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Soliton states from quadratic electron-phonon interaction
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We present a numerically exact study of self-trapped (also referred to as soliton) states of electrons that
form in materials with strong quadratic coupling to the phonon coordinates. Previous studies failed to observe
predictions based on the variational approach in continuum space because soliton states form only when system
parameters are taken to the extreme limit. At the variational level, we establish that finite-radius solitons emerge
through the weak first-order transition as the coupling strength is increased, and subsequently collapse to the
single-site state through a strong first-order transition. Both transitions transform into smooth crossovers between
the light and heavy polaron states in the full quantum treatment. The most surprising effect not observed in
other polaron models is the nonmonotonic dependence of the soliton effective mass and the residue at strong
coupling.
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I. INTRODUCTION

For decades, studies of polarons—electrons renormalized
by their coupling to lattice vibrations [1–3]—were focused on
the linear density-displacement electron-phonon interaction
(EPI),

Hint =
∑
kqσα

Vqαc
†
k−qσ ckσ [b†

qα + b−qα], (1)

where α is the phonon branch index (we use standard nota-
tions for the creation and annihilation operators for electrons
c†
k,σ , ckσ and phonons b†

qα, b−qα in momentum representa-
tion). The most popular models were the local Holstein [4,5]
and the nonlocal Frohlich [6,7] models with Vqα = const and
Vqα ∝ 1/q, respectively (for a recent review, see Ref. [8]).
More recently, researchers started exploring alternative inter-
action mechanisms based on the electron hopping amplitude
dependence on atomic displacements [9–15] that bring an
additional dependence of the vertex function in (1) on the
incoming electron momentum,Vqα → Vk,qα , but remain linear
in the phonon coordinates. The interest in new models was
motivated by their unusual properties and the possibility of
having light but compact bipolarons (bound states of two
electrons) with a high superconducting transition temperature
[13,16].

The properties of polarons with quadratic EPI remained
much less explored and understood:

Hint = g2
�

4

∑
i

ni[b
†
i + bi]

2. (2)

Here, � is the local oscillator frequency in the absence of
coupling; it changes to �̃ = √

1 + g2ni � when the site is oc-
cupied. Note the crucial dependence of the model’s properties
on the sign of g2 and, in particular, the instability taking place
at g2 < −1.

An intriguing regime emerges when the two limits, � → 0
and g2 → +∞, conspire to preserve finite �̃. Indications of
the importance of this regime were found in several mate-
rials: doped manganites [17], halide perovskites [18], and
quantum paraelectrics [19,20]. The soft vibration modes in
these materials are transverse optical phonons for which the
linear EPI is suppressed in the long-wave limit [21–25]; sim-
ilar physics takes place in optically pumped systems [26,27].
Early suggestions that biphonon exchange could be an im-
portant pairing mechanism at low doping [21] were recently
revisited and used to explain superconductivity in SrTiO3

[28–30]. However, dealing with nonlinear couplings theoret-
ically beyond perturbation theory has been challenging. The
original work [22–25] was based on the variational solution
for large-radius soliton states in continuum. The momentum
average approximation [31] was used to study a combination
of linear and nonlinear EPI in Refs. [32,33]. More recently,
nonlinear EPI effects were investigated in Refs. [34–36] using
the determinant Monte Carlo method [37] for finite two-
dimensional (2D) systems at high electron density and finite
temperature. Finally, the interplay between the linear and
quadratic EPI in continuum was studied in Ref. [38] by the
variational Feynman’s path-integral method [39].

The situation has changed with the development of
the numerically exact x-representation Monte Carlo (XMC)
technique for polaron problems with arbitrary nonlinear
density-displacement and arbitrary sign-preserving hopping-
displacement interactions [40]. It was used to obtain the
precise results for quadratic EPI (2) at strong coupling [41],
but the study failed to observe soliton states predicted by
one of the authors in Refs. [22,23] despite considering a rel-
atively small adiabatic parameter γ = �/W = 1/48, where
W = 12t is the bandwidth of the 3D tight-binding model on
the cubic lattice with the nearest-neighbor hopping amplitude
t . Thus, no progress on the soliton problem was made for more
than three decades, and it remains unknown how and under
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what conditions these states form and what are their basic
properties.

