with relatively large uncertainties—is
a difficult task. Exponential sensitivity of 7. to system
parameters leads to the challenge of accurate and unbiased
treatment of many-body correlation effects. An exception
to this rule is dimerized states when pairing of fermions
takes place in real, rather than momentum, space, and the
system can be effectively regarded as an assembly of
interacting Bose particles.

Remarkably, the value of 7' in the three-dimensional (3D)
interacting Bose system is very close to the Bose-Einstein
condensation point for the ideal gas, 79 » 3.31(n?3/m),
where 7 is the number density and m the particle mass (we
use units in which 72 = kz = 1), when interactions are short
range. This holds all the way (within, say, a factor of 2) from
the dilute gas limit to interparticle distances of the order of the
potential range; for the case of superfluid “He, for example, it

is T,/ TE-O ) ~0.7. The archetypal model displaying this
physical behavior is a Bose fluid of particles interacting
via short-ranged, hard-core potentials [1-4].

In two dimensions (2D) there is no Bose-Einstein
condensation, but in the presence of interactions a Bose
fluid undergoes a Berezinskii-Kosterlitz-Thouless (BKT)
superfluid transition, which is theoretically well understood
and, for a gas with short-ranged interactions, precisely
characterized quantitatively [5]. In a broad range of density
(including the regime of strong correlations [3]), itis 7', &
1.37 with T(©) = (n/m). Thus, an approximate estimate
for T, is given by
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d being the dimensionality. Equation (1) can also be
utilized to estimate 7. for a system of dimerized fermions
with short-ranged interactions, upon replacing m with the
effective dimer mass m*.

Recently, interest in dimerized Fermi systems has been
renewed by proposals of bipolaron (high-temperature)
superconductivity [6-11]. It was found that bipolarons
emerging in lattice models with phonon-modulated
hopping feature relatively light effective masses and
small size, making them potential candidates for a new
class of high-temperature superconductors [11]. At large
distances bipolarons interact via the long-range electro-
static (Coulomb) potential. So far, this aspect of the
problem has not been addressed quantitatively, as only
models with short-range repulsion have been studied.

The long-range character of interactions leads to a
number of fundamental questions and changes, including
the reversal of the relation between the low-density and
weak-interaction limits. In a Coulomb system, the dimen-
sionless coupling parameter—the Wigner-Seitz radius r;—
is defined as follows in 2D and 3D:

1 {n4ﬂ, d=2, @
rg =——-X
Yoapn'T | (4/3)713, d =3,

ap being the Bohr radius. The perturbative regime (r, << 1)
now corresponds to the limit of high density, where the very
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notion of compact bipolarons may become ill defined,
while in the low-density limit (r, > 1) strong correlations
may result in large deviations of 7. from the ideal
gas value.

On the one hand, this raises the question of the
applicability of Eq. (1) to realistic bipolaronic systems,
calling for a reliable, quantitative verification based on
unbiased, robust theoretical methods; on the other hand, the
prospects of bipolaron superconductivity with large T
contribute to the fundamental interest in the superconduc-
tivity of a charged Bose gas and its broad relevance in
astrophysics [12,13].

A system of charged particles in the presence of a
neutralizing, uniform charge background is typically
referred to as the one-component plasma (OCP). It has
been extensively investigated in the classical case [14-18],
and there exists also a number of studies of its quantum
phase diagram, for both types of quantum statistics [19-28].
However, to the best of our knowledge a systematic study of
the superconducting transition for the boson case, especially
in the interesting r, 2 1 regime, is still missing.

In this Letter, we determine the superconducting tran-
sition critical temperature (as a function of r,) in the Bose
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FIG. 1. Transition temperature (in units of Tﬁo)) in 3D as a
function of rg; see Eq. (2). Blue up and green down triangles
correspond to the lattice models with V=U=1t and
V = U = 8t, respectively. Red diamonds correspond to the
continuous-space model. If not visible, error bars are within
symbol size. Note that different values of V /¢ correspond to
different values of the Bohr radius ay on a lattice (see text), and
this must be taken into account when comparing lattice and
continuum results for the same r,. Inset: 7. [in the unit of
1/(ma%)] as a function of .

OCP, in 2D and 3D, using state-of-the-art computer
simulations. Besides the continuous-space system, we
consider a lattice model in order to gauge the effects of
long-range interactions against discreteness of space and/or
extra short-ranged repulsion. Our results are numerically
“exact,” 1i.e., statistical and systematic errors can be
rendered negligible in practice, using ordinary computing
infrastructure. We use the lattice [29] and continuous-space
[30] versions of the worm algorithm.

In order to account for the long-range character of the
Coulomb interaction, we used the Ewald summation
method in the pairwise form (see, for instance,
Refs. [31,32]) in our lattice simulations; for simulations
in continuous space we made use of the modified periodic
Coulomb scheme of Fraser et al. [33], affording greater
computational efficiency. Both schemes are exact, when
extrapolated to the infinite-size limit.

