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Electron-lattice interactions play a prominent role in quantum materials, making a deeper understanding
of direct routes to phonon-mediated high-transition-temperature (Tc) superconductivity desirable.
However, it has been known for decades that weak electron-phonon coupling gives rise to low values
of Tc, while strong electron-phonon coupling leads to lattice instability or formation of bipolarons,
generally assumed to be detrimental to superconductivity. Thus, the route to high-Tc materials from
phonon-mediated mechanisms has heretofore appeared to be limited to raising the phonon frequency as in
the hydrogen sulfides. Here we present a simple model for phonon-mediated high-Tc superconductivity
based on superfluidity of light bipolarons. In contrast to the widely studied Holstein model where lattice
distortions modulate the electron’s potential energy, we investigate the situation where lattice distortions
modulate the electron hopping. This physics gives rise to small-size, yet light bipolarons, which we study
using an exact sign-problem-free quantum Monte Carlo approach demonstrating a new route to phonon-
mediated high-Tc superconductivity. We find that Tc in our model generically and significantly exceeds
typical upper bounds based on Migdal-Eliashberg theory or superfluidity of Holstein bipolarons. The key
ingredient in this bipolaronic mechanism that gives rise to high Tc is the combination of light mass and
small size of bipolarons. Our work establishes principles for the design of high-Tc superconductors via
functional material engineering.
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I. INTRODUCTION

The quest for new pathways to high-temperature super-
conductivity from physically simple ideas has captivated
researchers for decades. Conventional superconductivity is
well understood within the standard framework of the
Bardeen-Cooper-Schrieffer (BCS) theory, in which the
exchange of phonons between electrons acts as a pairing
glue to produce superconductivity with a transition temper-
ature Tc that is a small fraction of the phonon frequency Ω
(ℏ ¼ 1). In this framework, high Tc can arise in systemswith
very large phonon frequencies, and indeed, the pressure-
stabilized hydrides with very large phonon frequencies were
reported to exhibit superconductivity at remarkably high
temperatures [1,2]. A great deal of experimental and theo-
retical work has also focused on routes to high Tc based on
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unconventional superconductivity with non-s-wave pairing
symmetry arising from electronic correlations [3].

The pursuit of phonon-mediated high-temperature super-
conductivity from strong electron-phonon coupling at fixed
phonon frequency Ω is, however, challenged by several
important constraints. In a conventional superconducting
material such as Al, phonon-induced attraction between
electrons induces a Cooper instability, giving rise to
superconductivity with a Tc=Ω that is small and vanishes
as the strength of the electron-phonon coupling λ → 0. As λ
increases, Tc=Ω increases. However, the standard theoreti-
cal treatment of the large-λ problem is based on the Migdal-
Eliashberg approximation which breaks down for λ larger
than a critical value of order 1 [4–10] because of lattice
reconstruction or formation of heavy bipolarons [4,7,8,10].
In high-electron-density materials, increasing λ beyond
λ ≈ 1 typically leads to lattice reconstruction into a new
structure with a reduced λ, leading to a maximum value
of Tc at λ ≈ 1. At lower carrier density, the electron-lattice
interaction may not induce lattice reconstruction; instead,
bipolarons emerge and these bipolarons either form a
charge-localized nonsuperconducting state [4–6] or
undergo a superfluid transition at a Tc determined by
the inverse of their effective mass. However, the effective
mass of strongly bound bipolarons has generically been
believed to be large and to increase rapidly with λ [11–13],
implying generically low values of Tc from bipolaronic
superconductivity [11].
Here, we challenge the widely held view that bipolaron

formation is not favorable for high-transition-temperature
superconductivity by providing a concrete, experimentally
relevant model for phonon-mediated bipolaronic high-Tc
superconductivity with a Tc that can be significantly higher
than previously established upper bounds; see Fig. 1. Our
work is based on the observation that in the dilute limit,
bipolarons are in effect interacting bosons, with a transition
temperature that depends both on the mass and the density.
At fixed mass, the transition temperature increases as the
density increases—until either the transition temperature
becomes of the order of the bipolaron binding energy or the
density becomes large enough that the bipolarons signifi-
cantly overlap, at which point the theory breaks down and,
we suspect, the superconducting transition temperature
saturates. Thus, the maximum transition temperature is
set by a combination of binding strength, inverse mass, and
inverse size, with small-size, light-mass, strongly bound
bipolarons optimizing the maximum transition temper-
ature. In the extreme strong-coupling regime, the size
saturates to a value of the order of the lattice constant,
while it appears that in all models the polaronic mass
enhancement grows exponentially in λ. While these quali-
tative considerations are generic, the specifics and hence
the maximum value of Tc will depend on the specifics of
the underlying microscopic model studied. General under-
standing of this physics has been obtained from studies of

the Holstein model, in which lattice distortions couple to
the electron density (potential energy), and the focus has
been on the bipolaron mass, with the size receiving less
attention. In these models, the mass increases very rapidly
as λ is increased. The Fröhlich or extended-Holstein models
in which the coupling to the electron density is longer
ranged have also been studied; light masses have been
found in circumstances involving an interplay of competing
forces [14–16], but recent studies indicate that this light
mass occurs in such a limited region of parameter space that
its relevance to realistic systems is unclear [17]. However,
alternative forms of electron-phonon coupling are also
important. In particular, any material with a unit cell
consisting of more than a single atom will experience
distortions of its atomic bonds that locally modulate the

FIG. 1. Bipolaronic high-Tc superconductivity. Tc of the bond-
Peierls (BP) bipolaronic superconductor (filled squares, solid
blue lines) in units of the phonon frequency Ω for different
adiabaticity ratios of the electron hopping t to Ω with an on-site
Hubbard repulsion U ¼ 8t as a function of the electron-phonon
coupling λ computed according to Eq. (3) from QMC simulations
of the bipolaron effective mass m⋆

BP ≔ ½ð∂2EBPðKÞ=∂K2ÞjK¼0�−1
and its mean-squared radius R2

BP≔hΨBPjR̂2jΨBPi. Here, EBPðKÞ
is the bipolaron dispersion, ΨBP is the bipolaron ground-state
wave function, and K is the bipolaron momentum. We contrast
the behavior of the bipolaronic superconductivity in the bond-
Peierls model against superconductivity of Holstein (H) bipolar-
ons (filled circles, dotted orange line) for t=Ω ¼ 2 and U ¼ 8t
and against the prediction of Migdal-Eliashberg (ME) theory of
strong-coupling superconductivity in the BP (empty squares) and
H (empty circles) models. Here we use λ ¼ α2=2Ωt for bond-
Peierls bipolarons, λ ¼ α2H=8Ωt for Holstein bipolarons, λ ¼
8α2=2πΩt in the Migdal-Eliashberg theory of the bond-Peierls
model, and λ ¼ α2H=2πΩt in Migdal-Eliashberg theory of the
Holstein model, where α and αH are the electron-phonon
coupling constants of the bond-Peierls and Holstein models,
respectively; see Appendix A for more details about the
conventions used. Error bars represent statistical errors in
QMC simulations corresponding to 1 standard deviation. This
comparison illustrates that Tc of the bond-Peierls bipolaronic
superconductor can exceed previously expected upper bounds for
phonon-mediated superconductivity in a wide swath of
parameter space.
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electronic hopping, as in the Peierls [18] or Su-Schrieffer-
Heeger (SSH) models [19]. Models of this type exhibit
significant differences in polaron formation relative to
Holstein-type models [20–25] including, importantly,
lighter polarons [22–24] and, as shown in Ref. [25], lighter
bipolarons. This previous analysis of bipolarons [25],
however, did not address superconductivity explicitly,
did not examine the bipolaron size systematically, and
was limited to the one-dimensional case and constrained to
the regime t ∼Ω (t is the amplitude of the electronic
hopping) leaving the possibility that mass enhancement
would become more severe in higher dimensions in the
adiabatic limit t ≫ Ω relevant to most materials.

In this work, we use a recently developed numerically
exact, sign-problem-free quantum Monte Carlo (QMC)
approach [26] to study bipolaronic superconductivity in a
minimal model of Peierls electron-lattice coupling in two
dimensions (2D). We compute bipolaron properties in
various regimes of coupling and adiabaticity (including
deep in the adiabatic limit) and combine these results with
analytical understanding of the bipolaron superfluid phase
diagram to determine the maximum Tc at which a liquid of
bipolarons undergoes a Berezinskii-Kosterlitz-Thouless
transition into a superfluid. Our main results are as follows.
First, any nonzero λ mediates an attractive interaction
between electrons, giving rise to an s-wave bipolaronic
superconductor with a Tc=Ω that can become significantly
larger than the upper bound predicted from Migdal-
Eliashberg theory of strong-coupling superconductivity
or from Holstein bipolaron superconductivity nearly

everywhere in parameter space; see Fig. 1. Second, we find
that Coulomb repulsion modeled phenomenologically as a
HubbardU term enhances themagnitude ofTc of the s-wave
bipolaronic superconductor up to a critical value of U=t,
beyond which Tc becomes suppressed (at intermediate to
strong coupling, this behavior extends to large values of
U=t); see Fig. 2. Finally, in our theory, Tc is largest when
t=Ω ∼ 1–2, implying that manipulating the stiffness of a
crystal via structural or moiré engineering or fabricating
crystals with light atoms offers a path toward realizing high-
temperature superconductors. Aspects of the physics we
discuss here may be operative in known materials, possibly
including the iron-based pnictide superconductors.