In this paper, we first expand the variational analysis of the
adiabatic limit to reveal how solitons form and then collapse
in first-order phase transitions. Next, we present results of the
numerically exact studies of solitons by the XMC method
in the parameter regime that is orders of magnitude beyond
the limitations of other known schemes: γ = 1/600 and γ =
1/2400 with g2 as large as 108. In the full quantum solu-
tion, the first-order transitions are transformed into smooth
crossovers with an unusual (not observed in other polaron
problems) nonmonotonic dependence of the effective mass
and Z factor on g2 at strong coupling.

II. HAMILTONIAN, EFFECTIVE ADIABATIC MODEL,
AND METHODS

The full system’s Hamiltonian on the simple cubic lattice
reads

H = 6t − t
∑
〈i j〉

c†
i c j + �

∑
i

b†
i bi + Hint. (3)

(The phonon energy is counted from the ground state of the
unperturbed harmonic oscillator.) In the adiabatic, γ → 0,
limit one takes advantage of the fact that electrons are much
faster than phonons and the contribution of the latter to energy
depends solely on the average electron density distribution
[1,2,22,23]. For model (3), these standard considerations lead
to the following energy functional to be minimized:

E = 6t − t
∑
〈i j〉

ψ∗
i ψ j + �

2

∑
i

(
√

1 + g2|ψi|2 − 1). (4)

Here, ψ is the normalized electron wave function (real for
the ground state), and the last term is the sum of ground-state
energies for each oscillator. Given that oscillator frequencies
increase with g2, the adiabatic condition for the polaron of
radius R is satisfied if

√
R−3g2� 	 t/R2 or g2 	 (t/�)2/R

(the lattice constant a = 1 serves as the unit of length). For
a large-radius soliton, we also consider a continuous counter-
part of Eq. (4) with m = 1/2t :

E =
∫

d3r

[
1

2m
|∇ψ |2 + �

2
(
√

1 + g2|ψ |2 − 1)

]
. (5)

Minimization of Eq. (4) is achieved by the gradient descent
method when at each stage the wave function is first trans-
formed according to ψ̃ = ψ − ε∇ψH and then normalized to
unity. This step is rejected and the value of ε is decreased
by a factor of two if E [ψ̃] > E [ψ]; otherwise it is accepted.
For optimal solutions we record their energies and root-mean-
square radii, R =

√
〈r2〉, where 〈r2〉 = ∑

i r
2
i ψ

2
i . We ensure

that all finite-size effects are exponentially small for the po-
laron solutions presented in this paper (realistically, one can
work with about 3003 sites after utilizing system symmetries).

Numerically exact solutions of (3) are obtained using the
recently developed XMC method based on the lattice path
integral for the electron and coordinate representation for
harmonic oscillators (see Refs. [40,41] for a complete de-
scription). Key polaron properties, such as the dispersion
relation, Ep, ground-state energy, E = Ep=0, effective mass,

1/m∗ = d2Ep=0/d p2, and the quasiparticle residue, Z =
Zp=0, are obtained from simulations of the polaron Green’s
function, Gp(τ ), and its asymptotic behavior, Gp(τ ) →
Zpe−Epτ , in the τ → ∞ limit.

III. VARIATIONAL ANALYSIS

The formation of solitons is driven by competition be-
tween the hopping term favoring delocalized states and EPI
repulsion preferring localized states due to the sublinear
dependence of the interaction energy on density at strong
coupling [last terms in (4) and (5)]. Since delocalized states
correspond to ψi → 0, their variational energy readily follows
from Eq. (4) in this limit: E0 = g2�/4.

Localized continuous solutions at strong coupling were
obtained in Refs. [22,23]. If the last term in (5) is approxi-
mated as �

√
g2|ψ |/2, then energy minimization reduces to

the solution of the radial eigenvalue equation, −d2ψ/dr2 +
m�

√
g2/2 − λψ = 0, with the solution

ψ (r) =
√

3

10πR3
A

[
1 − RA sin (x0r/RA)

r sin (x0)

]
, (6)

for r < RA and ψ (r) = 0 for r � RA, where x0 ≈ 4.49 is the
lowest positive root of tan x = x and RA is the cutoff radius,
RA = [6x4

0/(5πg2�
2m2)]1/7. The root-mean-square radius of

this solution is given by R = (11/25 − 49/10x2
0 )1/2RA ≈

0.444RA and its energy

EA = 7

10

(
5πx3

0

6

)2/7 (g2�
2)2/7

m3/7
≈ 3.34

(g2�
2)2/7

m3/7
(7)

falls below g2�/4 for g2 > 37.7(m�)−3/5.
Thus, on the one hand, solitons form at strong coupling

g2 � 1. On the other hand, this coupling needs to be small
enough to ensure adiabaticity of the state and its large radius
because at g2 > (t/�)2 both conditions are violated. At g2 �
(t/�)2 the polaron state is well described by the so-called
atomic limit (AL) when the electron changes frequency only
of the harmonic oscillator at the occupied site (see Ref. [41]).
Physically, this is a completely different state characterized by
R ≈ 0 and Eatom ≈ �

2 (
√

1 + g2 − 1).
In a more precise treatment, the last term in (5) is dealt with

“as is” and the cutoff at RA gets replaced with the gradual
exponential decay of the wave function with distance; this
feature is important for a correct description of the transition
between the localized and delocalized states. The correspond-
ing numerical analysis is presented below. In the absence of
a hard cutoff, we have to resort to the root-mean-square radii
for defining the polaron size.

To study the properties of solitons away from the asymp-
totic adiabatic limit (γ → 0, R → ∞)—how they first form
and then transition to the AL state—we resort to the exact
minimization of the lattice functional (4) by gradient de-
scent, the results are shown in Figs. 1 and 2. Using t = 1
as the energy unit, we first consider the case of an extremely
small phonon frequency �/t = 10−5 (see Fig. 1). For g2 � gc
(gc = 26 406), both E and R are accurately described by the
asymptotic continuous solutions. However, this is no longer
the case on approach to gc, because exact variational solutions
remain stable at significantly smaller (by a factor of two)
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FIG. 1. Energy (upper panel, red circles) and radius (lower panel,
red squares) of lattice variational states as functions of g2 for �/t =
10−5. Dashed (orange) lines are the asymptotic continuous solutions
[see Eq. (7) and the text above]. The dashed-dotted (blue) line is the
energy of the delocalized state. Insets: Energy and radius vs g2 near
the critical point.

values of g2 as their volume undergoes a rapid expansion (by
nearly an order of magnitude). This is a clear indication that
the hard-cutoff approximation is not reliable near the critical
point.

A close examination of the |g2 − gc|/gc 	 1 region (see
the insets in Fig. 1) reveals that within the variational treat-
ment, solitons with a finite radius Rc emerge through a weak
first-order transition. Indeed, for g2 slightly smaller than gc,
we detect metastable localized solutions (obtained by starting
from an initial wave function with a small radius), which
subsequently disappear at g2 < 0.92gc. The phase transition
point can be located very accurately from the intersection of
the E and E0 curves.

In continuum, the energy functional is invariant under the
scaling transformation, r → br, g2 → b3g2, � → b−3�, and
m → b−2m. Moreover, if m and � are changed while keeping
the adiabatic parameter m� constant, the functional is simply
multiplied by a factor �̃/�. Thus, upon proper scaling, we
are left with only one free parameter, g2. These consider-
ations imply that the critical coupling and radius scale as
gc ∝ (m�)−3/5 and Rc ∝ (m�)−1/5. On a lattice, this scaling
is expected to fail when Rc ∼ a. Data in Fig. 3 demonstrate
the accuracy of this prediction for large critical sizes.

IV. QUANTUM SOLUTION

For a less extreme but still small adiabatic ratio γ =
1/600 we are posed to compare variational and full quantum
solutions (see Fig. 2). As expected, the first-order tran-
sition at gc = 272.7 predicted by (4) is replaced with a
smooth quantum crossover. Despite the very small value of
γ the exact energy is still significantly different from its

FIG. 2. Upper panel: Energies of variational states (red circles)
in comparison with XMC results (black triangles) for � = 0.02.
Lower panel: Variational state radii (red squares). Dashed (orange)
lines are predictions of the asymptotic continuous solutions. The
dashed-dotted (blue) line is the energy of the delocalized variational
state E0. The dotted (green) line is the atomic limit energy Eatom.
Inset: Variational E vs g2 near the critical point.

variational counterpart across the crossover region. This sur-
prising outcome finds its explanation in the relatively small
soliton sizes predicted by (4): about four lattice spacings at gc
and quickly shrinking to R ∼ a in a broad parameter range.
Quantum effects are expected to be pronounced at the lattice
scale, not to mention that for R ∼ a the adiabatic condition
also becomes questionable. Nevertheless, it is clear that at
g2 ∼ 103 the polaron state undergoes a radical transformation
from a perturbative plane-wave state with a slightly renormal-
ized effective mass and Z ≈ 1 to a state with m∗/m much
larger and a Z factor much smaller than what is expected in
the AL (see Fig. 4). These results imply that the electron is

FIG. 3. Critical coupling and radius of solitons in continuum as
a function of �. Both show a clear power-law dependence (dashed
lines) with expected exponents.
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FIG. 4. Effective mass and Z factor for �/t = 0.02 as functions of g2 from the XMC method. Solid lines are results expected in the atomic
limit.