Our key results are presented in Figs. 1 and 2. We use

TEO) (T'?)), defined in the Introduction, as our reference
temperature in 3D (2D). In 3D, we find the effect of
Coulomb interactions to be surprisingly weak. At ry < 10,
the difference between T, and Tﬁo) is within ~1%,
remaining less than 5% up to ry =25. The effects of
discreteness and on site repulsion—rather small on the
absolute scale—are more important than the effects of

Coulomb forces.
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FIG. 2. Transition temperature (in units of 7)Y in 2D as a
function of r,. Blue up and green down triangles correspond to
the lattice models with V. =U =1t and V == U/8, respec-
tively. Red diamonds correspond to the continuous-space model.
Inset: T, [in the unit of 1/(ma3)] as a function of r. If not
visible, error bars are within symbol size.
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The situation in 2D is similar. Here the critical temper-
ature reaches its maximum value Tﬁmax) ~ 1437 at
ry = 8 and then slowly decreases with increasing r,, in a
qualitative analogy with the 3D case, but with somewhat
more pronounced quantitative effect of about 30%. We
traced the dependence of 7. on r, up to r, = 48, beyond
which the superconducting, Wigner crystal, hexatic, normal
metal, and emulsion phases [34] start competing with each
other [27,28]. As one might have expected by analogy with
the known behavior of the weakly interacting 2D Bose gas
with short-range interaction, the small-r; regime is char-
acterized by a moderate suppression of 7. compared

with Tgmax). Thus, the estimate [Eq. (1)] remains rather
accurate in both 3D and 2D.

The models.—The continuous-space OCP model is
standard (see, for instance, Ref. [27]). The lattice version
is described by the following Hamiltonian on the hyper-
cubic lattice, with periodic boundary conditions (to ensure
uniform density):

:—IZa aJ+Hc

~2 Vll’lJ
Zn 2 ZIl—J\

i#]

Here, the (i, j) sum runs over all pairs of nearest-neighbor
sites indexed by integer vectors, a; and 71; = &I a; are the
Bose annihilation operator and occupation number on site
i, respectively; 7 is the hopping amplitude, U is the on site
(Hubbard) repulsion, and V is the amplitude of the
repulsive Coulomb potential.

In the model [Eq. (3)], the essential—up to the choice of
units—dependence of 7', is three-parametric. A natural set
of three dimensionless parameters consists of U/t, V/t, and
the filling factor n = (n;). In this Letter, we are not
interested in the effects of commensurability (e.g., Mott
physics), which model (3) definitely demonstrates at
n=1,1/2, and other commensurate fillings (at strong
enough interactions); hence, we work with n < 0.4.

In the n — 0 limit, Eq. (3) reproduces the single-
parametric continuous-space behavior because U/t
becomes irrelevant, and V/r and n are absorbed into a
single parameter r,. The expression for r, in terms of V /¢
and n readily follows from Eq. (2) by relating density and
filling factor by a¢ and noting that for the tight-binding
dispersion relation m = 1/2a?t. Then, the amplitude of the
Coulomb potential at the lattice spacing, V = e?/a,
immediately leads to ag = 1/(mVa) = a(2t/V) (for large
V/t we formally have az/a < 1 implying that lattice
effects are more pronounced at large r,).

One question, of both fundamental and applied (see the
numeric protocol below) interest, is whether the long-range
Coulomb interaction changes the universality class of the
superfluid transition [35]. It is easy to argue (and
validate numerically) that the transition remains in the
d-dimensional XY universality class observed in systems

with short-range interactions. Indeed, the qualitative effect
of the long-range potential—incompressibility of the sys-
tem—does not change properties of large-scale vortexes,
which are the degrees of freedom responsible for the XY
criticality (see, e.g., Ref. [36]). Along similar lines, recall
that the classical XY model itself is “incompressible” by
construction because it lacks degrees of freedom associated
with density.

Numerical protocols.—We simulate our models with the
lattice [29] and continuous-space [30] versions of the worm
algorithm. The key observable is the mean-square world-
line winding number, (W?) = "¢ (W?)/d, where W; is
the winding number of the particle paths along the i
direction. In the thermodynamic limit L — oo (L is the
linear size of the hypercubic simulation cell), this quantity
gives access to the superfluid stiffness, A, via the Pollock-
Ceperley formula [37]:

(w2)T
Ld—2
In the 3D case, thanks to scale invariance of the 3D XY
criticality, it is more convenient to work directly with (W?).
At T, this quantity saturates to the universal (system- and
L-independent) constant 0.516(1) [38], while at T < T,
(T > T,.)itdiverges (vanishes) as L — oo. These properties
lead to simple and accurate schemes (illustrated in Figs. 3
and 4) of extracting 7. and automatically validating that the

A, =

(L — o). (4)
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FIG. 3. Determining critical temperature of the 3D model