II. FORMALISM

A. Model of bond-phonon-coupled electrons

We consider a minimal model of Peierls electron-phonon
coupling, the bond-Peierls model (also referred to as the
bond-SSH model) on a 2D square lattice. In this model, the
electronic hopping between two sites is modulated by an
oscillator associated with the bond connecting the two sites.
This coupling can arise if transverse oscillations of out-of-
plane atoms modulate the hopping of electrons between
atoms in the plane. This is believed to occur in the
superconducting iron pnictide materials, as discussed in
Sec. IV and Appendix H. The Hamiltonian is

Ĥ ¼ Ĥe þ Ĥph þ V̂e-ph: ð1Þ
Here electrons with spin σ ∈ f↑;↓g are governed
by a Hubbard model Ĥe ¼ −t

P
hi;ji;σ ðĉ†i;σ ĉj;σ þ H:c:Þ þ

U
P

i n̂i;↑n̂i;↓ with on-site repulsionU and n̂i;σ ¼ ĉ†i;σ ĉi;σ at
site i. The notation hi; ji refers to nearest-neighbor
sites. We set the lattice constant a ¼ 1 in what follows.
We model distortions of the bonds connecting sites i and j
as Einstein oscillators Ĥph ¼

P
hi;jið12KX̂2

i;j þ P̂2
i;j=2MÞ ¼

Ω
P

hi;ji b̂
†
i;jb̂i;j with frequency Ω ¼ ffiffiffiffiffiffiffiffiffiffiffi

K=M
p

(note X̂i;j is a
single oscillator associated with the bond, not a composite
variable representing a difference of displacements of the
atoms at the two ends of the bond). We take the interaction
between electrons and phonons

V̂e-ph ¼ α̃
X
hi;ji;σ

ðĉ†i;σ ĉj;σ þ H:c:ÞX̂i;j

¼ α
X
hi;ji;σ

ðĉ†i;σ ĉj;σ þ H:c:Þðb̂†i;j þ b̂i;jÞ ð2Þ

to be the simplest coupling term within the family of Peierls
models describing the modulation of electron hopping by an
oscillator X̂i;j associated with the bond connecting sites i and
j with coupling coefficient α ¼ α̃=

ffiffiffiffiffiffiffiffiffiffiffi
2MΩ

p
. We henceforth

set M ¼ 1. The relevant parameters are a dimensionless
coupling constant λ ¼ ðα̃2=KÞ=4t ¼ α2=ð2ΩtÞ, the ratio of
the typical polaronic energy scale to the free-electron energy

FIG. 2. Coulomb-repulsion-mediated enhancement of bipolar-
onic high-Tc superconductivity. Tc of the bond-Peierls bipolar-
onic superconductor in units of the phonon frequency Ω for
different adiabaticity ratios of the electron hopping t to Ω at
intermediate coupling λ ∼ 0.5–0.6 as a function of the on-site
Hubbard repulsion U in units of t computed according to Eq. (3)
from QMC simulations of the bipolaron effective mass m⋆

BP and
mean-squared radius R2

BP. Error bars represent statistical errors in
QMC simulations corresponding to 1 standard deviation. Tc of
the bond-Peierls bipolaronic superconductor exceeds the largest
value of Tc ∼ 0.05Ω predicted by strong-coupling Migdal-Eli-
ashberg theory (see Fig. 1) even for large values of U=t.
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scale, and an adiabaticity parameter t=Ω. As discussed in
Appendix B, this model does not have a sign problem in the
singlet two-electron sector (unlike other related models, e.g.,
the site-Peierls model [25]) and therefore can be studied to
great accuracy using quantum Monte Carlo methods.

B. Method

Using a QMC approach based on a path-integral for-
mulation of the electronic sector combined with either a
real-space diagrammatic or a Fock-space path-integral
representation of the phononic sector [26] allows us to
study pairing and singlet bipolaron formation in the two-
electron sector of the model. The absence of a sign
problem, specific to this particular microscopic formulation
and sector of the model, enables numerically exact results
with small statistical errors on large lattices even in the
challenging regime of t ≫ Ω all the way to the heavy-mass
limit; see Appendix B for details. While the coupling of
electronic hopping to phonons can take various forms, our
approach here allows us to draw generic conclusions about
high-Tc bipolaronic superconductivity due to the modula-
tion of electronic hopping by lattice distortions in the entire
parameter space.

III. SUPERFLUIDITY OF BIPOLARONS

In 2D, bipolarons undergo a superfluid transition at a
temperature determined by the bipolaron density and
effective mass and depends only double-logarithmically
weakly on the effective bipolaron-bipolaron interactions
[27–29]. We can thus safely ignore bipolaron-bipolaron
interactions, barring any competing instability, e.g., phase
separation or Wigner crystallization. Based on prior work
[30], we argue that these instabilities are unlikely. These
considerations reduce our problem to that of the super-
fluidity of a gas of hard-core bipolarons in 2D, for which
Tc ≈ 1.84ρBP=m⋆

BP [29], where ρBP is the density of
bipolarons, and m⋆

BP is the bipolaron effective mass [31].
This formula for Tc remains valid in a broad density range
so long as bipolarons do not overlap. The largest Tc from
this mechanism thus arises for a ρBP corresponding to a
liquid of bosons with an interparticle separation that is on
the order of the bipolaron radial size RBP, which, after
lattice regularization, must be at least unity, i.e., for
ρBP ¼ minfð1=ðπR2

BPÞ; 1=πÞg. From this, we obtain an
estimate for the maximum Tc of the Berezinskii-
Kosterlitz-Thouless transition of the bipolaronic liquid that
depends only on the bipolaron properties given by (we
henceforth refer to the optimized Tc simply as Tc in what
follows and in the figures)

Tc ≈

8<
:

0.5
m⋆

BPR
2
BP

if R2
BP ≥ 1;

0.5
m⋆

BP
otherwise:

ð3Þ

A. Bipolaronic high-Tc superconductivity

Figure 1 presents Tc=Ω computed from Eq. (3) using
m⋆

BP and R2
BP obtained from QMC simulations (see

Appendix B 2) of Eq. (1) as a function of λ for different
t=Ω at U ¼ 8t. Our results shown in Fig. 1 prove that high-
Tc bipolaronic superconductivity is not only possible, but it
is robust even in the presence of a large Coulomb repulsion
U ¼ 8t. To appreciate this result, we contrast our computed
Tc=Ω against upper bounds based on superfluidity of
Holstein bipolarons computed using the same methodology
as for the bond-Peierls bipolarons and on Migdal-
Eliashberg theory of strong-coupling superconductivity
out of a Fermi liquid applied to the bond-Peierls and
Holstein models. We find that Tc of the bond-Peierls
bipolaronic superconductor generically exceeds these
bounds in a large swath of parameter space. Tc of the
Holstein bipolaronic superconductor for t=Ω ¼ 2 at U ¼ 0
rapidly drops with λ from a maximum of approximately
0.05Ω at λ ∼ 0.25 (Appendix D). As U=t increases, the
bipolaron mass decreases [12,32], but the binding energy
drops very rapidly, and the radius correspondingly
increases [32], limiting Tc to even smaller values; see
Appendix D for more details. In contrast, the bond-Peierls
bipolaron becomes strongly bound but remains relatively
light as λ increases and can resist a large U=t, consistent
with the predictions of Ref. [25]; see Fig. 3. The
comparison of our calculations to that of Migdal-
Eliashberg theory (Appendix E) reveals that Tc of the
bond-Peierls bipolaronic superconductor also exceeds the
maximum Tc corresponding to strong-coupling super-
conductivity out of a Fermi liquid. This maximum Tc is in
qualitative agreement with a typical upper bound based on
McMillan’s approach to conventional superconducting
materials [33]. McMillan’s approach is valid only in
the regimes of validity of Migdal-Eliashberg theory,
i.e., up to λ ≈ 1 [7,8,10,34]. Thus, a typical upper bound
from the McMillan approach can be estimated at λ ¼ 1 to
give a maximum Tc=Ω ∼ 0.05 for a Coulomb pseudopo-
tential μ⋆ ¼ 0.12 (see Appendix F), in qualitative agree-
ment with our results of Migdal-Eliashberg theory applied
to the two models presented in Fig. 1. These comparisons
illustrate that Tc obtained in our model of bipolaronic
superconductivity significantly and generically exceeds
previously held expectations.
Figure 1 demonstrates a remarkable phenomenology of