“dressed” by oscillator excitations distributed over multiple
sites, i.e., it forms a soliton.

We observe that the parameters required for the formation
of large-radius solitons are extreme and well beyond the limits
of applicability of other unbiased methods. For XMC, simula-
tions of γ < 0.001 are also very challenging in the regime
of large effective masses, m∗/m � 1000, and exponentially
small Z factors. This explains why previous numerical studies
failed to see them.

V. COLLAPSE TO THE ATOMIC LIMIT: LIGHTER
POLARONS AT STRONGER COUPLING

Once solitons form, their radius gradually decreases with
coupling and at g2 ∼ (t/�)2 both lattice effects and nona-
diabatic corrections come into play. Naive expectations are
that AL is nothing but the end of the smooth monotonic
evolution of the soliton state. This turns out to be incorrect
and in a rather dramatic fashion. Figure 2 shows that the
lattice functional features a second transition at large g2, this
time between the soliton and AL states. It can be understood
analytically by restricting analysis to just two wave-function
components near the transition point: ψ0 � 1 at the center
and ψ1 	 1 at the six nearest-neighbor sites (other compo-
nents are proportional to higher powers of ψ1). By assuming
that ψ2

1g2 � 1 and using the normalization condition, ψ2
0 =

1 − 6ψ2
1 , we arrive at the energy dependence on ψ1,

E/t = 6
[
6ψ3

1 − χψ2
1 + 2(χ − 1)ψ1

] + const, (8)

that features a first-order transition when χ = √
g2�/(4t ) =

χc, with χc ≈ 1.022. At this level of description, the transition
is from small but nonzero ψ1 at χ < χc to ψ1 = 0 at χ > χc.
In terms of the coupling constant, the transition takes place
at g2 > (4t/�)2 = 9/γ 2. [The above consideration is valid
only in the γ → 0 limit; more precise treatment with terms
∝χ/(g2ψ1) included shows that the discontinuous transition
to the AL takes place only for γ < 0.0015].

While there is no reason to trust variational results for
compact states, they do point to the possibility of having a
much faster crossover to the AL than what is expected in terms
of a slow power-law evolution R ∝ g−1/7

2 . Given an order
of magnitude difference between the effective masses and Z
factors of the soliton and AL states (see Fig. 4), a monotonic
power-law transformation of one state into another would
require enormous values of g2. But if this transformation takes
the form of a more rapid crossover, then m∗ and Z must exhibit
a nonmonotonic dependence on g2 at strong coupling. Such
highly counterintuitive behavior was not reported for other
polaron problems. By extending XMC simulations to much
larger values of g2 for γ = 1/600 and performing additional
simulations for γ = 1/2400 at strong coupling, we do observe
the nonmonotonic dependence of m∗ and Z (more pronounced
for smaller γ ) (see Fig. 5), i.e., solitons are getting lighter as
they approach AL.

VI. CONCLUSIONS

We performed detailed studies of soliton states in the
model with a strong quadratic electron-phonon interaction by
(i) extending a previous variational analysis to lattice systems,
(ii) revealing two first-order transitions and their properties,
which explain how solitons form and subsequently collapse
to the single-site states at the variational level, and (iii) solv-
ing the problem numerically exactly by the x-representation
Monte Carlo technique. In exact solutions, transitions are
replaced by smooth crossovers with a rapid increase of the
effective mass and decrease of the quasiparticle residue at
strong coupling. An opposite trend is discovered when the
soliton size is of the order of the lattice spacing.

Previous numerical work failed to see solitons because they
form when system parameters take values way beyond the
limitations of other unbiased methods. Future work should
explore the properties of bipolaron states in the same model;
bound states are expected to form in the same parameter
regime where solitons form and for the same reason—a
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FIG. 5. Effective masses and Z factors for �/t = 0.02 and �/t = 0.005 as functions of g2 over a much broader range that in Fig. 4. Solid
lines are results expected in the atomic limit.

sublinear dependence of the interaction energy on electron
density. Figure 5 suggests that it is possible to have light
and compact bipolarons, which is a prerequisite for a high
superconducting temperature at finite density [13,16].
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