[Eq. (3)] from the crossing point of the mean-square winding
number curves, (W?), computed for system sizes L = 8, 10, 12,
and 16 (red circles, blue squares, green up triangles, and orange
down triangles, respectively) as functions of temperature. In this
example, U = V = 8t and n = 0.2 (corresponding to r, = 4.24).
If not visible, error bars are within symbol size. The crossing
points’ locations pinpoint 7, = 0.896(5)T T, and their vertical
values are close to the 3D XY universality predlctlon of 0.516(1)
[38] shown with a horizontal dashed line; small deviations from
0.516 are explained by leading corrections to scaling (see the text
and Fig. 4).
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FIG. 4. Extracting T, from the known behavior of the leading
correction to scaling at the 3D XY criticality (see the text). The
system’s parameters are the same as in Fig. 3. The extra-

polated critical temperature is estimated as 7, = 0.8941 (IO)TEO)
(red dot).

universal 3D XY critical behavior does take place (from the
dependence of (W?) on T at different L’s). System sizes
L < 16 prove sufficient for obtaining results for 7', in the
model [Eq. (3)] with subpercent accuracy.

As expected, the values of (W?) at the crossing points in
Fig. 3 are close to the universal 3D XY number. They are
supposed to deviate from 0.516 due to corrections to
scaling, with the leading term vanishing as 1/L® with
=~ 0.8 [38]. Taking this correction into account and
obtaining a more accurate scheme for determining 7, are
achieved in two simple steps. First, define the “finite-size”
critical temperature 7', (L) by the condition (W?) =0.516(1).
Second, utilize the fact that the finite-size correction AT, =
T.(L)—T.(c0) vanishes as 1/L'/*** with v =0.6717
being the 3D XY correlation length exponent [38], to
extrapolate 7'.(L) to the thermodynamic limit. This scheme
is illustrated in Fig. 4. Note that the straight-line behavior of
AT, as a function of 1/L'/**® is yet another validation of
the 3D XY criticality.

The 2D case is different because the BKT transition lacks
scale invariance. However, its asymptotically exact critical
theory [39—41] allows one to eliminate the leading finite-
size correction and obtain accurate thermodynamic limit
results. Specifically, for a given number of particles, N, we
define the “critical” temperature T.(N) as the temperature
at which the ratio A,/T = (W?) equals to its universal
Nelson-Kosterlitz value of 2/z [41,42], in complete anal-
ogy with the 3D case discussed above. Kosterlitz-Thouless
renormalization-group theory predicts that the leading
finite-size correction to AT, = T.(N) —T.(o0) scales as
1/In> N. This law is used to extrapolate 7.(N) to the
N — oo limit, and automatically validate the applicability of
the BKT theory by the observation of this (very specific)
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FIG. 5. Finite-size scaling of the “critical” temperature 7.(N)

for the 2D continuous system at r; = 1.0. The simulations were
performed in a square cell with N =36, 64, 144, 256, and
576 particles. After extrapolation to the N — oo limit we obtain
T, = 1.314(5)T (red dot).

finite-size effect. The corresponding protocol is illustrated
in Fig. 5.

Figures 1 and 2 show final results for 7', in 3D and 2D,
respectively, as a function of r, defined by Eq. (2). In 2D,
on approaching the Wigner crystal phase, which is esti-
mated to emerge first at r, > 50, the phase diagram is
determined by competition between the Wigner crystal,
hexatic, superconductor, normal liquid, and an infinite set
of emulsion phases [28,34]. Studies of this parameter
regime go well beyond the scope of this Letter. In 3D,
we restricted our study to r, < 50, which corresponds to
densities all the way down to naj, ~ 1073 (for greater values
of r,, we start observing finite-7 Wigner crystal states in
accessible simulation cells).

Conclusions.—Motivated by recent progress with quan-
tifying scenarios of high-temperature bipolaron supercon-
ductivity, we studied the effect of Coulomb interactions on
the critical temperature of the superconducting transition in
the 2D and 3D Bose OCP, both on a lattice and in
continuous space. We provide evidence that the super-
conducting transition is in the XY universality class and
obtain values for the critical temperature 7. in a broad
range of densities.

Screening of long-range interactions works in the direc-
tion of reducing their effect on 7'.. However, screening of
g — 0 modes involves divergent timescales (this is the
prime reason for having plasmons instead of sound waves)
making our finding that 7', shifts are remarkably modest all
the way to the Wigner crystal phase, surprising. The esti-
mate [Eq. (1)] remains quantitatively accurate and similar
to that for systems with short-range interactions—up to the
reversal of the small and large density limits controlling the
strength of interaction-induced correlations. The role of
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interactions is twofold: (i) On one hand (this aspect is
conceptually important and well pronounced in 2D),
interactions suppress thermal fluctuations of the superfluid
order parameter amplitude (but not the phase), thereby
contributing to the increase of 7'.; (ii) on the other hand,
strong local correlations caused by interactions increase
phase fluctuations and suppress 7'.. In a Coulomb system,
the first effect is dominant at r, < 5 (high-density limit)
while the second effect takes over at r, > 10 (low-density

regime). The result of this competition is the 7./ TEO) VS 7
curve with a maximum at r, ~ 8; see Figs. 1 and 2.

We expect that our precise data for the dependence of T,
on r; will prove important in the context of experimental
realization of a relatively dilute, and, thus, well-defined
bipolaron superconductor.
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