the high-Tc bipolaronic superconductivity. In particular,
Tc=Ω exhibits a nonmonotonic, domelike dependence
on λ with a peak that shifts to smaller values with larger
t=Ω. We can understand this behavior as follows. In the
antiadiabatic limit t=Ω ≪ 1, phonon exchange mediates an
instantaneous pair-hopping interaction between electrons
ð−2α2=½Ω − U�ÞPhi;ji ðĉ†i;↑ĉ†i;↓ĉj;↓ĉj;↑ þ H:c:Þ, which
induces formation of light-mass, strongly bound bipolarons
with an s-wave wave function (see Appendix G and
Ref. [25]). By continuity, we expect this behavior to
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qualitatively persist and develop a frequency dependence
(retardation) as t=Ω increases, accompanied by a proclivity
for the bipolaron mass to increase as the number of
phonons in the bipolaronic cloud grows. This competition
between phonon-mediated kinetic-energy-enhancing elec-
tron pair-hopping interactions and a tendency to gain mass
determines the properties of bipolaronic superconductivity.
Our numerics reveal a parametrically large, physically
relevant regime in which the bipolaron mass m⋆

BP exhibits
weak to moderate enhancement while retaining a relatively
small radial size R2

BP and a large binding energy ΔBP [25];
see Fig. 3. This behavior is completely absent in the
standard Holstein model in which bipolarons rapidly
become heavy in a manner that depends exponentially
on the electron-phonon coupling strength [12,13]. The
characteristic behavior of our model, which we believe
to hold generically for Peierls-coupled systems, explains
the increase in Tc=Ω with λ up to an optimal λop beyond
which bipolarons enter a regime of exponential mass
enhancement that becomes prominent for λ > λop and
larger t=Ω. Nonetheless, over a broad swath of parameter
space we find the simulated Tc=Ω curves to surpass all
previously held expectations.

B. Coulomb repulsion enhancement of Tc
of bipolaronic superconductivity

Most importantly, Tc=Ω in Fig. 1 exceeds these bounds
even for large values of U=t, demonstrating the robustness
of the bipolaronic mechanism against Coulomb repulsion.
Figure 2 shows that Tc=Ω exhibits a domelike dependence
also on U=t. The value of U that maximizes Tc depends on
λ (not shown). At intermediate coupling, λ ∼ 0.5–0.6, Tc=Ω
peaks around a value of U ¼ 8t, which varies little with

t=Ω. This unconventional enhancement of the value of Tc
of our s-wave bipolaronic superconductor up to such large
values of U=t can be understood from Fig. 3, which reveals
that the bipolaron’s effective mass m⋆

BP and its squared
radius R2

BP depend on U=t, but in opposite ways. For larger
λ, R2

BP depends very weakly on U=t, while m⋆
BP decreases

with increasing U=t, explaining the growth in Tc. This
implies that in this limit the bipolaron size is already
sufficiently large to enable the bound pair to avoid the
Hubbard repulsion so that increasing U bears no effect on
the symmetry of the pairing wave function. However, the
bipolaron binding energy ΔBP also decreases with increas-
ing U=t, and this decrease ultimately limits Tc, which
cannot be greater than ΔBP. In the Holstein model, the U
term directly competes with an on-site phonon-mediated
attraction [12,13], and while this results in a decrease in
m⋆

BP, it also causes a rapid increase in R
2
BP accompanied by

a fast decrease in ΔBP, and the latter two factors are more
important and mean that ultimatelyU does not significantly
enhance Tc; see Appendix D. This analysis reveals that the
Peierls bipolarons are generally much less sensitive to
Coulomb repulsion than their Holstein counterparts [25].

C. Evolution with density of bipolaronic
superconductivity

Our estimates of Tc for bipolaronic superconductivity
correspond to the largest electronic density for which
bipolarons do not overlap. At higher densities, studies of
the emerging strongly correlated state require new tech-
niques capable of discerning between competing phases.We
imagine at least two possibilities depicted in Fig. 4. Either
strong pairing correlations between the electrons [35] result
in saturation of Tc or even higher values of Tc (dashed line),

(b) (c)(a)

FIG. 3. Bipolaron properties in the bond-Peierls model. Bipolaron properties computed from QMC calculations performed on Eq. (1)
at adiabaticity parameter t=Ω ¼ 10=3 as a function of the electron-phonon coupling λ ¼ α2=ð2ΩtÞ for different on-site Hubbard U (in
units of the electron hopping t). (a) Bipolaron binding energyΔBP in units of the electron hopping t. (b) Bipolaron radial size probability
density distribution (absolute value squared of the bipolaron wave function) PBPðRÞ for λ ¼ 0.5. (c) Bipolaron effective mass m⋆

BP in
units of the mass of two free electrons m0 ¼ 2me ¼ 1=t and its mean-squared radius R2

BP. Error bars represent statistical errors in QMC
simulations corresponding to 1 standard deviation. Error bars in PBPðRÞ correspond to statistical errors smaller than the symbol size and
therefore are not shown.
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or competing effects resulting from the bipolaron overlap
combinedwith theHubbard repulsion and lattice reconstruc-
tion suppress Tc (dotted line). In either scenario, the system
eventually becomes nonsuperconducting at sufficiently
large densities near or at half filling (unless un-nested)
and, depending on the value of λ, antiferromagnetism or
valence-bond-solid charge order develops [36–39].

IV. OUTLOOK

Obtaining high-transition-temperature superconductivity
from Bose condensation of bipolarons has for many years
been thought to be very difficult. Recent work [25] revealed
conditions under which light bipolarons can arise, opening
a door for phonon-mediated high-Tc superconductivity.
This paper uses an exact quantumMonte Carlo treatment of
a precisely defined 2D square lattice model to demonstrate
that bond electron-phonon coupling in fact gives rise to
bipolaronic superconductivity with a transition temperature
that is much higher than that obtained from the more
extensively studied Holstein (density-coupled) bipolarons
or from Migdal-Eliashberg theory of superconductivity out
of a Fermi liquid. Perhaps more importantly, we find that
Tc of the bond-coupled bipolaronic superconductor is
enhanced by local Coulomb repulsion. The key ingredient
in this bipolaronic mechanism that gives rise to high Tc is
the combination of light mass and relatively small size of
bipolarons. While the calculations reported here employ the
bond-Peierls coupling in which the amplitude for an

electron to hop between two sites is modulated by a
phonon defined on the bond connecting the two sites,
bipolaronic high-Tc superconductivity may also arise in the
site-coupled Peierls (SSH) model [25] where the hopping is
modulated by the relative distance between the atoms at the
two ends of the bond, but an analysis including anharmonic
couplings is required. These remarkable properties call for
consideration of the physics of Peierls electron-phonon
coupling in quantum materials, and motivate further theo-
retical study of other physical situations that may give rise
to small-size, light-mass bipolarons needed in order to
support a state with high-Tc superconductivity. Models of
potential interest include ones in which a phonon on a bond
couples to two sites or a plaquette with either Holstein (e.g.,
Ref. [40]) or Peierls coupling, or both, or a situation in
which N phonons, each couples to N electronic sites; see,
e.g., Ref. [41].
The bond-Peierls coupling studied here arises generi-

cally in materials where the orbitals of out-of-plane atoms
mix with the bonding orbitals of in-plane atoms so that
transverse fluctuations of the distance of the out-of-plane
atoms give rise to modulation of the hopping. This physics
may be operative in several families of materials, including
the 90°-bonded [42,43] and corner-sharing [44] perov-
skites. One particularly intriguing example occurs in the
iron pnictides where electron transfer between two adjacent
Fe ions can occur via a state on an intermediate pnictogen
ion so that modulation of the pnictogen height strongly
modulates particular hopping pathways [45,46], and where
for certain geometries, different pathways destructively
interfere, producing a bond-Peierls coupling with a large
coupling constant. Figure 5 demonstrates this scenario. See
Appendix H for more details and discussion. Although the
model studied here is not directly applicable to the
pnictides, which are complex materials involving multi-
orbital “Hund’s metal” physics, it is intriguing to note that
an “extended s-wave” state with some similarities to our
bipolaron state has been proposed for its superconductivity.
From a materials science perspective, it is worth high-

lighting that the high-Tc bipolaronic superconductivity
becomes notably pronounced in the most “quantal” regime
of t=Ω ∼ 1 (Fig. 1) in which phonons and electrons are
competitive energetically. Here, Tc ∼ 0.2Ω, which could
easily give rise to a Tc ∼ 70 K for a typical value of phonon
frequency of approximately 0.03 eV if and only if the
unusual limit of t ∼Ω can be achieved. For the material
FeSe, we expect the ratio of the nearest-neighbor hopping
amplitude in the x-y plane to the relevant out-of-plane
phonon frequency to be t=Ω ∼ 2–3 [45,47] (see
Appendix H), which is close to this ideal regime. In
addition, structural engineering of a crystal’s electronic
stiffness [48], for example, by strain or moiré engineering
[49] as found in twisted bilayer graphene [50], can produce
a reduction in t without significantly changing Ω, perhaps
realizing t ∼Ω. Alternatively, functional superatomic crystal

FIG. 4. Fate of bipolaronic high-Tc superconductivity in the
limit of large electronic densities. Schematic diagram illustrating
the expected dependence of the superconducting transition
temperature Tc in the model of Eqs. (1) and (2) on the average
electronic density hn̂ii. For hn̂ii≲minf2=πR2

BP; 2=πg, bipolarons
form a dilute superconductor. For larger densities, bipolarons
overlap, and a new strongly correlated state may emerge. We
envision a few possibilities: Either pairing correlations continue
to dominate and Tc saturates or grows (dashed line) or competing
effects suppress Tc (dotted line). Ultimately, at or near half filling,
barring superconductivity at weak λ in the absence of nesting, Tc
vanishes and, depending on the value of the electron-phonon
coupling λ, a valence-bond solid (VBS) or an antiferromagnet
(AFM) emerges [36–39] (gray region).

C. ZHANG et al. PHYS. REV. X 13, 011010 (2023)

011010-6



engineering [51] may enable synthesis of crystals with light
atoms on the bonds of the lattice, providing a path to high-Ω
phonons, achieving t≳ Ω and an even higher value of Tc.
Important future research directions raised by our work

include full theoretical characterization of the phenomenol-
ogy of bipolaronic high-Tc superconductivity, extension of
our results to the richer models describing the Hund’s and
multiorbital physics of materials such as the pnictides, and
search for other bond-Peierls-coupled compounds, thus
opening a door to a new route to design principles of novel
high-temperature superconductors.
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APPENDIX A: CONVENTIONS USED FOR THE
DEFINITION OF λ IN THE DIFFERENT MODELS

In this appendix, we detail the conventions used to define
the dimensionless electron-phonon coupling constant λ for
the different models considered in the main text.
The electron-phonon coupling terms in the BP and H

models are

V̂BP ¼ α̃BP
X
i;σ

fðĉ†i;σ ĉiþx̂;σ þ H:c:ÞX̂i;iþx̂

þ ðĉ†i;σ ĉiþŷ;σ þ H:c:ÞX̂i;iþŷg; ðA1Þ

V̂H ¼ α̃H
X
i;σ

ĉ†i;σ ĉi;σX̂i; ðA2Þ

where α̃ ¼ α
ffiffiffiffiffiffiffiffiffiffiffi
2MΩ

p
. Our notation here differs slightly from

that of the main text to clearly distinguish the BP and H
models and to make explicit that there are two BP phonons
in each unit cell of the square lattice, one associated with a
bond in the x direction and one with a bond in the y
direction.
In the polaronic limit, λ is normally defined as the ratio of

the typical polaron energy scale to the free-electron energy

z

Pnictogen

(a) (b)

Iron

y

x

+–

y

x

t < 0

t' > 0

FIG. 5. Bond-Peierls coupling in the pnictides. A pnictogen atom sits at the apex of an octahedron with four iron atoms residing in the
x-y plane in the middle of the octahedron. (a) The phonon associated with the transverse motion of the pnictogen atom out of the x-y
plane in the z direction causes fluctuations in the barrier for electronic tunneling between the iron atoms within the x-y plane [45,46].
(b) Interference pattern along the bond connecting the iron atoms. Here there are two hopping processes: one resulting from direct
overlap between dxy orbitals on neighboring iron atoms with amplitude t < 0 (dashed double-headed arrow) and another involving a
second-order process in which the dxy orbitals on iron atoms overlap with the px orbital of the pnictogen atom (solid double-headed
arrows), resulting in a hopping with amplitude t0 > 0. Destructive interference between these two processes results in a reduced net
hopping along this pathway, e.g., in FeSe; see Appendix H for more details.
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scale, which for the BP model is λ ¼ α2BP=ð2ΩtÞ and for the
H model is conventionally λ ¼ α2H=ð4ΩtÞ [13]. However,
in order to contrast Tc=Ω for the bipolaronic superfluid in
the two models on the same scale, we rescale λ → λ=2 in
the case of the H model so that it becomes λ ¼ α2H=ð8ΩtÞ.
In ME theory of strong-coupling superconductivity out

of a Fermi liquid, λ, which we denote as λME, is conven-
tionally defined via the Fermi-surface mass enhancement:

m⋆
m

����
FS

¼ 1þ λME: ðA3Þ

Thus, λME acquires a dependence on the density of states
(see details in Appendix E) and in the low-electron-density
limit becomes λME ¼ 8α2BP=ð2πΩtÞ in the BP model and
λME ¼ α2H=ð2πΩtÞ in the H model.
Table I summarizes the conventions we use for the

definition of λ in the different models considered in
this work.

APPENDIX B: QUANTUM MONTE CARLO
CALCULATIONS

We employ a recently developed QMC approach based
on a path-integral representation of the electronic sector
combined with either a path-integral or a diagrammatic
representation of the phononic sector. The method and its
details can be found in Ref. [26]. Here we provide a brief
overview of the approach and details of the numerical
simulations.

1. Methodology

We use Monte Carlo (MC) methods to stochastically
sample the imaginary-time propagator GbaðτÞ≡hbje−τĤjai,
where τ is imaginary time, and jai and jbi are any two-
electron states in the singlet sector on a 2D square lattice.
We can evaluate the ground-state (GS) expectation value of
any same- or different-time observable Ô defined as
ŌGS ≡ hGSjÔjGSi, using Monte Carlo estimators:

ŌGS ¼
ObaðτÞ
GbaðτÞ

≡
P

abWabObaðτÞP
abWabGbaðτÞ

; ðB1Þ

where ObaðτÞ ¼ hbje−ðτ=2ÞĤÔe−ðτ=2ÞĤjai and Wab are MC
weights.
The approach to MC sampling is based on the general

scheme proposed in Refs. [52,53]. We write Ĥ ¼ ĥþ V̂,

where ĥ and V̂ are the diagonal and off-diagonal parts
of the Hamiltonian with respect to a basis B ¼ fjαig:
ĥjαi ¼ Eαjαi, V̂ ¼ P

αβ Vβαjβihαj, and hαjV̂jαi ¼ 0. For
the model in Eqs. (1) and (2), the basis B corresponds to site
Fock states for the electrons and bond Fock states for the
phonons. Using the interaction representation for the
evolution operator in imaginary time e−τĤ ¼ e−τĥσ̂ðτÞ
and expanding σ̂ðτÞ, one finds [52,53]

σβαðτÞ¼ δαβ−
Z

τ

0

dτ1Vβαeτ1Eβα

þ
X
γ1

Z
τ

0

dτ2

Z
τ2

0

dτ1Vβγ1e
τ2Eβγ1Vγ1αe

τ1Eγ1α þ…;

ðB2Þ

where Eβα ¼ Eβ − Eα. In this representation, there are three
types of the elementary processes: (i) bare electron hop-
ping, (ii) electron hopping assisted by phonon creation, and
(iii) electron hopping assisted by phonon annihilation.
Phonons can also be treated diagrammatically within the
same expansion while maintaining a path-integral repre-
sentation only for the electronic sector. The MC scheme
employed is based on the statistical interpretation of the
right-hand side of Eq. (B2) as an average over an ensemble
of graphs, in which each graph represents a string in space-
time coordinates characterized by the number and types of
kinks Vγiþ1γi . For the model in Eqs. (1) and (2), the choice
of basis B ensures that−Vβα are non-negative real numbers,
and thus graphs are sampled according to non-negative
weights given by the values of the corresponding inte-
grands in Eq. (B2), rendering this a sign-problem-free MC
approach. The sign problem is present for the site-Peierls
model because the coupling involves the difference
between phonon displacement operators on different sites,
which means that the sign of a subset of the −Vβα factors in
Eq. (B2) will be negative. In contrast, in the bond-Peierls
model, the sign of the coupling can always be gauged away,
and therefore the sign problem is absent. We use the
following updates in the MC scheme: We stochastically
(i) add and remove the last bare-hopping kink using a pair
of complementary updates [52,53], (ii) switch among the
three types of the hopping terms, and (iii) sample the length
of the last time interval separating the last kink from the
state jbi. This scheme yields states jbi that admit any
allowed configuration of excited phonon modes, and, as a
result, ensures ergodicity.

2. Computation of bipolaron properties

First, we note that the imaginary-time dependence of
GbaðτÞ contains direct information about the ground-state
energy EGS within a given momentum symmetry sector of
the Hilbert space:

TABLE I. Definition of λ for bipolarons and in ME theory in the
BP and H models as employed in this work.

BP model H model

Bipolaron α2BP
2Ωt

α2H
8Ωt

ME theory 8α2BP
2πΩt

α2H
2πΩt
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GbaðτÞ →
τ→∞

hbjGSihGSjaie−τEGS ; ðB3Þ

and thus we can use this relation to extract EGS in the
τ → ∞ limit for a given momentum symmetry sector; see
Fig. 6. Furthermore, in the center-of-mass coordinate
representation of the two-electron states jai and jbi, the
propagator Gbaðτ;RÞ, which depends on the relative center-
of-mass displacement R ¼ Rb −Ra, assumes a universal
form given by the propagator of a free particle whose
effective mass is given by the bipolaron mass m⋆

BP (see, for
example, Ref. [54]), which in 2D takes the form

Gbaðτ;RÞ → Abae−EGSτ

τ
e−

m⋆
BP

R2

2τ ; ðB4Þ

where Aba is a nonuniversal coefficient which depends on
the choice of states jai and jbi. We can thus extract m⋆

BP by
averaging over the states jai and jbi from the mean-square
fluctuations of the center-of-mass displacement in the
large-τ limit:

R2ðτÞ ¼
P

abWabGbaðτ;RÞR2P
abWabGbaðτ;RÞ →

τ→∞

2

m⋆
BP

τ: ðB5Þ

R2ðτÞ ultimately saturates to a straight line at sufficiently
large τ leading to an accurate estimate of the effective mass;
see Fig. 7.

We can thus compute the bipolaron mass either by
constructing the bipolaron dispersion EBPðKÞ as a func-
tion of the bipolaron momentum K from the asymptotic
behavior of Eq. (B3) as shown in Fig. 6 or directly from

(a) (b)

FIG. 6. Computation of the bipolaron mass using a QMC approach based on a path-integral representation of the electrons combined
with a diagrammatic treatment of the phonons. (a) Green’s function GbaðτÞ as a function of imaginary time τ in different bipolaron
momentum (K) sectors (solid lines) and fits to the long-τ asymptotic behavior of Eq. (B3) (dashed lines). (b) The bipolaron dispersion
EBPðKÞ constructed from EGS in the different K sectors obtained in (a) from the fits of GbaðτÞ in the large-τ limit to the asymptotic form
in Eq. (B3). We compute the bipolaron mass by fitting the dispersion. For this dataset, we find the following fitting function:
EBPðKÞ ¼ −9.38883þ 0.00188511K þ 0.0791534K2, which yields m⋆

BP=m0 ¼ 6.33� 1.0. Error bars represent statistical errors in
QMC simulations corresponding to 1 standard deviation. Results shown in this figure are for the BP bipolarons at λ ¼ 0.5, t=Ω ¼ 10=3,
and U=t ¼ 8.

FIG. 7. Computation of the bipolaron mass using a QMC
approach based on a path-integral representation of both the
electrons and the phonons. Mean-square fluctuations of the
relative displacement R2ðτÞ as a function of imaginary time τ
(solid line) and fit to the long-τ asymptotic behavior of
Eq. (B5) (dashed line) which we use to obtain the bipolaron
mass. For this dataset, we find the following fitting function:

R2ðτÞ=4 ¼ 3.26899 þ 0.0927293τ, which yields m⋆
BP=m0¼

5.4�0.3. Results shown in this figure are for the BP bipolarons
at λ ¼ 0.5, t=Ω ¼ 10=3, and U=t ¼ 8.
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the asymptotic behavior of R2ðτÞ in Eq. (B5) as shown in
Fig. 7. We use a QMC approach based on a path-integral
representation of the electrons combined with a diagram-
matic treatment of the phonons to simulate the asymptotic
behavior of Eq. (B3), and a QMC approach based on a
path-integral representation of both the electrons and
the phonons to simulate asymptotic behavior of Eq. (B5).
Estimates of the mass obtained using these two
approaches agree within the error bars; see Fig. 8.
Importantly, the dispersion we obtain in our simulations
retains a parabolic form for all energies lower than Tc
even when K becomes on the order of the inverse size of
the bipolaron, justifying the use of a continuous space
description.
To compute the bipolaron mean-squared radius R2

BP,
we use Monte Carlo estimators [Eq. (B1)] to evaluate
the probability distribution PðR12Þ of finding the two
electrons at a distance R12 from their center-of-mass
position within a bound bipolaron, from which we compute

R2
BP ≡ hR2

12i ¼
P

R12
R2
12PðR12Þ. [Note that R2

BP andR
2ðτÞ

of the two-electron state are unrelated; the former is the
square of the relative distance measured from the center-of-
mass coordinate, i.e., half the distance between the two
electrons, while the latter is the square of the center-of-mass
displacement—during imaginary-time evolution—aver-
aged over worldline configurations.]
We use the two QMC approaches to simulate the

behavior of two electrons in the singlet sector of the model
[Eqs. (1) and (2)] on a 2D square lattice with linear size
L ¼ 128 sites. The accuracy of the QMC results is
controlled by the maximum value of τ, τmax which
determines the accuracy of the projection of the propaga-
tion onto the ground state, with numerically exact results

recovered in the limit τmax → ∞. All results presented in
this work are converged with respect to τmax. Our calcu-
lations of the mass and size of bipolarons in the ground
state allow us to estimate Tc reliably at temperatures below
the binding gap, i.e., so long as Tc ≤ ΔBP. Error bars shown
in the figures represent statistical errors in QMC simula-
tions corresponding to 1 standard deviation, and, when
applicable, account for errors in fitting.

APPENDIX C: SUPPLEMENTAL RESULTS
ON SUPERFLUIDITY

OF BOND-PEIERLS BIPOLARONS

In the main text, in Fig. 1, we show Tc of a superfluid of
bond-Peierls bipolarons at U=t ¼ 8 at various values of the
adiabaticity parameter t=Ω. The behavior of the mass and
size of the bipolaron determines the value of Tc as can be
seen from Eq. (3). Figure 3 provides information about the
bipolaron mass and size at t=Ω ¼ 10=3. Here we present in
Figs. 9 and 10 additional results on the properties of the
bipolaron for various values of t=Ω.
Figure 9 shows that the overall trend of ΔBP, m�

BP, and
R2
BP with λ shifts to larger values of λ as t=Ω decreases, but

attains a qualitatively similar profile. Similarly, the spatial
structure of the bipolaron PBPðRÞ at the optimal λ that
maximizes Tc appears to not depend strongly on the value
of t=Ω; see Fig. 10. From Fig. 9, we see that upon
increasing λ, both m�

BP increases and R2
BP decreases in a

fashion in which there exists an optimal λ (e.g., for
t=Ω ¼ 10=3, the optimal λ is approximately 0.5) for which
m�

BP is not too large yet R
2
BP is relatively small, leading to a

maximum in the Tc curve; see Fig. 1.

APPENDIX D: SUPPLEMENTAL RESULTS
ON SUPERFLUIDITY

OF HOLSTEIN BIPOLARONS

In the main text, in Fig. 1, we show Tc of a superfluid of
Holstein bipolarons at U=t ¼ 8. Here we present additional
results on the behavior of Tc of a superfluid of Holstein
bipolarons computed from Eq. (3) using the same method-
ology as for the bond-Peierls bipolarons and provide details
on the behavior of the mass and radial size of the bipolaron.
In Fig. 11, we show the behavior of Tc=Ω for Holstein

bipolarons at t=Ω ¼ 2 as a function of λ for U=t ¼ 0 and
8 [Fig. 11(a)] and as a function of U=t for λ ¼ 0.5
[Fig. 11(b)]. Tc=Ω never exceeds approximately 0.05.
Increasing λ past an optimal but small value leads to
rapid bipolaron mass enhancement (see below) and
suppression of Tc. Increasing U=t leads to a decrease
in the mass, but the binding energy drops very rapidly,
and the radius correspondingly increases, limiting Tc to
even smaller values. This behavior can be seen clearly in
Fig. 12 which shows that Tc is much smaller in the
Holstein model than in the bond-Peierls model because
the Holstein bipolarons are always very heavy and small

FIG. 8. Bipolaron mass m⋆
BP in units of the mass of two free

electrons m0 ¼ 2me ¼ 1=t obtained using a QMC approach
based on a path-integral representation of the electrons combined
with a diagrammatic treatment of the phonons (solid line) versus
that obtained using a QMC approach based on a path-integral
representation of both the electrons and the phonons (dashed
line). Results shown in this figure are for the BP bipolarons at
t=Ω ¼ 10=3 and U=t ¼ 8.
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when strongly bound. They can become lighter only
when weakly bound which also results in large R2

BP, once
again producing a small Tc.

APPENDIX E: MIGDAL-ELIASHBERG
THEORY CALCULATIONS

This appendix summarizes results obtained in the
ME approximation for the H and BP models considered

in the main text. The approximation and computations are
standard, although the implications of the momentum-
dependent electron-phonon coupling in the BP model have
not previously been discussed. The purpose of the appendix
is to make precise the comparison given in the main text of
the transition temperature Tc computed within ME theory
by presenting the specifics of the calculations. It is
important to emphasize that in the literature on the limits
on Tc in real compounds [7,33], the physics of the limits on

(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

(a3) (b3) (c3)

FIG. 9. Bipolaron properties in the bond-Peierls model. Bipolaron properties computed from QMC calculations performed on Eq. (1)
at various values of the adiabaticity parameter t=Ω (different rows) as a function of the electron-phonon coupling λ ¼ α2=ð2ΩtÞ for
different on-site Hubbard U (in units of the electron hopping t). (a1)–(a3) Bipolaron binding energyΔBP in units of the electron hopping
t. (b1)–(b3) Bipolaron effective massm⋆

BP in units of the mass of two free electronsm0 ¼ 2me ¼ 1=t. (c1)–(c3) Bipolaron mean-squared
radius R2

BP. Error bars represent statistical errors in QMC simulations corresponding to 1 standard deviation.
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Tc relies primarily on considerations of the maximum
physically attainable electron-phonon coupling strength in
realistic models in which the electron-phonon interaction is
computed from microscopics in a theory of electrons and
ions coupled by the physical Coulomb interactions. Here
we focus on the properties of the model systems discussed
in the main text, with the HubbardU set to zero. The results
for the H model presented here are consistent with recent
work of Esterlis et al. [34].
Contact with conventional ME theory is more clearly

made in momentum (k) space, where the H [Eq. (A2)] and
BP [Eq. (A1)] couplings are

V̂H ¼ α̃H
X
k;q;σ

ðĉ†k−q
2
;σ ĉkþq

2
;σÞX̂q; ðE1Þ

V̂BP ¼ α̃BP
X
a¼�

X
k;q;σ

ðĉ†k−q
2
;σ ĉkþq

2
;σÞΛaðkx; kyÞX̂q;a: ðE2Þ

We rewrote the BP coupling in terms of the phonon
operators:

X̂q;� ¼ X̂q;x � X̂q;yffiffiffi
2

p ; ðE3Þ

(a) (b) (c)

FIG. 10. Bipolaron radial size probability density distribution PBPðRÞ in the bond-Peierls model. PBPðRÞ computed from QMC
calculations performed on Eq. (1) at various values of the adiabaticity parameter t=Ω for the value of λ ¼ α2=ð2ΩtÞ which maximizes Tc
at on-site Hubbard repulsion U=t ¼ 0; 8; 12; see Fig. 1. Error bars in PBPðRÞ correspond to statistical errors smaller than the symbol
size and therefore are not shown.

(a) (b)

FIG. 11. Bipolaronic superconductivity in the Holstein model. Tc=Ω at adiabaticity parameter t=Ω ¼ 2 as a function of λ ¼ α2=ð8ΩtÞ
for an on-site Hubbard U=t ¼ 0 and 8 (a) and as a function of U=t for λ ¼ 0.5 (b). Error bars represent statistical errors in QMC
simulations corresponding to 1 standard deviation.
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with couplings

Λ�ðkx; kyÞ ¼
ffiffiffi
2

p
ðcos kx � cos kyÞ: ðE4Þ

1. Phonon stiffness and stability limits

The ME theory of these models proceeds by first
computing a physical phonon stiffness given by the differ-
ence of the bare phonon stiffness denoted by K and α̃2

multiplied by the zero frequency limit of an appropriate
electron correlation function. (In the adiabatic limit
Ω0 ≪ EF, the frequency dependence of the correlator is
negligible; in other words, the phonon mass is not renor-
malized, and the correlator may be computed using the bare
electron Green’s functions. Here, Ω0 is the bare phonon
frequency, which is the same as Ω in the main text.)
In the H model, the relevant correlator is the electron

density-density correlation function, and we have

KHðqÞ ¼ K
�
1 −

α̃2

K
χρρðq; 0Þ

�
: ðE5Þ

Since a positive phonon stiffness is required for stability of
the oscillator, the maximum coupling is bounded (in the
ME approximation) by α̃2 < maxq½K=χρρðq; 0Þ�. Standard
density-functional-theory (DFT) computations of phonon
frequencies include (within the approximations of DFT and
within the adiabatic limit) renormalization of the phonon
frequency; i.e., a material crystal structure is by construc-
tion stable (within the DFT approximation). Esterlis et al.
[10,34] studied the stability issue using numerical methods

which allowed them to go beyond the ME approximation.
The main focus of their work was electron densities near
half filling where the susceptibility has a substantial density
dependence and density waves provide a competing ground
state. A qualitative result of their work is that while the ME
approximation is not accurate near the stability limit, the
estimate α̃2 < maxq½K=χρρðq; 0Þ� still provides a reason-
able bound.
Our interest here is specifically in the ME approximation

and in the low-density limit. For the electronic model

(a) (b)

FIG. 12. Bipolaron properties in the Holstein model. Bipolaron properties computed from QMC calculations performed on Eq. (A2) at
adiabaticity parameter t=Ω ¼ 2 as a function of the electron-phonon coupling λ ¼ α2=ð8ΩtÞ for an on-site Hubbard U=t ¼ 8.
(a) Bipolaron effective mass m⋆

BP in units of the mass of two free electrons m0 ¼ 2me ¼ 1=t. (b) Bipolaron mean-squared radius R2
BP.

Error bars represent statistical errors in QMC simulations corresponding to 1 standard deviation.

FIG. 13. Static density-density correlation function χρρðqÞ≡
χρρðq; 0Þ of noninteracting electrons on a 2D square lattice tight-
binding model with dispersion εk ¼ −2tðcos kx þ cos kyÞ at
carrier concentration n ¼ 0.25 carrier per site as function of
momentum (q) along direction (1,0) (solid line) and (1,1) (dashed
line), with n → 0 value of density of states 1=ð2πtÞ (dotted line).
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dispersion used here εk ¼ −2tðcos kx þ cos kyÞ, at low
electronic densities (say, n≡ hn̂ii≲ 0.25 electron per site
where n̂i ¼ n̂i;↑ þ n̂i;↓), the susceptibility is essentially
momentum independent in the range 0 ≤ q ≤ 2kF, and is
equal to the bare fermion density of states (summed over
spin) N0, which is weakly density dependent and tends to
1=ð2πtÞ as the density goes to zero; see Fig. 13 where we
show the static limit of the bare electron density-density
correlation function computed for n ¼ 0.25 carrier per site.
Thus, in the 0 − 2kF wave-vector range the physical
phonon frequency Ωphys is, to a good approximation,
constant and given by

Ωphys ¼ Ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2λ0H;ME

q
; ðE6Þ

where the bare ME coupling constant is

λ0H;ME ¼ α2H
Ω0

N0 ≈
α2H

2πΩ0t
; ðE7Þ

and the second, approximate, equality becomes exact in the
low-density limit. Thus, the stability limit of the Holstein
model in the ME approximation [see Eq. (E5)] at low
densities is λ0H;ME ¼ 1=2. Note that the λ defined for
Holstein bipolarons differs from this definition; see Table I.
In the BP model, there are two phonon modes per unit

cell of the square lattice, and the couplings are momentum
dependent. In the � basis of Eqs. (E2) and (E5) becomes

KBPðqÞ ¼ K

�
1 −

α̃2BP
K

�
χþþðq; 0Þ χþ−ðq; 0Þ
χþ−ðq; 0Þ χ−−ðq; 0Þ

��
; ðE8Þ

where χ�� is the hΛ�Λ�i correlator and χþ− is the hΛþΛ−i
correlator [see Eq. (E4)]. Figure 14 shows the numerical
calculation of these correlators. The cross-correlator
χþ−ðq; 0Þ is in general very small; we neglect it here. In

the very-low-density limit (n≲ 0.05=site), χþþðq; 0Þ ¼
8χρ;ρ ¼ 4=ðπtÞ and χ−−ðq; 0Þ ≈ 0. For moderately low
densities (e.g., n ¼ 0.25=site), χ−−ðq; 0Þ remains small
relative to χþþðq; 0Þ, but χþþðq; 0Þ acquires non-negligible
momentum dependence with the largest value being at
q ¼ 2kF. For larger n, χ−− can become larger than χþþ, and
in fact sets the limit of stability. The momentum depend-
ence of the electron-phonon coupling leads to some
ambiguity in the definition of λ0BP;ME. Here we adopt a
definition appropriate to the very-low-density limit, writing

Ωphys�ðqÞ ¼ Ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2λ0BP;ME

�
πt
4
χ�ðq; 0Þ

�s
; ðE9Þ

with

λ0BP;ME ¼ 4α2BP
πΩ0t

; ðE10Þ

where χ�ðq; 0Þ≡ χ��ðq; 0Þ. The λ defined for BP bipo-
larons in the main text is a factor of π=8 smaller than
λ0BP;ME; see also Table I. The factor ðπt=4Þχþðq; 0Þ becomes
1, independent of q in the very-low-density limit, and the −
mode decouples, so the physics becomes identical to the H
model apart from the relation between α and λ. At larger
n ∼ 0.25, the − mode still decouples, but the factor is less
than 1 at all q and is q dependent, being largest at q ¼ 2kF.
At larger densities, the − mode does not decouple.

2. Electron self-energy

The ME approximation to the electron self-energy Σ
(making use of the adiabatic limit, which allows us to
average the self-energy over all wave vectors on the Fermi
surface) gives

(a) (b)

FIG. 14. Static ðcos kx � cos kyÞðcos kx � cos kyÞ correlation functions χþþðqÞ (solid line), χ−−ðqÞ (dashed line), and χþ−ðqÞ (spaced
dashed line) [here χaa0ðqÞ≡ χaa0ðq; 0Þ] of noninteracting electrons on a 2D square lattice tight-binding model with dispersion εk ¼
−2tðcos kx þ cos kyÞ at carrier concentration n ¼ 0.25 carrier per site as a function of momentum (q) along direction (1,0) (a) and (1,1)
(b), with n → 0 value of χþþðqÞ ¼ 4=ðπtÞ (dotted line).
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ΣðωÞ ¼ T
X
ω0

Gðω0Þ
R

d2k
ð2πÞ2 δðεkÞ

R
d2k0
ð2πÞ2 δðεk0 Þ

P
aπα

2
a;k;k0Daðk − k0;ω − ω0ÞR

d2k
ð2πÞ2 δðεkÞ

; ðE11Þ

where the phonon propagator for mode a is

Daðq; νÞ ¼
2ΩaðqÞ

ν2 þ Ω2
aðqÞ

; ðE12Þ

and the Fermi-surface-projected electron Green’s
function is

GðωnÞ ¼
iωn1þ τ1WðωnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ωnZðωnÞ�2 þ ½WðωnÞ�2
p ; ðE13Þ

where ν and ωn are Matsubara frequencies for bosons and
fermions, respectively, and τ1 in the first of the SU(2) Pauli
matrices. Here the normal component of the self-energy is
Σn ¼ iωn(1 − ZðωnÞ) [where ZðωnÞ is known as the Z
factor] and the anomalous component is WðωnÞ. In the
circular Fermi-surface approximation, which is reasonably
accurate for n ≤ 0.25, we have εk ≈ −4tþ k2=ð2mÞ with
m ¼ ð1=2tÞ, and the self-energy equation becomes

ΣðωÞ¼ m
2π

T
X
ω0

Gðω0Þ
Z

dθdθ0

ð2πÞ2

×
X
a

πα2a;kF;θ;θ0Da

�
2kF sin

θ−θ0

2
;ω−ω0

�
: ðE14Þ

In the H model, the phonon propagator and coupling
coefficient are independent of momentum and its angle on
the Fermi surface, and it is convenient to define the
coupling constant as λH;ME ¼ λ0H;MEðΩ0=ΩphysÞ using the
physical, renormalized phonon frequency. After linearizing
in the anomalous self-energy, we have, explicitly

½1−ZðωnÞ�ωn

¼−
πλH;ME

2
T
X
Ωn

sgnðΩnÞ
2Ω2

phys

ðωn−ΩnÞ2þΩ2
phys

; ðE15Þ

WðωnÞ ¼
πλH;ME

2
T
X
Ωn

WðΩnÞ
jΩnZðΩnÞj

2Ω2
phys

ðωn − ΩnÞ2 þ Ω2
phys

:

ðE16Þ

These equations are in the form in which the Migdal-
Eliashberg equations for the electron self-energy are tradi-
tionally presented and solved. If the temperature is low
compared to the phonon frequency, one finds from
Eq. (E15) that the low-frequency mass enhancement is
1þ λH;ME. The critical transition temperature may easily be

determined following Bergmann and Rainer [55] by recast-
ing Eq. (E16) as an eigenvalue equation for the vector
WðωnÞ=jωnZðωnÞj and defining the transition temperature
Tc as the temperature at which the leading eigenvalue
vanishes. The result is a Tc which, as a fraction of the
renormalized phonon frequency, evolves from the small λ
BCS form of e−1=λ to the Allen-Dynes form of

ffiffiffi
λ

p
as λ is

increased from small to large values. Figure 15 shows the
ratio of Tc to Ωphys as a function of λH;ME calculated from
Eq. (E16). In the present context, it is of greater relevance to
present the results as the ratio of Tc to the bare oscillator
frequency Ω0 as a function of the bare coupling λ0H;ME.
These are obtained by a simple scaling of the results in
Fig. 15 and are presented in the main text in Fig. 1.
In the BPmodel, the presence of two phononmodes in the

unit cell and the momentum dependence of their coupling
coefficients and phonon frequenciesmake the analysis more
involved. In order to evaluate Eq. (E11) for theBPmodel, we
need the coupling function Λðkx; kyÞ [Eq. (E4)] at the
momentum ðkþ k0Þ=2. For simplicity, we make the circular
Fermi-surface approximation and define ψ ¼ ðθ þ θ0Þ=2
and ϕ ¼ θ − θ0, then Eq. (E14) can be written as

ΣðωÞ ¼ πλ0BP
2

X
a¼�

T
X
ω0

Gðω0Þ
Z

dϕ
2π

Λ2
BP;a;kF;ϕ

× 2Da

�
2kF sin

ϕ

2
;ω − ω0

�
; ðE17Þ

with

FIG. 15. Transition temperature Tc in Migdal-Eliashberg
theory calculations of the Holstein model divided by the
physical (renormalized) phonon frequency Ωphys calculated as
a function of the conventional Migdal-Eliashberg coupling
constant λH;ME from Eq. (E16).
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Λ2
BP;�;kF;ϕ

¼ 1

8

Z
dψ
2π

�
cos

�
kF cosψ cos

ϕ

2

�

� cos

�
kF sinψ cos

ϕ

2

��
2

: ðE18Þ

Figure 16(a) shows the dependence of the coupling
constant for the þ mode as a function of the phonon
momentum (parametrized by ϕ) calculated within the cir-
cular Fermi-surface approximation for densities n ¼ 0.25,
0.1, and 0.05. Also shown is the coupling for the − mode at
n ¼ 0.25 (for the lower densities, the coupling function is
essentially indistinguishable from zero). We see that at all
of the relevant densities, the − mode decouples. We solve
the linearized gap equations for the BP model in the explicit
form

½1 − ZðωnÞ�ωn ¼ −
πλ0BP;ME

2
T
X
Ωn

sgnðΩnÞ2Dðωn − ΩnÞ;

ðE19Þ

WðωnÞ¼
πλ0BP;ME

2
T
X
Ωm

WðΩmÞ
jΩmZðΩmÞj

2Dðωn−ΩmÞ; ðE20Þ

with

DðΩn−ΩmÞ¼
Z

dϕ
2π

Λ2
BP;�;kF;ϕ

Ω0Ωþð2kFsinϕ2Þ
ðωn−ΩmÞ2þΩ2þð2kFsinϕ2Þ

:

ðE21Þ

We calculate the transition temperature by proceeding as
in the H case. Note, however, that we formulate the
equations from the outset in terms of the bare λ, λ0, not
the conventional ME λ defined in terms of the renormalized

phonon frequency Ωphys. Results for n ¼ 0.25 are shown in
the right panel of Fig. 16(b) and in the main text in Fig. 1.

APPENDIX F: MCMILLAN’S
PHENOMENOLOGICAL APPROACH TO

PHONON-MEDIATED STRONG-COUPLING
SUPERCONDUCTIVITY

McMillan’s approach to strong-coupling superconduc-
tivity is based on a phenomenological treatment of exper-
imental data on conventional superconducting materials
within the framework of Migdal-Eliashberg theory. This
approach makes use of a coupling constant λ estimated
directly from experiment by considering an electron-
phonon interaction averaged over the Fermi surface and
supplements this treatment by empirical parameters used
to mimic the effect of Coulomb interaction in order to
better fit the experimental data. The Migdal-Eliashberg
theory itself is valid in the adiabatic limit t ≫ Ω and for
moderate values of λ, because at λ≳ 1, apart from struc-
tural instability [7], the Fermi liquid becomes a metastable
state, higher in energy than a state formed of bipolarons
[4–6,8–10,34,56]. Within its domain of applicability,
McMillan’s formula finds that strong electron-phonon
coupling induces a superconducting instability out of a
Fermi liquid at [33]

Tc

Ω
¼ 1

1.45
e−1.04

1þλ
λ−μ⋆ð1þ0.62λÞ; ðF1Þ

where μ⋆ ¼ 0.12 is the value of the Coulomb pseudopo-
tential found in many materials [33]. A typical upper bound
from McMillan’s approach can thus be estimated at about
λ ¼ 1 to give a maximum Tc=Ω ∼ 0.05, in qualitative
agreement with the results of Migdal-Eliashberg theory
applied to the two models presented in Fig. 1 (see also
Appendix E). These comparisons illustrate that Tc obtained

(a) (b)

FIG. 16. (a) Momentum dependence of the electron-phonon coupling parameter in Eq. (E18) for the þ mode of the bond-Peierls
model calculated for densities n ¼ 0.05, 0.1, and 0.25 carrier per site (solid lines; highest to lowest) and for the −mode of the model for
density n ¼ 0.25 carrier per site (dashed line). (b) Transition temperature Tc in Migdal-Eliashberg theory calculations of the bond-
Peierls model divided by bare phonon frequency Ω0 as function of the bare coupling λ0BP;ME for density n ¼ 0.25 carrier per site.
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in our model of bipolaronic superconductivity generically
exceeds previously held expectations.

APPENDIX G: EFFECTIVE ELECTRONIC
HAMILTONIAN IN THE ANTIADIABATIC LIMIT

To unravel the pairing mechanism responsible for the
formation of bipolarons, we derive an effective electronic
Hamiltonian in the antiadiabatic limit t ≪ Ω by projecting
out high-energy subspaces with one or more phonons
[25,57]. This procedure is valid at strong coupling λ ≫ 1
within the antiadiabatic regime if t ≪ α ≪ Ω such that
α2 ≫ Ωt. To second order, we find an effective two-
electron Hamiltonian given by

Ĥeff ¼ ĥe þ Ûe-e þ V̂e-e; ðG1Þ

where

ĥe ¼ −ϵ
X
i;σ

n̂i;σ − t
X
hi;ji;σ

ðĉ†i;σ ĉj;σ þ H:c:Þ; ðG2Þ

Ûe-e ¼ Ũ
X
i

n̂i;↑n̂i;↓−T
X
i

½ĉ†i;↑ĉ†i;↓ĉj;↓ĉj;↑þH:c:�; ðG3Þ

V̂e-e ¼ Ṽ
X
hi;ji

n̂in̂j þ J
X
hi;ji

 Si ·  Sj; ðG4Þ

where n̂i ¼ n̂i;↑ þ n̂i;↓,  Si ¼ 1
2

P
α;β ĉ

†
i;α  σα;βĉi;β, and  σ is a

vector of SU(2) Pauli operators. Here, ϵ ¼ 4α2=Ω is the
polaron formation energy, Ũ¼ U − 8α2=ðΩ −UÞ þ
8α2=Ω is the amplitude of a phonon-renormalized effective
on-site density-density interaction, T ¼ 2α2=ðΩ − UÞ is the
amplitude of a phonon-mediated on-site electron pair-
hopping interaction [25], Ṽ ¼ 2α2=Ω − α2=ðΩþ UÞ is
the amplitude of a phonon-mediated nearest-neighbor
density-density interaction [58], and J ¼ 4α2=ðΩþUÞ is
the amplitude of a phonon-mediated SU(2)-preserving
nearest-neighbor spin-spin interaction [25,58].

Our numerical results away from the antiadiabatic limit
indicate that the salient features embodied by Ĥeff, spe-
cifically the phonon-mediated kinetic-energy-enhancing
pair-hopping interaction [25], continue to hold qualitatively
as t=Ω increases, as evidenced by the light bipolaron
masses. In contrast, in the adiabatic t=Ω ≫ 1, phonons
should behave classically and have no dynamics; thus, a
pair of electrons experiences a retarded phonon-mediated
attraction and form a singlet bipolaron localized on a lattice
bond in order to minimize the total energy. Our numerical
results indicate that away from these asymptotic limits a
competition between the phonon-mediated kinetic-energy-
enhancing electron pair-hopping interaction and the ten-
dency to localize electron pairs is at play and determines the
fate of bipolarons, which, nonetheless, appear to be light in
a large region of parameter space.

Finally, we see that, at least in the antiadiabatic limit, the
V̂e-e contains a phonon-mediated repulsive part [58], which
disfavors pairing in all but the rotationally symmetric s-
wave channel, and a large U=t, e.g., U ¼ 8t discussed in
the main text, further enhances this tendency.

APPENDIX H: BOND-PEIERLS COUPLING IN
THE IRON-BASED PNICTIDE

SUPERCONDUCTORS

The bond-Peierls electron-phonon coupling arises
generically in systems where the orbitals of out-of-plane
atoms mix with the bonding orbitals of in-plane atoms [59].
Here, transverse fluctuations of the displacement of the out-
of-plane atoms give rise to modulation of the barrier for
electron tunneling across bonds, precisely as embodied by
the model in Eqs. (1) and (2). Interestingly, Refs. [45,46]
show that this physics is operative in the iron pnictides
wherein modulation of the pnictogen height can strongly
modulate particular hopping pathways. Figure 5 demon-
strates this scenario. Here a pnictogen atom sits at the apex
of an octahedron with four iron atoms residing in the x-y
plane in the middle of the octahedron. The transverse
motion of the pnictogen atom out of the x-y plane in the z
direction causes fluctuations in the barrier for electronic
tunneling between the iron atoms within the x-y plane
[45,46] [Fig. 5(a)]. A dominant pathway for direct elec-
tronic hopping between iron atoms in this class of materials
involves overlaps between lobes of dxy orbitals of opposite
sign on neighboring iron atoms in the x-y plane, resulting in
a negative hopping t < 0 [45]. An indirect electronic
pathway resulting from a second-order, super-exchange-
like process involves the overlap of the apex atom’s px
orbital with each lobe of the two dxy orbitals, resulting in a
net positive hopping t0 > 0 [45]. These two pathways
[Fig. 5(b)] nearly cancel in FeSe because the magnitudes
of t and t0 are nearly equal, and more generally, the ratio of t
to t0 varies in other pnictide materials resulting in an overall
reduction in the magnitude of the net electronic hopping
between the iron atoms [45]. This interference effect
combined with the large modulation of the tunneling barrier
by the displacement of the pnictogen atom along this
particular hopping pathway means that the value of the
dimensionless electron-bond-phonon coupling strength λ
relevant to this mode in this class of materials can be large;
see Refs. [45,47]. As an example, Ref. [60] suggests a value
of λ ∼ 0.5 in one member of this family of materials, but
more work is needed to accurately determine the strength of
electron-phonon coupling in specific compounds. The net
overall hopping in the x-y plane is roughly 50 meV [45],
and the transverse phonon frequency is estimated to be
approximately 5.3 THz ≈ 22 meV in FeSe, and approx-
imately 17 meV in FeTe [47], implying a ratio of the
relevant phonon frequency to the magnitude of the relevant
(net) electron hopping of approximately 2–3 in these
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materials. We also note that while the pairing symmetry in
these materials has not yet been fully determined, an
“extended s-wave” state with some similarities to our bond
bipolaron state is a leading candidate.
This analysis reveals that the bond-Peierls coupling may

be operative in the pnictides. However, additional electron-
phonon interaction terms may exist in these materials. For
example, since a bond between two iron atoms connects
two octahedra, the motion of a single pnictogen atom out of
plane within one octahedron is correlated with that of
another pnictogen atom in the neighboring octahedron, and
this correlated pnictogen-pnictogen motion can simulta-
neously modulate the hopping across two iron-iron bonds,
giving rise to yet another electron-phonon coupling term in
these materials. The true extent to which the bond-Peierls
coupling is important in determining the behavior of these
materials requires more work to understand the interplay
between the electron-phonon interaction terms and other
features such as those presented by the multiple electronic
bands, Hund’s coupling, and the form and range of the
effective electron-electron interactions near the Fermi
surface.
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